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ABSTRACT

Sampling from an un-normalized target distribution is an important problem in
many scientific fields. An implicit sampler uses a parametric transform x = Gθ(z)
to push forward an easy-to-sample latent code z to obtain a sample x. Such
samplers are favored for fast inference speed and flexible architecture. Thus it
is appealing to train an implicit sampler for sampling from the un-normalized
target. In this paper, we propose a novel approach to training an implicit sam-
pler by minimizing the Fisher Divergence between sampler and target distribu-
tion. We find that the trained sampler works well for relatively simple targets
but may fail for more complicated multi-modal targets. To improve the training
for multi-modal targets, we propose another adaptive training approach that trains
the sampler to gradually learn a sequence of annealed distributions. We construct
the annealed distribution path to bridge a simple distribution and the complicated
target. With the annealed approach, the sampler is capable of handling challeng-
ing multi-modal targets. In addition, we also introduce a few MCMC correction
steps after the sampler to better spread the samples. We call our proposed sampler
the Annealed Fisher Implicit Sampler (AFIS). We test AFIS on several sampling
benchmarks. The experiments show that our AFIS outperforms baseline methods
in many aspects. We also show in theory that the added MC correction steps get
faster mixing by using the learned sampler as MCMC’s initialization.

1 INTRODUCTION

Sampling from an un-normalized distribution is an important problem in many scientific fields such
as Bayesian statistics (Green, 1995), biology (Schütte et al., 1999), physics simulations (Olsson,
1995), machine learning (Andrieu et al., 2003), and so on. Typically, the problem is formulated
as: given a known differentiable un-normalized target potential function log p(x), one wants to
sample from the target distribution. Due to the success of deep neural networks, there is increasing
popularity to train a deep generative model to learn to sample(Hu et al., 2018; Wu et al., 2020;
Matthews et al., 2022; Corenflos et al., 2021). Such learned models which can approximately sample
from target distribution are called samplers.

Training a neural network (i.e., a parameterized transform) x = Gθ(z) to push forward an easy-
to-sample latent code z ∼ pZ(z) to obtain a sample is an appealing approach. Such approaches
are favored for fast sampling because they only need a single-time forward pass of neural network
transform. Let Gθ(.) denote the parametric transform and q(x) the un-normalized target distribu-
tion with unknown normalizing constant Z =

∫
q(x)dx. Let pθ(x) denote the sampler-induced

distribution. Some previous work takes a normalizing flow model as sampler, and then minimizes
the KL divergence between sampler-induced and target distributions regardless of normalizing con-
stant: DKL(pθ, q) = Ex∼pθ

[
log pθ(x)− log q(x) + logZ

]
. Note that Z is parameter-free and can

be ignored during training. However, minimizing KL divergence relies on explicit log-likelihood of
sampler-induced distribution, which can not be computed in a general transform. Such transform
with no explicit likelihood is referred to as an implicit sampler.

In this paper, we will focus on implicit samplers. Note that the annoying normalizing constant
vanishes when considering the score function of a distribution, s(x) = ∇x log p(x). Thus, we can
take the score-based divergence to constructively get rid of the unknown normalizing constant for
implicit samplers. Fisher divergence (FD), which is a popular score-based probability divergence,
and its variants have obtained much success in recent years, especially in training deep generative
models such as energy-based models (Kingma & Cun, 2010; Martens et al., 2012; Song et al., 2019),
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score based diffusion models (Song et al., 2020; Kingma et al., 2021; Vahdat et al., 2021; Song &
Ermon, 2019; Ho et al., 2020), etc. Assume p(x), q(x) are two probability densities. The Fisher
Divergence between p and q is defined as

DFD(p, q) =
1

2
Ex∼p(x)∥∇x log p(x)−∇x log q(x)∥22.

It is always no less than 0 and equals to 0 if and only if p(x) = q(x) a.s. under probability measure
p. Fisher Divergence is suitable for measuring the dissimilarity between sampler and un-normalized
target distribution. So as to be used for training the implicit sampler.

In this paper, we firstly propose a novel approach to learning a sampler by minimizing the Fisher
Divergence between sampler and un-normalized target distributions. We call such a sampler the
Fisher Implicit Sampler. We then show that the proposed sampler is capable of handling relatively
simple target distribution, but would fail for more challenging multi-modal targets.

To remedy this issue and unlock the full potential of the Fisher Implicit Sampler, we additionally
propose a novel adaptive training approach that trains the implicit sampler gradually using a se-
quence of annealed distributions instead of the target distribution. We anneal the target distribution
to bridge the hard-to-sample target and an easy-to-sample prior. More precisely, we extend the target
distribution q(x) to a sequence of annealed distributions {qk(x)}k for k = 0, . . . ,K, where qK(x)
is the target density and q0(x) is an easy-to-sample prior distribution, typically a normal distribution.
The design of such an annealed path gradually reduces the learning difficulty for the sampler.

Figure 1: Illustration of proposed Annealed Fisher Implicit Sampler.

Moreover, we find that a few steps of MC correction after the sampler help the samples spread better
with little cost, as also used in some previous work (Wu et al., 2020; Arbel et al., 2021; Matthews
et al., 2022). Combining all together, we call our proposed sampler the Annealed Fisher Implicit
Sampler (AFIS), as illustrated in Figure 1. We validate our AFIS on sampling benchmarks, showing
improvements over baseline approaches.

The main contributions of our work are summarized as follows:

• We propose a novel loss function to minimize the Fisher Divergence. We show that mini-
mizing the proposed loss is equivalent to minimizing the Fisher Divergence between sam-
pler and target distribution. Note that our objective is largely different from other ones in
previous work.

• We provide an insightful understanding of the difficulty in learning multi-modal targets by
minimizing Fisher Divergence. We facilitate the annealing technique on training samplers
based on our understanding.

• We bring in a novel annealing technique and MC correction steps with our sampler, leading
to improved sampling performance with little additional cost.

