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ABSTRACT

While generative Text-to-Speech (TTS) systems leverage vast “in-the-wild" data to
achieve remarkable success, speech-to-speech processing tasks like enhancement
face data limitations, which lead data-hungry generative approaches to distort
speech content and speaker identity. To bridge this gap, we present SpeechOp, a
multi-task latent diffusion model that transforms pre-trained TTS models into a
universal speech processor capable of performing a wide range of speech tasks
and composing them in novel ways at inference time. By adapting a pre-trained
TTS model, SpeechOp inherits a rich understanding of natural speech, acceler-
ating training and improving S2S task quality, while simultaneously enhancing
core TTS performance. Finally, we introduce Implicit Task Composition (ITC),
a novel pipeline where ASR-derived transcripts (e.g., from Whisper) guide Spee-
chOp’s enhancement via our principled inference-time task composition. ITC
achieves state-of-the-art content preservation by robustly combining web-scale
speech understanding with SpeechOp’s generative capabilities.

1 INTRODUCTION

Generative Text-to-Speech (TTS) systems now produce increasingly natural and expressive speech
(Le et al., 2024; Ju et al.l 2024), largely due to their ability to leverage vast “in-the-wild” data
(e.g., from audiobooks, podcasts (Chen et al., 2021a} |Pratap et al.,|2020)). This scalability enables
TTS models to learn robust speech representations across diverse acoustic conditions and speaker
characteristics (Lee et al.| [2024} |Peng et al., [2024)).

In contrast, speech-to-speech (S2S) processing tasks like enhancement, speaker separation, and
foreground-background isolation face stricter data requirements, often needing paired degraded/clean
speech, which is expensive to acquire at scale (Zen et al.,|2019). Consequently, S2S models are
typically trained on smaller, specialized datasets, often with simulated degradations (Su et al.,|2021a)).
This data scarcity can cause generative S2S approaches to distort original speaker identity and
content—a critical issue where faithful preservation is paramount, e.g., in speech enhancement (Yang
et al.| 2024} [Koizumi et al.,|2023c). These models often lack the rich speech understanding derived
from vast, diverse datasets available to TTS.

To bridge this data gap, we present SpeechOp: a multi-task latent diffusion model that transforms
pre-trained TTS models into a universal speech processor. SpeechOp performs a wide range of
S2S tasks and allows their novel inference-time composition, leading to three key advancements
(Figure [I): (1) a flexible multi-task model enhancing core TTS quality, (2) inference-time task
composition for unprecedented flexibility via our principled TC-CFG strategy, and (3) state-of-the-art
S28S performance through Implicit Task Composition (ITC), enabled by our composition method.

We make the following contributions:

1. A Flexible Multi-Task Model That Enhances TTS Capabilities: SpeechOp, adapted from a
pre-trained TTS model and fine-tuned on diverse S2S tasks (including TTS, enhancement, separation),
not only becomes a versatile speech processor but also improves its underlying TTS quality. By
learning to handle varied acoustic manipulations, SpeechOp’s TTS component generates more natural,
higher-quality speech, validated by human listening studies.

2. Inference-Time Task Composition (TC-CFG): For instance, if speech content is obscured,
SpeechOp can combine its enhancement capabilities with TTS content guidance to both enhance
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Figure 1: Overview of SpeechOp’s multi-task training (top), inference-time task composition ca-
pabilities (middle), and implicit task composition pipeline (bottom). The model is trained on six
core speech tasks including text-to-speech, enhancement, and separation. At inference time, novel
tasks can be composed by combining learned capabilities - for example, using transcripts to guide
enhancement or personalizing enhancement with voice samples. In the implicit task composition
pipeline, we use a state-of-the-art discriminative model (Whisper) to automatically transcribe noisy
speech, then use the resulting transcript to guide SpeechOp’s enhancement process.

acoustics and re-synthesize the obscured portion. Crucially, our novel TC-CFG guidance strategy
(Section[6) enables this powerful composition at inference-time without requiring joint training.

3. State-of-the-Art Speech Processing through Implicit Task Composition (ITC): SpeechOp
achieves state-of-the-art content preservation via ITC. Traditional transcript-conditioned S2S models
suffer from scarce paired noisy-clean-transcript data and the propagation of ASR errors. ITC
overcomes these by robustly integrating ASR-derived transcripts (e.g., from Whisper (Radford et al.|
2023} [Bain et al.,[2023))) using our TC-CFG inference-time composition. This principled approach,
with its tunable “guidance strength,” allows balancing content restoration (more like TTS) and
acoustic fidelity (more like enhancement) based on the situation, achieving superior content fidelity
over specialized enhancement methods.

2 BACKGROUND: DIFFUSION MODELS

We introduce latent diffusion models following recent formulations (Ho et al.} 2020} Kingma & Gao,
2023} [Rombach et al.,[2021). Given data drawn from an unknown distribution ¢(x), our goal is to
learn a generative model py(x) that approximates this distribution.

Forward process. The forward process defines a gradual transition from the latent distribution to
a Gaussian distribution through a sequence of increasingly noisy latent variables z; for timesteps
t € [0, 1]. This Gaussian diffusion process defines the conditional distribution g(zo,... 1|x). For every
t € [0, 1], the marginal ¢(z;|x) is given by:

zZ; = ayx + o€, where € ~ N(0,1)
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We use the variance-preserving formulation where 07 = 1 — 7. The noise schedule o, € [0, 1] is a
strictly monotonically decreasing function that starts with the original latent (zg ~ x) and ends with
approximately Gaussian noise (¢(z1) ~ N (z1;0,1)).

Generative model. Given the score function V, log ¢:(z), or the gradient of the log probability
density function, we can reverse the forward process exactly. Diffusion models utilize a neural network
learn to estimate the score function, sy(z; ) ~ V, log ¢:(z), and use the estimated score function
to approximately reverse the forward process. If sp(z;\) ~ V,logq:(z), then our generative
distribution is close to the true distribution. This enables us to draw samples from a Gaussian
distribution z; ~ p(z1), and approximately solve the reverse diffusion process using the estimated
score sg(z; A).

