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Abstract

CLIP is a widely used foundational vision-language model that is used for zero-
shot image recognition and other image-text alignment tasks. We demonstrate that
CLIP is vulnerable to change in image quality under compression. This surprising
result is further analysed using an attribution method-Integrated Gradients. Using
this attribution method, we are able to better understand both quantitatively and
qualitatively exactly the nature in which the compression affects the zero-shot
recognition accuracy of this model. We evaluate this extensively on CIFAR-10 and
STL-10. Our work provides the basis to understand this vulnerability of CLIP and
can help us develop more effective methods to improve the robustness of CLIP and
other vision-language models.

1 Introduction

CLIP (Contrastive Language-Image Pretraining) [Radford et al.,|2021]] is a foundation model that is
trained to find the best pairing between given images and texts using contrastive learning. Benefitting
from the variety and quantity of training data, CLIP can be used in many applications. We are
interested in using CLIP as a zero-shot image classifier with a given fixed text prompt. The work
Radford et al.[[2021] has claimed through extensive experiments with datasets with different natural
distribution shift that zero-shot CLIP is much more robust to distribution shift than standard ImageNet
models (for example, natural images, sketches and renditions of objects of a particular class).
However, we find that CLIP’s zero-shot prediction is sensitive to the quality of the input images.
For example, the predicted text label for the same image can differ significantly when the image
has been compressed using the discrete cosine transform (see Figures [T)). This is surprising because
CLIP has been trained on over 400 million image-text pairs with images of various qualities and
we would therefore expect it to be robust against degradation of the quality of the input images.
To better understand the vulnerability of CLIP to image compression, we use Integrated Gradients
[Sundararajan et al.,[2017] on CLIP with input images of different qualities to probe how the change
of quality affects predictions. We found that the method of Integrated Gradients provides an effective
way to quantify the source of impact on CLIP’s predictions at the pixel level of the input. Furthermore,
the method can be applied to any foundation model subject to the assumption that the model defines a
function that is differentiable almost everywhere. Unlike most existing attribution methods, Integrated
Gradients satisfies sensitivity and implementation invariance which are two axioms characterisable
mathematically. We believe this work can help us monitor the distribution shift of the dataset and the
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model. We also hope it can inspire the community to develop mitigation strategies to improve the
robustness of CLIP and other foundational models.

Our contributions

1. We demonstrate through CIFAR-10 [Krizhevsky et al., 2009][|Shahl 2013]] and STL-10
[Coates et al., [2011]] that CLIP is sensitive to the quality of the input image when it performs
a zero-shot image recognition task with fixed text prompts.

2. We investigate the above behaviour through an attribution method of Integrated Gradients
and provide numerical estimates and visualisations to explain how change in the qualities of
the inputs affects the predictions.

In section 2] we give a brief summary of CLIP. We summarise the Integrated Gradients method in our
notation in Section[3] In Section[d] we present our method probing CLIP using Integrated Gradients
and its mathematical formulation. In Section 3] we evaluate the robustness of CLIP on CIFAR-10
and STL-10 and demonstrate our method using CIFAR-10. Section [f]reviews related works and we
conclude in Section[7] with suggestions for future work.

2 CLIP

CLIP is a learning method from natural language supervision that predicts the best text description
that pairs with any given image. At training time, CLIP jointly trains an image encoder and a text
encoder to predict the correct image-text pairs. At test time, CLIP can be used as a zero-shot image
classifier by predicting which text label goes best with the given image. This can be done by providing
CLIP with a text prompt similar to “This is an image of {CLS}” with “CLS” being the labels. Then
for each given image, we use CLIP to compute the dot product between the encoding of the image
and encoding of the prompt with each label. Finally, we choose the label that maximises the dot
product. Using CLIP for zero-shot image recognition has also been investigated in works such as
Radford et al.| [2021]], Zhou et al.|[2022]] and [Wu et al.|[2023]]. As described by [Radford et al.|[2021]],
the model has been trained with a large collection of around 400 million image-text pairs. This would
imply that the method should have been trained with a variety of different image compression ratios
and should naturally be robust to any issues related to compression. However, as we go on to show,
the model is vulnerable to image compression ratio. We next consider an attribution method that can
be used to thoroughly analyse this phenomenon.