2 BACKGROUND

2.1 TRAIN IMPLICIT SAMPLERS WITH SCORE-BASED DIVERGENCE

The learning-to-sample problem arises in many application fields of machine learning. Assume
we only have access to an un-normalized target distribution q(x) (or its logarithm log q(x)), and
the goal is to approximately sample from the target. In recent years, training a neural network-
based transform to approximately sample from target distribution is an appealing method. Such a
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transform is called a neural sampler. Let Gθ denote a neural network which transforms a relatively
simple latent code z ∼ p0(z) to a sample x = Gθ(z). Here, pZ(z) is an easy-to-sample latent
distribution, usually the standard Normal distribution. A general neural sampler does not have an
explicit expression of the log-likelihood function, which we name them implicit samplers. Because
of the un-normalized target distribution and unavailable log-likelihood, training implicit samplers
by minimizing KL or related divergence always fails. An alternative way is to consider score-based
divergence.

The Stein Neural Sampler of Hu et al. (2018) is trained by minimizing Stein’s Discrepancy between
sampler and target distributions. The Stein Discrepancy (SD) (Gorham & Mackey, 2015) is defined
as

DSD(p, q) = sup
f∈F

{
Ex∼p⟨∇x log q(x), f(x)⟩+ ⟨∇x, f(x)⟩

}
,

The calculation of Stein’s discrepancy relies on solving a maximization problem w.r.t. test function
f . When the function class F is carefully chosen, the optimal f may have an explicit solution or
easier formulation. For instance, Hu et al. (2018) found that if F is taken to be F = {f : Ep∥f∥22 ≤
δ}, the SD is equivalent to a regularized representation

DSD(p, q) = max
f

{
Ex∼p⟨∇x log q(x), f(x)⟩+ ⟨∇x, f(x)⟩ − λ

[
fT f

]}
.

They used two neural networks: Gθ to parametrize an implicit sampler and fη to parametrize the test
function. Let pθ(x) denote the implicit sampler distribution induced by x = Gθ(z) with z ∼ pZ(z).
Stein Neural Sampler solves a minimax problem on parameter pair (θ, η) to obtain a sampler that
minimizes the SD between sampler and target by

min
θ

max
η

L(θ, η) = min
θ

max
η

{
Ex∼pθ

⟨∇x log q(x), fη(x)⟩+ ⟨∇x, fη(x)⟩ − λ
[
fTη fη

]}
.

Here the notion x ∼ pθ means x = Gθ(z) with z ∼ pZ(z). They called the above SD the Fisher
Stein Discrepancy and the corresponding sampler FSD Neural Sampler.

The Stein Neural Sampler opens the door to training implicit samplers by minimizing score-based
Divergence. In fact, the FSD Neural Sampler calculates a surrogate of Fisher Divergence. The FSD’s
test function f provides an approximation of Fisher Divergence. However, as we show in Section
3.1, their calculation of Fisher Divergence only provides partial gradient updates of the sampler’s
parameters, thus leading to training failure even for simple target.

2.2 SCORE FUNCTION ESTIMATION

Since the implicit sampler does not have an explicit log-likelihood function or score function, train-
ing it with score-based divergence requires inevitably estimating the score function (or equivalent
component). Score matching (Hyvärinen & Dayan, 2005) and its variants provided powerful ap-
proaches to estimating score function through samples. Assume one only has available samples
x ∼ p, and wants to use a parametric approximated distribution qϕ(x) to approximate p. Such an
approximation can be made by minimizing the Fisher Divergence between p and qϕ. We can rewrite
the Fisher Divergence as

DFD(p, qϕ) = Ex∼p

{
∥∇x log p(x)∥22 + ∥∇x log qϕ(x)∥22 − 2⟨∇x log p(x),∇x log qϕ(x)⟩

}
.

Under certain conditions, the equality Ex∼p⟨∇x log p(x),∇x log qϕ(x)⟩ = −Ex∼p∆ log qϕ(x)
holds (usually referred to as Stein’s Identity(Stein, 1981; Gorham & Mackey, 2017)) . Here
∆ log qϕ(x) =

∑
i

∂2

∂x2
i
log qϕ(x) denotes the Laplacian operator applied on log qϕ(x). Combining

this equality and noting that the first term of FD Ex∼p∥∇x log p(x)∥22 does not rely on parameter ϕ,
we have that minimizing DFD(p, qϕ) is equivalent to minimizing the following objective

L(ϕ) = Ex∼p

{
∥∇x log qϕ(x)∥22 + 2∆ log qϕ(x)

}
.

This objective can be estimated only through samples from p, thus is tractable when qϕ is well-
defined. More specifically, one only needs to define a score network sϕ(x) : RD → RD instead of a
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density to estimate the score function of p in some cases. This technique was proposed in Hyvärinen
& Dayan (2005) named after Score Matching. Other variants of score matching were also studied
(Song et al., 2019; Vincent, 2011; Pang et al., 2020; Meng et al., 2020; Lu et al., 2022; Bao et al.,
2020). Score Matching related techniques have been widely used in training energy-based models
and score-based diffusion models in recent years. In this paper, we use score matching related
techniques to estimate the score function of the sampler’s distribution.

3 ANNEALED FISHER IMPLICIT SAMPLER

3.1 MINIMIZING THE FISHER DIVERGENCE: S2D LOSS

Let Gθ(.) : RDZ → RDX be an implicit sampler (i.e., a neural transform), pZ latent distribution, pθ
sampler induced distribution x = Gθ(z), and q(x) un-normalized target. Our goal is to pull close
the FD between pθ and q in order to train the sampler. Recall the definition of Fisher Divergence
between pθ, q is

DFD(pθ, q) = Ex∼pθ
∥∇x log pθ(x)−∇x log q(x)∥22.

For our learning-to-sample setting, the target score function ∇x log q(x) is known. A direct solution
seems work if one uses an additional score network sϕ(.) : RDX → RDX to approximate sampler’s
score function. Samples from implicit sampler is cheap to obtain, so estimating sampler’s score
function is not hard with score matching related techniques. We call this step the Score Estimation
Step. With a good approximated sϕ(x) of sampler’s score function, one may wish to minimize the
approximated Fisher Divergence to update the sampler

θ∗ = argmin
θ

Ex=Gθ(z),z∼pZ(z)∥sϕ(x)−∇x log q(x)∥22.