Training objective. We train the score network using a denoising score matching (DSM) loss |Song
& Ermon| (2019) over all data points x ~ D and noise levels:

Losu(x) = Evx.e[w(h) - [[so(ze: A) = Va, log q(z[x)][3],

where w(\;) weights different noise levels during training. Following best practices (Salimans &
Hol |2022), we adopt the velocity parameterization, v = o€ — 0;X, for our network output to ensure
training stability.

3 RELATED WORK

Text-to-speech (TTS) systems (Le et al., [2024; Shen et al., 2022)) excel due to vast "in-the-wild"
data, unlike data-limited speech-to-speech (S2S) tasks like enhancement (Koizumi et al.l 2023c) and
separation, which often require scarce paired recordings. While multi-task autoregressive models
have been developed (Wang et al.,2024), they lack inference-time compositionality. Diffusion models
offer high-quality synthesis (Shen et al.| 2022} [Le et al.,|2024) and are inherently compositional (Liu
et al.,[2022)), which SpeechOp leverages.

SpeechOp adapts pre-trained TTS models for S2S tasks and utilizes a novel inference-time com-
position pipeline to significantly improve speech processing quality and flexibility. Recent work
like Fugatto (Valle et al., [2025)) also explores multi-task audio generation. However, SpeechOp’s
principled task composition (TC-CFG, Section [6)) provides superior control and performance in
S2S tasks like enhancement compared to Fugatto’s score averaging approach (Section|[§), enabling
effective combination of operations like enhancement and TTS. While foundational models like
UniAudio (Yang et al., [2023)) pursue broad task coverage from scratch, and SpeechFlow (Liu et al.,
2024) investigates new pre-training schemes, SpeechOp focuses on efficiently adapting existing
TTS models. Crucially, we introduce Implicit Task Composition (ITC), which uniquely integrates
ASR models (e.g., Whisper) via TC-CFG for robust content preservation. Our primary aim is not
maximizing task variety, but demonstrating how TTS pre-training and sophisticated composition can
address S2S data scarcity and improve performance on established operations.

0 Speech Enhancement and Separation Training Speaker Separation
.45
Init SI-SDRit MCD| SpBST WER] ValMSE]
0.40 Rand -3.99 22.95 .825 17.8 0.358
Separation TTS Init @ 25k (8x faster) TTS -1.38 4.46 .906 8.5 0.336

0.351%

Validation Loss

b Speech Enhancement

0.30 ~\“*~-____E_nga_n_c'egv_er_wt_‘_ﬁs Init @ 50k (4x faster)
"""""" - Init PESQt MCD] SpBSt WER| ValMSE|
25K 50K 75K Tra}r(:iOan StleszK 150K 175K 200K Rand 2.07 4.76 900 8.1 0.289
—=- Enhancement (Random) Separation (Random) TTS 2.10 4.69 .910 841 04276
—— Enhancement (TTS) Separation (TTS)

Figure 2: Impact of TTS initialization on speech processing tasks. (Left) Validation loss curves
demonstrating accelerated convergence with TTS initialization. Training time is reduced by 4 x for
enhancement and 8 x for separation. (Right) Performance metrics for speaker separation and speech
enhancement, comparing random initialization (Rand) with TTS initialization (TTS).
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4 TTS PRE-TRAINING IMPROVES SPEECH PROCESSING TASKS

To motivate our multi-task framework, we first examine the benefits of initializing single-task speech
enhancement and speaker separation models from a pre-trained DiT TTS backbone |Peebles & Xie
(2022)); Lee et al.| (2024). Figure Q] (Left) shows that TTS initialization dramatically accelerates
convergence, achieving comparable validation loss with 4 x fewer steps for enhancement and 8 x fewer
for separation versus random initialization. The significant speedup for separation, a complicated
multi-speaker task, demonstrates the strong positive transfer from TTS pre-training.

Beyond faster training, TTS pre-training yields downstream performance gains (Figure [2| Right).
Speaker separation benefits most, with TTS initialization leading to dramatic improvements in MCD
and WER (8.5% vs 17.8%). We observe that it eliminates artifacts present in randomly initialized
models that struggle to learn the content disentanglement objective. Speech enhancement also sees
improvements in PESQ, MCD, and SpeechBERTScore from the TTS initialization. These results
demonstrate the broad advantages of TTS pre-training—accelerated convergence and enhanced
performance across diverse S2S tasks, especially those requiring deep speech understanding. This
motivates SpeechOp, our multi-task framework leveraging TTS pre-training for high-quality, versatile
speech processing.

5 SPEECHOP

We present the tasks explored in this work in Figure[I] These tasks provide complementary capabilities
that are composable via our diffusion framework for applications like transcript-guided isolation.
For speaker separation, which requires a speaker prompt to identify the target speaker, we provide a
disjoint speech sample to disambiguate the target speaker. For foreground/background separation, we
parameterize them as two separate tasks.

SpeechOp Architecture. SpeechOp is built on a latent diffusion framework (Rombach et al., 2021)
that operates with compressed audio representations. Rather than working with raw waveforms,
we first compress the audio using a DAC variational autoencoder [Kumar et al.| (2023) (details in
Appendix), allowing our model to efficiently process and generate speech in a lower-dimensional
latent space. As shown in Figure 3] SpeechOp’s core architecture consists of a Diffusion Transformer
(DiT) (Peebles & Xiel [2023)) that is extended to handle both text-to-speech and speech-to-speech tasks.
The model processes text transcripts for TTS and source audio (like noisy speech) for speech-to-
speech tasks, with a learnable Task Embedding that conditions model behavior. Training proceeds in
two stages: TTS pre-training followed by multi-task training to enable speech-to-speech capabilities.

Text-to-Speech Pathway. For TTS, Spee-

chOp (Figure El, right) processes a text tran- Denoised

script. We extract transcript representations Audio Latent
with a frozen, pre-trained ByT5-base encoder
Xue et al. (2022); [Lovelace et al. (2024a). [ !
ByTS5’s character-level representations capture '
phonetic information crucial for natural speech.
The DiT is conditioned on the ByT5 embed-
dings via cross-attention, dynamically aligning
text and audio frames and guiding denoising
based on text content. For our Diffusion Trans-
former (DiT) architecture, we incorporate de-
sign choices from recent TTS systems (Lee et al., Figure 3: SpeechOp Architecture Overview.
2024; |Lovelace et al., [2024b) (full details in the

Appendix).