3 Integrated Gradients

Integrated Gradients [Sundararajan et al., 2017] is an attribution method that analyses what features
can (and how they) affect the prediction of a deep network. The Integrated Gradients method satisfies
two axioms ‘sensitivity’ and ‘implementation invariance’ and can be used for most deep learning
models. ‘Sensitivity’ refers to the property that when the outputs of the network are different at two
features, the attributes should also be different. ‘Implementation invariance’ means that the attributes
are the same for two functionally equivalent networks, that is networks having the same outputs given
the same inputs. Integrated gradients satisfy these axioms because it is defined as a path integral of
the deep network (as a function) from the baseline input to the target. The axioms are guaranteed due
to the independence of parameterisations of path integrals from the fundamental theorem of Calculus.
To facilitate our discussion in Section 4], we re-state the definition of integrated gradients and its
properties in the general context.

Let F': R® — R™ be a neural network. Let g, 21 be two inputs in R™ which do not have to be
distinct. Let v: [0,1] — R™ be a continuously differentiable path connecting x( and x1, so that
~v(0) = xg, v(1) = x1 and /' (¢) is continuous for all ¢ € (0, 1).
Definition 3.1. Assuming F' is differentiable almost everywhere, we define the integrated gradients
as the path integral of F' from x( to xy:

LOF(y(1))

IG(F, xzg, x ::/ ——— 22 dt. )
(Faoe) = [ =

From the fundamental theorem of Calculus, we know the following fact as a result of Definition



Corollary 3.2. Under the same assumptions in Definition we have
IG(F,IEQ,wl) :F(iL'l) —F(:EQ). (2)

This shows that the integral in is in fact path independent, justifying that there is no -y in the
notation IG(F, g, «1 ). In the context of attribution analysis, integrated gradients defines an attribute
that satisfies sensitivity [[Sundararajan et al.|[2017} 2.1] which essentially says for all x(, x; such that
F(xz1) # F(z0), we should have IG(F, z, 1) # 0. Note that this is guaranteed by (). This also
explains why Integrated Gradients satisfies implementation invariance.

4 Probing CLIP using Integrated Gradients

CLIP is built on transformers and ResNets as image and text encoders with activations that are
differentiable almost everywhere. It therefore is appropriate to apply attribution analysis using
integrated gradients, as we now show. Following the same notation as Section 3| we denote the CLIP
model as F: (x,z) — F(x,z) € RY, where z, z are the image and text inputs respectively and C
is the total number of classes. Since our goal is to investigate the impact of image quality on CLIP,
we fix the text input and its representation given by the text encoder. In other words, we consider
F(x|z). In subsequent discussion, we will write F'(x) instead of F'(x|z) unless specified otherwise.

We consider integrated gradients IG[l(F (), kz), €0, 1] of the cross-entropy loss I(F' (), ks ) with
respect to the baseline x( and the target ; where

U(F(x), kz) = —log 3)

and k,, is the true label of . Here we write F(x) = (f;(x)),1 < j < C, f;(z) € R.

In order to compute the integral IG[I(F(x), k5 ), o, 1] numerically, we make further simplifications.
Following [Sundararajan et al.| [2017]], we take v to be the line path and apply the trapezoidal
approximation to the integral:

- m(()i) - xgi) N Ol(x)
ICI(F (), ko), @0, 1] & Y =013 : “)
=1

ox® | o

where NN is the number of steps in the approximation and the notations z(*), x(()i), xgi) denote the ¢-th
component of the vector x, ¢, 1 respectively.

