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Abstract
Proactive planning is a key necessity for busi-
nesses to function efficiently under uncertain and
unforeseen circumstances. Planning for the future
involves solving optimization problems, which
are often naturally convex or are modeled as con-
vex approximations to facilitate computation. The
primary source of uncertainties in the real world
that business are dealing with (eg. demand) can-
not be reasonably approximated by deterministic
values. Hence deterministic convex optimization
approximation do not not yield reasonable solu-
tions. Classically, one relies on assumptions on
the data generating process (like for eg. that de-
mand is log normal) to formulate as a stochastic
optimization problem. However, in today’s world,
such major uncertainties are often best predicted
by machine learning methods. In this paper, we
propose a novel method to integrate predictions
from machine learning systems and optimization
steps for a specific context of a resource utilisa-
tion problem that faces non-stationary incoming
workload. The proposed solution is robust and
shows improved performance against using the
traditional point-predictions directly in the opti-
mization. The proposed solution can be easily
extended to different kind of machine learning
methods and objective functions.

1. Introduction
Data-driven decision making is a key competitive advan-
tage to businesses of today’s world. Statistical and machine
learning based methods are widely adopted to analyze data,
identify patterns and make predictions. The results and infer-
ences from these methods are then used in decision-making
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processes, which can be thought of a decision pipeline which
begins with raw data as input and the output as impactful
real-world business decisions. This decision pipeline that
can be decomposed into Prediction and Decision-making
modules. The prediction module generates approximations
of unknown parameters from data. The decision-making
module might use the inferences from the prediction module
to help the business make a decision or use the results from
the prediction module as input to other sub-routines that
help them generate optimal decisions. To generate optimal
decisions, these predicted parameters could be used in the
objective function of an optimization problem which are
then solved using optimization algorithms. Data-driven de-
cision making under uncertainty can be impactful across
domains like resource utilization, headcount planning, trans-
port planning and inventory management.

In this paper, we address a resource utilisation problem
which faces non-stationary incoming workload. The re-
source could be anything ranging from time or money to
manpower or equipment. Resource availability is influenced
by various parameters like the incoming workload, resource
outages and carry-over workload from the past. The in-
coming workload is uncertain and predicted using machine
learning models. The goal of the optimization problem is to
minimize the expected costs related to utilisation when deal-
ing with non-stationary incoming workload while ensuring
that resource health is maintained.

Despite incredible improvements in the area of machine
learning, predictions will still be different from future obser-
vations cause of the natural uncertainties in the real world.
Predictions are hence best interpreted as the expectation of
a random variable that will be revealed in the future. Hence
ignoring the uncertainty, as in a predict first and then op-
timize using the prediction results in sub optimal future
performance of optimization solutions.

The proposed solution solves these key challenges and de-
velops an enhanced decision pipeline that connects the pre-
diction module and the decision-making module. The so-
lution models the probability distributions for predictions
instead of a single point prediction so that the difference
in the true values can be safely estimated to lie within the
95% confidence interval of our predicted distributions. In
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the decision-making module, the proposed solution casts
an optimization problem with the predicted parameters as
random variables. The proposed solution is robust to uncer-
tainty as the optimization objective is designed to account
for the error-propagation from the prediction module. The
proposed solution does not require extensive mathemati-
cal modelling for different kind of optimization objectives
and can be easily extended to different kinds of machine
learning methods and optimization problems. The solution
is unique compared to existing solutions as it models the
predicted parameters as random variables to circumvent the
problem of developing differentiable approximations for
optimization regret to induce it into the prediction error for
back-propagation.

2. Related Work
Planning with parameters which have uncertainty (forecast-
based parameters) is usually modelled as a stochastic op-
timization problem. These uncertainties are tackled using
methods like two-stage stochastic programming (Shapiro
et al., 2021) or by using approximations of the objective
function (Elmachtoub & Grigas, 2022) to be used during
back-propagation so that the prediction module can learn
to make predictions that are sensitive to the optimization
problem as well.

