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ABSTRACT
Visual grounding is a task of locating the object referred by a nat-
ural language description. To reduce annotation costs, recent re-
searchers are devoted into one-stage weakly supervisedmethods for
visual grounding, which typically adopt the anchor-text matching
paradigm. Despite the efficiency, we identify that anchor representa-
tions are often noisy and insufficient to describe object information,
which inevitably hinders the vision-language alignments. In this
paper, we propose a novel query-based one-stage framework for
weakly supervised visual grounding, namely QueryMatch. Different
from previous work, QueryMatch represents candidate objects with
a set of query features, which inherently establish accurate one-
to-one associations with visual objects. In this case, QueryMatch
re-formulates weakly supervised visual grounding as a query-text
matching problem, which can be optimized via the query-based
contrastive learning. Based on QueryMatch, we further propose
an innovative strategy for effective weakly supervised learning,
namely Negative Sample Quality Estimation (NSQE). In particular,
NSQE aims to augment negative training samples by actively select-
ing high-quality query features. Though this strategy, NSQE can
greatly benefit the weakly supervised learning of QueryMatch. To
validate our approach, we conduct extensive experiments on three
benchmark datasets of two grounding tasks, i.e., referring expres-
sion comprehension (REC) and segmentation (RES). Experimental
results not only show the state-of-art performance of QueryMatch
in two tasks, e.g., over +5% IoU@0.5 on RefCOCO in REC and over
+20% mIOU on RefCOCO in RES, but also confirm the effectiveness
of NSQE in weakly supervised learning. Source codes are available
at https://anonymous.4open.science/r/QueryMatch-A82C.

CCS CONCEPTS
• Computing methodologies→ Image segmentation; Scene
understanding.

KEYWORDS
Weakly Supervised Visual Grounding, Contrastive Learning

1 INTRODUCTION
Visual Grounding is a significant task in multimedia, which aims to
locate the target object in an image based on the natural language
descriptions [18, 42, 44, 45]. Compared to conventional detection
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tasks [19, 23, 34, 36], visual grounding not only requires to capture
fine-grained object information, but also needs to achieve accurate
vision-language alignments. To this end, existing methods often
require expensive annotations to learn accurate alignments between
natural language descriptions and objects, which is laborious and
expensive for practical deployment.

To overcome this limitation, researchers have put their efforts
into the weakly supervised learning for visual grounding [7, 8, 14,
15, 22, 24, 26, 38, 39, 41, 46]. Among them, early methods [8, 24–
26, 39, 41, 46] often resorts to two-stage object detectors [36] to for-
mulate weakly supervised visual grounding as region-text matching
problem. However, these methods are often limited in their infer-
ence speed due to the expensive processing of two-stage detectors.
Therefore, recent endeavors [14] have been devoted to efficient
one-stage modeling for weakly supervised visual grounding. As
shown in Fig. 1, they first extract anchor features from a pre-trained
one-stage detector, and then conduct anchor-text matching to select
the target anchor. Finally, a detection head is used to decode the
anchor to the bounding box. This one-stage paradigm does not
rely on complex processing like RoI pooling [36], and shows much
better efficiency than the two-stage one.

Despite the efficiency, we identify that the anchor-based weakly
supervised framework still limits by its object representations, i.e.,
anchor points. As shown in Fig. 1, anchor points are grid features ex-
tracted by the pre-trained detector, e.g., YOLOv3 [34]. Ideally, these
anchor points should represent corresponding object informations
so that the anchor-text matching can select the target anchor for
grounding. However, compared to region features, anchor points
are fragmented and struggle to accurately describe object informa-
tion. Besides, the large receptive field of an anchor often allows it to
receive more noisy object informations, which inevitably hinders
the accurate vision-language (VL) alignments.

To address these issues, we propose a novel query-text match-
ing framework for one-stage weakly supervised visual grounding,
namely QueryMatch. Different from existing methods, QueryMatch
resorts to query features extracted from Transformer-based detec-
tors, e.g., DETR [3] and Mask2Former [5], to represent objects.
Benefiting from the bipartite matching based pre-training, query
features can achieve one-to-one association with visual objects.
Therefore, compared to anchor points, query features contain suf-
ficient and accurate object information. By selecting the target
query based on the given expression, we can decode the mask
or bounding box of the referent by the pre-trained decoder. To
enable weakly supervised learning, QueryMatch performs query-
text contrastive learning to achieve vision-language alignments via
numerous query-text pairs.

