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Abstract

When mobile robots become ubiquitous, they occasionally encounter unseen envi-
ronments. Enhancing mobile robots with the ability to follow language instructions
will improve decision-making efficiency in previously unseen scenarios. However,
state-of-the-art (SOTA) vision-and-language navigation (VLN) methods are mainly
evaluated in simulation, neglecting the complex real world. Directly transferring
SOTA navigation policies learned in simulation to the real world is challenging
due to the visual domain gap and the absence of prior knowledge about unseen
environments. In this work, we propose a novel navigation framework to address
the VLN task in the real world, utilizing the powerful foundation models. Specifi-
cally, the proposed framework includes four key components: (1) a large language
models (LLMs) based instruction parser that converts a language instruction into a
sequence of pre-defined macro-action descriptions, (2) an online visual-language
mapper that builds a spatial and semantic map of the unseen environment using
large visual-language models (VLMs), (3) a language indexing-based localizer that
grounds each macro-action description to a waypoint location on the map, and (4)
a pre-trained DD-PPO-based local controller that predicts the action. Evaluated
on an Interbotix LoCoBot WX250 in an unseen lab environment, without any
fine-tuning, our framework significantly outperforms the SOTA VLN baseline in
the real world.

1 Introduction

Figure 1: Vision-and-language Navigation in Continuous Environments

Humans can efficiently navigate in familiar environ-
ments by creating mental maps that include both spa-
tial and visual cues, such as landmarks [10, 12]. For
instance, humans can easily plan a route to the cof-
fee machine from anywhere in their houses because
they possess not only a spatial but also a semantic
understanding of their surroundings [12]. However,
in unfamiliar environments, humans often rely on
instructions in natural languages to navigate. There-
fore, enhancing mobile robots with the ability to fol-
low instructions in natural languages will facilitate
decision-making in unseen scenarios, making them
more robust and useful in everyday life.
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Figure 2: Framework Overview

The vision-and-language navigation (VLN) task [2] aims to benchmark this challenge. Depicted in
Figure 1, a mobile robot uses visual inputs (i.e., RGB-D) to navigate in unseen environments by
following unstructured natural language instructions. In particular, we consider the VLN task in
continuous environments (VLN-CE) [24], where the robot moves continuously in physical space
(i.e. SE(2)) by either taking primitive discrete actions [24] or by controlling the linear [25] and
angular velocities [19]. Despite significant progress is made in VLN-CE, most recent methods
[15, 16, 7, 20, 22, 24] are primarily evaluated in simulation, ignoring the complex real world.

Transferring a VLN-CE agent trained in simulation to the real world is challenging due to the visual
domain gap and the absence of prior environment information [1]. To mitigate these challenges,
fusing extra sensor information (e.g. laser scan) and employing domain randomization techniques
[34] are recommended [1]. However, recent work [18, 33] demonstrates that using foundation models
[38], such as LLMs and VLMs, can be beneficial for navigation in the real world. Specifically, LLMs
are utilized to parse the instruction into landmarks or executable code, leveraging their powerful
textual interpretation capabilities. VLMs are used for processing complex real-world observations
and grounding parsed language instructions. Nevertheless, these methods still require prior mapping
of the environment, which is not directly applicable to VLN-CE.

In this work, we propose a novel navigation framework to tackle the VLN-CE task in the real world,
leveraging the powerful foundation models. Depicted in Figure 2, to ground the unstructured language
instructions, we utilize an LLMs-based parser to convert the instruction into a sequence of pre-defined
robot macro-action descriptions, which describe the robot’s executable movements and associated
landmarks. To handle the complex and noisy observations in unseen environments, we build an online
visual-language map using VLMs. With the latest map and the parsed macro-action descriptions,
a language indexing-based localizer grounds each macro-action description to a waypoint location
on the map. Treating the waypoint as a point-goal, we adopt an off-the-shelf DD-PPO local policy
to predict the next action. We conducted the experiments on an Interbotix LoCoBot WX250 in an
unseen lab environment. In the examined instruction following tasks, without any fine-tuning, the
proposed pipeline significantly outperforms the SOTA VLN-CE baseline in the real world.