S Experiments

5.1 CLIP is sensitive to the quality of the input image

We demonstrate that CLIP is sensitive to the quality of the input image when we use it for image
classifications on CIFAR-10 and STL-10. As we run the same test on each dataset, we will only
explain the testing procedure using CIFAR-10. We create four groups of the CIFAR-10 test dataset:
the first one with the original quality; the second to the fourth have degraded quality given by
JPEG compression implemented by the “Image.save” function in Python PIL library [Clark and
Contributors,, [2022]. As the quality factor is reduced, the JPEG algorithm aggressively increases
the quantization and the image detail is lost. At the highest compression ratios one observes blocky
artefacts. Each of the groups have 10k images. To allow CLIP to classify an image, we provide the
text prompt “This is an image of a {CLS}.” where CLS is replaced by the CIFAR-10 classes in words:
“airplane”, “automobile”, “bird”, “cat”, “deer”, “dog’ ’, “frog”, “horse”, “ship”, “truck”. We
have chosen this prompt because we think it provides the minimum information needed for CLIP
to do zero-shot image recognition. To evaluate the accuracy, we compute average precision over
all 10 classes. We test CLIP with every pretrained image encoder provided in|Radford et al.| [2021]]
and implemented by [Kim and Contributors| [2023]. The results are summarised in Figure []and 2]
We can observe that in the CIFAR-10 test, the precision scores decrease significantly as the image
quality degrades in each case of the image encoder. In the STL-10 test, we also observe a decrease
in precision scores for all image encoders, although the amount of decrease is much smaller. We
provide evaluations on the training datasets from CIFAR-10 and STL-10 in the Appendix.



Image encoder Original Quality 75 Quality 50 Quality 25

ResNet50 0.7141 0.5457 0.4689 0.3562
ResNet101 0.7934 0.6179 0.4945 0.3441
ResNet50x4 0.7674 0.6007 0.4948 0.3524
ResNet50x16 0.8125 0.6632 0.5607 0.4050
ResNet50x64 0.8346 0.6782 0.5870 0.4535
ViT-B/32 0.8831 0.7214 0.6162 0.4763
ViT-B/16 0.9052 0.7696 0.6574 0.4854
ViT-L/14 0.9538 0.8600 0.7735 0.6129
ViT-L/14@336px  0.9493 0.8466 0.7571 0.5990
Average precisions of CLIP on CIFAR-10 test set
Eml Original
ViT-L/14@336px HEE Quality 75
. HE Quality 50
ViT-L/14 Quality 25
ViT-B/16
ViT-B/32
ResNet50x64
ResNet50x16
ResNet50x4
ResNet101
ResNet50
OjO Oj2 0j4 0r6 018 1.0

Figure 1: Average precision of CLIP predictions over the test dataset from CIFAR-10 across different
image qualities. The number “*” in “Quality *” refers to the setting of the “quality” parameter in PIL’s
“Image.save” function. The larger the value, the better the quality (or equivalent less compression) is.
Precision scores decrease when the image quality degrades whichever image encoder we use in CLIP.
The plot is a visualisation of the table.

5.2 Probing CLIP using Integrated Gradients

In this experiment, we use Integrated Gradients to probe how changes in the image quality affect the
predictions of CLIP. It is worth noting that our objective in this experiment is to demonstrate how
we can probe the robustness of CLIP using attribution method given by Integrated Gradients, not a
comprehensive evaluation of the robustness of CLIP on different perturbations on benchmark datasets
such as provided by [Hendrycks and Dietterich| [2019].

We set the baseline to be the image with original quality. Note that CLIP only accepts input image
size 224x224x3 so the CIFAR-10 images have been resized in the experiments using bicubic
interpolation implemented by torchvision.transforms from PyTorch [Paszke et al, 2019]. We
compute integrated gradients between the baseline and the target image with various degrees of
compressions using the approximation given by @) with number of steps N = 50. We also visualise
the impact of the changes by overlaying integrated gradients with the target images. To facilitate
the visualisation, we compute the overlay to be a weighted average of the image and the integrated
gradients. Following [Sundararajan et al.|[2017], we clip the integrated gradients into two ranges
[—1,0] and [0, 1] which are referred to as negative and positive polarity respectively. We plot gradients
with negative polarity using the red channel and those with the positive one using the green channel.
Thus, red at a pixel location means that the reduction in the quality increases loss at this location, and




Image encoder Original Quality 75 Quality 50 Quality 25

ResNet50 0.9479 0.9203 0.8826 0.8143
ResNet101 0.9624 0.9413 0.9180 0.8575
ResNet50x4 0.9623 0.9395 0.9144 0.8582
ResNet50x16 0.9755 0.9555 0.9346 0.8902
ResNet50x64 0.9851 0.9686 0.9547 0.9250
ViT-B/32 0.9719 0.9573 0.9340 0.8798
ViT-B/16 0.9832 0.9712 0.9537 0.9048
ViT-L/14 0.9924 0.9880 0.9800 0.9585