Based onQueryMatch, we further propose an innovative strategy
for effective weakly supervised learning, namely Negative Sample
Quality Estimation (NSQE). As indicated in existing literature [10,
48], the number and quality of negative samples significantly impact

https://anonymous.4open.science/r/QueryMatch-A82C
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Comparison of different weakly supervised visual grounding schemes.

the effectiveness of contrastive learning. Nevertheless, randomly
selected negative samples are often noisy and useless, which will
practically hurt the weakly supervised performance. In contrast,
NSQE aims to actively select informative samples from a batch for
negative query augmentations. Specifically, we design two novel
metrics in NSQE to evaluate the quality of negative queries from
the uniqueness and the difficulty. By dynamically combining these
metrics, we can effectively identify and select high-quality negative
queries. With NSQE, we can augment the negative samples by 3
times and achieve significant gains in QueryMatch.

To validate QueryMatch, we conduct extensive experiments in
two grounding tasks, namely referring expression comprehension
(REC) and segmentation (RES). Experiments on RefCOCO [30],
RefCOCO+ [30] and RefCOCOg [28, 30] show that QueryMatch
outperforms existing weakly supervised methods by large margins
e.g., over +20% for RES on RefCOCO. More importantly, qualitative
and quantitative results also confirm the effectiveness of NSQE in
query-based contrastive learning.

In summary, this paper makes three main contributions:
• We identify the shortcoming of object representations in ex-
isting one-stage weakly supervised visual grounding frame-
work. To overcome this limitation, we propose a novel query-
based one-stage framework for weakly supervised visual
grounding, namely QueryMatch, which leverages query fea-
tures to accurately describe object information.
• Wepropose an innovative strategy for effective weakly super-
vised learning, namely Negative Sample Quality Estimation
(NSQE), which can greatly augment negative samples by
selecting high-quality query features.
• The proposed QueryMatch achieves the state-of-the-art re-
sults against existing weakly supervised methods on three
benchmark datasets of REC and RES.

2 RELATEDWORK
2.1 Weakly Supervised Visual Grounding
Weakly Supervised Visual Grounding includes two tasks, namely
weakly supervised REC and weakly supervised RES. These two

tasks have attracted considerable attention from numerous re-
searchers recently.

Recent developments in weakly supervised learning for RES can
be categorized into two types, depending on whether they utilize
text-image pairs as weak supervision. For instance, CTS [7] uti-
lized bounding box annotations for weak supervision, involving
a two-stage model training process. Despite achieving promising
performance in weakly supervised RES, these methods [7, 17] still
incur relatively high annotation costs, particularly on large-scale
datasets. Thus, an increasing number of researchers have turned
their focus to leverage text-image pairs as a weak supervision sig-
nal [15, 22, 38]. For example, Fang Liu et al. employed the CLIP
encoder to encode both image and text features. The visual informa-
tion encoded at the grid level by the image encoder is then matched
with textual information, and pseudo labels are generated through
a two-stage training process based on these matching results [22].
However, current approaches that depend on weak supervision
from text-image pairs demonstrate noticeably inferior performance
when compared to other kinds of weakly supervised RES methods.

Meanwhile, Many existing methodologies in weakly supervised
REC [8, 24–26, 39, 41, 46] draw inspiration from two-stage super-
vised REC frameworks, formulating the weakly supervised REC
task as a region-to-text ranking problem. The primary challenge
within such approaches lies in effectively utilizing supervisory
information from image-text pairings. The primary techniques uti-
lized are semantic reconstruction [24, 25, 39] and contrastive learn-
ing [8, 14, 46]. Recent efforts in the field of weakly supervised REC
have focused on enhancing inference speed by transitioning from
resource-intensive two-stage detectors to more efficient one-stage
models. These models, exemplified by [14], extract anchor features
from pretrained detectors like YOLOv3 [35] and employ anchor-text
matching to select target anchors for bounding box decoding. De-
spite their efficiency, these anchor-based frameworks are hindered
by fragmented anchor points’ inability to accurately represent ob-
ject information, leading to challenges in precise vision-language
alignments.

Based on these, we propose a novel query-text matching frame-
work for one-stage weakly supervised visual grounding.
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Figure 2: The framework of the proposed QueryMatch. The image and expression are first processed by visual and text encoders.
After that, QueryMatch filters out queries with low confidence scores and selects the best-matching one for visual grounding
prediction. QueryMatch is weakly supervised with only image-text pairs via a novel query-based contrastive learning paradigm.

2.2 Contrastive Learning
Contrastive learning focuses on minimizing the distances between
positive samples while maximizing those between negative sam-
ples in the feature space, thereby facilitating the development of
effective feature representations. Recently, numerous studies in the
multimodal field have embraced contrastive learning [13, 29, 33].
The negative samples in these studies typically comprise real-world
instance features, such as images, and it has been observed that the
efficacy of contrastive learning tends to improve with an increase
in the number of negative samples.