We call this step the Score Difference Minimization Step. By alternating the above two steps, one
may wish the Fisher divergence will be minimized, thus the training of sampler is done. We name the
resulting approach the Direct Method. Interestingly, the Direct Method coincides with FSD Neural
Sampler as we state in Proposition 1. We put detailed proof in Appendix A due to limited pages.
Proposition 1. Estimating the sampler’s score function sϕ(.) with score matching is equivalent to
maximizing the Fisher Stein Discrepancy objective to obtain FSD’s optimal test function. More
specially, the optimal score estimation s∗ and FSD optimal test function f∗ satisfy

f∗(x) =
1

2λ

[
∇x log q(x)− s∗(x)

]
.

Moreover, the Direct method is equivalent to FSD when training implicit Sampler.

(a) real (b) S2D (c) Direct

Figure 2: Direct method fails for simple Ba-
nana distribution while S2D loss succeeds.

Although the direct method seems reasonable, it
fails as we show in the experiment on a simple Ba-
nana target in Figure 2. We find that even if sam-
pler’s score function is estimated perfectly at each
iteration, the direct method still gives only partial
parameter gradient for minimizing the Fisher Diver-
gence. We start by analyzing Fisher Divergence’s
gradient w.r.t. sampler’s parameter. The Fisher Di-
vergence is
LFD(θ) = Ex∼pθ

∥∇x log q(x)−∇x log pθ(x)∥22.
One wants to adjust θ to minimize LFD(θ). The θ gradient of the above objective writes

∂

∂θ
Epθ

∥sd(x)−sθ(x)∥2 = Epθ
∥sd(x)−sθ(x)∥2

∂

∂θ
log pθ(x)+Epθ

2(sθ(x)−sd(x))
T ∂

∂θ
sθ(x).

The first gradient term coincides with the direct approach if we asynchronously estimate the sam-
pler’s score function perfectly. More precisely, with perfect score estimation sϕ(x) = ∇x log pθ(x),
we have
∂

∂θ
Ex∼pθ

∥∇x log q(x)− sϕ(x)∥22

=
∂

∂θ

∫
∥∇x log q(x)− sϕ(x)∥22pθ(x)dx =

∫
∥∇x log q(x)− sϕ(x)∥22

∂

∂θ
pθ(x)dx

=

∫
∥∇x log q(x)− sϕ(x)∥22pθ(x)

∂

∂θ
log pθ(x)dx = Ex∼pθ

∥∇x log q(x)− sϕ(x)∥22
∂

∂θ
log pθ(x).
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The above equation reveals that the direct method only takes partial gradient to minimize the FD
between sampler and target. In many cases, this partial gradient leads to training failure as we
observe in Figure 2. In (Hu et al., 2018), FSD Neural Sampler used Kernelized Stein Discrepancy
trained implicit sampler as initialization before training with FSD. However, such initialization limits
the usage of FSD because the optimization might start from a local minima which is close to KSD’s
local minima and can potentially be mislead the sampler.

In order to minimize the Fisher Divergence correctly, we propose a novel training objective called
Score Square Difference loss (S2D) which accounts for the full parameter gradient to minimize the
Fisher Divergence. The S2D loss is defined as the difference of target and sampler’s square score
norm, where the sampler’s score function is estimated asynchronously with a score network sϕ(x).
More precisely, our S2D loss is defined as

LS2D(θ) := Ex∼pθ

{
∥∇x log q(x)∥22 − ∥sϕ(x)∥22

}
,

where sϕ(.) is the estimated score function of sampler distribution. The score function is usually
estimated by score matching related techniques. The notation x ∼ pθ means x = Gθ(z), z ∼ pZ(z).
The following proposition 2 shows that, if the sampler score function is estimated perfectly, the
parameter gradient of S2D loss is the same as the gradient of Fisher Divergence.

Proposition 2. Assume sϕ(x) = ∇x log pθ(x). Then the following equality holds:

∂

∂θ
LS2D(θ) =

∂

∂θ
LFD(θ).

We give the detailed proof in Appendix B. This proposition says that, if we alternate between
score estimation of sampler’s score function, and minimization of the S2D loss, we are actually
minimizing the Fisher Divergence between sampler and target. The S2D loss is a surrogate
of Fisher Divergence which can provide the same parameter gradient as Fisher Divergence. So
minimizing the S2D loss gives the same results as minimizing the intractable Fisher Divergence.
Figure 3 gives an illustration of the relation between S2D loss and Fisher Divergence. The black
curve stands for the intractable Fisher Divergence. Green curve represents the S2D loss. The S2D
loss shares the same gradient parameter as Fisher Divergence. We refer to a sampler trained with
such approach the Fisher Implicit Sampler (FIS). We give an algorithm for FIS in Algorithm 1. We
take standard score matching as an illustration of score estimation step, but other score estimation
techniques such as denoising score matching and sliced score matching also works.

Algorithm 1: Fisher Implicit Sampler training
Input: un-normalized target log q(x), latent distribution pZ(z), implicit sampler Gθ, score

network sϕ, mini-batch size B, max iteration M.
Randomly initialize (θ(0), ϕ(0)).
for t in 0:M do

# update score network parameter
Get mini-batch xi = Gθ(t)(zi), zi ∼ pZ(z), i = 1, .., B.
Calculate score matching objective:

LSM (ϕ) = 1
B

∑B
i=1

[
∥sϕ(xi)∥22 + 2⟨∇x, sϕ(xi)⟩

]
.

Minimize LSM (ϕ) to get ϕ(t+1).
# update sampler parameter
Get mini-batch latent code zi ∼ pZ(z), i = 1, . . . , B.
Use re-parametrization trick to calculate S2D loss for sampler

LS2D(θ) = 1
B

∑B
i=1

[
∥∇x log q(Gθ(zi))∥22 − ∥sϕ(t+1)(Gθ(zi))∥22

]
.

Minimize LS2D(θ) to get θ(t+1).
end
return (θ, ϕ).
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Figure 3: S2D loss and Fisher Divergence. The
S2D loss shares the same parameter gradient as
Fisher Divergence if sampler’s score is estimated
perfectly asynchronously. Thus minimizing the
S2D loss to update the sampler is equivalent to
minimizing the Fisher Divergence between sam-
pler and target.