ViT-L/14@336px  0.9925 0.9874 0.9765 0.9487

Average precisions of CLIP on STL-10 test set

. Eml Original
ViT-L/14@336px H Quality 75

HE Quality 50

ViT-L/14 Quality 25

ViT-B/16
ViT-B/32
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ResNet50x4
ResNet101
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Figure 2: Average precision of CLIP predictions over the test dataset from STL-10 across different
image qualities. The definitions of terms are provided in Figure[I] We observe a decrease in precision
scores for each image encoder, although the relative drops of scores are much smaller. The plot is a
visualisation of the table.

similarly green means reduction in loss at this location. The intensity of the colour is determined by
the absolute value of the gradients. In summary, the scale and intensity of the colour shows how the
difference between the target and the baseline changes the prediction of the model.

We experiment with CLIP with ResNet50 and ViT-B/32 image encoders to illustrate how the method
works. The method can be applied to all image encoders shown in Figure[T]but we keep to the above
cases for sake of space. For each image encoder, we present two examples with different baselines
and plot integrated gradients with negative, positive and both polarities. We also provide predicted
labels, their scores and values of the integrated gradients in tables[T]and [2]

By Definition [3.1] the value of Integrated Gradients is equal to the difference in the loss function
evaluated at the baseline and the target. The formula (@) provides an approximation to the theoretic
value of integrated gradients whose error is determined by the step size. We can observe from the
values in Table[T]and [2]that the integrated gradients provide accurate approximations to changes in
the loss (which can be computed by taking difference of minus of the logarithm of the predicted
scores). This shows integrated gradients serves as a good attribute for CLIP. The visualisations of
integrated gradients in Figure [3|and ] can help us probe the locations and the degree of impact on
the predictions resulting from the changes in quality between the baselines and the targets. Another
interesting observation we can make here is that our visualisations show the inductive bias brought by
the two encoders. In the case of ResNet-50, we can see coloured areas typically concentrated in local



regions. However, there is no such locality from ViT-B/32 and the coloured areas typically spread
throughout the image in a grid pattern. We provide more visualised examples in the Appendix.

Baseline Quality 75 Quality 50 Quality 25 Baseline Quality 75 Quality 50 Quality 25

(a) RN50 negative
(b) RN50 positive

Baseline Quality 75 Quality 25

(c) RN50 both

Figure 3: Visualisation of integrated gradients for CLIP with ResNet50 as the image encoder and
different compressions of the baselines. We plot all three polarities of gradients, negative [3a] positive
[3b]and both [3c] For each the compressed images from quality 75 to 25, the overlay is computed as
0.7*image + 1.5¥IG. TableE'lcontains more details of the visual outputs.

True label Predicted label Predicted score 1G
truck automobile, airplane, airplane, airplane  0.0900, 0.0401, 0.0371, 0.0300 0.8109, 0.8589, 1.0546
ship airplane, airplane, airplane, airplane 0.0925, 0.1322, 0.1549, 0.2499  -0.3539, -0.5276, -0.9962

Table 1: Detailed information on the visual outputs in Figure The first row corresponds to that in
Figure 3] and the order in the labels and the numbers also follow that from the same figure. Predicted
scores are the softmax of the logits of the model output at the index of the true label. The ‘IG’ column
contains values of the integrated gradients.

True label Predicted label Predicted score 1G
truck truck, truck, automobile, ship 0.0935, 0.7420, 0.3092, 0.0639 0.1936, 1.0680, 2.6468
ship automobile, automobile, automobile, ship  0.0773, 0.1745, 0.1396, 0.3113  -0.8144, -0.5819, -1.3879

Table 2: Detailed information on the visual outputs in Figure@ Explanation of the table is given in
the caption under Table/l]

6 Related work

Robustness of Vision-Language models Much existing work on the robustness of deep learning

models focusses on single-modality models. For example, Bhojanapalli et al.| [2021]], [Hendrycks and

Dietterich| [2019], [Hendrycks et al.| [2021]] consider image recognition models. For language models,
ang et al.| [2022]] provide a comprehensive survey of works in robustness of NLP models.