Existing Optimization under Uncertainty Methods: The
randomness in uncertain parameters in optimization prob-
lems are modelled using probability distributions in stochas-
tic programming (SP) (Birge & Louveaux, 2011) meth-
ods. The two-stage SP methods have recourse variables
which can be corrected after uncertainty is revealed and
re-optimized, however these two-stage SP problems are
computationally expensive as the computational time grows
with the number of scenarios. The second class of meth-
ods are chance-constrained optimization problems (Li et al.,
2008) where the goal is to optimize an objective while en-
suring that the constraints need to be satisfied with a specific
probability in an uncertain environment. The probability of
constraint satisfaction involves a multivariate integral and
this can be computationally expensive. The third class of
algorithms, robust optimization (Lappas & Gounaris, 2016),
hedges against the worst case within the uncertainty set
which gives rise to the largest constraint violation. However,
these methods can lead to very conservative solutions as
they are optimizing against the worst case.

Existing Predict + Optimization Methods: In (Amos &
Kolter, 2017), the authors propose a quadratic program
solver that offers exact gradients for backprop by differenti-
ating the Karush Kuhn Tucker (KKT) (Karush, 2013);(Kuhn
& Tucker, 2013) optimality conditions and combining it
with the prediction error. In (Elmachtoub & Grigas, 2022),
the differentiable surrogate loss is proposed for a constrained

linear optimization problem. In (Kong et al., 2022), they
propose a method for stochastic optimization using energy
models for a differentiable optimization layer. However,
these methods require extensive mathematical modelling to
derive differentiable approximations to loss functions and
have not been studied extensively as research in this area is
quite nascent with most literature on LPs and QPs.

3. Proposed Solution
The novel solution proposed in this paper is an enhanced
decision pipeline that connects an upstream forecasting mod-
ule with a downstream optimization module using proba-
bilistic approximations for the predicted parameters to gen-
erate collective reduction in the prediction error and the
optimization regret. The decision pipeline consists of novel-
ties and improvements in the following main components,
1) The Prediction module, and, 2) The Optimization module.
The prediction module generates a probability distribution
of the predicted features learned based on historical data.
This probability distribution of the predicted features is then
used in the Optimization module to solve an optimization
problem. The prediction module uses the predictions and
the ground truth realizations, to construct distributions of
the predicted parameters. The optimization module tries
to minimize an objective function defined on the predicted
parameters by using the probability distribution generated
in the prediction module.

3.1. Prediction Module

Predictive models are widely being used to learn patterns
in underlying data such that new predictions can be made
from unseen data. In real-world systems, these models
operate autonomously under larger processes where their
predictions are leveraged to optimize decision-making. Su-
pervised Learning methods are commonly used for such
predictive models which can be trained and validated using
historical data to assess their accuracy and performance. The
optimization problem is dependent on features y = yo ∪ yu
that can be decomposed into observed features yo and unob-
served features yu. The unobserved features are predicted
by the prediction module using the input parameters xi that
are correlated to the unobserved feature yui .

The training dataset D : {(x1, yu1
), ..., (xn, yun

)} is used
to train a predictive model f parameterised by θ such that
ŷu = f(x, θ). The samples (xui , yui) ∼ P where the true
distribution P is unknown. The proposed solution models
the distribution p(yu) to minimize the cost associated with
this policy. The residuals e(ŷu, yu) are defined as the differ-
ence between the predicted unobserved features ŷu and the
realized unobserved features yu, as shown below,

e(ŷu, yu) = ŷu − yu (1)
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The probability distribution of the residuals p(e) has zero
mean (µ) and σ as the empirical standard deviation between
the predicted and true values, ŷu and yu. The distribution
for p(yu) is derived from the residual distribution where the
mean µ = ŷu. The objective function for the optimization
module is given by minimizing an expected cost over the
unobserved features yu. To simplify the setting, we assume
that the ŷu are discrete and take values like yu1 , ..., yuk

with
the probabilities given as p(yui). These discrete probabili-
ties are then used succinctly in the optimization objective as
follows,

oy,v = E∼p(yu)[gc(yu, yo, v)], (2)

where an expectation over p(yu) for the cost function
gc(yu, yo, v) is calculated. The parameters are modelled
as random variables as opposed to single-point values as
they can capture the temporal correlations and underlying
uncertainty better. The use of probability distributions in
the downstream optimization problem instead of a single
point value can help increase the robustness of the solution
to uncertainties like in situations when the true values are
different from the predicted values.