Audio
Encoder

Source Audio Latent Task Embedding Transcript

To enable speaker-prompted generation and speech editing, we train our model to perform inpainting
for 75% of samples |Le et al.|(2024)). After adding noise from the forward diffusion process, we
replace a random segment of the latent with the clean, target segment. We additionally sum a learnable
binary embedding at the input layer to distinguish clean from noisy frames. The network will then
learn to extrapolate speaker and speech properties from the ground-truth region to denoise the noisy
speech. For half of our inpainting samples, we replace the initial segment (simulating voice prompts).
In the other half, we noise only the middle section, replacing the start and end of the utterance with
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clean speech to simulate speech editing. For sampling the relative duration, we follow [Lovelace
et al.[|(2024b) and use a Beta distribution with a mode of .01 and a concentration of 5 to emphasize
challenging cases with short prompts.

Speech-to-Speech Pathway. To handle speech-to-speech tasks like enhancement and separation
(Figure[3] left), SpeechOp introduces a dedicated Audio Encoder to process source audio such as noisy
speech. This encoder adopts the same DiT architecture as the main model but starts with random
initialization. Since speech-to-speech tasks inherently maintain frame-level alignment between
source and target audio, we implement a straightforward frame-wise mixing approach rather than
us a complex alignment mechanism. Specifically, the Audio Encoder’s output representations are
directly added to the Diffusion Latent before processing by the Diffusion Transformer, allowing direct
incorporation of source audio information during denoising. To handle different speech-to-speech
tasks, we use a learnable Task Embedding that conditions both the Audio Encoder and Diffusion
Transformer. This shared embedding provides task-specific guidance to both components based on
the desired operation (enhancement, separation, etc.).

Some speech-to-speech tasks require additional input prompts. For example, speaker separation
needs a reference speech sample to identify the target speaker, while acoustic matching needs an
example of the target acoustics. In these cases, we prepend the prompt to both the source audio
and noisy latent to maintain frame-wise alignment. For tasks that typically don’t use prompts (like
enhancement), we unmask the latent’s initial segment in 10% of training instances to enable transfer
learning with speaker-prompted TTS. These prompt durations follow the same Beta distribution used
for TTS inpainting.

Multi-Task Fine-Tuning. SpeechOp uses a two-stage training approach. After initial TTS pre-
training, we conduct multi-task fine-tuning where both the Audio Encoder and pre-trained DiT
backbone are jointly optimized. During this stage, we sample TTS and speech-to-speech (S2S) data
with equal frequency. Within the S2S samples, we apply selective upsampling - tripling the frequency
of enhancement and speaker separation examples since these are the most challenging tasks. This
two-stage strategy efficiently adapts the TTS model into our multi-task SpeechOp model.

Diffusion Training. During training, we sample noise levels using a shifted cosine schedule
(s=0.5) (Hoogeboom et al., 2023), following [Lovelace et al.| (2024a). We employ the Sigmoid
diffusion loss weighting from [Hoogeboom et al.|(2024) with a bias of -2.5 to concentrate training on
perceptually relevant noise levels. To enable classifier-free guidance during inference, we randomly
drop conditioning information (source audio and transcript) 10% of the time during training (Ho &
Salimans), 2022)).

6 INFERENCE-TIME TASK COMPOSITION

The ability to compose speech operations—such as simultaneously enhancing noisy speech while
restoring its content via text—represents a powerful capability for speech processing. Text-guided
generation can help produce a plausible, high-fidelity version of content that is otherwise not
recoverable from complex acoustic situations, such as intense noise and reverberation encountered
in speech enhancement. Similarly, in speaker separation, the text of spoken content could provide
important contextual cues for disentangling speakers. Nonetheless, achieving an effective composition
of tasks poses significant technical challenges.

Prior work, including Fugatto in the audio domain, typically computes a weighted average of score
functions to compose operationsLiu et al.[(2022); |Valle et al.|(2025), like for enhancement and TTS:

enh tts-prior

sp 5 (zey, w) = (1 — )™ (ze|y) + asy ™™ (z¢|w) (1

Here, s{™(z;|y) is the score from an enhancement model conditioned on noisy audio y, and si*(z;|w)

represents a score function derived from a TTS model aiming to generate speech for transcript w.
While straightforward, this approach poses a fundamental limitation: it combines the generative priors
of different tasks. For speech enhancement with TTS guidance, direct averaging allows the TTS
model’s broad acoustic prior (learned from diverse data for generation) to corrupt the enhancement
model’s focused studio-quality prior (learned for reconstruction), degrading output quality.

To address this challenge, we propose decomposing the desired score function V,,, log p(z:|y, w) into
task-specific components. Using Bayes’ rule and a conditional independence assumption (transcript
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Figure 4: A 1D toy simulation illustrating different task composition methods. (a) The setup,
showing a bimodal TTS prior (target wg and other w1 ), an ideal sharp target distribution (pgq), and a
biased enhancement model (pg,,) whose output is misaligned. (b) Samples from the unguided biased
model. (¢) Samples using score averaging (Eq. equation[I). (d) Samples using our TC-CFG method
(Eq. equation[d).

w is independent of noisy audio y given latent z;; detailed derivation in the Appendix), we arrive at:
@)

This decomposition yields two complementary terms: an enhancement score V,, log p(z:|y) that
guides acoustic quality based on the input y, and a discriminative guide V,, log p(w|z;). This second
term leverages a TTS model not for its generative prior, but for its ability to discriminate whether
a latent z; is likely to produce content matching transcript w. This term guides the latent towards
speech aligned with the transcript without imposing the TTS model’s full acoustic prior.

Vz, log p(zi|y, w) = V, log p(z:|y) + Vs, log p(w|zs).

