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Abstract

Recently, federated multi-view clustering (Fed-
MVC) has gained attention for its ability to mine
complementary clustering structures from multi-
ple clients without exposing private data. Existing
methods mainly focus on addressing the feature
heterogeneity problem brought by views on differ-
ent clients and mitigating it using shared client in-
formation. Although these methods have achieved
performance improvements, the information they
choose to share, such as model parameters or in-
termediate outputs, inevitably raises privacy con-
cerns. In this paper, we propose an Effective and
Secure Federated Multi-view Clustering method,
ESFMC, to alleviate the dilemma between privacy
protection and performance improvement. This
method leverages the information-theoretic per-
spective to split the features extracted locally by
clients, retaining sensitive information locally and
only sharing features that are highly relevant to
the task. This can be viewed as a form of privacy-
preserving information sharing, reducing privacy
risks for clients while ensuring that the server
can mine high-quality global clustering structures.
Theoretical analysis and extensive experiments
demonstrate that the proposed method more ef-
fectively mitigates the trade-off between privacy
protection and performance improvement com-
pared to state-of-the-art methods.

1. Introduction
The advancement of technology and comprehensive atten-
tion to various matters have facilitated the emergence of

1School of Computer Science and Engineering, University of
Electronic Science and Technology of China, Chengdu, China
2Shenzhen Institute for Advanced Study, University of Electronic
Science and Technology of China, Shenzhen, China. Correspon-
dence to: Yazhou Ren <yazhou.ren@uestc.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

multi-view data, which usually comes from multiple sources
or perspectives (Fang et al., 2023; Huang et al., 2024; Xu
et al., 2024; Pu et al., 2024). Multi-view clustering aims to
explore and integrate multi-view data in an unsupervised
manner and is applied in practical fields such as recommen-
dation systems (Yu et al., 2018), social network analysis
(Cruickshank, 2020), and bioinformatics (Lin et al., 2024).
Most existing multi-view clustering methods usually assume
that multi-view data are stored centrally in a single entity.
However, due to the presence of data silos and the security
issues associated with data exposure, unifying data from
different sources incurs significant costs and privacy risks.
Consequently, federated multi-view clustering (FedMVC)
is gaining attention for its ability to mine complementary
clustering structures from multiple clients without exposing
private data (Lin et al., 2023; Qiao et al., 2023).

Existing FedMVC methods primarily address the issue of
feature heterogeneity brought by views on different clients.
For instance, federated deep multi-view clustering (Chen
et al., 2023) mitigates the heterogeneity of local data by
constructing global self-supervised information. Building
on resolving heterogeneity issues, some works further ex-
plore incomplete data (Ren et al., 2024), communication
variability (Huang et al., 2022), and Non-IID settings (Jiang
et al., 2024). In these explorations, sharing client informa-
tion is widely used as an effective means to alleviate data
heterogeneity and improve method performance.

Although extensive works indicate that sharing certain in-
formation during client training can significantly enhance
the clustering performance of FedMVC methods, it unfortu-
nately raises privacy concerns. For example, researchers can
reconstruct raw data from model parameters or shared gradi-
ents (Geiping et al., 2020), while model intermediate outputs
may be vulnerable to model inversion attacks (Mahendran
& Vedaldi, 2015). Techniques such as differential privacy
offer provable security for privacy protection (Abadi et al.,
2016), but the addition of random noise can negatively im-
pact performance. Therefore, maintaining the performance
of proposed methods while further protecting data privacy
remains a critical challenge in the field of FedMVC.

We revisit the purpose of sharing information and propose
an Effective and Secure Federated Multi-view Clustering
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method, ESFMC, to alleviate the dilemma between pri-
vacy protection and performance improvement. Specifi-
cally, ESFMC splits the features extracted locally by clients
based on the information theory perspective, only shar-
ing clustering-related features to the server while keeping
sample-related features locally. This can be viewed as a
form of privacy-preserving information sharing, where sen-
sitive information in the features is retained locally, and
only task-relevant features are shared. ESFMC minimizes
the risk of privacy breaches by preventing malicious attack-
ers from reconstructing the original data using the shared
information. Additionally, ESFMC collaboratively aligns
the non-overlapping samples across clients from the global
perspective, effectively extending its applicability to incom-
plete scenarios. This approach reduces privacy risks for
clients while ensuring that the server can mine comple-
mentary and high-quality global clustering structures. Our
contributions are summarized as follows.

• We propose an effective and secure federated multi-
view clustering method that aims to mine complemen-
tary global clustering structures while reducing privacy
risks through limited information sharing.

• We design a collaborative alignment strategy that en-
sures the consistency of locally shared information
across clients from the global perspective, thus extend-
ing the proposed method to incomplete scenarios.

• Theoretical analysis and extensive experiments demon-
strate that the proposed method more effectively mit-
igates the trade-off between privacy protection and
performance improvement compared to SOTAs.

2. Related Work
Federated multi-view clustering (FedMVC) is designed to
handle multi-view data distributed across clients, ensuring
data privacy while addressing the heterogeneity introduced
by views on different clients through information sharing.
Based on the type of information shared, FedMVC can
be classified into two types. (1) Clients share information
about local models, such as model parameters or shared
gradients (Flanagan et al., 2021; Huang et al., 2022). (Che
et al., 2022) aimed to improve local disease prediction per-
formance by sharing training models among clients. (Jiang
et al., 2024) introduced a heterogeneity-aware module that
adapts FedMVC to IID and Non-IID scenarios by shar-
ing model parameters and feature exchange. (Chen et al.,
2024) addressed client and view gaps associated with het-
erogeneous hybrid views by sharing model parameters. (2)
Clients share model intermediate outputs, such as embedded
features or clustering assignments (Chen et al., 2023; Hu
et al., 2023). By sharing features and global pseudo-labels,
(Yan et al., 2024) designed a FedMVC strategy based on

graph neural networks, addressing the issues of data privacy
and feature heterogeneity. (Ren et al., 2024) introduced a
FedMVC method, which addresses the issues of unaligned
and incomplete data by sharing embedded features and de-
signing adaptive alignment and imputation strategies.

The above methods achieve good performance by sharing
model information or intermediate outputs. However, while
these methods are successful, the information they share still
leads to potential data leakage risks. For instance, attackers
can reconstruct raw data from model parameters (Geiping
et al., 2020) or features (Mahendran & Vedaldi, 2015). Thus,
we propose an effective and secure federated multi-view
clustering method to alleviate the dilemma between privacy
protection and performance improvement.

3. Methodology
3.1. Motivation

Existing FedMVC methods aim to mine complementary
clustering structures by sharing information such as model
parameters (Che et al., 2022) and embedded features (Chen
et al., 2023) from clients to the server. While this shared
information significantly alleviates the heterogeneity issue
caused by views on different clients, it often contains com-
plete descriptions of clients’ local data, retaining substantial
critical information about the raw data. Attackers can easily
reconstruct raw data using methods such as gradient-based
attacks (Geiping et al., 2020) and model inversion attacks
(Nguyen et al., 2023), leading to privacy risks.