2 Related work

Vision-and-language navigation In VLN, two main settings exist, namely discrete environments
(VLN-DE) [2] and continuous environments (VLN-CE) [23]. In VLN-DE, due to the short horizon
of an episode, the agent can store the visual memory for every step and efficiently reason the visual
memory with language instruction using the attention mechanism [8, 28, 9, 17, 31]. In contrast,
the long horizon of an episode in VLN-CE makes the metric map a more reasonable choice of
visual memory where the observations at different steps can be fused together in the form of a
map [7, 15, 20]. [1] first attempts to tackle the vision-and-language navigation in the real world by
transferring the policy trained in the simulator to the real world. However, [1] concludes that such
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transferring will be challenging due to the visual domain gap and the absence of the environment
priors. Unlike all these works that require training in the simulator, our approach requires no training
in simulation and no fine-tuning in the real world. Instead, we use foundation models to enable
generalization to the real world.

Navigation with online mapping Building maps during navigation achieves impressive performance
in multiple embodied navigation tasks such as point-goal navigation, object-goal navigation, and
image-goal navigation [5, 21, 6, 36]. However, these methods are designed for particular tasks that
require the goal to be specified in a desired format (e.g. a pose, an object class label, or an image). In
VLN-CE, only instructions in natural language are provided, requiring our method to implicitly reason
about the goal from the instructions. Besides, the map built by our approach is a visual-language
map. Unlike traditional occupancy maps and semantic maps, the built visual-language map stores
both the spatial occupancy and the language-associated visual features computed from VLMs.

Navigation using foundation models Foundation models [38] have recently been used in navigation
tasks. CoWs [14] adapts open-vocabulary models such as CLIP [32] and proposes a language-driven
zero-shot object navigation (L-ZSON) task to benchmark object searching. LM-Nav [33] proposes
a navigation framework that incorporates three types of foundation models (i.e., large language
model (LLM), visual-language model (VLM), and visual navigation model (VNM)) and achieves
long-distance navigation in outdoor environments. Our approach also uses off-the-shelf foundation
models so that no fine-tuning is needed during inference. However, our approach is designed for
the VLN-CE task, which is different from the L-ZSON task. Unlike LM-Nav, our method does not
require prior data collected from the environment. VLMaps [18] is the most related work. But, unlike
VLMaps which requires a pre-collected offline dataset to build the environment map beforehand, our
method performs online visual-language mapping during navigation. Moreover, both LM-Nav and
VLMaps are designed for multi-goal navigation tasks. In summary, our approach can be considered
as an extension of VLMaps to tackle the VLN-CE task in the real world.

3 Problem statement

We consider the vision-and-language navigation task in continuous environment (VLN-CE) [23]. In
particular, the continuous setting refers to the scenario where the robot has to take primitive actions
to navigate to the desired goal in physical space (i.e., SE(2)) while following an instruction in natural
language. This is in contrast to the discrete setting, where the robot selects discrete nodes from a
pre-collected navigation graph, as seen in previous work [1, 16, 23].

Formally, at the beginning of each episode, an instruction in natural language L =
⟨w0, w1, w2, ..., wL⟩ is given, where wi is the token for a single word in the instruction. The robot
also receives an initial front-view observation o0 determined by the initial pose s0 = ⟨x0, y0, θ0⟩,
which defines the robot’s position and the heading. Following [23], at every time step t, the robot
chooses one action at from a set of four discrete actions (i.e., move_forward, turn_left, turn_right,
stop) to execute. Note that, concurrent work like [2] defines the action space as linear and angular
velocities, which is different from the current setting. After taking the action at, the robot moves
to a new pose st+1 and observes a new ot+1. Following the instruction L, the episode terminates
when the robot chooses the “stop” action or meets the timeout. The goal is to find a sequence of
⟨s0, o0, a0, s1, o1, a1, ..., sT , ot, at⟩ that aligns with the language instruction L.

4 Method

In this section, we first explain how to convert the instruction into macro-action descriptions using
LLMs in Sec. 4.1. Then, the online visual-language mapper using VLMs is explained in Sec. 4.2.
Given the latest map and the parsed macro-action descriptions, we explain the language indexing-
based localizer in Sec. 4.3. Finally, we explain the off-the-shelf DD-PPO-based local controller in
Sec. 4.4.