Implementation via Classifier-Free Guidance. We implement this decomposition using classifier-
free guidance (CFG)|{Ho & Salimans|(2022) to approximate the discriminative signal V ,, log p(w|z;):

3
tts s

where s}*(z;|w) is the score of a TTS model conditioned on transcript w, sg*(z;) is its unconditional
score, and  is a guidance scale. Substituting this into Eq. equation 2] our final composed score is:

—s4°(z1)) - 4)

This formulation, which we term Task-Composition Classifier-Free Guidance (TC-CFG), preserves
the strengths of both tasks. The enhancement term maintains acoustic quality and speaker character-
istics. The CFG-derived discriminative term provides content alignment by isolating text-specific
guidance, avoiding the pitfalls of directly mixing generative TTS priors with the enhancement prior.

V., log p(w|z) ~ v (sgs(zt|w) — sgs(zt))

enh

S5 ( ~ 5

zi|y, w) (zely) + 7 (55" (ze|w)

Synthetic Simulation. To illustrate the behavior of score averaging and motivate our TC-CFG
approach, we present results for a 1D Gaussian mixture simulation (Figure[d] full details in appendix),
where the score functions are analytically tractable. We present this example primarily to provide
intuition for the behavior of the two approaches. We empirically validate the benefits of our approach

for real speech processing applications in|section 8

Our setup (Figure @) features a bimodal TTS prior, a sharp ideal enhanced distribution pg,, for the
target word wy, and an imperfect (biased) enhancement model pg,, whose content wy is misaligned.
Without guidance, the biased model’s samples are incorrect (Figure dp). However, combining the
biased enhancement score function with the TTS score function can potentially correct for content
errors. Score averaging (Figure [df) pulls samples towards the wo TTS mode. However, because
this mixes in the broad TTS prior, the result is a “smeared” distribution that deviates from the
enhancement distribution. In contrast, our TC-CFG approach (Figure i) incorporates discriminative
TTS guidance (via V, log prrs(wo|z+)) to steer sampling. This shifts the sampled distribution to
satisfy the discriminative signal without compromising the enhancement prior.

7 EXPERIMENTAL SETUP

SpeechOp integrates a 20-layer Diffusion Transformer (DiT, 419M parameters) with an 8-layer audio
encoder (71M parameters). We compare it against strong baselines for speech enhancement and
speaker separation.
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Training Data. For TTS, we combine MLS English ( 44k hours) (Pratap et al., 2020) for longer
utterances (10-20s) and Libri-TTS (585 hours) (Zen et al) 2019) for shorter segments (<10s),
improving robustness. All audio is resampled to 48kHz and transcripts lowercased. For S2S tasks, we
use LibriTTS-R (Koizumi et al.| 2023a)) for clean speech and simulate degradations using established
noise/impulse response datasets and pipelines (Yang et al.|[2024), creating 5s paired instances. Further
dataset details are in the Appendix.

Tasks and Baselines. Text-to-Speech (TTS): We evaluate on LibriSpeech test-clean (Panayotov
et al., [2015) against contemporary end-to-end TTS systems (Le et al.,[2024} |Chen et al.,[2024b; |[Lee
et al., 2024). Speech editing is evaluated on the LibriTTS portion of RealEdit (Peng et al.| [2024).
Speech Enhancement (SE): Baselines include waveform (StoRm (Lemercier et al., [2023))) and
diffusion-based (SGMSE+ (Richter et al., [2023), Miipher+WavLM (Koizumi et al., [2023b} Yang
et al., 2024))) models, and GAN-based HiFi-GAN-2 (Su et al.,[2021a). Speaker Separation (SS):
We compare against Sepformer variants (Subakan et al., 2021 |Chen et al.,[20244d), including those
trained on WHAMR! (Maciejewski et al.,|2020) and with acoustic-content simulation.

Evaluation Metrics. We assess SpeechOp on four dimensions: Subjective Quality: Mean Opinion
Scores (MOS, 1-5 scale) from listening tests on Prolific (pro) (details in [Appendix A). Signal
Similarity: PESQ (perceived quality), MCD (spectral distance, lower is better), and SI-SDRi
(separation distortion improvement) Roux et al.|(2019). Neural Similarity: WavLM-TDCNN (Chen
et al., [2021Db) for speaker similarity (SIM) and SpeechBERTScore (SpBS) [Saeki et al.| (2024) for
semantic alignment. Content Accuracy: Word Error Rate (WER) via HuBERT-L [Hsu et al.| (2021)
for TTS and WhisperX (large-v2) Radford et al.|(2023); [Bain et al.[|(2023)) for other tasks.

8 RESULTS AND DISCUSSION

Text-To-Speech. To examine the impact of multi-task training on text-to-speech, we evaluate
our model’s zero-shot TTS performance with 3 second speech prompts. Crucially, we initialize
SpeechOp from our TTS Baseline, allowing us to directly assess the impact of multi-task training.
Table [T] demonstrates that SpeechOp not only preserves but enhances zero-shot TTS capabilities.
After undergoing multi-task training, SpeechOp improves performance across all MOS metrics
and objective speaker similarity compared to the TTS Baseline, with minimal loss of intelligibility.
Exposure to tasks like enhancement and separation likely enhance SpeechOp’s ability to generalize
and generate natural speech across diverse acoustic environments.

Against recent TTS systems of comparable scale, SpeechOp exhibits strong performance, matching
or exceeding CLaM-TTS and XTTS on most metrics. Impressively, it also surpasses the larger
VoiceCraft model in intelligibility and subjective quality. While DiTTO-TTS, a larger model trained
on more diverse data, achieves higher overall scores, SpeechOp’s results are highly competitive
within its class. Future work will explore scaling SpeechOp to leverage similar large-scale datasets.

Beyond zero-shot TTS, SpeechOp demonstrates state-of-the-art capabilities in speech editing. As
shown in Table[2] SpeechOp significantly outperforms VoiceCraft across all subjective MOS metrics,
despite having fewer parameters. These results validate the robustness of our multi-task approach, as
SpeechOp maintains exceptional speech editing performance while supporting multiple tasks.

Speech Enhancement. Our Implicit Task Composition (ITC) pipeline integrates ASR transcripts
from Whisper with our TC-CFG method (Section [6)) to guide speech content. We find that our ITC
pipeline achieves state-of-the-art content preservation in speech enhancement. As shown in Table 3]
ITC yields a Word Error Rate (WER) of 2.9%, a 46% relative reduction over the strong HiFi-GAN-2
baseline, significantly reducing the content loss common with generative models. Our ITC pipeline
leverages web-scale knowledge from ASR models without requiring transcriptions for training the
enhancement component itself.