Based on the intuitive idea that sharing partial information is
more privacy-preserving than sharing complete information,
we aim to split the information to maximize the utility of
shared information. The information bottleneck principle
(Tishby et al., 2000) suggests that ideal features should com-
press data while retaining as much task-relevant information
as possible. This is achieved by minimizing the mutual
information between X and Z while maximizing the mutual
information between Y and Z:

LIB = I(Z;X)− βI(Z;Y). (1)

Inspired by Eq. (1) and previous works (Lee & Pavlovic,
2021; Yang et al., 2023), ESFMC splits the commonly
used shared information in FedMVC, embedded features
extracted from local clients, into clustering-related features
and sample-related features. Clustering-related features
focus on the similarities and differences among samples,
facilitating the clustering process. Sample-related features
focus on the properties and details of each individual sam-
ple. We consider that sample-related features contain too
much private information and are irrelevant to the clustering
task. Thus, clients retain sample-related features locally
to prevent privacy leakage while sharing clustering-related
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Figure 1. The framework of ESFMC. It contains M clients and a server. (1) In general scenarios: we propose feature splitting within
clients from the information-theoretic perspective, where clustering-related features are shared to assist the server in mining the global
clustering structures and enhancing performance, while sample-related features are retained locally to prevent privacy leakage. (2) In
incomplete scenarios: we design a collaborative alignment strategy that leverages the server to integrate information and provide a global
perspective, ensuring alignment among non-overlapping samples across clients.

features with the server, promoting the extraction of high-
quality complementary clustering structures.

Additionally, inspired by (Hellström et al., 2023; Alquier
et al., 2024), we introduce model-data mutual information
I(w;X) as a constraint to mitigate the model’s dependency
on data during local training. It quantifies the correlation
between the model and input data, while also serving as a
measure of model complexity for generalization analysis.

3.2. Problem Statement

Given multi-view data with M views, denoted by X ={
X1,X2, . . . ,XM

}
, distributed among M clients, consist-

ing of N samples, with the expectation of partitioning them
into K clusters. For client m, its data are represented as
Xm ∈ RNm×Dm , where Dm is the dimensionality of sam-
ples in the m-th view and Nm is the number of samples in
the m-th client. We assume that all participating parties are
semi-honest and do not collude. The attacker follows the
training protocol but may attempt privacy attacks.

3.3. Local Training with Feature Splitting and
Model-Data Constraint

Since multi-view data are stored across distributed clients,
we analyze the case of client m as an example. Each client

constructs a network structure fm
θm(·) that can handle spe-

cific views based on its local data, where θm are learnable
parameters. These networks aim to project the raw data
into a low-dimensional space and capture informative latent
features. For the client with data of the m-th view type Xm,
the latent features can be obtained by Zm = fm

θm (Xm).
Based on the latent features, we aim to split them into
clustering-related features and sample-related features, de-
fined as Zm

c ∈ RNm×dm and Zm
x ∈ RNm×dm respectively.

We hope that the clustering-related features are primarily
used to identify the similarities and differences among sam-
ples, and are highly correlated with the final clustering re-
sults Y. In contrast, the sample-related features are mainly
used to describe the properties and details of each individ-
ual sample. Based on this idea, we construct the following
optimization objective during local training on each client:

LXm(wm) =− I(Zm
x ;Xm)− I(Zm

c ;Y) + I(Zm
x ;Zm

c ).
(2)

Combining the three mutual information terms achieves lo-
cal training with feature splitting. The term −I(Zm

x ;Xm)
represents maximizing the mutual information between the
sample-related features Zm

x and the raw data Xm, which
helps Zm

x capture as much information about Xm as possi-
ble, thereby better describing the attributes and details of
each sample. Similarly, the term −I(Zm

c ;Y) represents
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maximizing the mutual information between the clustering-
related features Zm

c and the global clustering results Y,
which helps Zm

c better reflect the similarities and differences
among samples, thereby mining local clustering structures.
It is noted that the global clustering results Y are obtained
by the server integrating the shared information from all
clients and are optimized after each communication round.
Additionally, the term I(Zm

x ;Zm
c ) represents minimizing

the mutual information between the clustering-related fea-
tures Zm

c and the sample-related features Zm
x , which aims

to reduce the redundant information between Zm
c and Zm

x ,
achieving high-quality feature splitting. Further, we obtain
Zm

c and Zm
x from latent features by designing two adaptive

feature projection layers ϕm
c (·) and ϕm

x (·):

Zm
c = ϕm

c (Zm), Zm
x = ϕm

x (Zm). (3)

To make the above feature splitting easy to handle, by con-
structing the reconstruction network gwm

r
(·) and the cluster-

ing layer gwm
c
(·) separately, with wm

r and wm
c as learnable

parameters, we derive an objective equal to the original ob-
jective in Eq. (2) for client m (see Appendix C.2 for more
details) as follows:

LXm(wm) =
1

Nm

Nm∑
i=1

∥xm
i − gwr

(
zmi,x
)
∥2

+
1

Nm

Nm∑
i=1

K∑
k=1

yi,k log
(
gwc

(
zmi,c
))

+
1

Nm

Nm∑
i=1

log p
(
zmi,x, z

m
i,c

)
.

(4)

The underlying insight of the objective function in Eq. (4)
is intuitive. Specifically, feature splitting decomposes the la-
tent features Zm into two functionally distinct and mutually
exclusive types of features. For clarity in the subsequent
analysis, we define the three loss components that constitute
LXm(wm) as Lm

1 , Lm
2 , and Lm

3 . The first loss component
Lm
1 , aims for the sample-related features Zm

x to accurately
reconstruct the raw data Xm. The second loss component
Lm
2 , seeks to ensure that the clustering-related features Zm

c

correctly identify clustering structures. The third loss com-
ponent Lm

3 , imposes a constraint to minimize the correlation
between Zm

x and Zm
c . Notably, computing p

(
zmi,x, z

m
i,c

)
di-

rectly is complicated. So we instead estimate it using his-
tograms, discretizing the continuous variables zmi,x and zmi,c
into bins and approximating the joint distribution based on
frequency counts (Scott, 2015).

Building on the above loss terms, we introduce model-data
mutual information constraint I(wm;Xm) as a regulariza-
tion term. This constraint limits the complexity of the
model’s search space, encouraging local models to capture

fundamental information and enhancing the generalization
ability of the method. The original optimization problem in
Eq. (4) is thus reformulated as:

min
p(wm|Xm)

Lm = Ep(wm|Xm) [LXm(wm) + αI (wm;Xm)] ,

(5)
where α > 0 is a parameter that balances fitting and gener-
alization. Furthermore, inspired by previous works (Wang
et al., 2021; Zhang et al., 2024a), we adopt Bayesian infer-
ence to transform the single-point estimation of the local
model wm into a distributional estimation p(wm | Xm),
facilitating subsequent optimization. The following lemma
is provided to find an optimal posterior.

Lemma 3.1. (Wang et al., 2021) Given an observed dataset
Xm, the optimal posterior p(wm | Xm) for client m update
in Eq. (5) should satisfy the following form that

p (wm | Xm) =
1

B
exp

{
− 1

α
U(wm)

}
, (6)

where B is a normalizing factor that makes the integral
of the distribution equal to 1, and U(wm) is the energy
function defined as U(wm) = LXm(wm)− α log p(wm).