4.1 LLMs-based instruction parser

We observe that the instruction in the VLN-CE task includes several sub-instructions. For instance,
in the Room-to-Room (R2R) task [2], the robot is asked to move from one room to another adjacent
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room following the instruction. A typical instruction might read as follows “Exit the bedroom and
turn left. Walk straight passing the gray couch and stop near the rug.”. The entire instruction can
be parsed into a sequence of sub-instructions such as ⟨“Exit the bedroom”, “Turn left”, “Walk
straight passing the gray couch”, “stop near the rug” ⟩. Furthermore, we have noticed that each
parsed sub-instruction describes either a pure robot movement (e.g., “turn left”) or describes both the
movement and associated landmarks. For instance, “Walk straight passing the gray couch” contains
the movement “walk straight” and the landmark “gray couch”. However, these parsed sub-instructions
can not be directly executed by the robot.

To address this, we leverage the powerful textual interpretation abilities of LLMs (i.e., GPT 3.5 [29])
to parse and convert the instruction into a sequence of pre-defined robot macro-action descriptions.
Specifically, inspired by [18], we define a set of macro-action descriptions serving as prior information
about the robot’s movements. Formally, we define 10 macro-action descriptions, each represented
as a Python dictionary that includes the movement’s name and associated parameters. For example,
“Walk straight passing the gray couch” corresponds to “{"name": "move_to", "landmark": "gray
couch"}”. Following a similar approach to [18], we interact with ChatGPT through few-shot prompt
engineering and parse each instruction before conducting navigation experiments.

4.2 Online visual-language Mapper

In VLN-CE, collecting data from the target environments is prohibitive because they are assumed to
be unseen. Therefore, we extend VLMaps to the online setting and introduce an online mapper that
progressively builds the visual-language map of the unseen environment.

In general, the visual-language map fuses the visual-language feature computed from VLMs with
a 2-D occupancy grid [18]. These visual-language features enhance the representation of the 2-D
occupancy map by incorporating richer semantic features compared to semantic labels. Furthermore,
the visual-language map inherently benefits from the powerful generalization abilities of VLMs, which
are promising to handle complex real-world observations and diverse language instructions. We adopt
LSeg [26, 18], a large visual-language model renowned its dense pixel-wise semantic segmentation
driven by flexible language labels. Specifically, LSeg’s ViT-based [11] visual encoder aligns the
pixel embedding with the text embedding of the corresponding semantic class [26]. Additionally,
LSeg’s CLIP-based [32] text encoder provides a flexible representation that generalizes well to
previously unseen semantic classes during inference. Pretrained on large-scale image-text pairs, LSeg
demonstrates significant potential for handling complex robot observations and unseen landmark
objects in the real world.

Formally, the visual-language map takes the form of a grid map, denoted as M ∈ RH×W×C ,
where H,W are the height and the width of the map, respectively, and C is the dimension of the
stored visual-language feature in each grid cell. The resolution of the map is set at ρ = 5 cm, and
each grid cell corresponds to a 25 cm2 region in the real world. In contrast to [18] that builds the
map from an offline dataset, we update the map at every time step. Formally, at the time step t,
the robot observes a new RGB image Irgb, a new depth image Idepth, and a relative pose change
pt = ⟨xt, yt, θt⟩ with respective to the initial pose. We assume the knowledge of the camera
intrinsic matrix K. Consequently, we begin by back-projecting each pixel (i, j) ∈ Idepth into a
3-D point pcam = (x, y, z) = K−1(i × d(i, j), j × d(i, j), d(i, j))T in the camera frame, where
z = d(i, j) is the depth value for pixel (i, j). Then, we project the 3-D points to the world frame
pworld = T−1 × pcam, where T is the extrinsic matrix. In our world frame definition, the origin is
positioned at the top-left corner of the map, the x axis extends to the right, and the y axis extends
downward, following the conventions established in [5, 6]. On the map, the robot is consistently
initialized in the middle and facing to the right ⟨H2 ,

W
2 , 0.0⟩. Finally, the 3-D points Pw are projected

to the map plane as follows:

(pxmap, p
y
map) = [

pyworld

ρ
,
pxworld

ρ
] (1)

Meanwhile, we use the visual encoder of LSeg EViT : Rh×w×3 → Rh×w×C to compute the dense
pixel-wise visual-language features. Following the same transformation above, we store the pixel-wise
visual-language feature fij = EV iT (Irgb[i, j]) of pixel (i, j) at the corresponding grid (pxmap, p

y
map).