Our ITC’s transcript guidance method is more flexible than transcript-conditioned S2S models. Such
models can struggle when ASR errors create contradictions between acoustic and textual inputs, or
their performance may be upper-bounded by the input audio quality if they cannot generatively restore
highly corrupted content. Furthermore, they typically lack control over the influence of the transcript
versus the acoustics at inference time. In contrast, TC-CFG (Eq. equation ) provides this control
through a tunable guidance strength (). This allows SpeechOp to trade-off prioritizing acoustic
fidelity or emphasizing content restoration guided by the transcript depending on the application.
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Table 1: Zero-Shot Text-to-Speech Evaluation. MOS metrics evaluate different aspects: MOS-
Q (Quality), MOS-N (Naturalness), MOS-VS (Voice Similarity), and MOS-SS (Style Similarity).
Models in a different parameter regime are displayed in gray.

Model Params Training Data WER ] SIMt MOS-Qt MOS-NtT MOS-VS1 MOS-SS 1
Ground Truth — — 2.19 0.67 4.24 006 4.16 006 3.79 +006 3.60 +0.06
DiTTo-TTS (Lee et al.||2024) 740M ~56k hrs 2.56 .62 4.16 o0+ 414 1004 417 xo04 4.02 004
VoiceCraft (Peng et al.|[2024) 830M ~69k hrs 6.32 61 3.66 + 00 3.65 +o00s 3.43 +00s 3.38 + 005
CLaM-TTS (Kim et al.|[2024)  584M ~56k hrs 5.11 49 3.67 o0+ 3.70 o004 3.69 +o00s 3.54 +o0s
XTTS (Casanova et al.[[2024)  482M ~17k hrs 4.93 49 3.76 004 3.66 +00s 3.28 +o00s 3.27 005
TTS Baseline (Ours) 419M ~45k hrs 3.32 48 3.65 +00s  3.56 +o00s 3.31 +o00s 3.25 +o00s
SpeechOp (Ours) 419M ~45K hrs 3.57 .53 3.86 +00s  3.69 + 005 3.67 +o0s 3.58 + 005
A from Multi-Task Training — — +0.25 +.05  +0.22+006  +0.13:007  +0.36:1007  +0.32:+007

Table 2: Speech Editing Evaluation.

Model Params Training Data WER | MOS-QT MOS-N1T MOS-VS{ MOS-SS 1
Ground Truth — — 16.2 433 o4 440 +003  4.66 +003 4.63 +003
VoiceCraft (Peng et al.|[2024)  830M ~69k hrs 16.3 3.62 004 399 +o04 412 £om 4.01 + o004
TTS Baseline (Ours) 419M ~45k hrs 16.4 4.18 +004 423 +004 445 +o03 4.23 1004
SpeechOp (Ours) 419M ~45k hrs 15.9 4.15 +004 419 +004 448 +o003 4.25 +003

Table 3: Speech Enhancement Results. (Left) Quantitative metrics. (Right) Subjective MOS scores
with standard error.

Model PESQ 1 MCD | SpBS 1 WER |
Noisy Source Audio 1.12 11.22 888 33 Model MOS 1
Storm 1.61 6.36 .883 7.0 Noisy Source Audio 1.78 o007
Miipher 1.44 5.15 898 7.0
SGMSE+ 1.98 5.28 923 57 IS-I%I:/I?}%G\IZ g';g o
HiFi-GAN-2 2.23 4.40 934 54 T k00
- SpeechOp (No Transcript) ~ 3.93 + 004
SpeechOp (No Transcript) 2.00 4.83 908 8.1 N
+ITC 205 (+0.05) 4.85(+0.02) 928 (+.020) 2.9(-5.2) _SpeechOp-ITC (WhisperX) 3.89 +o04
+Speaker Personalization  2.12 (+0.07)  4.69 (-0.16) 926 (-.002) 2.4 (-0.5)  (Clean Reference Audio 4.67 <00
SpeechOp (Gold Transcript) 2.06 4.83 931 2.1

Even using Whisper transcripts derived from the noisy source audio, ITC improves content intelli-
gibility over the original audio (WER 2.9% vs. 3.3%) and enhancement without transcripts (WER
8.1%). This suggests TC-CFG effectively balances the acoustic information from the noisy source
audio with with the imperfect guidance from ASR transcription. While signal-fidelity metrics often
penalize generative outputs, SpeechOp’s ITC matches HiFi-GAN-2’s subjective quality (Table 3]
Right) while delivering superior content accuracy.

SpeechOp also enables novel applications like personalized enhancement by composing enhance-
ment with voice cloning. This composition improves speaker fidelity (MCD, PESQ) and modestly
reduces WER. To provide an upper bound, ground-truth transcripts lead to a 2.1% WER. Across all
scenarios, SpeechOp’s ITC, with our composition approach, effectively integrates textual guidance
for controllable, content-aware speech enhancement.

Speaker Separation. On human Mean Opinion Score (MOS)—the gold-standard metric for perceived
speech quality—SpeechOp significantly outperforms SepFormer baselines across all datasets(Table ).
Despite these human-rated gains, SpeechOp attains lower objective signal-fidelity metrics (e.g., SI-
SDRi, MCD on WSJ0-2Mix; Table[5), reflecting a known mismatch between signal-level metrics and
perceived quality for generative models [Erdogan et al.[(2023); (Chen et al.[(2024a)). This divergence
stems from methodology: traditional mask-based separators optimize signal reconstruction, whereas
our generative approach prioritizes naturalness and perceptual quality rather than strict mixture
consistency. Importantly, transcript guidance markedly improves content preservation, reducing
WER from 11.1% to 5.5% with ground-truth transcripts, showing that SpeechOp can leverage textual
information to boost separation accuracy while maintaining its perceptual strengths.

'We compare Sepformer models in|Chen et al.|(2024a)) since they support speaker separation in multiple
acoustic environments.
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Table 4: Speaker Separation Evaluation (Subj.). We report the average MOS and the standard error.