Please see Appendix C.3 for the proof. The resulting optimal
posterior follows a typical Gibbs distribution (Kittel, 2004)
with energy function U(wm) and temperature α (the same
α appears in Eq. (5)). Therefore, we use stochastic gradient
Langevin dynamics (SGLD) (Welling & Teh, 2011) to opti-
mize and obtain this Gibbs posterior, which has been shown
to be effective and scalable for large-scale posterior infer-
ence problems. Specifically, SGLD can be implemented
through a straightforward adaptation of stochastic gradient
descent, as follows

wm
t,k = wm

t,k−1 − ηt,k∇U
(
wm

t,k−1

)
+
√

2ηt,kαζt,k, (7)

where wm
t,k represents client m’s model at communication

round t and step k, ηt,k is the local step size, ∇U
(
wm

t,k−1

)
is an unbiased estimate of energy function gradient, and
ζt,k ∼ N (0, I) is a standard Gaussian noise vector.

After clients complete the current round of local training,
they retain the sample-related features locally to prevent
privacy leakage while sharing the clustering-related features
with the server to mine complementary clustering structures.

3.4. Global Training with Shared Information

In our setting, the server does not require any additional
information, such as public datasets or pre-trained models.
It only uses the limited information shared by clients, i.e.,
clustering-related features, to mine high-quality global clus-
tering structures. Additionally, for semi-honest participants,
namely, participants faithfully execute the training protocol
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but may launch privacy attacks to infer other parties’ private
data, having only clustering-related features also prevents
them from reconstructing the raw data by existing attack
methods, as shown in Figure 3 (c).

After receiving the clustering-related features uploaded by
each client, the server concatenates them to generate the
global features:

Z =
[
Z1,Z2, ...,ZM

]
∈ RN×

∑M
m=1 dm . (8)

For the clustering task, the server applies K-means (Mac-
Queen, 1967) on the global features Z obtained from Eq. (6)
to mine complementary global clustering structures. Letting
{cj}Kj=1 denote the K cluster centroids, we have:

min
c1,c2,...,cK

N∑
i=1

K∑
j=1

∥zi − cj∥2 . (9)

Furthermore, the global clustering results are calculated by

yi = argmin
j

∥zi − cj∥2 ∈ Y, (10)

where Y represents the global clustering results, which are
distributed to all clients to aid in performing high-quality
feature splitting and sharing clustering-related features.

3.5. Extending to Incomplete Scenarios

Due to the inherent flexibility of ESFMC, it can be easily
extended to handle incomplete scenarios, where the samples
in all clients only partially overlap, meaning the number of
client samples Nm is not equal to the global sample number
N . To maintain clustering performance in more complex
scenarios, inevitably, more shared information exposure is
required. Therefore, to protect privacy while dealing with
incomplete scenarios, we introduce shared information clus-
tering assignments Qm. These are extracted locally by each
client and then uploaded to the server, which aggregates
them to obtain global clustering assignments Q and dis-
tributes them to all clients for collaborative training.

For client m, the clustering-related features Zm
c are pro-

cessed through the clustering layer gwc
(·) to produce cluster-

ing assignments Qm ∈ RNm×K , where Qm = gwc
(Zm

c ).
These clustering assignments are then uploaded to the server.
During local training, we introduce an additional loss to ex-
plore non-overlapping samples among clients, thus better
addressing incomplete scenarios. Consequently, we design
a collaborative alignment strategy to maximize mutual in-
formation I(Zm

c ; g̃wz
(Q)), ensuring that the information

shared among different clients remains consistent from the
global perspective, thereby reducing errors due to incom-
plete scenarios. Here, g̃wz (·) : RK → Rdm aims to map
the global clustering assignments to the latent feature space

corresponding to the view type data. Similarly, we express
the optimization objective in a more intuitive form:

Lm
a =− I(Zm

c ; g̃wz
(Q))

=H (Zm
c | g̃wz

(Q))−H (Zm
c )

=− Ep(zm
c ,g̃wz (q))

[log p (zmc | g̃wz
(q))]

+ Ep(zm
c ) [log p (z

m
c )]

⩽
1

Nm

Nm∑
i=1

∥∥zmi,c − g̃wz
(qi)

∥∥2 .
(11)

Since p (zmc ) is difficult to estimate, we directly optimize
the upper bound of Lm

a . Thus, in the incomplete scenario,
the total loss for client m is represented as:

Lm
inc = Lm + Lm

a . (12)

After clients complete the current round of local training,
they upload the clustering-related features Z̃m

c optimized
from the global perspective by Eq. (13) and local clustering
assignments Qm to the server.

Z̃m
c = [Zm

c ; g̃wz
(Qg)] ∈ RN×dm , (13)

where we define Qg = {qi | qi ∈ QΛqi /∈ Qm}.

The server receives clustering-related features Z̃m
c and local

clustering assignments Qm uploaded by each client. Then,
it can calculate clustering results Y by Eqs. (8)-(10) and
acquire global cluster assignments Q by following formula:

qi =

∑M
m=1 Iimqm

i∑M
m=1 Iim

∈ Q, (14)

where I ∈ {0, 1}N×M is the indicator matrix, Iim = 1 if
the i-th sample exists in the m-th client; otherwise, Iim = 0.
In incomplete scenarios, we extend the general ESFMC
method to further explore how to maintain a balance be-
tween privacy protection and performance improvement.

In incomplete scenarios, we can opt not to share additional
information, such as clustering assignments, and instead
rely on the model’s generalization performance. Specif-
ically, each client uploads clustering-related features for
overlapping samples to the server, while non-overlapping
samples are clustered locally. This strategy is particularly
effective when samples across clients exhibit high overlap,
as shown in Figure 3 (b).

4. Discussion and Analysis
4.1. Generalization Analysis

We denote the population risk as LP(w) and recall the
global empirical risk LX (w) in Eq. (5), then the expected
generalization error can be denoted as E [LP(w)− LX (w)].
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Theorem 4.1. Suppose that ℓm (wm,xm
i ) for all m ∈ M

is bounded by C and independent, then the expected gener-
alization error satisfies

E [LP(w)− LX (w)] ≤ C

M

M∑
m=1

√
I(wm;Xm)

2Nm
, (15)

where M is the number of participating clients and Nm is
the number of samples in the m-th participating client.

Please see Appendix C.4 for the detailed proof. The above
theorem shows that increasing the number of participating
clients or the sample size per client improves generaliza-
tion performance. Furthermore, the mutual information
constraint I(wm;Xm) introduced during local training is
strongly correlated with generalization error, theoretically
validating the effectiveness of our method.

We can rely on the model’s generalization ability to extend
it to incomplete and cross-device scenarios. Specifically, for
incomplete scenarios, each client uploads clustering-related
features for overlapping samples to the server, while non-
overlapping samples are clustered locally. For cross-device
scenarios, each client uploads clustering-related features ex-
tracted from local data, with the server aligning overlapping
samples. Our method leverages generalization to perform
well, as shown in Figure 3 (b) and Figure 4.