Schiappa et al,[2022]] investigates robustness of video-language models for text-to-video retrieval.
The authors use JPEG compression as a test for robustness, but they do not probe further into how
compression changes the model behaviour. [Yang et al.| [2021]] investigates adversarial robustness
of Vision-Language models on any single modality. [Liang et al[2021]] establishes a benchmark
for evaluating robustness of multi-modal models but does not discuss how to probe the model to
understand the cause of robustness issues.
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Figure 4: Visualisation of integrated gradients for CLIP with ViT-B/32 as the image encoder and
different compressions of the baselines.

(a) ViT negative
(b) ViT positive

Baseline

(c) ViT both

We have noticed that the classification accuracy of CLIP for zero-shot image classification is heavily
influenced by the text prompt we provide surrounding the label. This has also been observed in[Zhou|
(2022]]. Prompt tuning has been shown to increase the robustness against variations in prompts
([Zhou et al.| [2022]], [Wu et al.,[2023])). Since our focus in this work is robustness with respect to the
image modality, we have fixed the prompt throughout our investigation.

Attribution methods Compared with previous approaches (Shrikumar et al.|[2017], Binder et al.|
[2016]], [Zeiler and Fergus| [2014], [Springenberg et al.| [2015])), the Integrated Gradients method
proposed in|Sundararajan et al.[[2017] is the only attribution method satisfying both the axiom on
sensitivity and on implementation invariance which are formulated in the same work. In a follow-up
work, [Hesse et al.| [2021]] improves the computational efficiency of the Integrated Gradients method
but adds a strong assumption that the model must define a homogeneous function and thus the neural
networks cannot have non-zero bias terms. We consider this too restrictive so we have followed the
original method in[Sundararajan et al.|[2017]].

To our best knowledge, our work is the first to use Integrated Gradients as an attribution method to
probe CLIP under image-quality degradation due to compression.

7 Conclusion

In this work, we demonstrate that CLIP is sensitive to image quality degradation from compression in
the task of zero-shot image classification with a fixed text prompt. To help us understand the source of
this vulnerability, we probe the model by using the attribution method of Integrated Gradients which
offers us insight on how the change in the image quality can affect the value of the loss function
and the prediction. We demonstrate how we can visualise attributes given by integrated gradients
and their approximated values for quantitative comparisons. As for future work, we will investigate
methods such as data augmentation to improve the robustness of CLIP with respect to input-image
quality. The code for this work will be made available.
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Understanding the Vulnerability of CLIP to Image Compression:
Supplementary Material

A Evaluation of CLIP on the training datasets on CIFAR-10 and STL-10

We provide more results on the vulnerability of CLIP using the training dataset from CIFAR-10
and STL-10. We can observe similar drops of precision scores for each image encoder as quality
degrades, compared to figures[T]and [2]

Image encoder Original Quality 75 Quality 50 Quality 25

ResNet50 0.7162 0.5531 0.4684 0.3582
ResNet101 0.7911 0.6180 0.4916 0.3422
ResNet50x4 0.7671 0.6069 0.4951 0.3610
ResNet50x16 0.8152 0.6705 0.5627 0.4014
ResNet50x64 0.8378 0.6842 0.5871 0.4473
ViT-B/32 0.8817 0.7220 0.6138 0.4762
ViT-B/16 0.9090 0.7686 0.6557 0.4809
ViT-L/14 0.9549 0.8599 0.7691 0.6172

ViT-L/14@336px  0.9524 0.8477 0.7543 0.5987

Average precisions of CLIP on CIFAR-10 training set

. I Original
ViT-L/14@336px E Quality 75

HEl Quality 50

ViT-L/14 Quality 25

ViT-B/16
ViT-B/32
ResNet50x64
ResNet50x16
ResNet50x4
ResNet101

ResNet50

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5: Average precision of CLIP predictions over the training dataset from CIFAR-10 across
different image qualities. The definitions of terms are provided in Figurem
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Image encoder Original Quality 75 Quality 50 Quality 25