Model LibriMix Clean  LibriMix Noise WHAMR WSJ2-Mix Total

Sepformer|Chen et al.|(2024a) 3.32 +£0.07 2.95 +0.07 3.06 £0.07  3.53+007 3.22 £0.04
DM Sepformer|Chen et al.|(2024a) 3.59 +0.07 2.67 +0.07 253 4+£007 3.58+007 3.10 £0.04
AC-SIM Sepformer|Chen et al.[(2024a) 3.74 £ 0.07 2.81 £0.07 253 £007 3.654007  3.20 £0.04
AC-SIM-ML Sepformer|Chen et al.{(2024a) 3.74 £+ 0.06 3.02 £ 0.07 2.64 +£007 3.66 £006  3.28 £0.04
SpeechOp (No Transcript) 3.86 &+ 0.07 3.68 +0.07 2.89 £+ 0.08 377 £0.07  3.57 £0.04
SpeechOp (Gold Transcript) 4.13 £ 0.06 4.21 £0.06 337+008 391+006  3.92 £0.03
Mixture 1.38 £0.05 1.35 £ 0.04 1.39 £004  1.33 £0.05 1.36 £ 0.02
Clean Target 4.26 £ 0.06 4.48 £0.05 429 £006  4.00 £0.06  4.25+0.03

Table 5: Quantitative Speaker Separation Performance on the WSJ0-2Mix Dataset.

Method SI-SDRitT MCDJ] SpBS{T WER]
SepformerEbhen et al.[(2024a) 11.86 1.72 929 4.4
AC-SIM-ML Sepformer|Chen et al.|(2024a) 11.80 1.55 931 6.8
SpeechOp (No Transcript) 0.23 4.11 899 11.1
SpeechOp (Gold Transcript) 0.53 4.20 919 55

Task Composition Ablation. We em- Table 6: Task Composition. We compare our proposed
pirically validate our TC-CFG approach  composition formulation (TC-CFG) against averaging the
by composing SpeechOp’s enhance- score vectors (TC-Avg). Gold transcripts are used in this
ment capability with TTS-based textual ablation.

guidance from the gold transcripts (Ta-

ble @ The "SpeechOp (NO Transcript)” Model PESQ 1 MCD | SpBS T WER |
baseline represents the performance of

. Noisy Source Audio 1.12 11.22 .888 33
our enhancement model without any tex- Pe— S e 1
tual guidance. When employing the  SPeechOp (No Transcripy 00 8 908 8
score averaging approach ("SpeechOp ~ SpeechOp (TC-Avg) 1.88 524 909 34
TCAve)" b \eeradati SpeechOp (TC-CFG) (Ours)  2.06 483 931 2.1
(TC-Avg)"), we observe a degradation A (1c.CFG vs TC-Avg) +18 042 4022 13

in signal fidelity metrics compared to
the "No Transcript" baseline (e.g. MCD increases from 4.83 to 5.24). This aligns with the intuition
from our synthetic simulation (Figure ), where averaging with the broader TTS prior can negatively
impact the focused prior of the enhancement model. While TC-Avg does improve content preserva-
tion (WER 3.4% vs. 8.1% for "No Transcript"), this comes at the cost of acoustic quality and signal
fidelity.

In contrast, our proposed composition approach, TC-CFG, demonstrates superior performance across
all metrics. It not only achieves the best content preservation with a WER of 2.1% (a 38% reduction
over TC-Avg’s 3.4% WER), but it also maintains or improves signal fidelity compared to the "No
Transcript" baseline (e.g. PESQ 2.06 vs. 2.00). These results empirically confirm that our TC-CFG
formulation effectively isolates text-conditional guidance without degrading acoustic quality. This
allows SpeechOp to leverage knowledge from the TTS model for robust content preservation (low
WER) while simultaneously maintaining, and even slightly enhancing, the acoustic quality and
speaker characteristics established by the enhancement model. This careful decomposition of task-
specific guidance is crucial for enabling effective and high-fidelity task composition in generative
speech processing.

9 CONCLUSION

In this work, we addressed a fundamental data disparity between text-to-speech synthesis and speech-
to-speech tasks by adapting pre-trained TTS models to enable high-quality speech processing despite
limited paired data. Through SpeechOp, we showed that multi-task training and principled task
composition preserve TTS capabilities while enabling flexible speech-to-speech processing. Our
Implicit Task Composition framework demonstrated how to leverage web-scale speech understanding
from discriminative models to achieve state-of-the-art content preservation without parallel data.
By bridging the gap between data-rich and data-constrained speech tasks, this work opens new
possibilities for unified, scalable speech processing systems.
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10 ETHICS STATEMENT

Our work advances controllable, generative speech reconstruction for beneficial applications such as
accessibility (clearer listening and captioning), restoration of degraded or archival audio, personalized
but consented enhancement, and robust low-bandwidth communication.

We recognize the potential for misuse of such generative technology including imperson-
ation/deepfakes. To mitigate these risks, we restrict experiments to publicly available datasets
and we recommend deployment guardrails such as watermarking (O’Reilly et al., [2024) when releas-
ing models. For human studies, raters were consenting adults performing non-sensitive listening/MOS
tasks and were compensated at fair market rates

11 REPRODUCIBILITY STATEMENT

Our models are trained and evaluated on publicly available data. We provide a complete description
regarding the datasets, model architecture, and evaluations to enable faithful reproduction of this
work.
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A SUBJECTIVE STUDY DETAILS

Methodology. Our studies used native English speakers on Prolific to measure naturalness, quality,
voice similarity, and style similarity on a 1-5 scale, for text-to-speech synthesis based on a reference
speech sample. For our speech processing tasks, we measure the quality of the audio sample. We also
included a flag for unintelligible content, though no samples were ultimately flagged by a majority of
raters.

Quality Control. To filter out unreliable ratings for the TTS and speech editing studies, we used two
types of hidden validation tests. The first was a mismatched speaker test (different but real speakers
for reference and sample); if a participant rated speaker similarity > 3, their ratings were discarded.
The second was an identical pair test; if any attribute was rated < 4, their ratings were discarded. For
the speech processing tasks, we conducted similar validation tests with the clean and noisy audio
samples.