In this way, the new visual-language features are projected onto the map plane as M . The global map
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Mt−1 gets updated as follows:

Mt[u, v] =

{
M [u, v], if Mt−1[u, v] = None
M [u,v]+Mt−1[u,v]

n+1 , otherwise
(2)

where u, v are grid cell indices and n is the number of stored features. As [18], we average the
features in each grid cell to handle the situation where the same object might be perceived from
different views.

4.3 Language indexing-based localizer

The LLMs-based instruction parser converts the instruction into a sequence of macro-action descrip-
tions. Since we use off-the-shelf DD-PPO as the local policy, we propose to ground each macro-action
description to a waypoint location on the map and set it as an intermediate point-goal. Formally,
suppose the current robot location on the map is ⟨pxmap, p

y
map, θmap⟩.

For pure movement macro-action description such as “{"name": "move_forward", "dist": D}”, the
waypoint position is computed as ⟨pxmap +D×cos (θmap), p

y
map +D× sin (θmap), θmap⟩. When there is

no specified moving distance, we set the default moving distance to be 0.5 metre. A similar strategy
is applied to rotations.

For landmark-associated macro-action descriptions such as “{"name": "move_to_left", "landmark":
"couch"}” (See Figure 2), we first localize all target objects on the visual-language map through
language indexing. Specifically, we construct a label list [ltarget, l

2
default, ..., l

k
default, other] where the first

world is the target landmark label and the remaining are the default labels. Note that “other” is LSeg’s
default label to represent any out-of-range object classes. LSeg’s text encoder takes in the label list
and outputs a text embedding feature matrix ftext ∈ RC×(K+1). The similarity score for every label
at every grid cell can be computed as Mt× ftext, where Mt ∈ RH×W×C . With the similarity matrix,
the localizer decides the label for each grid cell by selecting the label with the maximal similarity
score. Therefore, at every time step, an open-vocabulary semantic map is generated. To tackle the
landmark object ambiguity, we first apply density-based spatial clustering (DBSCAN) [13] to find
the centers of all landmark labels. Next, we compute the orientation and Euclidean distance between
the robot’s current location and the centers on the map. We select the nearest label in front of the
robot and use the corresponding center location as the waypoint. The design choice is under the
assumption that instructions in VLN-CE are generated from the perspective of the robot’s egocentric
view. Using online mapping, we can mitigate the object ambiguity issue during navigation (See
Figure 6). The waypoint is further computed in the local controller and is defined as a 2-D egocentric
polar coordinate (ρ, ϕ), where ρ represents the relative distance between the waypoint and the robot’s
current pose and ϕ is the egocentric orientation towards the waypoint on the map.

4.4 DD-PPO-based local controller

To deal with the noisy observations in the real world, we use the DD-PPO navigation policy, pre-
trained on a large-scale point-goal navigation task, as the local controller [30, 35]. Specifically, the
controller takes in a front-view RGB-D observation {Irgb, Idepth} and a point-goal represented as a 2-
D egocentric polar coordinate (ρ, ϕ) as inputs. The off-the-shelf local policy π(at|Irgb, Idepth, (ρ, ϕ))
predicts the next action at. Specifically, the action space is discrete and contains four primitive
actions including a “stop” action to indicate termination or reaching the goal point. Empirically, we
found that the DD-PPO local policy needs to be reset after reaching each waypoint.

5 Experiments

5.1 Mobile robot and environment setup

We conducted all experiments using an Interbotix LoCoBot WX250 equipped with an Intel RealSense
D435 camera for capturing both depth and RGB images. The RGB image dimensions are 640×480×3
and the depth dimensions are 640 × 480. The camera is mounted on a Kobuki base at a height of
approximately 53 cm with an elevation angle of −15.7 degrees. In our experiments, we disabled the
robot’s arms and exclusively controlled the Kobuki base. We implemented four primitive actions to
align with the output of the DD-PPO local policy. Specifically, the ’move_forward’ action advances
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Figure 4: Single Instruction Following Task

the robot by 0.25 cm, while the ’turn_left’ and ’turn_right’ actions rotate the base by 15 degrees. A
’stop’ action was also included for no movement. We conducted the entire experiment using ROS
Noetic in an unstructured lab environment, which was unseen by both our pipeline and the baseline
method. Figure 3 shows the robot used in all experiments.