In contrast, the cross-modal contrastive learning framework
we propose, based on Query-Text Matching, differentiates itself
by employing more granular negative samples compared to those
representing real-world entities. For instance, a single image can
generate as many as 100 query features. While this approach indeed
expands the negative sample pool, it simultaneously introduces a
higher degree of informational redundancy within these samples.
Notably, we have observed that an excessive increase in the number
of negative samples can sometimes lead to a marked decline in
performance. One of the key challenges lies in effectively harnessing
the rich semantic content these samples offer. To tackle this issue,
our research introduces a novel method for estimating the quality
of negative samples, aiming to maximize the semantic potential
inherent in the negative sample set. As such, it presents innovative
contributions to the realm of contrastive learning.

3 PRELIMINARY
We first revisit the construction of query features in computer
vision. In particular, query-based object detection is a popular par-
adigm in computer vision. Starting from DETR [3], researchers

use a set of learnable vectors to represent candidate objects, also
known as queries. These queries are used to interact with image
features in different Transformer layers and learn the accurate one-
to-one association with objects in images. After that, a decoder
layer is adopted to predict masks or bounding boxes based on these
queries. During the training phase, the objective of set prediction
serves as the loss function. To elaborate, we adopt the architecture
of the Mask2former [5]. The features of queries, along with their
corresponding position encoding, are treated as learnable vectors,
initialized randomly through a standard normal distribution. Subse-
quently, these vectors undergo sequential processing through the
cross-attention layer, self-attention layer, and feed-forward layer
within each layer of the Transformer decoder, the process can be
formatted as follows:

𝑋 ′
𝑙
= LN(softmax(𝑀𝑙−1 +𝑄𝑙 · 𝐾𝑇𝐼𝑙 ) ·𝑉𝐼𝑙 + 𝑋𝑙−1), (1)

𝑋𝑙 = LN(softmax(𝑄𝑙 · 𝐾𝑙
𝑇 ) ·𝑉𝑙 + 𝑋 ′𝑙 ), (2)

𝑋𝑙 = LN(MLP(𝑋𝑙 ) + 𝑋𝑙 ), (3)
here, 𝑙 denotes layer index, The set 𝑄𝑙 ∈ R𝑁×𝐶 represents the
queries at the 𝑙-th layer, defined as𝑄𝑙 = {𝑞𝑙𝑖 }𝑁𝑖=1, where 𝑁 signifies
the quantity of queries present in each layer. The terms 𝑋 ′

𝑙
, 𝑋𝑙 ,

and 𝑋𝑙 ∈ R𝑁×𝐶 correspond to the outputs of the cross-attention,
self-attention, and the feed-forward layers in the 𝑙-th layer of the
Transformer decoder, respectively. These outputs are characterized
by 𝑁 vectors, each of 𝐶 dimensions. 𝑀𝑙−1 ∈ {0,−∞}𝑁×𝐻𝑙𝑊𝑙 de-
notes the attention mask [5], which is equal to 0 when the mask
prediction of the previous 𝑙-th transformer decoder layer is 1, other-
wise it is equal to negative infinity. The spatial resolution of image
features at the 𝑙-th layer is represented by 𝐻𝑙 and𝑊𝑙 . The trans-
formed image features at the 𝑙-th layer, 𝐾𝐼𝑙 and 𝑉𝐼𝑙 ∈ R𝐻𝑙𝑊𝑙×𝐶
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are under transformation 𝑓𝐾 and 𝑓𝑉 respectively. Furthermore,
the position encoding is denoted as 𝑃 , leading to the equations
𝑄𝑙 = 𝑓𝑄 (𝑋𝑙−1 + 𝑃), �̂�𝑙 = 𝑓

�̂�
(𝑋 ′
𝑙
+ 𝑃), and �̂�𝑙 = 𝑓

�̂�
(𝑋 ′
𝑙
+ 𝑃), with

the exception of 𝑉𝑙 = 𝑓�̂� (𝑋
′
𝑙
). Here, all 𝑓. notations stand for linear

transformations. Additionally, LN signifies LayerNorm. Consider-
ing a Transformer decoder comprising 𝐿 layers, the final processed
set of queries is denoted as 𝑄 = LN(𝑋𝐿).

After the Transformer decoder processes the queries, the net-
work can decode the grounding information embedded in the cor-
responding query to obtain the result. This process can be defined
as:

𝑟𝑖 = Head(𝑞𝑖 ), (4)

where 𝑟𝑖 denotes the grounding result corresponding to index 𝑖 ,
and 𝑞𝑖 represents the associated query feature. The term Head is
used to refer to the layers within the network that are responsible
for decoding grounding information from the queries.