4.2. Privacy Analysis

We divide the privacy analysis into two parts: differential
privacy for each client and the overall privacy analysis for
ESFMC. For each client, our approach ensures client-level
(ε, δ)-differential privacy through posterior inference based
on SGLD sampling and feature splitting, as detailed in Ap-
pendix C.5. Notably, our analysis proves that sharing the
clustering-related features Zm

c provides stronger privacy pro-
tection than directly sharing the latent features Zm. Then,
by combining the privacy analysis for each client with the
composition theorem (Kairouz et al., 2015), we obtain the
overall privacy guarantee.
Theorem 4.2. For M clients with (ε, δ)-differential privacy,

ESFMC satisfies
(
ε̃δ̃, 1− (1− δ)M (1− δ̃)

)
-differential

privacy, where

ε̃δ̃ = min
{
Mε,

(eε − 1) εM

eε + 1
+ ε

√√√√2M log

(
e+

√
Mε2

δ̃

)
,

(eε − 1) εM

eε + 1
+ ε

√
2M log

(
1

δ̃

)}
,

and ε = (
√
2 log(1.25/δ)/σ + ρc

√
k log(1/δ)/σc).

Our method is primarily designed for environments where
all participating parties are semi-honest, meaning they faith-

fully execute the training protocol but may attempt privacy
attacks. Currently, our feature splitting strategy is suffi-
cient to defend against common model inversion attacks
in such settings, as shown in Figure 3 (c). For further
privacy enhancement, we could integrate commonly used
privacy-preserving techniques in federated learning, such
as homomorphic encryption (Cheng et al., 2021) or secure
multi-party computation (Gu et al., 2021), to offer additional
privacy protection.

4.3. Complexity Analysis

Suppose K, M , and N represent the number of clusters,
clients, and total samples, respectively. Let H denote the
maximum number of hidden neurons in the clients’ net-
works. And Z denotes the maximum dimensionality of
latent features. Generally N ≫ V,K,M holds. For client
m, the complexity is O(NH + NKH + NZ2). For the
server, the complexity is O(NMZK). In conclusion, due
to M clients running in parallel, the total complexity of our
algorithm is O(NKH+NZ2+NMZK) in each iteration,
which is linear to the data size N .

5. Experiment
5.1. Experimental Settings

Datasets. We conduct the experiments on six public multi-
view datasets. Specifically, Caltech (Fei-Fei et al., 2004)
contains 1400 RGB images in 7 categories, and includes
five views. HW1 consists of 10 categories, each correspond-
ing to the digits from 0 through 9, and includes a total of
2,000 samples, with each sample represented by six views.
MNIST-USPS (Peng et al., 2019) comprises 5000 sam-
ples collected from two handwritten digital image datasets,
which are considered as two views. Synthetic3d (Kumar
et al., 2011) comprises 3 categories, containing a total of
600 samples, each with three views. BDGP (Cai et al.,
2012) encompasses 2,500 samples representing 5 different
types of Drosophila embryos. Scene (Fei-Fei & Perona,
2005) contains 4,485 scene images, each captured from
three views, across 15 categories. Our code is available at
https://github.com/5Martina5/ESFMC.

Note that in our federated setting, the multiple views of
these datasets are distributed across different clients and
are isolated from each other. Additionally, to evaluate the
effectiveness of our method in incomplete scenarios, we ran-
domly remove some samples from arbitrary views. Further-
more, we introduce the sample overlapping rate ϕ = m/n
following (Chen et al., 2023), where n represents the total
size of the dataset and m denotes the number of samples
that have fully overlapping views across all clients.

1https://archive.ics.uci.edu/ml/datasets.php
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Table 1. Experiments on four datasets in general scenarios. The best result is shown in bold and the second-best is underlined.

Caltech HW MNIST-USPS Synthetic3d
Methods ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

GIMC-FLSD 48.60 35.12 28.25 42.15 47.36 29.80 79.71 76.74 68.97 53.39 14.81 9.79
HCP-IMSC 78.37 69.68 64.93 82.55 79.33 74.34 95.82 90.79 91.04 80.00 45.11 49.07
IMVC-CBG 37.61 31.43 18.96 60.38 61.79 47.95 53.35 48.77 35.66 45.83 12.32 10.73
DSIMVC 78.86 67.50 60.53 81.70 79.23 73.50 98.08 94.81 95.05 94.83 81.10 85.31
AGDIMC 90.14 82.91 80.27 97.35 93.53 93.73 91.60 85.72 84.21 59.67 56.89 45.98

FedDMVC 89.07 81.11 78.52 96.48 92.52 92.35 84.56 89.73 82.29 58.24 56.28 43.58
FedMVFCM 59.37 55.40 53.47 64.14 64.57 56.22 58.12 53.05 47.60 93.07 75.78 87.03
FedMVFPC 43.38 31.30 22.78 52.67 40.85 33.10 48.48 41.90 29.05 91.74 75.55 77.59
FCUIF 89.14 80.79 78.24 97.85 95.16 95.30 82.92 83.06 74.13 63.67 58.57 48.27
ESFMC (ours) 91.50 84.54 83.45 98.02 95.34 95.57 97.24 93.19 94.02 97.32 87.67 91.23
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Figure 2. Performance analysis on BDGP with different overlapping rates.

Table 2. Clustering results in incomplete scenarios. The best result
is shown in bold and the second-best is underlined.

BDGP Scene
Methods ACC NMI ARI ACC NMI ARI

GIMC-FLSD 80.5 57.0 58.6 30.0 26.4 13.5
HCP-IMSC 90.1 76.9 75.9 32.5 27.3 14.3
IMVC-CBG 36.3 17.6 5.6 26.8 27.0 14.4
DSIMVC 94.1 82.9 85.9 27.8 30.4 14.5
AGDIMC 92.7 82.4 83.5 38.6 32.7 20.3

FedDMVC 91.5 77.4 80.3 39.3 34.3 22.5
FCUIF 93.3 86.2 85.9 41.0 37.6 22.9
Ours 94.9 84.9 87.8 40.8 42.4 26.2

Comparing Methods. To demonstrate the performance
of our proposed ESFMC, we select several relevant algo-
rithms as comparison methods. These include five cen-
tralized multi-view clustering methods, i.e., GIMC-FLSD
(Wen et al., 2020), HCP-IMSC (Li et al., 2022), IMVC-
CBG (Wang et al., 2022), DSIMVC (Tang & Liu, 2022) and

AGDIMC (Pu et al., 2024), and four federated multi-view
clustering methods, i.e., FedDMVC (Chen et al., 2023), Fed-
MVFCM (Hu et al., 2023), FedMVFPC (Hu et al., 2023)
and FCUIF (Ren et al., 2024). Notably, FedMVFCM and
FedMVFPC are not applicable to incomplete scenarios, so
they are excluded from comparison in this scenario.

5.2. Clustering Results

Tables 1 and 2 present the quantitative comparisons of
ESFMC with baselines under both general scenarios and
incomplete scenarios. Each experiment is independently re-
peated five times, and the average values are reported. In Ta-
ble 1, it can be observed that the proposed method achieves
the best performance across the Caltech, MNIST-USPS,
and Synthetic3d datasets, with particularly significant im-
provements on the Synthetic3d dataset compared to the
second-best method. These results demonstrate that ESFMC
effectively maintains strong clustering performance while
ensuring privacy, thereby alleviating the trade-off between
privacy protection and performance enhancement. The suc-
cess of ESFMC encourages us to focus on methodological
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Figure 3. (a) Convergence analysis on BDGP. (b) Parameter analysis on BDGP. (c) Privacy verification on MNIST-USPS.

improvements directly related to the task. It enhances per-
formance and further reduces information redundancy.