3.2. Optimization Module

Combinatorial Optimization (Wolsey & Nemhauser, 1999)
methods work under the assumption that all the parameters
are fixed and known beforehand. However, in the current
setup some of the parameters are estimates generated by
the prediction module and are not known with certainty.
A combinatorial optimization problem, can be defined as
follows (Boyd & Vandenberghe, 2004), where y are the
parameters of the optimization problem, v are the decision
variables,

min
y

gc(y)

s.t. C(y, v)
(3)

gc(y) is the objective to be minimized and C(y, v) are the
set of constraints to be obeyed while obtaining the opti-
mal solution. The constraint set C(y, v) determines the
feasible region S ⊆ Rd, where d is the dimension of the
decision space. The optimal objective w∗(gc) ∈ W ∗(gc),
the set of optimal decisions corresponding to gc lies in the
feasible region S. The parameters y of the problem con-
tains yu which are predicted by the upstream prediction
module and used in the cost function gc(y, v). However,
the true values of the parameters are not known during the
time of solving the problem and thus the predicted values
ŷu are used instead. The predictive model f produces as
output ŷu = f(x) for the input parameters x. The cost
function gc(ŷu, yo, v) is used to produce the optimal deci-

sion w∗(gc). The proposed solution is different from the
traditional predict-then-optimize based solutions. The op-
timization objective in our solution is defined as follows,
where p(ŷu) refers to the probability of the predicted param-
eters obtained from the residual probability distribution p(e)
in the prediction module.

min
v

∑
yu

p(yu)gc(yu, yo, v)

s.t. C(yu, yo, v)

(4)

In our solution, we formulate a resource utilization prob-
lem as an optimization problem where a certain number
of available resources need to be utilised optimally when
faced with non-stationary incoming workload by adjusting
decision variables to increase productivity. Over-utilisation
of the available resources affects the health of the resource
and also introduces additional cost, while under-utilisation
of the available resources or outages causes subdued per-
formance. Carry-over workloads can be used to reduce
over-utilisation but might also encourage under-utilisation,
if not properly constrained. The incoming workload to be
handled by the resources, (yu) is the unobserved parame-
ter predicted by the supervised learning based prediction
module, while the observed parameters include the hourly
penalties and bonuses (cz, co, ci, cp, cu) for the under/over-
utilization of the resources. The probability values p(yu)
estimated from the empirical PDF in the prediction module
are used. The optimisation problem is defined as follows,

z = min
∑
yu

p(yu)[(yu − (k + vo − vi − vp))+ ∗ cz

− vi ∗ ci + vo ∗ co − vp ∗ cp)]

s.t. (yu − (k + vo − vi − vp)) ≥ 0

− ra ∗ I ≤ vi ≤ ra ∗ I
0 ≤ vo ≤ ra ∗O
0 ≤ vp ≤ ra ∗ P

(5)

The objective function is a linear combination of the terms
and costs associated with extra utilisation (co, cz), outages
(cp) and carried-over workload in hours from previous
weeks (ci) which need to be corrected in the upcoming
weeks. The magnitude of the cost coefficients are designed
in such a way that over-utilisation is penalised more com-
pared to under-utilisation as the latter is expensive. The
corresponding decision variables (vo, vi, vp), prescribe how
the working hours of the resources need to be adjusted op-
timally to minimize the total expected cost. The positive
side of the difference (yu − (k+ vo − vi − vp))+ is used in
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the objective function to penalise cases where the resources
are not used to capacity resulting in subdued performance.
The constraints reinforce the allowed ranges for the decision
variables based on their corresponding limits.