4 QUERYMATCH
4.1 Problem Definition
Given an image 𝐼 and a textual expression 𝑇 , Visual Grounding
aims to locate target objects through bounding boxes or masks. In
the context of weakly supervised visual grounding, the text and the
corresponding target grounding are unknown during the training
stage, posing significant challenges.

Drawing upon the one-to-one correspondence observed between
visual grounding results and query features in numerous models
utilizing query features for visual grounding [5, 6, 9, 12], and con-
sidering the effectiveness of the query feature derived through the
Transformer’s cross-attention and self-attention mechanisms in
capturing intricate relationships between objects in the image, we
propose to reformulate the weakly supervised visual grounding
problem as a query-text matching problem, which is defined by

𝑞∗ = argmax
𝑞∈𝑄

𝜙 (𝑇, 𝐼, 𝑞). (5)

Here,𝑞∗ symbolizes the optimal query, and𝑄 represents the set of
queries that have been processed by the transformer decoder within
the query-based segmentation model. The notation𝜙 (·) denotes the
mappingmodule. As delineated in the Section 3, the identification of
the optimal query 𝑞∗ is pivotal. Once 𝑞∗ is determined, it is possible
to decode the query features using subsequent visual grounding
layers. This process leads to the derivation of the optimal visual
grounding results, expressed as 𝑟∗ = Head(𝑞∗).

4.2 Query Confidence Selection
The architecture of the QueryMatch framework is depicted in Fig. 2.
Prior to the alignment of text with query features, QueryMatch
initially selects a subset from the pool of queries to be matched.

Query-based visual grounding model such as DETR [3] and
Mask2former [5] usually have many queries do not contribute to
predicting the target. To reduce the complexity of cross-modal
matching and to economize on matching efforts, the selection is
based on the confidence score of each query feature. More precisely,
a selected threshold 𝑂 is established, and only the top 𝑂 queries
with the highest confidence scores are chosen, which is defined by

𝑄𝑠 = {sortconf ({𝑞𝑖 }𝑁𝑖=1)}
𝑂
𝑗=1, (6)

where 𝑄𝑠 denotes the queries selected based on confidence, and
sortconf refers to the process of descending sorting according to the
confidence scores of the query features.

Similar to the image-contrastive learning framework, e.g.,, CLIP [33],
QueryMatch likewise projects both visual and textual features into
a shared semantic space, facilitating the learning of vision-language
alignment.

4.3 Query-based Contrastive Learning
To enable the model to learn how to identify the optimal query
that aligns with the text through weak supervision information,
thereby achieving visual grounding, we introduce a query-based
contrastive learning framework. Specifically, we begin by encoding
features of the input images and text to obtain visual features and
text features, denoted as 𝑣 ∈ R𝐻×𝑊 ×𝐶 and 𝑡 ∈ R𝐶 , respectively.
The query interacts with the visual features via the transformer de-
coder, resulting in query features containing the necessary semantic
information for visual grounding, denoted as 𝑄 ∈ R𝑁×𝐶 . We then
perform confidence-based selection on 𝑄 to obtain 𝑄𝑠 ∈ R𝐿×𝐶 ,
where 𝑄𝑠 = {𝑞𝑖 }𝑂𝑖=1.

Finally, we map the selected query 𝑞𝑖 and the text feature 𝑡
linearly onto the same semantic space, written by:

𝑓𝑞𝑖 = 𝑞𝑖 ·𝑊𝑞 + 𝑏𝑞 , (7)

𝑓𝑡 = 𝑡 ·𝑊𝑡 + 𝑏𝑡 , (8)
where𝑊𝑞 and𝑊𝑡 are the projection matrices, and 𝑏𝑞 and 𝑏𝑡 are

biases.
In visual grounding, a natural language description typically

corresponds to a target in the image. Theoretically, one query acts as
the positive example, while the rest serve as negative ones.We select
the query with the highest matching score to the current text in
the image as the positive sample. Negative queries are chosen from
queries in images not matching the current text. Our objective is to
maximize the similarity between the text and the matching query
and minimize the similarity with unmatched queries. Therefore,
we define the contrastive loss as follows:

L𝑐 = − log
exp

(
sim(𝑓 𝑖𝑞1 , 𝑓

𝑖
𝑡 )/𝜏

)
𝐾∑
𝑛=1

𝐵∑
𝑗=1
I¬(𝑖=𝑗 ∧𝑛≠1) exp (

sim(𝑓 𝑗𝑞𝑛 , 𝑓 𝑖𝑡 )/𝜏
) , (9)

here, 𝑓 𝑗𝑞𝑛 represents the positive and negative queries sampled
from a batch, with 𝑓 𝑖𝑞1 being the positive one. The function sim(·)
is utilized for calculating similarity, which is defined by the inner
product. The term I¬(𝑖=𝑗 ∧𝑛≠1) is the indicator function, equal to 0
when 𝑖 = 𝑗 and 𝑛 ≠ 1. 𝐾 is the number of negative queries selected
from each unmatched image-text pair, 𝐵 is the batch size, and 𝜏 is
the temperature parameter in Hinton et al. [11].