ResNet50 0.9464 0.9132 0.8882 0.8130
ResNet101 0.9578 0.9436 0.9224 0.8640
ResNet50x4 0.9634 0.9360 0.9156 0.8668
ResNet50x16 0.9748 0.9540 0.9384 0.8934
ResNet50x64 0.9852 0.9674 0.9544 0.9314
ViT-B/32 0.9682 0.9578 0.9336 0.8760
ViT-B/16 0.9814 0.9690 0.9544 0.9092
ViT-L/14 0.9926 0.9844 0.9798 0.9584

ViT-L/14@336px  0.9932 0.9848 0.9780 0.9506

Average precisions of CLIP on STL-10 training set

. Eml Original
ViT-L/14@336px H Quality 75

HE Quality 50

ViT-L/14 Quality 25

ViT-B/16
ViT-B/32
ResNet50x64
ResNet50x16
ResNet50x4
ResNet101

ResNet50

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6: Average precision of CLIP predictions over the training dataset from STL-10 across
different image qualities. The definitions of terms are provided in Figurem

B More examples of Integrated Gradients on CIFAR-10

We provide more examples of visualised integrated gradients on CIFAR-10.

True label Predicted label Predicted score 1G

horse bird, airplane, airplane, airplane 0.1187,0.1197,0.1149, 0.0742  -0.0202, 0.0328, 0.4472
airplane airplane, airplane, airplane, airplane  0.7611, 0.6988, 0.5371, 0.8033  0.0906, 0.3691, -0.0326
deer airplane, airplane, airplane, airplane  0.0397, 0.0361, 0.0321, 0.0351 0.0987,0.2167, 0.1294
truck airplane, airplane, cat, bird 0.0690, 0.0294, 0.0407, 0.0273 0.8535, 0.5069, 0.9046
dog airplane, airplane, airplane, bird 0.0877,0.1194, 0.1259, 0.1060  -0.3258, -0.3718, -0.1809
bird bird, airplane, bird, airplane 0.2332, 0.1935, 0.2175, 0.1925 0.1676, 0.0807, 0.2077
deer bird, cat, bird, bird 0.0673, 0.0523, 0.0590, 0.0634  0.2476, 0.1415, 0.0646
airplane airplane, bird, airplane, bird 0.6400, 0.2479, 0.3366, 0.2096 0.9459, 0.6292, 1.0857
truck airplane, airplane, airplane, airplane  0.0531, 0.0349, 0.0417, 0.0376 0.4420, 0.2453, 0.3690
frog bird, bird, bird, bird 0.0538, 0.0835, 0.1056, 0.0686  -0.4301, -0.6973, -0.2598

Table 3: Detailed information on the visual outputs in Figure and

C More examples of Integrated Gradients on STL-10

We provide more examples of visualised integrated gradients on STL-10.
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(a) ResNet-50 negative

(b) ResNet-50 positive

Figure 7: Examples on visualisation of integrated gradients for ResNet-50.

True label

Predicted label

Predicted score

IG

horse
airplane
deer
truck
dog
bird
deer
airplane
truck
frog

horse, horse, horse, airplane

bird, bird, airplane, airplane

bird, airplane, cat, airplane
truck, truck, automobile, automobile

dog, dog, cat, cat
horse, bird, bird, airplane

bird, airplane, airplane, cat
airplane, airplane, airplane, airplane
automobile, airplane, ship, airplane

bird, airplane, airplane, bird

0.3562, 0.3369, 0.2686, 0.1544
0.2443, 0.3639, 0.3562, 0.3412
0.0558, 0.0552, 0.0419, 0.0467
0.7724, 0.4120, 0.3104, 0.1449
0.4909, 0.3269, 0.1232, 0.1679
0.1973, 0.2273, 0.2110, 0.1442
0.0759, 0.0273, 0.0303, 0.0316
0.8823, 0.7552, 0.5130, 0.4556
0.3672, 0.0703, 0.0441, 0.0512
0.2131, 0.0864, 0.1178, 0.1230

0.0592, 0.2884, 0.8333
-0.3993, -0.3754, -0.3324
0.0156, 0.2918, 0.1769
0.6323, 0.9206, 1.6725
0.4164, 1.3838, 1.0830
-0.1410, -0.0749, 0.3141
1.0250, 0.9265, 0.8778
0.1556, 0.5430, 0.6607
1.6619, 2.1206, 1.9866
0.9112, 0.5917, 0.5477

Table 4: Detailed information on the visual outputs in FigureEl and
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i .