Usually, the optimization problem is either modelled as a
two-stage stochastic program (Shapiro et al., 2021), with
recourse variables or in the predict-and-optimize setup, (El-
machtoub & Grigas, 2022), differentiable approximations
of the optimization regret is added to the prediction error to
enhance decision making. However, our method provides
a simple and elegant solution to account for uncertainty in
a way that the solution does not become computationally
expensive like in stochastic programs or mathematically
intense like in predict-and-optimize settings. The proposed
solution is robust to uncertainty and can be easily extended
to different kind of optimization problems as well as predic-
tion methods.

Algorithm 1 Decision Pipeline for Optimization
Input: dataset D(x, yu) : {(x1, yu1

), ..., (xn, yun
)},

Prediction Module:
Obtain predictions ŷu = f(x); f is the predictive model,
Find residuals e(ŷu, y) = ŷu − y,
Derive distributions p(e) and p(ŷu),
Optimization Module:
Sample from distribution p(yu),
Solve optimization problem z = min

∑
yu

p(yu)[(yu −
(k+ vo − vi − vp))+ ∗ cz − vi ∗ ci + vo ∗ co − vp ∗ cp)],
s.t. −ra ∗ I ≤ vi ≤ ra ∗ I ,
s.t. 0 ≤ vo ≤ ra ∗O
s.t. 0 ≤ vi ≤ ra ∗ P ,
s.t. (yu− (k+vo−vi−vp)+ = max(0, (yu− (k+vo−
vi − vp))
Results: Obtain optimal cost z∗ and decision variables
v∗ = [v∗o , v

∗
i , v

∗
p ]

4. Results
In this section, we present the results and discussions for
an implementation of our proposed approach for a real-
world resource planning scenario. The performance of our
algorithm is studied and compared with the predict-then-
optimize methods. The optimization cost and decision vari-
ables are examined to evaluate the robustness of the residual
distribution and its dependence on the predictions.

We have used the open-source library PySP (Watson et al.,
2012), which supports formulating, solving, and analyzing
optimization models. Coin-OR CBC (Forrest et al., 2023),
has been used as the back-end solver to simulate and solve
the optimization problems under different problem settings.
We considered the resource allocation problem described
in section 3.2 as the combinatorial optimization problem to

be solved. PyEPO (Tang & Khalil, 2022), a PyTorch-based
end-to-end predict-then-optimize library in Python has been
used to study the methods which use surrogate loss to solve
the optimization problem.

Figure 1. Residual Distribution p(e).

We can see from figure 1, that the residual distribution,
after our machine learning task is completed, is centered
around a mean µ = 0 with a standard deviation σ = 5000.
The predictions come from an existing neural network that
has been continuously trained, updated and maintained for
providing point wise predictions. We use the models past
predictions along with observed values to find empirical
distributions.

The residual distribution is derived for the unobserved pa-
rameter yu from the residual errors between the predicted
ŷu and the realised true value yu. The predicted parameter
ŷu represents the expected incoming workload (in hours)
that need to be managed by the available resources ra. The
distribution p(yu) for the predicted parameter is obtained
from the residual distribution by centering it around a mean
µ = ŷu. The distribution p(yu) is shown in figure 2.

The optimization problem is initially solved directly us-
ing the point-prediction ŷu, like in traditional predict-then-
optimize problem settings, where the problem definition
looks as below,

z = min [(yu − (k + vo − vi − vp))+ ∗ cz
− vi ∗ ci + vo ∗ co − vp ∗ cp)]

s.t. (yu − (k + vo − vi − vp))+ ≥ 0

− ra ∗ I ≤ vi ≤ ra ∗ I
0 ≤ vo ≤ ra ∗O
0 ≤ vp ≤ ra ∗ P

(6)

Secondly, we used the estimates from the empirical dis-
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tribution p(ŷu) in the optimization objective function as
given by our solution and defined in equation 5. The op-
timal decision variables v∗ = [v∗o , v

∗
i , v

∗
p ] and the optimal

cost z∗ are compared between the two problem settings
namely, the predict-then-optimize method and our proposed
solution. The results in Table 1, show that the cost is re-
duced by around 10% for our solution compared to the cost
obtained from the predict-then-optimize method based so-
lution. This shows that our method can provide a more
optimal solution and can effectively minimize costs despite
uncertainty. The proposed solution is robust to uncertainty
as the optimization objective uses a distribution rather than
a point-prediction and is designed to account for the error-
propagation from the prediction module.