5 NEGATIVE SAMPLE QUALITY ESTIMATION
In this section, we detail a negative sample selection strategy aimed
at leveraging the semantic information embedded in image-text
pairs more effectively to further enhance the performance.
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Figure 3: The importance of ensuring specific uniqueness in
the feature space for negative samples.

Driven by the observation that the mere quantity of negative
samples does not guarantee superiority, we propose to estimate
their quality. The quality is determined by two factors: distinguisha-
bility and uniqueness in the semantic space. In particular, a sample
that significantly challenges distinction and exhibits a high degree
of uniqueness in the semantic space is considered to be of superior
quality. We formulate the quantitative evaluation by:

S𝑢𝑖 = Norm
(
− 𝑚max

𝑗=1
cos

(
𝑓𝑞𝑖 , 𝑓𝑞𝑛𝑗

))
, (10)

S𝑑𝑖 = Norm
(
sim(𝑓𝑞𝑖 , 𝑓𝑡 )

)
, (11)

where 𝑆𝑢𝑖 denotes the uniqueness of the negative samples, and
𝑆𝑑𝑖 denotes the difficulty in discrimination. The term 𝑓𝑞𝑖 represents
the negative query under evaluation for quality, and 𝑓𝑞𝑛

𝑗
refers to

a previously selected negative query. The variable𝑚 indicates the
number of negative queries selected in the current iteration. The
symbol cos denotes the cosine similarity calculation, and Norm
signifies the min-max normalization.

To elucidate, our fundamental principle asserts that cosine simi-
larity effectively captures the resemblance among negative samples
in the feature space.When a negative sample has low similarity with
its most similar negative sample in this space, it indicates greater
uniqueness. Additionally, higher similarity between negative sam-
ples and the current input text makes them more challenging to
distinguish.

To introduce the final strategy for quality estimation, it is crucial
to highlight the significance of uniqueness in negative samples
within the feature space, as depicted in Fig.3. Excessive clustering
of a specific category of negative samples within this space can
unintentionally displace positive samples from their ideal locations.
This phenomenon can be understood intuitively: an overrepresen-
tation of a single type of negative sample can reduce the relative
significance of other negative samples, leading to skewed results.
In contrast, a more balanced representation of negative samples
contributes to enhanced outcomes.

In conclusion, to guarantee that negative samples maintain ad-
equate levels of uniqueness and challenge in discrimination, we
propose a straightforward and effective method for estimating their
quality, defined by:

Quality
Estimation

Add 
Negative 
Samples

K
Iterations

Selected 
Query Set

Negative 
Query SetQuery

Single 
Unmatched Image

One Round Of 
Iterative Selection

Query Will 
Be Selected

Figure 4: Schematic diagram illustrating high-quality nega-
tive sample selection and update process.

S𝑞𝑖 = 𝑆𝑢𝑖 · 𝑆𝑑𝑖 , (12)

where 𝑆𝑞𝑖 denotes the quality score of the negative sample 𝑓𝑞𝑖 . By
estimating the quality scores for each negative sample, we can rank
them in descending order, enabling the selection of a appropriate
number of negative samples for contrastive learning.

As illustrated in Fig. 4, to fully utilize the information present
in image-text pairs and to ensure equitable sampling of negative
samples across each image-text pair, we conduct our sampling
based on the number 𝐾 of negative sample selections for each un-
matched image-text pair. It is important to note that the uniqueness
of negative samples is dynamic and evolves with the selection of
different samples. Initially, when no negative sample is chosen, the
uniqueness value 𝑆𝑢 is set to 1. Consequently, the quality scores of
negative samples are dynamically updated throughout the selection
process. This process involves 𝐾 iterative steps. In each step, after
selecting a negative sample from every mismatched image-text pair,
we reassess and update the quality scores of the remaining negative
samples based on their revised uniqueness.