Table 2 reports the results of ESFMC and the comparison
methods under incomplete scenarios with the overlapping
rate of ϕ = 0.5. The findings indicate that the extended
ESFMC performs well in handling incomplete scenarios
with limited information exposure, achieving strong cluster-
ing results on both the BDGP and Scene datasets. Addition-
ally, we conduct experiments on the BDGP dataset, explor-
ing varying overlapping rates from 0.1 to 1 with an interval
of 0.1, as shown in Figure 2. The figure for IMVC-CBG
is omitted due to poor performance, to highlight clearer
variations. The results show that ESFMC adapts to different
levels of client sample overlap, with clustering performance
improving as the overlapping rate increases.

5.3. Model Analysis

Ablation Study. To further validate the contributions of
the proposed method, we conduct ablation studies, as shown
in Table 3. ”w/o” indicates the absence of a specific loss
component in the method. The results show that Lm

1 and Lm
3

have minimal impact on clustering performance. Their pri-
mary role is to ensure that the shared features Zm

c , derived
after feature splitting in the client, contain only clustering-
related information, while sample-related information re-
mains local to the client, thus preventing privacy leakage.
In contrast, Lm

2 significantly influences the global cluster-
ing performance as it involves the extraction of the shared
information Zm

c . Additionally, in incomplete scenarios, Lm
a

also impacts global clustering performance, demonstrating
the effectiveness of the proposed strategy.

Convergence Analysis. We conduct the convergence anal-
ysis of our method in incomplete scenarios on the BDGP
dataset with the overlapping rate of ϕ = 0.5. Figure 3 (a)
depicts the changes in Lm, Lm

a , and the total loss Lm
inc over

the epochs, with the results reported for a randomly selected

Table 3. Ablation study on two datasets with different settings. The
best in each column is shown in bold.

Settings Variants ACC NMI ARI

In general
scenarios
(Caltech)

w/o Lm
1 79.78 73.16 66.64

w/o Lm
2 26.78 7.74 4.86

w/o Lm
3 87.28 78.74 76.22

ESFMC 91.50 84.54 83.45

In incomplete
scenarios
(BDGP)

w/o Lm
1 94.48 84.29 86.78

w/o Lm
2 25.04 2.55 2.15

w/o Lm
3 94.44 85.16 87.3

w/o Lm
a 86.24 68.29 68.97

ESFMC 94.93 84.89 87.82

client. The results demonstrate that all loss components
gradually converge and stabilize as the number of epochs
increases, indicating that ESFMC is stable and effective.

Parameter Analysis. Reviewing Eq. (5), α serves as a
parameter to adjust I(wm;Xm), balancing fitting and gener-
alization. Figure 3 (b) illustrates the clustering performance
for different samples on the BDGP dataset with an over-
lapping rate of ϕ = 0.9 under varying α. Here we adopt
the strategy of clustering non-overlapping samples depend-
ing on the model’s generalization performance, implying
a positive correlation between generalization and cluster-
ing performance. As α increases, clustering performance
for overlapping samples initially shows little change, but
drops sharply when α = 10−2, indicating that excessive
simplification of the model harms clustering performance.
Additionally, as α increases, the clustering performance
for non-overlapping and total samples first increases, then
decreases. This shows that when α is small, the model
overfits the training data, weakening its generalization and
negatively impacting overall clustering performance. When
α = 10−4, the model balances fitting and generalization.
Additionally, when α is small, it effectively removes the
constraint term I(wm;Xm), which can be viewed as an
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ablation analysis of the constraint.

Privacy Verification. We provide empirical analysis to
support ESFMC’s privacy guarantee. Specifically, we assess
whether all semi-honest participants can reconstruct the
original data through certain attack methods based on shared
information. To simulate potential attacks, we apply the
widely-used model inversion attack (He et al., 2019) to
reconstruct data from the MNIST-USPS dataset using the
shared clustering-related features, as shown in Figure 3 (c).
The results indicate that while achieving good performance,
ESFMC also enhances privacy protection.

6. Conclusion
In this paper, we propose ESFMC, which is designed to
alleviate the trade-off between privacy preservation and per-
formance improvement in FedMVC. Specifically, we split
the features extracted locally by clients to reduce privacy
risks while ensuring the server can mine complementary
global clustering structures. Additionally, we extend the
proposed method to incomplete scenarios by designing a
collaborative alignment strategy. We further analyze the
generalization performance and privacy guarantees of our
method, confirming its effectiveness and security. Experi-
mental results on multiple real-world multi-view datasets
demonstrate that our method outperforms state-of-the-art
methods in effectiveness and security.
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We provide more details and results about our work in the appendix. Here are the contents:

• Appendix A: Framework of the proposed algorithm.

• Appendix B: More related work.

• Appendix C: Proofs.

• Appendix D: More details about experimental settings.

• Appendix E: Additional experiment results.

A. Framework of the Proposed Algorithm
Algorithm 1 summarizes the pipeline of ESFMC in general scenarios and incomplete scenarios respectively. In general
scenarios, local clients perform feature splitting, extracting cluster-related features to be uploaded to the server. The server
then utilizes this limited shared information to mine global clustering structures and distributes them back to the clients to
assist them in feature splitting. In incomplete scenarios, in addition to the steps performed in general scenarios, alignment
loss is introduced to ensure alignment among non-overlapping samples across clients. This requires sharing clustering
assignments to facilitate training.

Algorithm 1 The optimization of ESFMC

input Data with M views X =
{
X1,X2, ...,XM

}
, which are distributed on M clients, number of clusters K, communi-

cation round R.
output Global clustering predictions Y.

1: (In General Scenarios)
2: while not reaching R rounds do
3: for m = 1 to M in parallel do
4: Perform feature splitting by Eqs. (3, 5).
5: Use SGLD to optimize the local model by Eq. (7).
6: Upload cluster-related features Zm

c to the server.
7: end for
8: Update global features Z by Eq. (8).
9: Calculate clustering predictions Y by Eqs. (9)-(10).

10: Distribute Y to each client.
11: end while
12: (In Incomplete Scenarios)
13: while not reaching R rounds do
14: for m = 1 to M in parallel do
15: Optimize the total loss by Eqs. (5, 7, 11, 12).
16: Upload cluster-related features Zm

c and local clustering assignments Qm to the server.
17: end for
18: Calculate clustering predictions Y by Eqs. (8)-(10).
19: Obtain global clustering assignments Q by Eq. (14).
20: Distribute Y and Q to each client.
21: end while

B. More Related Work
The diversity and large scale of multi-view data present greater challenges to traditional clustering techniques. Unlike
single-view clustering, Multi-view clustering (MVC) can integrate information from different perspectives to reveal hidden
structures within the data. Based on the types of multi-view data, existing multi-view clustering methods can be classified
into four main categories. (1) Complete multi-view clustering (Yang et al., 2020; Dai et al., 2024; Zhou et al., 2024; Lu et al.,
2024b), which is performed when all view information is fully available. (Hu et al., 2020) proposed a dynamic auto-weighted
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MVC method with mutual information, optimizing multi-view feature representation by learning view weights. (Yuan
et al., 2022) designed a robust self-tuning MVC that addresses initialization sensitivity, cluster number determination,
and outlier issues. (2) Incomplete multi-view clustering (Chao et al., 2022; Wen et al., 2024; Wang et al., 2024; Chao
et al., 2024), which addresses clustering analysis when some views have missing data. (Zhang et al., 2024b) proposed
a framework for incomplete multi-view contrastive clustering that leverages a self-attention mechanism and cross-view
prediction. (3) Uncertain multi-view clustering (Liu et al., 2024; Duan, 2020), which is used for clustering data that contains
noise, ambiguity, or uncertainty. (Sharma & Seal, 2021) proposed a self-adaptive mixed similarity function, aiming to reduce
the effects of outliers and noise. (4) Dynamic multi-view clustering (Yin et al., 2021; Wan et al., 2024; Lu et al., 2024a),
which is designed for clustering multi-view data that evolves over time. (Huang et al., 2023) introduced an incremental
unsupervised feature selection method to achieve feature selection for incomplete multi-view streaming data.