Figure 2 shows that our proposed FIT (S2D
loss) can successfully train an implicit sampler
from scratch to sample from the famous banana
shape distribution. While the Direct method
fails to train the correct sampler.

Although FIT is capable of handling bench-
mark targets, we find that FIT fails on more
challenging multi-modal targets with very sep-
arated modes. To remedy the multi-modal fail-
ure issues and fully unlock the potential of the
S2D loss, we propose to combine the anneal-
ing techniques with FIT for multi-modal tar-
gets. The idea of annealing is widely used
in sampling and stochastic optimization litera-
ture (Neal, 2001; Salimans et al., 2015; Chen
et al., 2016; Doucet et al., 2001; Van Laarhoven
& Aarts, 1987). The technique constructs a
distribution bridge between a relatively sim-
ple prior distribution and a complicated target.
The learning (or other operations such as sam-
pling or optimization) are gradually operated on
each middle distribution from prior to the tar-

get. Typically, the annealing technique can lower the barrier of operation of the target by dispersing
the difficulty to all middle distributions.

3.2 ANNEALED FISHER IMPLICIT TRAINING

By executing FIT steps repeatedly, the sampler is trained to minimize the Fisher divergence between
pθ and target q. However, directly minimizing the Fisher divergence is problematic in practice. If the
sampler’s distribution is too dissimilar to the target, the Fisher divergence could be hard to estimate
accurately as mentioned in (Wenliang & Kanagawa, 2020). The Fisher divergence can be small
under any tolerance even if two distribution are largely different in terms of KL divergence. More
precisely, the Fisher Divergence is likely inaccurate if two distributions are too dissimilar. Due to
this issue, the sampler might not be able to estimated the Fisher divergence accurately, making the
training fail. In fact, above issue occurs a lot in real applications. Sampler is often initialized to
concentrate around the origin, while the target distribution rarely concentrates around the origin.

To remedy the inaccurate Score Estimation issue, we need to guide the sampler to start from learning
a relatively simple target, and then the more challenging one. Based on such intuition, we introduce
a gradual relaxation of target distribution. More precisely, we construct a sequence of annealed
distributions {qk}, k ∈ {0, ..,K} which gradually transform a relatively simple distribution q0 to
target distribution qK = q. Typically, q0 is chosen as N (0, I) for simplicity. We let the sampler
gradually learn to sample from each qk with k increasing from k = 0 to k = K. Since when k
is small qk is simpler than qK , the estimation of Fisher divergence is easier. Thus the sampler can
learn to approximate qk. When one gradually turns k to k = K, the sampler will gradually learn to
sample from our final target qK = q.

Such easy-to-hard technique is commonly known as annealing techniques. Marinari & Parisi
(1992); Geyer & Thompson (1995) proved faster mixing time with temperature annealed target.
Wenzel et al. (2020) utilized anneal path to connect model and posterior in Bayesian inference
regime. Mandt et al. (2016); Huang et al. (2018); Fu et al. (2019) annealed the KL regularization in
variational inference. D’Angelo & Fortuin (2021) proposed to anneal the target when running Stein
Variational Gradient Descent algorithm for better mixing speed. Perhaps the most similar anneal-
ing approach to ours is Neal (2001); Wu et al. (2020) which construct a geometric distribution path
pk(x) between a Gaussian prior and target density. We utilize a similar anneal path as in Wu et al.
(2020).
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In this paper, we anneal the target distribution q with a geometric interpolation starting with a stan-
dard Gaussian distribution as prior

log qk(x) = λk log qK(x) + (1− λk) log q0(x)

with q0 = N (0, I) and 0 ≤ λk ≤ 1 a pre-defined annealing schedule function with λ0 = 0, λK = 1.
The score function is then linearly interpolated with

∇x log qk(x) = λk∇x log qK(x) + (1− λk)∇x log q0(x),

where ∇x log qK(x) = ∇x log q(x) is the target score function and ∇x log q0(x) the prior score.
For standard Normal prior, we have ∇x log q0(x) = −x. We name our FIS sampler combined
with annealing technique the Annealed Fisher Implicit Training. Because of the pages limitation,
we put the full AFIS algorithm in Appendix F. By annealing the target distribution to a sequence
of easier-to-learn targets, we divide the difficulty of sampler to learn one final distribution to learn
sequentially from less difficult targets. Thus the sampler will not be bothered by inaccurate Fisher
divergence estimation and training failure. Figure 1 gives a brief summary of how AFIS works. The
Annealed Fisher Implicit Sampler is trained along annealed distributions progressively.

3.3 MONTE CARLO CORRECTION

Deterministic sampler suffers from mode-connection issue. The issue says that a deterministic trans-
form can not fully disconnect two modes as studied in Wu et al. (2020). Such issue limit the use
of a pure deterministic sampler. Recent works show that combining stochastic corrections with de-
terministic transforms could improve the sampling performance (Wu et al., 2020; Song et al., 2020;
Song & Ermon, 2019). MCMC(Hastings, 1970; Roberts & Rosenthal, 1998; Xifara et al., 2014;
Neal, 2011) is a commonly used stochastic transform family. By running MCMC, one can approxi-
mated sample from some un-normalized target distribution. Thus a few steps MCMC is a nice way
to serve as stochastic corrections.

In particular, after training the sampler, we take the generated samples x = Gθ(z), z ∼ p0(z) as
initialization and run several MCMC as correction steps to spread samples for better diversity. Both
energy-based and score-based MCMC can be used. We take the Langevin MC as an illustration and
put more details of MC corrections in Appendix C. Note that our method is not limited to these MC
corrections.

Langevin Dynamic Correction A set of particles is assumed to reach q(x) as a stationary distri-
bution if it is driven by a Langevin Dynamic with local updates

dXt = ∇Xt log q(Xt)/2 + dWt,

where Wt is standard Brownian motion. The discrete scheme of Langevin Correction is given by

X(t+1) = X(t) +
ϵ

2
∇ log q(X(t)) +

√
ϵZ(t),

where Z(t) ∼ N (0; I). The Fokker-Planck equation tells that under certain conditions, q(x) is the
only stationary distribution of above diffusion dynamic. About 20 updates of steps is sufficient to
have good enough correction effects in practice.