𝑓𝑞𝑛 ←− argmax
𝑞∈𝑄

(𝑓𝑞 (𝑆𝑖𝑞)), (13)

where 𝑖 indicates the 𝑖-th iteration step. The term 𝑓𝑞𝑛 denotes
the set of negative samples selected up to the current iteration, and
𝑆𝑖𝑞 represents the quality score associated with the current negative
samples.

In addition, the variable 𝑛𝑔𝑝𝑢 denotes the number of GPUs uti-
lized in distributed training, and 𝐵 represents the batch size. Then
we can mathematically articulate the relationship between the total
number𝑀 of negative samples chosen and the sampling unit 𝐾 by:

𝑀 = (𝐵 − 𝑛𝑔𝑝𝑢 ) · 𝐾 . (14)
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Table 1: Comparisons with state-of-the-art methods on three RES benchmark datasets. 1

Method Sup. RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val-g

CTS [7] B + T 58.01 60.52 55.48 47.12 50.86 40.26 46.03
PKS [17] C + T 49.27 52.23 45.64 37.79 42.09 32.87 36.43

AMR† [32] T 14.12 11.69 17.47 14.13 11.47 18.13 15.83
GroupViT† [43] T 18.03 18.13 19.33 18.15 17.65 19.53 19.97
CLIP-ES† [21] T 13.79 15.23 12.87 14.57 16.01 13.53 14.16
GbS† [1] T 14.59 14.60 14.97 14.49 14.49 15.77 14.21
WWbL† [37] T 18.26 17.37 19.90 19.85 18.70 21.64 21.84
TRIS [22] T 31.17 32.43 29.56 30.90 30.42 30.80 36.00
QueryMatch (ours) T 59.10 59.08 58.82 39.87 41.44 37.22 43.06

Table 2: Comparisons with state-of-the-art methods on three REC benchmark datasets.

Method RefCOCO RefCOCO+ RefCOCOg Inference
Speedval testA testB val testA testB val-g

VC[31]CVPR18 - 32.68 27.22 - 34.68 28.10 29.65 -
KAC Net[4]CVPR18 - - - - - - - -
MATN[47]CVPR18 - - - - - - - -
ARN[24]ICCV19 32.17 35.25 30.28 32.78 34.35 32.13 33.09 5.7fps
IGN[46]NeurIPS20 34.78 37.64 32.59 34.29 36.91 33.56 34.92 -
DTWREG[39]TPAMI21 38.35 39.51 37.01 38.91 39.91 37.09 42.54 5.9fps
RelR[26]CVPR21 - - - - - - - -
NCE+Distillation[41]CVPR21 - - - - - - - -
RefCLIP [14]CVPR23 60.36 58.58 57.13 40.39 40.45 38.86 47.87 31.3fps
QueryMatch (ours) 66.02 66.00 65.48 44.76 46.72 41.50 48.47 17.7fps

6 EXPERIMENTS
6.1 Datasets and Metric
Datasets. RefCOCO [30] consists of 142,210 referring expressions
and 50,000 objects extracted from 19,994 MSCOCO [20] images.
The expressions in RefCOCO predominantly pertain to absolute
spatial information. RefCOCO+ [30] comprises 141,564 referring
expressions corresponding to 49,856 bounding boxes from 19,992
MSCOCO images. RefCOCO+ shares the same data splits as Ref-
COCO, but its descriptions focus on relative spatial information
and appearance, such as color and texture.RefCOCOg [28, 30] con-
tains 104,560 referring expressions associated with 54,822 bounding
boxes in 26,711 images. In comparison to RefCOCO and RefCOCO+,
RefCOCOg exhibits longer and more complex expressions. In our
experiments, we utilize the google split [28] of RefCOCOg.
Metric. Consistent with [14, 22], we utilize IoU@0.5 as the metric
for REC, indicating a correct prediction when the IoU between the
predicted and ground-truth boxes exceeds 0.5. Additionally, for
evaluating RES accuracy, we employ mask Intersection-over-Union
(IoU) and Prec@0.5 (P@0.5).

6.2 Implementation Details
In theQueryMatch framework, we employ a pretrainedMask2former,
featuring a Swin-B backbone [5, 27], to extract Query features. This

Mask2former is pretrained on the MS-COCO dataset [20], with im-
ages from the val and test sets excluded for all three datasets under
consideration. The language encoding is accomplished using a bidi-
rectional GRU [2], which is further augmented by a self-attention
layer [40]. Consistent with the approach in [14], Input images are
resized to dimensions of 416 × 416. The training regimen is exe-
cuted on two 24G Nvidia RTX 4090 GPUs, with an allocated batch
size of 16 for each GPU. During this phase, the parameters of the
Mask2former are kept frozen. For the purpose of Query-based con-
trastive learning, the linear projection is also set to a dimension of
512 for most datasets, and by default, 20 queries with the highest
confidence scores per image are selected. Model training is con-
ducted using the Adam optimizer [16] with a constant learning rate
of 1e-4. The number of training epochs is set at 25.