5.2 Baseline

Figure 3: Interbotix Lo-
CoBot WX250

We compare our method against Cross-modal Map Learning (CM2) [15],
a learning-based SOTA method to tackle the VLN-CE task. CM2 employs
a strategy where it generates both global occupancy maps and global se-
mantic maps by hallucinating information from local maps back-projected
from depth and semantic observations, enhancing the spatial and semantic
understanding of the unseen environments. Given an instruction, CM2
learns cross-modal map attention to ground the entire instruction into a
sequence of waypoints on the map. The waypoint sequence will be pre-
dicted at every time step and the DD-PPO local policy is used to predict
the next action. We select the best model provided by the author as our
comparison 1. To make the comparison fair, both CM2 and our method
use the same front-view RGB-D observations and relative pose as inputs.
We also use the same DD-PPO controller from [35, 30]. It’s important to
note that CM2 is extensively trained in simulation and does not undergo fine-tuning with real-world
data. In contrast, our pipeline requires no training in the simulator and no fine-tuning in the real
world, leveraging pre-trained foundation models.

5.3 Instruction following tasks

In the context of VLN-CE, instructions often include several sub-instructions that the robot must
follow. To evaluate the performance of our proposed pipeline, we designed two types of instruction-
following tasks, ranging from easy to challenging. The first task, “Single Instruction Following
Task”, involves instructions that contain only one sub-instruction for the robot to execute. For
instance, an instruction might read as “Move forward by 2 meters.” This task aims to assess the
robot’s ability to correctly infer the goal from the instruction and execute it accurately. It’s important
to note that in VLN, the goal location is implicitly encoded in the instruction. The second task, namely
“Complex Instruction Following Task”, is more demanding. Here, instructions include multiple
sub-instructions that the robot must carry out. For instance, an instruction might read as “Move to
the left side of the chair. Then, turn left by 90 degrees.” In addition to evaluating goal inference and
execution accuracy, this task assesses each method’s ability to ground complex instructions in the
real world. Figure 4 and 5 show examples of the proposed tasks.

5.4 Results
Table 1: Results of Pure Motion Task

Target Dist (m) Actual Dist (m) Est Dist (m) Err Dist (m)
0.5 0.426 - -
1.0 0.748 0.238 0.014
2.0 1.678 0.308 0.014

Single Instruction Following - Pure Motion
Task : We evaluate the accuracy of our
method in executing instructions that involve
pure movement. The tested straight distances

1https://github.com/ggeorgak11/CM2
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Figure 5: Complex Instruction Following Task

range from 0.5 to 2.0 meters, with each distance tested in 5 independent runs using different instruc-
tions. For example, instructions include “Go forward by 1.0 meter” or “Navigate ahead by 1.0 meter.”
We provide two metrics: “Actual Dist”, representing the straight distance actually traversed by our
pipeline, and “Est Dist”, an estimate of the distance between the stop position and the goal position
on the map. Because the off-the-shelf DD-PPO controller outputs “STOP” action when it believes the
goal is nearby. The movement error, “Err Dist” is computed by subtracting the “Target Dist” with the
sum of “Actual Dist” and “Est Dist”. As shown in Table 1, the average movement error out of 15 runs
in the real world is approximately 1.4 cm. This result highlights the effectiveness of using DD-PPO
as the local policy in real-world scenarios and the accuracy of the map built by our online mapper.

Table 2: Results of Landmark-associated Motion Task

Method CM2 [15]
Instruction SR (%) Dist to Goal (m)

“Navigate to the left side of the chair” 60 0.88
“Navigate to the right side of the chair” 40 0.97

“Navigate to the front of the chair” 20 1.37
“Move in between the box and the chair” 0 2.06

Average 30 1.32
Method Ours

“Navigate to the left side of the chair” 100 0.79
“Navigate to the right side of the chair” 100 0.83

“Navigate to the front of the chair” 100 0.81
“Move in between the box and the chair” 80 0.20