The combination of deterministic sampler and stochastic correction in fact gives faster mixing for
MCMC. The deterministic sampler sample particles coarsely near target’s high density modes. After
that, the MCMC helps the particle spread better around each modes. In particular, we show that
Langevin mixing time can be controlled by Fisher divergence between sampler distribution and
target. Taking advantage of flexible neural network architecture, AFIS can be trained to match
target score at any precision. The Theorem 1 shows that Langevin Correction’s mixing time can be
reduced by well trained sampler.

Theorem 1. Assume the target potential log q(x) is smooth and satisfies

lim
∥x∥2→+∞

(
∥∇ log q(x)∥22

2
−∆ log q(x)

)
= +∞.
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(a) real (b) AFIS+MC (c) AFIS (d) FIS (e) FSD-NS

Figure 4: Sample comparison on Double Well targets. (a) real samples; (b) samples from trained
AFIS with 5 steps of HMC correction; (c) samples from trained AFIS; (d) samples from trained FIS
without annealing; (e) samples from trained FSD-NS. All samplers and score networks use the same
architecture.

Assume generated distribution p induced by AFIS x = G(z) is trained to match Fisher divergence
under δ precision DF (p, q) ≤ δ. Then there exists a positive constant λ and a dimension-free pos-
itive constant C which only depend on target distribution q(x), such that under Langevin diffusion
with initial distribution p0 = p,

dXt = ∇ log q(x)/2dt+ dWt,

the diffusion time

T ∗ = max

{
0,

1

2λ

[
C + log(

δ

ϵ
)
]}

is enough to control the KL divergence between corrected distribution pT and target q under toler-
ance ϵ.

In practice, the AFIS can be trained to achieve any precision to match target under Fisher Divergence.
The above theorem says, the better AFIS is trained, the shorter time for MC correction is needed to
achieve same tolerance in terms of KL divergence. We provide the detailed proof in Appendix D.

3.4 COMBINING ALL: THE ANNEALED FISHER IMPLICIT SAMPLER

Combining the S2D loss, the annealed technique, and MC corrections, we obtain our final sampler:
the Annealed Fisher Implicit Sampler (AFIS) with MC corrections. Figure 4 shows a comparison
of trained sampler’s samples on Double Well distribution. Double Well is a usually used bi-variate
testing target with two separated modes. The figure shows that the AFIS with a few steps of MC
correction gives the best samples. The AFIS with no MCMC correction can not fully separate
two disjoint modes. The FIS (without annealing) fails to learn the two modes. The FSD-NS (or
the Direct Method) also fails for training. To be concluded, the experiments show that S2D loss,
annealed technique, and MC correction all contribute to successful learning.

4 EXPERIMENTS

4.1 AFIS FOR SYNTHETIC TARGET

For sanity check, we apply AFIS on some toy target distributions as used in Hu et al. (2018); Rezende
& Mohamed (2015). The anneal path pλ(x) ∝ exp(λ log ptarget(x) + (1− λ) log pprior(x)) starts
from a Normal distribution when λ = 0 and ends with the target when λ = 1. Let M be the number
of max iterations, and t be the current training iteration. We set λi to grow linearly from 0 to 1 when
i < 9M/10. We train the sampler with real target log q(x) for rest M/10 iterations. The annealed
path reduces the bar of learning to sample, resulting relatively accurate updating direction for the
current sampler. The sampler is guided along the annealed path towards the target. We defer the
detailed experiment settings and more results to Appendix E.1.
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(a) t1 target (b) t2 target (c) t3 target

(d) t1 sample (e) t2 sample (f) t3 sample

Figure 5: Target and AFIS+MC samples.

Specifically, we visualize the sample results on
three distributions with hard-to-sample charac-
teristics such as multi-modality and periodicity,
as shown in Figure 5. It shows that samples
from our AFIS+MC method perfectly match all
target distributions. For quantitative compari-
son, we calculate the Maximum Mean Discrep-
ancy between the pure HMC samples and all
samplers’ samples. The FSD-NS does not con-
verge when training, so we omit the result of
FSD-NS in comparison. Since the task focuses
on training implicit samplers, we do not com-
pare other explicit samplers. Table 1 summa-
rizes the results of the MMD evaluation of all
samplers. In all datasets, our AFIS consistently
performs better than FIS. With additional MC
correction steps, we always get lower MMD
compared to the pure AFIS method.

Table 1: MMD (with rbf kernel) evaluation for synthetic targets. Additional 10 Langevin MC
correction steps are used in AFIS+MC sampler. The lower the metric, the better the sampler.

Target banana double well t1 t2 t3

FIS(ours) 1.12e-2±1.07e-3 3.51e-1±3.06e-3 4.54e-2±4.10e-3 7.48e-2±1.81e-3 5.18e-2±2.68e-3
AFIS(ours) 7.07e-4±1.72e-4 1.07e-2±1.37e-3 3.31e-3±1.13e-3 4.64e-2±2.53e-3 2.65e-2±1.91e-3
AFIS+MC(ours) 2.45e-4±1.20e-4 5.99e-3±1.33e-3 2.15e-3±8.37e-4 3.61e-2±2.67e-3 2.20e-2±1.97e-3

4.2 BAYESIAN REGRESSION

We also test our Implicit Sampler on Bayesian regression tasks as in Song et al. (2017). HMC is
a good baseline for such tasks, as pointed out in Neklyudov et al. (2020); Neklyudov & Welling
(2022). The inference of the Bayesian logistic regression model aims to sample from the posterior
distribution. We compare FIS (no anneal), AFIS, and AFIS+MC on Australian, German, and Heart
datasets. To evaluate samples’ quality, we run HMC as a baseline to obtain approximated samples
from target distributions and calculate Maximum Mean Discrepancy between samples from implicit
samplers and HMC baseline. Table 2 shows the results of the Bayesian inference experiments.
Other than FSD-NS, which always fails during training, our generators can generate high-quality
samples. Moreover, annealed technique and MC correction steps further improve sample quality.
Experimental details can be found in Appendix E.2.

Table 2: MMD (with rbf kernel) evaluation for posterior sampling. Additional 10 Langevin MC
correction steps are used in AFIS+MC sampler. The lower the metric, the better the sampler.