Table 1. Comparison of cost and decision variable values for tradi-
tional Predict-then-Optimize (PnO) v/s Proposed Solution

METRIC PNO PROPOSED SOLUTION

COST z∗ 186,540 170,195
UTILISATION v∗o 730 690
CARRYOVER v∗i -730 -600
OUTAGE v∗p 20 60

The dependence of ŷu on the residual distribution needs to
be studied, as a close relationship between the two can cause
the residual distribution to be biased.To establish that the ŷu
is not strongly related to the residual distribution p(e) we
look at the residual behavior for values of ŷu ≥ ŷumedian

and ŷu < ŷumedian
. The residual distributions pgmed

(e) and
plmed

(e) shown in figure 4 and figure 4. are generated for
the different values of ŷu which are less than the median
and greater than the median respectively. We solve the
optimization problem defined in equation 5 for each of these
subsets of ŷu by deriving the corresponding distributions
for ŷu from the residual distributions pgmed

(e) and plmed
(e)

respectively.

We examined the optimal cost and the decision variable
values obtained while solving the optimization problem
for each of the subsets of ŷu and observed that the results
were similar in both the settings. As shown in Table 2, the
optimal cost and the decision variables are almost same
at ŷu ≥ ŷumedian

and ŷu < ŷumedian
. This shows that

the residual distribution is not sensitive to ŷu and that the
distribution can be used across different values for ŷu that
might be generated by the prediction module. Thus, we can
infer that the proposed solution is highly stable.

One of the key-drawbacks in the predict-then-optimize meth-
ods is that the predictions are often insensitive to the impact
they create on the optimization problem. This is caused due
to the propagation of the prediction error from the prediction
module to the optimization module where it is compounded

Figure 2. Distribution p(ŷu).

Figure 3. Residual Distribution for ŷu ≥ ŷumedian .

and results in unfavorable outcomes. Obtaining differen-
tiable approximations of the optimization regret to to in-
corporate it in back-propagation along with the prediction
error is one of the research areas in improving the predict-
then-optimize method. However, these methods are tightly
coupled to the optimization problem and require extensive
mathematical modelling to derive surrogate losses for the
optimization regret. Our method offers a simple and elegant
solution to circumvent the extensive mathematical effort, by
making the optimization objective robust to uncertainties
that might arise due to the prediction error.

5. Conclusion
The usual mechanism of first using a complex machine learn-
ing model to make predictions and using the predictions as
(almost) a god-given input in an optimization problem is
essentially the equivalent of finding the function of the ex-
pected value of a random variable. The function in our
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Figure 4. Residual Distribution for ŷu < ŷumedian .

Table 2. Comparison of cost and decision variable values for resid-
ual distribution for ŷu ≥ ŷumedian v/s ŷu < ŷumedian

METRIC ŷu ≥ ŷumedian ŷu < ŷumedian

COST z∗ 203,597 206,892
UTILISATION v∗o 1,040 1,040
CARRYOVER v∗i -980 -980
OUTAGE v∗p 0 0

case is the entire optimization objective including the min-
imization subject to the constraints. However, what one
truly seeks is the expectation of the function and Jensen’s
inequality (McShane, 1937) assures us that these are not the
same (except in special linear cases). Hence, simply put,
the predict then optimize mechanism is bound to result in
sub-optimal policies even when the prediction models are
extremely good. In this paper, we proposed a novel method
to elegantly incorporate uncertainty into the inputs of an
optimization problem from the predictions and residuals
obtained from any machine learning model. Our method is
simple, flexible and quite general in being able to work on
different kinds of optimization problems.
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