Average 95 0.66

Single Instruction Following -
Landmark-Associated Task : In
this task, unlike the instructions
provided, the instructions implicitly
specifies spatial goals. We compare
our method with the CM2 baseline
using four different instructions,
indicating four distinct spatial goals.
For each instruction, we conduct
5 independent runs with varying
initial robot locations. In Table 2, our
approach significantly outperforms
the CM2 baseline, achieving a much
higher mean success rate of 95% compared to CM2’s 30% and substantially smaller distances to the
goal location (Ours 0.2m v.s. CM2’s 2.06m). The key to our method’s success lies in the powerful
generalization ability of VLMs to real-world observations since the grounding a single instruction
is not difficult. In contrast, CM2 struggles with generalization to the real world due to the visual
domain gap, despite using the same DD-PPO local controller and being trained in visually realistic
scenes in Matterport3D dataset [4], which consists of scenes reconstructed by real-world images
captured from various indoor environments. The empirical results suggest that pre-trained VLMs
would be powerful off-the-shelf visual encoders to tackle the unseen observations in the real world.

Table 3: Results of Complex Instruction Following Task

Method SR (%) Dist to Goal (m) Time steps
CM2 [15] 0 4.9 203.4

Ours 100 0.256 88.6

Complex Instruction Following Task :
In this task, we examine our pipeline with
more complex instructions comprising mul-
tiple sub-instructions and landmark objects.
The instruction used was: “Go to the left
side of the green chair. Then, navigate to
the right of the red chair ahead. Turn right by 45 degrees and then navigate in between the box
and the counter.” We conduct the experiment with 5 independent runs from different initial robot
locations and varying the description for every sub-motion. Table 3 shows the results. In summary,
CM2 struggles to complete this complex instruction task. The reasons are two-fold. First, the visual
domain gap still poses challenges. Second, such influence exaggerates when the instruction becomes
more complex because the performance of grounding a complex instruction highly relies on the
quality of the hallucinated map, which requires the method to be robust to unseen, complex, and
noisy observations in the real world. In contrast, our method achieved a 100% success rate and
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Figure 6: Trajectory visualization

stopped approximately 26 cm from the goal location, despite using the same DD-PPO controller as
CM2. Unlike a simple language parser, we uses the LLMs to convert the instruction into a sequence
of pre-defined macro-action descriptions, leveraging the powerful textual interpretation abilities of
LLMs. Empirically, we found that LLMs is robust to different sub-instruction descriptions and can
convert the sub-instruction to the desired format (e.g., a pre-defined macro-action description in our
setting). Moreover, although CM2 achieves SOTA performance of VLN-CE in the simulation, it
exhibits limited generalization to the VLN-CE task in the real world. As shown in Figure 6, we found
that VLMs generalize surprisingly well to the observations in the real world even though they are not
particularly trained for navigation tasks.

6 Limitations

While our pipeline demonstrates promising results, it does have certain limitations. Firstly, as
instructions become more complex, the grounding performance of LLMs may be constrained by the
scope of pre-defined macro-action descriptions. Complex instructions may include sub-instructions
that are not easily convertible into pre-defined macro-action descriptions. Consequently, the design
of an LLMs-based language grounding module remains an open question. Secondly, the localizer in
our method prefers landmark objects or absolute movement for better waypoint proposals. However,
objects can be ambiguous, and movement descriptions can be high-level. For example, there may be
multiple similar objects on the map, and a movement description might simply be ’Exit the hallway,’
with no specific landmark object or precise movement specified. Fortunately, recent approaches
such as [37, 3] propose alternative design choices for LLMs-based instruction grounding, and recent
advancements in VLMs [39, 27] shed light on language-referable object segmentation.

7 Conclusions

In this work, we propose a novel navigation framework to address the VLN-CE task in the real
world scenarios. Leveraging three foundational models (LLMs, VLMs, and DD-PPO), and notably,
without any fine-tuning, our method significantly outperforms the SOTA VLN-CE baseline. We have
observed that the visual domain gap between simulation and the real world presents a significant
challenge for transferring SOTA VLN-CE navigation policies from simulation to reality, even though
the simulator contains real-world observations. Therefore, through our demonstrated instruction
following tasks, we hope to provide insights into solving the VLN-CE task in real-world scenarios by
harnessing the capabilities of these foundational models.
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