Posterior Australian German Heart

FIS(ours) 7.99e-3±2.81e-4 1.91e-4±6.48e-6 9.84e-5±1.08e-5
AFIS(ours) 6.30e-3±2.50e-4 2.42e-6±4.02e-7 3.66e-5±1.08e-5
AFIS+MC(ours) 2.16e-3±1.08e-4 2.46e-6±3.97e-7 3.64e-5±1.07e-5

5 CONCLUSION

We have presented a novel approach for training an implicit sampler to sample from un-normalized
density. Our approach minimizes the Fisher Divergence with the aid of an asynchronous score
network. We show theoretically that our method can accurately minimize the Fisher Divergence
for the implicit sampler, which is the first one as far as we know. Besides, our approach uses both
the annealing technique and stochastic corrections for improved sampling performance. We also
prove the faster mixing for MC correction. We test our approach on commonly used synthetic target
generation and Bayesian regression benchmarks and observe ideal performance.
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ETHICS STATEMENT

Our work proposes an approach to train an implicit sampler by minimizing Fisher Divergence be-
tween sampler and target distribution. Since the research is a fundamental methodology in machine
learning, the negative consequences of the methodology seem not obvious.

REPRODUCIBILITY STATEMENT

We provide details of our approach and sampler in Appendix. We provide complete proofs of all
theoretical results also in Appendix. We also propose the python code for implementation. We state
that our research is reproducible.
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A PROOF OF PROPOSITION 1

We provide the proof of Proposition 1 here.

Proof. With fixed p and known target q, the optimal test function f∗ has representation

f∗ = argmin
f

L(f)

Where functional L(f) has integral representation

L(f) =Ex∼p

{
⟨∇x log q(x), f(x)⟩+ ⟨∇x, f(x)⟩ − λ[fT (x)f(x)]

}
=

∫
p(x)⟨∇x log q(x), f(x)⟩+ p(x)⟨∇x, f(x)⟩ − λp(x)[fT (x)f(x)]dx

=

∫
l(x, f ,∇f)dx.

Here l(x, f ,∇f) =
∫
p(x)⟨∇x log q(x), f(x)⟩ + p(x)⟨∇x, f(x)⟩ − λp(x)[fT (x)f(x)]. By Euler-

Lagrange equation, the optimal function f satisfies

∂l

∂f
− d

dx
(
∂l

∂f ′
) +

∂2

∂x2
(
∂l

∂f ′′
) = 0.

By calculation, we have

∂l

∂f
(x) = p(x)∇ log q(x)− 2λp(x)f(x)

d

dx
(
∂l

∂f ′
)(x) = ∇xp(x)

∂l

∂f ′′
(x) = 0.

So the optimal f∗ satisfies the Euler-Lagrange equation as

p(x)∇x log q(x)− 2λp(x)f(x)−∇xp(x) = 0.

Divide the both side with p(x) and note that ∇xp(x)/p(x) = ∇x log p(x), the equation turns to

f∗(x) =
1

2λ

[
∇x log q(x)−∇x log p(x)

]
.

Next consider optimal s∗. The s∗ is obtained by minimizing the Score Matching objective, which
is equivalent to minimizing the Fisher divergence between p and s induced family, thus the optimal
s∗(x) = ∇x log p(x). Substitute ∇x log p(x) with s∗ into f∗ formula, we have

f∗(x) =
1

2λ

[
∇x log q(x)− s∗(x)

]
.

B PROOF OF PROPOSITION 2

In this section, we prove that the S2D loss and Fisher Divergence shares exactly the same parameter
gradient.

Proof. Let pθ denote sampler’s distribution. sθ denote the true but unknown sampler’s score func-
tion. q denotes the known un-normalized target. For rest of the proof, the notion ∥x∥ represents
the L2 norm of a vector in DX dimensional Euclidean space x ∈ RDX . Recall that the Fisher
Divergence is defined as

LFD(θ) = Ex∼pθ
∥∇x log q(x)− sθ(x)∥22.
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Thus the sampler parameter gradient of Fisher Divergence writes

∂

∂θ
Epθ

∥∇x log q(x)− sθ(x)∥2 =
∂

∂θ

∫
∥∇x log q(x)− sθ(x)∥22pθ(x)dx

=

∫
∥∇x log q(x)− sθ(x)∥22

∂

∂θ
pθ(x)dx+

∫
pθ(x)

∂

∂θ
∥∇x log q(x)− sθ(x)∥22dx

= Epθ
∥∇x log q(x)− sθ(x)∥2

∂

∂θ
log pθ(x) + Epθ

2(sθ(x)−∇x log q(x))
T ∂

∂θ
sθ(x)

= (1) + (2).

The first term can be estimated with

(1) =

∫
∥∇x log q(x)− sθ(x)∥2

∂

∂θ
pθ(x)dx

=
∂

∂θ

∫
sg

[
∥∇x log q(x)− sθ(x)∥2

]
pθ(x)

=
∂

∂θ
Epθ

sg

[
∥∇x log q(x)− sθ(x)∥2

]
.

Here the operator sg denotes stop gradient operator with respect to parameter θ. sg[fθ] stop the
parameter dependence of θ for function f , meaning that one can only evaluate fθ(x) point-wise but
can not obtain the θ gradient of fθ(x). Here we stop the gradient of function ∥∇ log q(x)−sθ(x)∥2,
so we can use another score network sϕ to approximate sθ point-wise, regardless of the θ parameter
dependence. Next we consider the second term. The second term turns to

(2) = Epθ
2(sθ(x)−∇x log q(x))

T ∂

∂θ
sθ(x)

= Epθ
2(sθ(x)−∇x log q(x))

T ∂

∂θ
∇x log pθ(x)

= 2

∫
pθ(x)(sθ(x)−∇x log q(x))

T ∂

∂θ

∂

∂x
log pθ(x)dx

= 2

∫
pθ(x)(sθ(x)−∇x log q(x))

T ∂

∂θ

[
1

pθ(x)

∂pθ(x)

∂x

]
dx

= 2

∫
(sθ(x)−∇x log q(x))

T

[
∂

∂θ

∂

∂x
pθ(x)

]
dx− 2

∫
pθ(x)(sθ(x)−∇x log q(x))

T

[
∂ log pθ(x)

∂x

∂ log pθ(x)

∂θ

]
= (3) + (4).