Participant details. For all of our subjective tests, each worker rated 30 samples, including 4
validation tests. Our TTS study involved 288 unique workers rating 80 utterances per method. Our
speech editing study involved 151 unique workers rating 100 utterances per method. Our enhancement
study involved 236 unique workers rating 96 utterances per method.

Compensation. For our listening experiments, participants were compensated at a rate of $15/hour,
which is above the platform’s recommendation.

B SIMULATION STUDY IMPLEMENTATION DETAILS
For our guidance comparison simulation study on the 1D Gaussian Mixture Model, we provide
detailed implementation specifics to ensure reproducibility.

The 1D GMM setting enables exact computation of all relevant quantities, providing a controlled
environment for comparing guidance strategies. Both the conditional score function, V,, log p;(z¢]y),
and guidance term, V, log prrs(y|x+), can be computed analytically.

Our synthetic experiments use the configuration detailed in Table

B.1 GUIDANCE STRATEGY COMPARISON

Our simulation compares three fundamental approaches to combining TTS and speech enhancement
models:

No Guidance: Uses only the imperfect enhancement model’s score function, representing current
single-task approaches:

Stotal — Senh(xta O't)

CFG-Style Guidance: Augments the enhancement model with discriminative guidance from the
TTS model using classifier-free guidance:

Stotal = Senh(xt; Ut) +p- Va;t IngTTS(y|xt)

where the guidance term V., log prrs(y|z:) leverages the TTS model’s ability to distinguish content-
matching samples.

Score Averaging: Linearly combines the enhancement model score with the true conditional TTS
score:

Stotal = (1 — @) * Senn (T4, 0¢) + - sT18(¢, 04 [Y)
This approach directly mixes the score functions from both models.

B.2 NOISE SCHEDULE AND SAMPLING

We employ a log-linear interpolation for noise levels: o, = exp (% log(cina) + L7 1og(oinit) )
The update step follows the variance exploding diffusion formulation Karras et al.[(2022): x4y =

@y + (07 — 0741) - Stoal + 1/0F — 07,4 - € where € ~ N (0,1).
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Table 7: Guidance Comparison Simulation Parameters

Parameter

Value

Base Parameters

TTS Distribution (Generic Speech)
Component means

Component std. devs.

Component weights

Ho = —40, H1 = 40
0Opgp =01 = 0.9
Wy = Wy, = 0.5

Target component y=20
Enhancement Transforms

Mean shift Ap=2.0
Variance reduction factor v =

Imperfect model bias e=04
Imperfect model variance inflation /3 = 1.8

Derived Parameters

True Enhanced Speech

Mean o+ Ap=-20
Std. dev. oo/v =0.23

Imperfect Enhancement Model
Mean

o+ Ap+e=—1.6

Std. dev. B-o9/y=0.41
Sampling Parameters

Number of samples 5000

Number of timesteps 200

Initial noise level Omax = 80
Final noise level Omin = 0.005
Guidance Parameters

CFG guidance strength p=10*

Score averaging weight a=0.5

B.3 EVALUATION METRICS

We evaluate the final samples using KL divergence computed between the empirical distribution of
generated samples and the true enhanced speech distribution, representing the ideal outcome.

C AUDIO AUTOENCODER

For efficient latent diffusion modeling, we develop an autoencder based on DAC (Kumar et al.| [2023)
but with a continuous variational bottleneck instead of residual vector quantization. For 48 kHz input
audio y € R'*7 the encoder E maps to latent representations xo = F(y) with dimensions RE* %,
where C' = 64 is the latent channel dimension and L is the temporal dimension downsampled by a
factor of 1200 (resulting in a 40 Hz latent representation). The decoder D mirrors this architecture to
reconstruct the waveform.

The encoder’s output is transformed into latent variables through a variational bottleneck that models
the approximate posterior ¢(z|y):

z=p+o e where €~ N(0,I) ®)

The model is trained to minimize reconstruction loss and KL divergence:
Lag =Ey[lly — ¥1] + AxeLxe (6)

where Agr, = 0.1 balances the objectives. We also employ adversarial training with a complex STFT
discriminator following DAC to improve reconstruction quality.
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D ACOUSTIC SIMULATION

First, we randomly select a clean speech sample and apply random equalization and compression.
Background noise is then added at a signal-to-noise ratio (SNR) of —10 to 30 dB. We randomly apply
reverberation using impulse response (IR) samples. Additional degradation like random bandlimiting
down to 1kHz is applied to simulate input at various sample rates. We dynamically generate training
pairs during training to increase diversity of the degradation combinations.

We trained the models with public datasets at 44.1k sample rate. The clean speech data is sourced
from LibriTTS-R (Koizumi et al.|,|2023a)) and upsampled to 44.1k sample rate via bandwidth extension
(Su et all |2021b). The noise samples include the DNS Challenge (Dubey et al.,|2024) and SFS-
Static-Dataset (Chen et al.|[2022). The impulse response (IR) data includes MIT IR Survey (Traer &
McDermott, [2016)), EchoThief (ech)), and OpenSLR28 (Ko et al., 2017).

E ARCHITECTURE AND TRAINING DETAILS

E.1 MODEL ARCHITECTURE

We present our model architecture details in Table [8| For our transfer learning experiments and
architecture ablation, we utilize a smaller version of SpeechOp with 12 DiT layers and 6 encoder
layers. We also incorporate dense connections (Lee et al., [ 2024)), a position-aware cross-attention
mechanism ((Lovelace et al., 2024b)), and append 8 register tokens to process global information
(Lovelace et al., 2024b). We condition on the learnable task embedding by summing it with the
timestep embedding that given to the DiT network.

Table 8: SpeechOp Architecture Parameters

Parameter Value
Diffusion Transformer

Audio Latent Dimension 64
Model Dimension 1024
Feed-forward Dimension 3072
Attention Heads 8
Number of Layers 20
Dropout 0.1
Audio Encoder

Model Dimension 768
Feed-forward Dimension 2304
Number of Layers 8
Common Components

Position Encoding Rotary
Layer Normalization AdaLN (e=le-5)
Activation SwiGLU
Text Encoder ByT5-base

E.2 TRAINING CONFIGURATION

All model training is distributed across 32 Nvidia A100s. Training proceeds in two stages:

Stage 1: TTS Pre-training Model is trained for 400K iterations with a batch size of 4 per GPU.
We use AdamW optimization with learning rate 2e-4 and weight decay 0.1. Training employs 4000
warmup steps and we perform two steps of gradient accumulation.