6.3 Quantitative Analysis
1.Comparison to the state-of-the-arts.

As shown in Tab.1 and Tab.2, QueryMatch significantly outper-
forms current state-of-the-art methods on both weakly supervised

1Type indicates what kinds of visual features the approach is based on to match text.
Sup. denotes the supervision type (B: box-level labels, C: click-level annotations, T:
text description labels). † indicates the methods adapted from other related tasks by
the related paper [22]. “-” denotes unavailable values.
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Table 3: Ablation of the confidence selection threshold on
RefCOCO.

𝑂
RES REC

val testA testB val testA testB
100 57.02 55.35 58.06 63.44 61.57 64.06
50 57.50 55.82 58.29 63.95 62.06 64.69
20 57.82 56.54 58.43 64.48 63.02 64.79
10 56.19 56.60 54.86 62.54 63.16 60.79

Table 4: Ablation of negative sample quality estimation
strategy on RefCOCO.

Strategy 𝑀
RES REC

val testA testB Avg. val testA testB Avg.
random 30 35.70 36.42 35.92 36.01 40.01 41.01 40.00 40.34
difficult 30 57.82 56.54 58.43 57.60 64.68 63.02 64.79 64.16
NSQE 30 57.82 56.54 58.43 57.60 64.68 63.02 64.79 64.16
random 90 37.01 37.48 37.39 37.29 41.55 42.27 41.45 41.76
difficult 90 55.02 53.93 56.63 55.19 61.69 60.08 63.32 61.70
NSQE 90 58.72 59.11 58.81 58.88 65.70 66.13 65.46 65.76
random 120 37.65 38.09 38.31 38.02 42.30 42.96 42.57 42.61
difficult 120 54.72 52.85 57.04 54.87 61.24 59.31 63.85 61.47
NSQE 120 59.10 59.08 58.82 59.00 66.02 66.00 65.48 65.83
random 180 39.50 39.11 40.39 39.67 44.40 44.16 44.89 44.48
difficult 180 50.35 48.61 52.17 50.38 56.27 54.57 58.04 56.20
NSQE 180 58.15 58.00 58.49 58.21 65.18 64.86 65.18 65.07

RES and REC tasks. This fully demonstrates the cross-modal align-
ment capabilities of QueryMatch. As shown in Tab.1, the compari-
son models were trained using weakly supervised information such
as bounding box annotations, click annotations, and text. Among
the existing weakly supervised RES models trained on image-text
pairs, TRIS, which employs a pre-trained CLIP encoder and a two-
stage pseudo-label generation process for training, previously held
the highest performance. However, our QueryMatch significantly
outperforms TRIS across all datasets through its novel Query-Text
matching framework. For instance, on the RefCOCO dataset, accu-
racy improved by more than 20%. As can also be seen from Tab.2,
QueryMatch surpasses the previous state-of-the-art weakly super-
vised REC methods by more than 5% on the RefCOCO dataset.

Moreover, QueryMatch substantially narrows the performance
gap between image-text pair-based RES models and CTS as well
as PKS models that utilize more granular weak supervision infor-
mation like bounding box and click annotations. Compared to the
CTS model on the RefCOCO datasets, it improves accuracy by an
average of 1%, and notably surpasses the overall performance of
the PKS model.
2.Ablation of QueryMatch

We began by evaluating the query confidence selection strategy.
In this scenario, the negative sample selection strategy selected the
most difficult-to-distinguish query for each unmatched image-text
pair. As indicated in Tab.3, implementing the query confidence
selection resulted in enhanced outcomes. This approach not only
improved computational efficiency but also achieved better accu-
racy, specifically an average increase of 0.79% on the RefCOCO

Table 5: Ablation of the formula for negative sample quality
estimation on RefCOCO.

Formula RES REC
val testA testB val testA testB

𝑆𝑑𝑖 54.72 52.85 57.04 61.24 59.31 63.85
𝑆𝑢𝑖 31.85 34.23 30.96 39.82 42.67 39.14
𝑆
†
𝑢𝑖

58.64 59.22 58.68 65.53 66.10 65.16
𝑆𝑢𝑖 + 𝑆𝑑𝑖 58.64 58.54 58.63 65.45 65.46 65.12
𝑆𝑢𝑖 · 𝑆𝑑𝑖 59.10 59.08 58.82 66.02 66.00 65.48

dataset. Therefore, in subsequent experiments, we opted for a se-
lection number threshold of 𝑂 = 20.