Looking at (3), we have

(3) = 2

∫
(sθ(x)−∇x log q(x))

T

[
∂

∂θ

∂

∂x
pθ(x)

]
dx

= 2

∫
∂

∂θ

{
sg

[
(sθ(x)−∇x log q(x))

]T
∂

∂x
pθ(x)

}
dx

= 2
∂

∂θ

∫
∂

∂ϵ
pθ(x+ ϵv)dx, v = sg

[
(sθ(x)−∇x log q(x))

]
, ϵ = 0

= 2
∂

∂θ

∂

∂ϵ

∫
pθ(x+ ϵv)dx

= 2
∂

∂θ

∂

∂ϵ
1

= 0.

Above equality holds because of
∫
pθ(x + ϵv)dx = 1 holds for all v, θ, ϵ. If we view ϵ as a shift

strength parameter, the above equality recovers the first order Bartlett identity (Bartlett, 1953).
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Next we turns to term (4). Note that

(4) = −2

∫
pθ(x)(sθ(x)−∇x log q(x))

T

[
∂ log pθ(x)

∂x

∂ log pθ(x)

∂θ

]
= −2

∫
pθ(x)

[
(sθ(x)−∇x log q(x))

T ∂ log pθ(x)

∂x

]
∂ log pθ(x)

∂θ

= −2

∫ [
(sθ(x)−∇x log q(x))

T ∂ log pθ(x)

∂x

]
∂pθ(x)

∂θ

= −2
∂

∂θ

∫
sg

[
(sθ(x)−∇x log q(x))

T ∂ log pθ(x)

∂x

]
pθ(x)

= −2
∂

∂θ

∫
sg

[
(sθ(x)−∇x log q(x))

T ∂ log pθ(x)

∂x

]
pθ(x)

= −2
∂

∂θ
Epθ(x)sg

[
(sθ(x)−∇x log q(x))

T ∂ log pθ(x)

∂x

]
= −2

∂

∂θ
Epθ(x)

{
sg

[
(sθ(x)−∇x log q(x))

]T
sg

[
∂ log pθ(x)

∂x

]}
= −2

∂

∂θ
Epθ(x)

{
sg

[
(∇x log q(x)− sθ(x))

]T
sg

[
sθ(x)

]}
.

Combining all above, we calculate the parameter derivative as

∂

∂θ
Epθ

∥∇x log q(x)− sθ(x)∥2

= (1) + (2) = (1) + (3) + (4)

=
∂

∂θ
Epθ

sg

[
∥∇x log q(x)− sθ(x)∥2

]
+ 0− 2

∂

∂θ
Epθ(x)

{
sg

[
(sθ(x)−∇x log q(x))

]T
sg

[
sθ(x)

]}
=

∂

∂θ
Epθ

{
sg

[
∥∇x log q(x)∥2

]
− sg

[
∥sθ(x)∥2

]}
.

Thus the equivalent loss function

LS2D(θ) = Epθ

{
sg

[
∥∇x log q(x)∥2

]
− sg

[
∥sθ(x)∥2

]}
.

Share the same parameter gradients as the Fisher divergence which is intractable. Since we only need
the x gradient of sampler score function sθ (because the stop gradient operator), so we can estimate
sθ(x) through another score network sϕ(x) with samples consistently obtained from sampler. With
above objective function, we could minimize the Fisher divergence between pθ and q.
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C INTRODUCTION TO METROPOLIS-HASTINGS AND HAMILTONIAN
CORRECTION

Assume the target distribution is p(x), the MH MCMC requires a proposal distribution p(x̃|x) to
propose candidate samples x̃ ∼ q(x̃|x). The Markov chain then accept the candidate sample with
probability r = min{p(x̃)q(x|x̃)

p(x)q(x̃|x) , 1}. Under some conditions, the chain will eventually reach p(x) as
stationary distribution. The proposal distribution can be symmetric or non-symmetric. Conditional
gaussian q(x̃|x) = N (x;σ2) is a usual choice. Proposals based on score function q(x̃|x) = N (x+
ϵ
2∇x log p(x), σ

2) is also popular (Xifara et al., 2014). If one consider an auxiliary state space
of (x, v) and execute the proposal in such space, the MC schedule is called Hamiltonian Monte
Carlo. The Hamiltonian Monte Carlo execute a Monte Carlo dynamic in auxiliary space. With
current sample X(t). The HMC sample a momentum vector from an auxiliary distribution V (t) ∼
exp(−vTM−1v/2). The joint sample (X(t), V (t)) updated by running a Hamiltonian Dynamics in
joint space via

dXt

dt
=

∂H

∂V
,
dVt

dt
= −∂H

∂X
.

Here H(x, v) = − log p(x) + 1
2v

TM−1v is the Hamiltonian of such mechanical system. HMC has
many advantage that it mixes well for high-dimensional targets, and travels in joints space thus not
easy to be trapped in local minima. Leap frog integrator is usually a practical choice for numerical
updates (Neal, 2011). To make Markov Chain detail balanced, additional Metropolis correction is
also needed for a Hamiltonian proposal. In short words, HMC iteratively accepts new position and
momentum pair (x̃, ṽ) with rate min 1, H(x̃,ṽ)

H(x,v) where (x̃, ṽ) = LeapFrog(x, v) as approximated
Hamiltonian proposal.

D PROOF OF THEOREM 1

We give the proof of Theorem 1 here. To begin with, we give a lemma to bound KL divergence with
Fisher divergence as shown in Yamano (2021)
Lemma 2. For fixed q, there exists a dimension-free positive constant c such that for every distri-
bution p which is both integral and log-integral with respect to q, and p has same support as q, we
have

DKL ≤ c

2
DF (p, q).

proof of lemma. For every 1st order smooth function f , assume both |f |2 and ∥∇f∥22 are integrable
with respect to q, the log-Sobolev’s inequality (Gross, 1975) shows that there exist a dimension-free
positive constant c, such that∫

|f |2 log |f |q(x)dx ≤ c

∫
∥∇f∥2q(x)dx+ ∥f∥22 log ∥f∥22.