Although the above methods effectively address issues like missing data, uncertainty, and dynamism in MVC, most assume
centralized data storage, overlooking the existence of data silos and the need for privacy protection. To address these issues,
FedMVC has been proposed and attracted attention, which can mine complementary clustering structures from multiple
clients without exposing private data.

C. Proofs
C.1. Prerequisite Definitions and Lemmas

Definition C.1. (Kullback-Leibler Divergence). Let P and Q be probability measures on the same space X , the KL
divergence from P to Q is defined as DKL(P∥Q) =

∫
X P (x) log P (x)

Q(x)dx.

Definition C.2. (Mutual Information). Let (X,Y ) be a pair of random variables defined over the space X × Y , with
joint distribution PX,Y and marginal distributions PX and PY . The mutual information between X and Y is defined as:
I(X;Y ) = DKL (PX,Y ∥PXPY ) .

Definition C.3. (Differential Privacy). let A be a random mechanism that takes dataset D as input and belongs to set S.
Assuming D1 and D2 are two neighboring datasets differing in only one point, A is (ε, δ)-differentially private if:

Pr [A (D1) ∈ S] ≤ exp(ε) · Pr [A (D2) ∈ S] + δ, (16)

where ε is the privacy budget and δ is the failure probability.

Lemma C.4. (Hoeffding’s Inequality). Let Xi, for i ∈ [n], be independent random variables with distribution PX , range
[a, b], and E[Xi] = µ. Let X = 1

n

∑n
i=1 Xi denote the average of the Xi. Then, for any λ ∈ R,

logE
[
eλ(µ−X)

]
≤ λ2(b− a)2

8n
(17)

Lemma C.5. (Donsker-Varadhan Variational Formula). For any measurable, bounded function h : Θ → R we have:

logEθ∼π

[
eh(θ)

]
= sup

ρ∈P(Θ)

[Eθ∼ρ[h(θ)]−DKL(ρ∥π)] (18)

Lemma C.6. (Gaussian Mechanism (Dwork et al., 2014)). Let ε ∈ (0, 1) be arbitrary. The Gaussian mechanism with
σ ≥ ∆2f

√
2 log(1.25/δ)/ε is (ε, δ)-differentially private.

Lemma C.7. (Differentially Private SGD (Abadi et al., 2016)). There exist constants c1 and c2 so that given the sampling
probability q = L

N and the number of steps T , for any ϵ < c1q
2T . The algorithm of DP-SGD is (ε, δ)-differentially private

for any δ > 0 if we choose σ ≥ c2
q
√

T log(1/δ)

ε .

C.2. Local Training with Feature Splitting

Recall Eq.(2), we have

LXm(wm) =− I(Zm
x ;Xm)− I(Zm

c ;Y) + I(Zm
x ;Zm

c )

=−H(Zm
x )−H(Xm) +H(Zm

x ;Xm)−H(Zm
c )−H(Y) +H(Zm

c ;Y) +H(Zm
x ) +H(Zm

c )−H(Zm
x ;Zm

c )

=H(Zm
x | Xm) +H(Zm

c | Y)−H(Zm
x ;Zm

c ).
(19)
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Then, by constructing the reconstruction network gwm
r
(·) and the clustering layer gwm

c
(·) separately, with wm

r and wm
c as

learnable parameters, the local loss function is transformed below into a more concrete form:

LXm(wm) =−
∫ ∫

p(zmx ,xm) log p(zmx | xm)dzmx dxm −
∫ ∫

p(zmc ,y) log p(zmc | y)dzmc dy

+

∫ ∫
p(zmx , zmc ) log p(zmx , zmc )dzmx dzmc

=− Ep(zm
x ,xm) [log p (z

m
x | xm)]− Ep(zm

c ,y) [log p (z
m
c | y)] + Ep(zm

x ,zm
c ) [log p (z

m
x , zmc )]

=
1

Nm

Nm∑
i=1

∥xm
i − gwm

r

(
zmi,x
)
∥2 + 1

Nm

Nm∑
i=1

K∑
k=1

yi,k log
(
gwm

c

(
zmi,c
))

+
1

Nm

Nm∑
i=1

log p
(
zmi,x, z

m
i,c

)
.

(20)

C.3. Proof of Lemma 3.1

Lemma C.8. (Wang et al., 2021) Given an observed dataset Xm, the optimal posterior p(wm | Xm) for client m update in
Eq. (5) should satisfy the following form that

p (wm | Xm) =
1

B
exp

{
− 1

α
U(wm)

}
, (21)

where B is a normalizing factor that makes the integral of the distribution equal to 1, and U(wm) is the energy function
defined as U(wm) = LXm(wm)− α log p(wm).

Proof. Recalling the local optimization objective in Eq. (5) for client m, we have

min
p(wm|Xm)

Lm = Ep(wm|Xm) [LXm(wm) + αI (wm;Xm)]

= Ep(wm|Xm) [LXm(wm)] + αEp(Xm) [DKL [p (w
m | Xm) ∥p(wm)]]

=

∫
p (wm | Xm)LXm (wm) dwm + α

∫
p (Xm)

∫
p (wm | Xm) [log p (wm | Xm)− log p (wm)] dwmdXm.

(22)
Differentiating Lm w.r.t. p(wm | Xm) results in

∇p(wm|Xm)L = LXm(wm) + α log p (wm | Xm) + α− α log p(wm). (23)

Setting ∇p(wm|Xm)Lm = 0 and solving for p(wm | Xm) yields

log p (wm | Xm) = − 1

α
LXm(wm) + log p(wm)− 1

p (wm | Xm) = p(wm) exp

{
− 1

α
LXm(wm)

}
exp{−1}.

(24)

To integrate the distribution to 1, we add a normalization factor B. Then, we define energy function U(wm) = LXm(wm)−
α log p(wm) and obtain the optimal posterior solution as

p (wm | Xm) =
1

B
p(wm) exp

{
− 1

α
LXm(wm)

}
=

1

B
exp

{
− 1

α
[LXm(wm)− α log p(wm)]

}
=

1

B
exp

{
− 1

α
U(wm)

}
.

(25)
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C.4. Generalization Analysis

Theorem C.9. Suppose that ℓm (wm,xm
i ) for all m ∈ M is bounded by C and independent, then the expected generalization

error satisfies

E [LP(w)− LX (w)] ≤ C

M

M∑
m=1

√
I(wm;Xm)

2Nm
, (26)

where M is the number of participating clients and Nm is the number of samples in the m-th participating client.