Stage 2: Multi-task Fine-tuning Starting from the pre-trained TTS model, we extend the encoder
to 8 layers and train for an additional 200K iterations. We use a lower learning rate of le-4 and
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weight decay of 0.01, with two steps of gradient accumulation. Batch sizes are 4 for TTS and 8 for
speech-to-speech tasks per GPU.

Table 9: Multi-task Training Weights and Prompt Probabilities

Task Weight Prompt Probability
Speech Enhancement 3.0 0.1
Speaker Separation 3.0 0.9
Noise Isolation 1.0 0.1
Acoustic Matching 1.0 0.9
Speech Isolation 1.0 0.1

Both stages use a shifted cosine noise schedule (scale=0.5) (Hoogeboom et al.} 2023} [Lovelace et al.|
2024a) with sigmoid loss weighting (bias=-2.5) (Hoogeboom et al.|[2024)), mixed precision (bfloat16),
and distributed data parallel (DDP) training.

E.3 SAMPLING CONFIGURATION

We use the SDE-DPM-Solver++(2M) as described in|Lu et al.| for sampling. We utilize 256 inference
steps with a schedule that is linear in logSNR. For speech-to-speech tasks, we utilize classifier-free
guidance (Ho & Salimans| [2022) with a strength of 1.5. For zero-shot TTS we use guidance scale of
3.0 for the transcript and prompt conditioning information. For speech editing, we use a guidance
scale of 2.0 for the transcript and prompt.

For zero-shot TTS and speech editing, our non-autoregressive approach requires determining the
output duration before generation. We estimate this by first computing the speaking rate (phones
per second) from the reference speech prompt. For zero-shot TTS, we then multiply this rate by
the phoneme count of the target transcript to determine the output duration. For speech editing, we
preserve the original duration for unedited regions and apply the same rate-based estimation for
edited segments. We found this simple duration modeling approach sufficient for maintaining natural
speaking rates aligned with the reference speaker’s style.

For task composition, we can control the guidance strength in the same way. Higher guidance values
enforce stronger conditioning at the cost of potentially conflicting the the other task. We use a scale of
1.5 in our composition experiments. We find that TTS guidance is only necessary for resolving details
in modest-to-high SNR regimes, so we enable it for logSNR ranges greater than -1.0 (Kynkaanniemi
et al.,[2024).

F SOURCE AUDIO CONDITIONING ABLATION

Table 10: Source Audio Conditioning Ablation. We train an ablation model that conditions on the
source sequence vectors with a cross-attention mechanism instead of our frame-wise mixing.

Model PESQ1T MCDJ] SpBSt WER]
Noisy Source Audio 1.12 11.22 .888 33
SpeechOp-Small (Cross-attention) 1.18 154 751 >100
w/ chunking 1.88 4.98 900 9.6
SpeechOp-Small (Framewise-Mixing) (Ours) 1.96 4.86 .902 8.8

Using 12-layer models, we compare our framewise mixing strategy against a cross-attention based
approach for conditioning on source audio. Table [I0] shows that the cross-attention variant fails
catastrophically when processing sequences other than its 5-second training length (WER > 100%).
Even with explicit padding and chunking to account for this, it shows degraded performance across
all metrics. In contrast, our framewise mixing approach generalizes naturally to arbitrary sequence
lengths while achieving better quality (PESQ 1.96 vs 1.88), lower distortion (MCD 4.86 vs 4.98),
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and improved content preservation (WER 8.8% vs 9.6%). These results suggest that framewise
mixing provides a more robust foundation for speech-to-speech processing, likely due to the explicit
frame-level correspondence between source and target audio.

G TASK COMPOSITION DERIVATION

Here we present the detailed derivation of our task composition approach. Our goal is to estimate
the conditional score function V,, log p(z;|y, w), where z; is the noisy latent, y is the noisy source
audio, and w is the text transcript.

Starting with Bayes’ rule, we can decompose the joint conditional probability:
p(y, w|ze)p(z¢)
p(y, w)
=V, logp(y, w|z;) + Vo, log p(2:) — V., log p(y, w)
= Vg, logp(y, w|z:) + Vy, log p(z:), M

where we drop the term V,, log p(y, w) as it is independent of z;.

th logp(zt|ya w) = th log

We introduce a conditional independence assumption: given the noisy latent z;, the textual transcript
w is independent of the noisy source audio y. That is:

p(y, w|z:) = p(y|z¢)p(wlzs) (®)

This assumption is reasonable at modest-to-high signal-to-noise ratios where the latent representation
effectively captures the salient information from both modalities. Substituting Equation equation|§|
into Equation equation[7}

Va, log p(z4|y, w) = Vy, log p(y|z:)p(w|zs) + Vs, log p(z¢)
= Vg, logp(y|z:) + Va, log p(w|zt) + V,, log p(z:). )

For the term V,, log p(w|z;), we can apply Bayes’ rule again. Following the classifier-free guidance
approach of Ho & Salimans| (2022, this can be expressed in terms of conditional and unconditional
TTS score functions:

Vz, logp(wlz) = V3, log p(zi|w) — V3, log p(zy). (10)
Substituting Equation equation into Equation equation E], and noting that V,, logp(y|z:) +
V., logp(z:) = V,, log p(z:|y), we obtain:
Vz, logp(zi|y, w) = Vg, log p(z:]y) + (Vz, log p(2:|w) — Vy, log p(z1))
~ 55 (zily) + (59 (zelw) — s5°(z0)), (11
enh tts

where s (z¢|y) and sj*(z;|w) represent the score networks for enhancement and TTS tasks, respec-
tively.

This derivation shows how our approach naturally combines the enhancement and TTS score functions
while avoiding conflicts between their unconditional priors. The enhancement term guides the
denoising process while the TTS term provides content alignment through classifier-free guidance.

H LLM USAGE

We used large language models for copyediting and revising the wording; all claims and arguments
were drafted and verified by the authors.
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