Concerning the negative sample selection strategy, our initial
approach involved random selection among the queries that did
not match the image-text pairs. As Tab.4 illustrates, this method
sustained low accuracy and exhibited a significant decline when
the selection number exceeded 150. Another intuitive strategy was
to select a specific number of negative samples from mismatched
image-text pairs based on the difficulty of distinguishing them.
However, as Tab.4 demonstrates, although this approach gener-
ally more effective than random selection, it started to diminish
significantly beyond 90 negative sample selections. At 180 selec-
tions, there was a 7.22% drop in accuracy compared to the initial
30 selections. This trend suggests that the strategy focusing only
on the difficulty of distinguishing has a limited capacity to utilize
image-text information effectively.

To optimize the utilization of image-text pairs, we proposed a
selection strategy that integrates the uniqueness of negative sam-
ples with their discrimination difficulty. The results reveal that our
method significantly improved accuracy compared to the previ-
ous strategies, demonstrating stronger robustness and scalability.
Across a range of 30 to 180 negative samples, accuracy remained
consistently high. The peak average accuracy, 59% on RefCOCO,
was achieved with 120 negative samples. Even with 180 selections,
the accuracy remained stable at 58.21%, which is 7.83% higher than
the strategy focusing only on discrimination difficulty.

Finally, we compared our approach with methods based only on
the uniqueness of negative samples and using the sum of unique-
ness and discrimination difficulty as a quality measure. As shown
in Tab.5, our method exhibited the highest accuracy, substantially
outperforming strategies that considered only the difficulty of dis-
crimination. This underscores the importance of negative sample
feature distribution in contrastive learning. It’s noteworthy that
the strategy 𝑆†𝑢𝑖 only considers the uniqueness of negative samples,
presupposes selecting the most challenging negative sample in the
first iteration step. Opting for random selection in the first iteration
step 𝑆𝑢𝑖 significantly reduces accuracy, highlighting the critical
importance of both metrics in evaluating the quality of negative
samples. Additionally, in other datasets, our strategy consistently
outperforms, exhibiting a more significant improvement over the
𝑆
†
𝑢𝑖 strategy than Tab.5 indicates.

6.4 Qualitative Analysis
To provide an intuitive understanding of the efficacy of our pro-
posed method, we conducted visualizations, as illustrated in Fig.5
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(5) girl with arms crossed on the right

Image TRIS GT ImageOurs TRIS GTOurs

(3) lady sitting down (4)  bottom left guy turning toward us

(1) baby holding toy (2)  man in blue shirt

(6)  player on right behind fence

Figure 5: Visualized predictions of our approach and the state-of-the-art method [22] leveraging image-text pairs for weakly
supervised training: The red mask indicates segmentation results, and GT denotes ground truth segmentation results.

(5) cup with water full

Image RefCLIP GT ImageOurs RefCLIP GTOurs

(3) closed silver laptop (4)  blue shirt blue hat bottom center

(1) banana bottom right (2)  bigger broccolit

(6)  elderly lady right dark suit

Figure 6: Visualized predictions of our approach and the state-of-the-art method [14] employing anchor-text matching
framework: The red mask indicates detection results, and GT denotes ground truth detection results.

and Fig.6. Compared to the previous state-of-the-art models, the
weakly supervised RES model TRIS and the weakly supervised REC
model RefCLIP, our approach demonstrates substantial improve-
ments. Evidently, TRIS often struggles with accurately locating
targets, leading to significant prediction errors in many cases. Mean-
while, RefCLIP tends to make localization errors in scenes where
the relationships between objects are complex. In contrast, Query-
Match exhibits a high degree of precision in target localization in
most scenarios. This accuracy persists even in complex situations,
such as when objects are intricately interrelated or densely packed.
Our method’s ability to consistently deliver accurate predictions
under such challenging conditions highlights its robustness and
effectiveness.

7 CONCLUSIONS
In this paper, we present QueryMatch, a novel weakly supervised
visual grounding framework that only relies on image-text pairs.
The framework reformulates visual grounding as a Query-Text
matching problem, notably simplifying the training complexity by
employing an end-to-end paradigm. Further, inspired by experimen-
tal observations that highlight the crucial role of negative sample
quality in cross-modal contrastive learning, we propose a strategy,
namely NSQE, to estimate the quality of negative samples. This
strategy significantly boosts performance by selecting high-quality
negative samples, emphasizing their uniqueness and difficulty in
discrimination. Experimental results validate the effectiveness and
robustness of both the Query-Text matching framework and the
negative sample quality estimation strategy.
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