Proof. In our settings, we denote the population risk is

LP(w) =
1

M

M∑
m=1

Lp(Xm)(w
m) =

1

M

M∑
m=1

EXm∼p(Xm) [ℓm (wm,Xm)] , (27)

and define the empirical risk is

LX (w) =
1

M

M∑
m=1

LXm(wm) =
1

M

M∑
m=1

[
1

Nm

Nm∑
i=1

ℓm (wm,xm
i )

]
. (28)

Then, the generalization error can be written as

E [LP(w)− LX (w)] =
1

M

M∑
m=1

Ep(Xm)
Ep(wm|Xm)

[
Lp(Xm)(w

m)− LXm(wm)
]
, (29)

where Ep(Xm)
Ep(wm|Xm)

[
Lp(Xm)(w

m)− LXm(wm)
]

can be regarded as the expected generalization error of any partici-
pating client m.

Lemma C.10. (Generalization Bound for client m). Suppose that ℓm (wm,xm
i ) is bounded by C, then the expected

generalization error for client m satisfies

Ep(Xm)Ep(wm|Xm)

[
Lp(Xm)(w

m)− LXm(wm)
]
≤

√
C2I(wm;Xm)

2Nm
, (30)

where p(Xm) denotes a distribution over examples in client m and Nm is the number of samples for client m.

Proof. For client m, its generalization error can be expressed as

Lp(Xm)(w
m)− LXm(wm) = EXm∼p(Xm) [ℓm (wm,Xm)]− 1

Nm

Nm∑
i=1

ℓm (wm,xm
i ) (31)

By recalling Hoeffding’s inequality in Lemma C.4 and suppose that ℓm (wm,xm
i ) is bounded by C, we have

Ep(Xm)

[
eλ[Lp(Xm)(w

m)−LXm (wm)]
]
≤ exp (

λ2C2

8Nm
). (32)

Then, we apply the Donsker-Varadhan variational formula in Lemma C.5, set P(Θ) denotes the set of all probability
distributions, and π ≜ p(w) is a prior distribution over hypothesis. Then we obtain

Ep(Xm)

(
sup

ρ∈P(Θ)

eλ[Lp(Xm)(w
m)−LXm (wm)]−DKL(ρ∥π)

)
≤ e

λ2C2

8Nm ,

Ep(Xm)

(
sup

ρ∈P(Θ)

eλ[Lp(Xm)(w
m)−LXm (wm)]−DKL(ρ∥π)−λ2C2

8Nm

)
≤ 1.

(33)
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Further, by replacing p(wm | Xm) with ρ, we have

Ep(Xm)Ewm∼p(wm|Xm)

[
Lp(Xm)(w

m)− (LXm(wm) +
DKL(p(w

m | Xm)∥π)
λ

+
λC2

8Nm
)

]
≤ 0, (34)

Ep(Xm)Ewm∼p(wm|Xm)

[
Lp(Xm)(w

m)− (LXm(wm)
]
≤ Ep(Xm)Ewm∼p(wm|Xm)

[
DKL(p(w

m | Xm)∥π)
λ

+
λC2

8Nm

]
≤ I(wm;Xm)

λ
+

λC2

8Nm
.

(35)

When λ =
√

8NmI(wm;Xm)
C2 , we get

Ep(Xm)
Ep(wm|Xm)

[
Lp(Xm)(w

m)− LXm(wm)
]
≤

√
C2I(wm;Xm)

2Nm
. (36)

Based on Eq. (29) and Eq. (30), we have

E [LP(w)− LX (w)] ≤ C

M

M∑
m=1

√
I(wm;Xm)

2Nm
. (37)

C.5. Privacy Analysis

Our privacy analysis contains two steps, saying, differential privacy for each client and the overall analysis for ESFMC.

C.5.1. DIFFERENTIAL PRIVACY FOR EACH CLIENT

Our proposed approach provides client-level privacy protection through posterior inference based on SGLD sampling and
feature splitting, using client m as an example for analysis. Firstly, under the Gaussian mechanism in Lemma C.6, SGLD in
the local posterior inference has been demonstrated to provide strict differential privacy.

Lemma C.11. (Differentially Private SGLD). Assuming that ℓm (wm,xm
i ) is L-smooth, when k ≥ O

( √
αϵ2

log(2/δ)

)
, the

algorithm in client m preserves (ε, δ)-differential privacy.

Proof. Based on the Gaussian mechanism in Lemma C.6, we attain O
(√

2 log(1.25/δ)/ε
)

for selecting σ. After rearrang-

ing, we have ε =
√
2 log(1.25/δ)/σ for further analysis. Previous work has shown that under this Gaussian mechanism, in

standard SGLD, k ≥ ε2Nm

32τ log(2/δ) ensures the privacy loss to be smaller than ε
√
Nm√

32τk log(2/δ)
with probability > 1− τδ

2Nmk ,

where k is the local epoch, Nm is the number of samples in client m and τ represents the samples sampled in current
epoch. Additionally, we have an extra parameter

√
α in the noise variance. That is, we need k ≥

√
αε2Nm

32τ log(2/δ) for preserving
(ε, δ)-differential privacy in client m.

We also use differential privacy to analyze the feature-splitting strategy for preserving privacy, demonstrating that sharing
the clustering-related features Zm

c provides stronger privacy protection than sharing the latent features Zm directly.

Lemma C.12. For sharing clustering-related features Zm
c , (ε, δ)-differential privacy in client m if ε =

O
(
ρc
√
k log(1/δ)/σc

)
. Nevertheless, For sharing latent features Zm, (ε′, δ)-differential privacy in client m if

ε′ = O
(√

k log(1/δ) (ρc/σc + ρx/σx)
)

.
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Proof. To facilitate the privacy analysis, we add the noise by the similar way to DP-SGD (Abadi et al., 2016), i.e., employ
the idea of the ℓ2-norm clipping relating to the selection of the noise level σ. Specifically, We apply the random mechanism
with noise distribution N

(
0, σ2

cI
)

to Zm
c and N

(
0, σ2

xI
)

to Zm
x . Recall Eq.(3), we obtain Zm

c and Zm
x from latent features

Zm by designing two adaptive feature projection layers, so we define Zm
c = ρcZ

m and Zm
x = ρxZ

m. Building on Lemma
C.7, we attain O(ρc

√
k log(1/δ)/ε) and O(ρx

√
k log(1/δ)/ε) for selecting σc and σx, respectively, where k corresponds

to T in the original equation, denoting times of using private data for differentially private training. By rearranging variables,
we have εc = ρc

√
R log(1/δ)/σc and εx = ρx

√
R log(1/δ)/σx. Since Zm

c + Zm
x = ρcZ

m + ρxZ
m, Zm can be viewed

as a combination of Zm
c and Zm

x , by combining εc and εc, we attain ε′ = O
(√

k log(1/δ) (ρc/σc + ρx/σx)
)

. Since Zm
x

are kept local, adversaries cannot access them, effectively adding large noise (σx → ∞). Our analysis shows that sharing
Zm

c instead of Zm offers stronger privacy guarantees, leading to a smaller privacy budget ε.

Combining Lemma C.11 and Lemma C.12, we have the following theorem.

Theorem C.13. Assuming that ℓm (wm,xm
i ) is L-smooth, when k ≥ O

( √
αϵ2

log(2/δ)

)
, our proposed ESFMC preserves

client-level (ε, δ)-differential privacy, where ε = (
√

2 log(1.25/δ)/σ + ρc
√
k log(1/δ)/σc).