(a) ResNet-50 both

(b) ViT both

Figure 8: Examples on visualisation of integrated gradients for ResNet-50 and ViT-B/32.

True label

Predicted label

Predicted score

IG

dog

cat

bird

cat

car
horse
dog
dog

car
monkey

cat, cat, monkey, monkey

cat, cat, cat, cat

car, car, car, car

cat, cat, cat, cat
bird, bird, bird, bird

monkey, monkey, monkey, monkey

dog, dog, dog, dog
dog, dog, dog, cat

bird, bird, bird, bird
cat, horse, dog, cat

0.2313, 0.2036, 0.1284, 0.1312
0.9843, 0.9695, 0.8641, 0.7563
0.0022, 0.0050, 0.0272, 0.0445
0.9774, 0.9806, 0.8440, 0.8783
0.0012, 0.0004, 0.0003, 0.0006
0.0000, 0.0001, 0.0002, 0.0017
0.9456, 0.8902, 0.8897, 0.9540
0.7744, 0.2991, 0.2231, 0.2275
0.0037, 0.0026, 0.0012, 0.0018
0.0374, 0.0150, 0.0405, 0.0550

0.0995, 0.4628, 0.5523
0.0163, 0.1273, 0.2588
-0.8398, -2.4107, -3.0264
-0.0035, 0.1523, 0.1018
1.0531, 1.4599, 0.7195
-0.8399, -1.3930, -4.0528
0.0583, 0.0586, -0.0075
0.9604, 1.2202, 1.2141
0.3116, 1.1126, 0.6517
09117, -0.0521, -0.3912

Table 5: Detailed information on the visual outputs in Figure and
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(a) ViT negative (b) ViT positive

Figure 9: Examples on visualisation of integrated gradients for ViT-B/32.

True label Predicted label Predicted score 1G

dog dog, dog, dog, dog 0.9568, 0.9236, 0.9114, 0.4917  0.0362, 0.0486, 0.6657
cat cat, cat, cat, cat 0.9737, 0.9691, 0.9508, 0.9525 0.0050, 0.0238, 0.0219
bird car, car, car, car 0.0003, 0.0002, 0.0005, 0.0016  0.2784, -0.4080, -1.6100
cat cat, cat, cat, cat 0.9730, 0.9490, 0.9504, 0.9408  0.0256, 0.0238, 0.0336
car bird, bird, bird, bird 0.0009, 0.0020, 0.0017, 0.0013  -0.7868, -0.6456, -0.3844
horse monkey, monkey, monkey, monkey 0.0000, 0.0000, 0.0000, 0.0000 -0.4918, -0.3042, 1.2674
dog dog, dog, dog, dog 0.9581, 0.9655, 0.9656, 0.9810  -0.0067, -0.0067, -0.0228
dog dog, dog, dog, dog 0.9404, 0.9317,0.9191, 0.8953  0.0099, 0.0235, 0.0494
car bird, bird, bird, bird 0.0048, 0.0097, 0.0089, 0.0026  -0.7108, -0.6097, 0.6313
monkey car, deer, car, monkey 0.0855, 0.0896, 0.1559, 0.1979  -0.0584, -0.6076, -0.8505

Table 6: Detailed information on the visual outputs in Figure and
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Baseline Baseline

Quality 75 Quality 50 Quality 25

Quality 75 Quality 50 Quality 25

(a) ResNet-50 negative (b) ResNet-50 positive

Figure 10: Examples on visualisation of integrated gradients for ResNet-50.
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Baseline Baseline

Quality 75 Quality 5t Quality 25

Quality 75 Quality 50 Quality 25

(a) ResNet-50 both (b) ViT both

Figure 11: Examples on visualisation of integrated gradients for ResNet-50 and ViT-B/32.
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Baseline

Quality 75 Quality 50 Quality 25

Baseline

Quality 75 Quality 50 Quality 25

(a) ViT negative (b) ViT positive

Figure 12: Examples on visualisation of integrated gradients for ViT-B/32.
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