Here ∥f∥22 =
∫
|f |2q(x)dx. Replace f =

√
p/q, we have

LHS =
1

2

∫
(p/q) log(p/q)q =

1

2
Ep log(p/q) = DKL(p, q).

So we have

∇
√
p

√
q
=

1

2

[ ∇p√
p

√
q − ∇q√

q

√
p

q

]
=

1

2

[√
p

q

∇p

p
−
√

p

q

∇q

q

]
=

1

2

√
p

q

[
∇ log p−∇ log q

]
.

Thus the first term in RHS is

c

∫
∥∇f∥2q(x)dx = c

∫
∥∇

√
p

q
∥2q(x)p =

c

2

∫
∥∇ log p−∇ log q∥2p

= Ep∥∇ log p−∇ log q∥2 = DF (p, q).
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Note that ∥f∥22 =
∫
|f |2q(x)dx =

∫
(p/q)q =

∫
p = 1. We combine both sides to conclude

c

2
DKL(p, q) ≤

1

2
DF (p, q) + 0.

So we have

DKL(p, q) ≤
c

2
DF (p, q),

where c be another positive constant.

The above lemma shows that KL divergence is upper bounded with Fisher divergence, which we are
using to train the sampler. With above lemma, we can calculate mixing time for Langevin correction
in proof below

Proof. Assume target satisfies

lim
∥x∥2→+∞

(
|∇ log q(x)|22

2
−∆ log q(x)) = +∞.

then their exits a constant λ > 0, such that Poincare inequality holds for each f ∈ C1(Rd) ∩ L2(q)
with Eqf = 0 Theorem 4.3 in Pavliotis (2014)

λ∥f∥2L2(q) ≤ ∥∇f∥2L2(q).

Let p0 denotes the ASS distribution, which is trained to be bounded with DF (p0, q) ≤ δ. By
lemma, the KL between initial distribution p0 and target q is bounded by Fisher divergence with a
dimension-free constant c

DKL(p0, q) ≤
c

2
DF (p0, q) ≤ δ ≤ +∞

With Poincare’s inequality holds, the KL along Langevin diffusion dXt = ∇ log q(Xt)/2 + dWt

decays exponentially fast as in Theorem 4.6 in Pavliotis (2014)
DKL(pt, q) ≤ exp(−2λt)DKL(p0, q)

≤ exp(−2λt)
c

2
DF (p0, q)

≤ exp(−2λt)
c

2
δ.

Thus if we want DKL(pt, q) to be controlled under tolerance ϵ, we only need diffused time t to
satisfies

t ≥ 1

2λ

[
log(

c

2
) + log(

δ

ϵ
)

]
=

1

2λ

[
C + log(

δ

ϵ
)

]
.

where we place C = log( c2 ) to be another constant. The diffusion time must be positive, thus we
take

T ∗ = max{0, 1

2λ

[
C + log(

δ

ϵ
)

]
},

and finish the proof.

E EXPERIMENTAL DETAILS AND MORE RESULTS

E.1 SYNTHETIC TARGET

For toy 2-dimensional data experiments, we use a 3-layer MLP neural network with 200 hidden units
in each layer as the sampler. The activation of the sampler is chosen as LeakyReLU non-linearity
with a 0.2 coefficient. The score network is a 3-layer MLP with 200 hidden units in each layer. The
activation of the score network is GELU non-linearity.

When reporting the numbers in Tab 1, we compute MMD metrics based on a total of 2000 samples.
We run 20 independent experiments for each target and algorithm to calculate the mean and standard
deviation.

Figure 6 visualizes the model capabilities of FIS, AFIS, and AFIS+MC samplers for matching three
2-dimensional target energy functions.
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(a) t1-Target (b) t1-FIS (c) t1-AFIS (d) t1-AFIS+MC

(e) t2-Target (f) t2-FIS (g) t2-AFIS (h) t2-AFIS+MC

(i) t3-target (j) t3-FIS (k) t3-AFIS (l) t3-AFIS+MC

Figure 6: Comparison between samples generated by FIS, AFIS and AFIS+MC on three 2D energy
functions.

E.2 BAYESIAN REGRESSION

For high-dimensional data experiments, we also use 3-layer MLP neural networks as the sampler and
score network, respectively. The activation of the sampler is chosen as LeakyReLU non-linearity
with a 0.2 coefficient. The activation of the score network is GELU non-linearity. For Australian
and Heart distributions, we use 400 hidden units in each layer and 600 hidden units for German
distribution.

When reporting the numbers in Tab 2, we compute the MMD metric based on a total of 2000
samples. We run 20 independent experiments for each target and algorithm to calculate the mean
and standard deviation. For the basic settings of Bayesian Regression problems, readers could refer
to Song et al. (2017) for more details.
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F FULL AFIS ALGORITHM

This section gives the full Annealed Fisher Implicit Sampler training algorithm.

Algorithm 2: Annealed Fisher Implicit Sampler training algorithm

Input: un-normalized target log q(x), annealed schedule {λk}Kk=1, prior distribution
log qprior(x) ; latent distribution pZ(z), implicit sampler Gθ, score network sϕ,
mini-batch size B, max iteration M.

Randomly initialize (θ(0), ϕ(0)).
for k in 1:K do

# anneal the target
set log qk(x) = λk log q(x) + (1− λk) log qprior(x)
for t in 1:M do

# update score network parameter
Get mini-batch from sampler xi = Gθ(t)(zi), zi ∼ pZ(z), i = 1, .., B.
Calculate score matching objective

LSM (ϕ) =
1

B

B∑
i=1

[
∥sϕ(xi)∥22 + 2⟨∇x, sϕ(xi)⟩

]
.

Minimize LSM (ϕ) to get ϕ(t+1).
# update sampler parameter
Get mini-batch latent code zi ∼ pZ(z), i = 1, . . . , B.
Use re-parametrization trick to calculate S2D loss for sampler

LS2D(θ) =
1

B

B∑
i=1

[
∥∇x log qk(Gθ(zi))∥22 − ∥sϕ(t+1)(Gθ(zi))∥22

]
.

Minimize LS2D(θ) to get θ(t+1).
end

end
return (θ, ϕ).
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