C.5.2. PRIVACY ANALYSIS FOR ESFMC

In addition to privacy analysis for each client, we conduct the overall privacy analysis of the proposed ESFMC by composition
theorem.

Lemma C.14. (Composition Theorem (Kairouz et al., 2015)). For any ε > 0, δ ∈ [0, 1], and δ̃ ∈ [0, 1], the class of

(ε, δ)-differentially private mechanisms satisfies
(
ε̃δ̃, 1− (1− δ)M (1− δ̃)

)
-differential privacy under M -fold adaptive

composition for ε̃δ̃ = min

{
Mε, (eε−1)εM

eε+1 + ε

√
2M log

(
e+

√
Mε2

δ̃

)
, (eε−1)εM

eε+1 + ε

√
2M log

(
1
δ̃

)}
.

The composition theorem indicates that when the interactive mechanisms are individually differentially private, their
concurrent composition maintains privacy parameters (in terms of pure or approximate differential privacy). By combining
Lemma C.13 and Lemma C.14, we derive Theorem 4.2.

D. Experimental Details
D.1. Datasets

We conduct the experiments on the following public datasets.

• Caltech (Fei-Fei et al., 2004) is an RGB image dataset that provides multiple views including 40-dim wavelet moments
(WM), 254-dim CENsus TRansform hISTogram (CENTRIST), 928-dim Local Binary Patterns (LBP), 512-dim
GeneralIzed Search Trees (GIST), and 1984-dim Histogram of Oriented Gradients (HOG) features. We adopt 200
samples from each class and 1400 samples in total for evaluating the robustness of the multi-view clustering methods.

• HW are represented by six kinds of features extracted from its binary image. Each class has 200 samples. Each
instance has six visual views, including profile correlations, Fourier coefficients of the character shapes, Karhunen-Love,
morphological features, pixel averages in 2 × 3 windows, and Zernike moments.

• MNIST-USPS (Peng et al., 2019) is a widely-used dataset for handwritten digits (0-9) and consists of 5000 examples
with two views of digital images. The MNIST feature size is 28 × 28, while the USPS is 16 × 16.

• Synthetic3d (Kumar et al., 2011) comprises 3 categories, containing a total of 600 samples, each with three views, and
each view having a dimensionality of 3.

• BDGP (Cai et al., 2012) comprises 2500 examples related to drosophila embryos, each represented by a 1750-
dimensional visual feature and a 79-dimensional textual feature. GIST and LBP features

• Scene (Fei-Fei & Perona, 2005) includes 4,485 images in 15 classes, each sample has three views: 20-dim GeneralIzed
Search Trees (GIST), 59-dim Histogram of Oriented Gradients (HOG) and 40-dim Local Binary Patterns (LBP).
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D.2. Implementation Details

The models of all methods are implemented on the PyTorch (Paszke et al., 2019) platform using NVIDIA RTX-3090 GPUs.
The activation function is ReLU (Glorot et al., 2011). For all the datasets used, the learning rate is fixed at 0.001. Before
conducting the first communication round, clients have not received global clustering results to assist in feature splitting,
we use local clustering results to assist in splitting in this round. In subsequent communication rounds, local training is
conducted for 300 epochs for all datasets on each client. The communication rounds between the server and clients are set
to R = 15 for Caltech, MNIST-USPS, and Synthetic3d datasets, and R = 5 for other datasets.

D.3. Comparison Methods

To demonstrate the performance of our proposed ESFMC, we select several relevant algorithms as comparison methods.
These include five centralized multi-view clustering methods:

• GIMC-FLSD (2020) (Wen et al., 2020) handles incomplete data through graph-regularized matrix factorization and
semantic consistency constraints.

• HCP-IMSC (2022) (Li et al., 2022) uses tensor decomposition regularization to preserve high-order view and sample
correlations.

• IMVC-CBG (2022) (Wang et al., 2022) utilizes anchor learning and a bipartite graph framework to achieve efficient
incomplete multi-view clustering (IMVC).

• DSIMVC (2022) (Tang & Liu, 2022) uses a bi-level optimization framework to reduce the impact of semantic
inconsistency on IMVC performance.

• AGDIMC (2024) (Pu et al., 2024) is an IMVC method that combines view-specific deep encoders with partial latent
graphs for adaptive feature imputation.

Four federated multi-view clustering methods are included:

• FedDMVC (2023) (Chen et al., 2023) is a FedMVC that concurrently tackles feature heterogeneity and IMVC.

• FedMVFCM (2023) (Hu et al., 2023) primarily focuses on achieving FedMVC through the sharing and aggregation of
cluster centroids.

• FedMVFPC (2023) (Hu et al., 2023) uses federated learning to address the challenges of multi-view fuzzy clustering
on distributed devices.

• FCUIF (2024) (Ren et al., 2024) introduces adaptive alignment and unsupervised imputation techniques to address the
challenges of unaligned and incomplete multi-view data.

E. Additional Experiment Results
E.1. Communication Overhead

Table 4. Runtime and communication overhead by ESFMC.
Dataset Runtime Communication overhead
Caltech 703.6s 2.5KB

HW 617.2s 1.4KB
MNIST-USPS 1199.5s 3.6KB
Synthetic3d 296.2s 0.7KB

BDGP 265.4s 0.6KB
Scene 450.5s 1.6KB

We report some results on the runtime and communication overhead by ESFMC to give the reader some information about
the computational resources used by the method. Table 4 shows that runtime and communication overhead by ESFMC is
small and easy to reproduce.
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E.2. Ablation Study about Shared Features

We also explore the impact of sharing different feature types on clustering performance on Caltech dataset. The results
indicate in Table 5, while sample-related and complete features reveal partial clustering structures, the clustering-related
features obtained through feature splitting exhibit superior accuracy and effectiveness in mining clustering structures, thereby
validating the efficacy of our feature-splitting strategy.

Table 5. Ablation study about shared features on Caltech dataset.
Types of sharing features ACC NMI ARI
Sample-related features 79.93 73.27 66.82

Clustering-related features (ESFMC) 91.50 84.54 83.45
Complete features 87.29 77.86 74.79

E.3. Extending to Cross-Device Scenarios

Our proposed method operates under the assumption that M views are distributed across M clients, with each client holding
data for a unique view. Several existing FedMVC methods (Huang et al., 2022; Chen et al., 2023) also follow this assumption.
So our approach is particularly suitable for cross-silo scenarios with a limited number of clients, such as hospitals or large
institutions. Luckily, it can also be extended to cross-device scenarios involving numerous clients and has shown promising
performance on certain datasets.

(a) HW (b) BDGP (c) Caltech

Figure 4. Clustering performance with the varying number of clients.

Figure 4 illustrates the impact of the number of clients on clustering performance without sharing any additional information.
Notably, increasing the number of clients reduces the number of samples per client, which can hinder the feature-splitting
process during local training, leading to suboptimal clustering-related feature extraction. The results show that ESFMC
maintains stable performance on the HW and BDGP datasets when the number of clients increases moderately. However,
with a significant increase, the sample size per client becomes insufficient for effective training, resulting in a sharp decline in
clustering performance. To adapt ESFMC to the Caltech dataset and scenarios with a large number of clients, sharing partial
local model information may be necessary. While this strategy could help maintain clustering performance, it introduces
new privacy concerns that require further investigation.
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