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Abstract001

Scene Graph Generation (SGG) provides basic002
language representation of visual scenes, re-003
quiring models to grasp complex and diverse004
semantics between objects. This complexity005
and diversity in SGG leads to underrepresen-006
tation, where parts of triplet labels are rare or007
even unseen during training, resulting in impre-008
cise predictions. To tackle this, we propose inte-009
grating the pretrained Vision-language Models010
to enhance representation. However, due to011
the gap between pretraining and SGG, direct012
inference of pretrained VLMs on SGG leads to013
severe bias, which stems from the imbalanced014
predicates distribution in the pretraining lan-015
guage set. To alleviate the bias, we introduce016
a novel LM Estimation to approximate the017
unattainable predicates distribution. Finally,018
we ensemble the debiased VLMs with SGG019
models to enhance the representation, where020
we design a certainty-aware indicator to score021
each sample and dynamically adjust the en-022
semble weights. Our training-free method ef-023
fectively addresses the predicates bias in pre-024
trained VLMs, enhances SGG’s representation,025
and significantly improve the performance.026

1 Introduction027

Scene Graph Generation (SGG) is a fundamen-028

tal vision-language task that has attracted much029

effort. It bridges natural languages with scene rep-030

resentations and serves various applications, from031

robotic contextual awareness to helping visually032

impaired people. The key challenge in SGG is to033

grasp complex semantics to understand inter-object034

relationships in a scene.035

Existing researches in SGG focus primarily on036

refining model architectures that are trained from037

scratch with datasets like Visual Genome (Krishna038

et al., 2017) or Open Images (Kuznetsova et al.,039

2020). However, SGG tasks inherently face an-040

other challenge of underrepresentation. Due to041
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Figure 1: Illustration of the underrepresentation issue
in Visual Genome. We highlight the relation class “car-
rying" from the top-right imbalanced class distribution.
We present various samples with their training repre-
sentation levels and confidence scores for the ground
truth class, where lower scores indicate poorer predic-
tion quality. We find that samples less represented by
the training set tend to have lower-quality predictions.

the inherent complexities of SGG, there exists ex- 042

ponential variability of triplets combined by the 043

subject, object, and relation (predicate). It is ex- 044

tremely challenging for a training set to cover such 045

diversity. As a result, a part of the test distribution 046

is underrepresented in training, leading to poor pre- 047

diction quality. In a severe case, some triplet labels 048

that appear in the test set are unseen in training. 049

In Figure 1, we highlight the relation class “car- 050

rying” from Visual Genome, showing samples and 051

their confidence scores of the ground truth class 052

from a baseline model’s predictions. While well- 053

represented samples score higher, the samples la- 054

beled with unseen triplets like “woman carrying 055

towel" score fairly low. Furthermore, one “woman 056

carrying umbrella" scores only 0.15 due to the um- 057

brella being closed, while its counterpart with an 058

open umbrella scores markedly higher (0.65). Al- 059

though the triplet is seen in training set, the closed 060

“umbrella” is still short of representation. 061

A straightforward solution to this issue is to 062
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expand the model’s knowledge by integrating ad-063

vanced vision-language models (VLMs) pretrained064

on extensive datasets (Kim et al., 2021; Li et al.,065

2020, 2019; Qi et al., 2020; Yu et al., 2022; Radford066

et al., 2021), using their comprehensive knowledge067

to compensate for underrepresented samples. Em-068

ploying the Masked Language Modeling (MLM)069

prompt format, such as “woman is [MASK] towel,”070

allows for direct extraction of relation predictions071

from the fill-in answers provided by zero-shot072

VLMs, which fully preserve the pretraining knowl-073

edge. Nonetheless, this direct inference of zero-074

shot models on SGG introduces significant predi-075

cate bias due to disparities in data distribution and076

objectives between pretraining and SGG tasks.077

This predicate bias originates from the imbal-078

anced frequency of predicates in the pretraining lan-079

guage set, causing the VLMs to favor the predicates080

that are prevalent in the pretraining data. Unfortu-081

nately, existing debiasing methods rely on explicit082

training distribution, which is often unattainable083

for pretrained VLMs: (1) The pretraining data are084

often confidential. (2) Since the pretraining objec-085

tives are different with SGG, there is no direct label086

correspondence from pretraining to SGG.087

To alleviate the predicate bias, we introduce a088

novel approach named Lagrange-Multiplier Es-089

timation (LM Estimation) based on constrained090

optimization. Since there is no explicit distribution091

of relation labels in the pretraining data, LM Esti-092

mation seeks to estimate a surrogate distribution of093

SGG predicates within VLMs. Upon obtaining the094

estimated distribution, we proceed with predicates095

debiasing via post-hoc logits adjustment. Our LM096

Estimation, as demonstrated by comprehensive ex-097

periments, is proved to be exceedingly effective in098

mitigating the bias for zero-shot VLMs.099

Finally, we ensemble the debiased VLMs with100

the SGG models to address their underrepresenta-101

tion issue. We observe that some samples are better102

represented by the zero-shot VLM, while others103

align better with the SGG model. Therefore, we104

propose to dynamically ensemble the two models.105

For each sample, we employ a certainty-aware106

indicator to score its representation level in the107

pretrained VLM and the SGG model, which sub-108

sequently determines the ensemble weights. Our109

contributions can be summarized as follows:110

• While existing methods primarily focuses on111

refining model architecture, we are among the112

pioneers in addressing the inherent underrepre-113

sentation issue in SGG using pretrained VLMs.114

• Towards the predicates bias underlying in the 115

pretraining language set, we propose our LM 116

Estimation, a concise solution to estimate the 117

unattainable words’ distribution in pretraining. 118

• We introduce a plug-and-play method that dy- 119

namically ensemble the zero-shot VLMs. Need- 120

ing no further training, it minimizes the compu- 121

tational and memory burdens. Our method effec- 122

tively enhances the representation in SGG, re- 123

sulting in significant performance improvement. 124

2 Related Work 125

Scene Graph Generation (SGG) is a fundamental 126

task for understanding the relationships between 127

objects in images. Various of innovations (Tang 128

et al., 2019; Gu et al., 2019; Li et al., 2021; Lin 129

et al., 2022a, 2020, 2022b; Zheng et al., 2023; Xu 130

et al., 2017) have been made in supervised SGG 131

from the Visual Genome benchmark (Krishna et al., 132

2017). A typical approach involves using a Faster 133

R-CNN (Sun et al., 2018) to identify image regions 134

as objects, followed by predicting their interrela- 135

tions with a specialized network that considers their 136

attributes and spatial context. Existing efforts (Li 137

et al., 2021; Lin et al., 2022a,b; Zheng et al., 2023) 138

mainly focus on enhancing this prediction network. 139

For instance, (Lin et al., 2022b) introduced a regu- 140

larized unrolling approach, and (Zheng et al., 2023) 141

used a prototypical network for improved represen- 142

tation. These models specially tailored for SGG 143

has achieved a superior performance. 144

Unbiased Learning in SGG has been a long- 145

standing challenge. Started by (Tang et al., 2020), 146

the debiasing methods (Dong et al., 2022; Li et al., 147

2021; Yan et al., 2020; Li et al., 2022b,a) seek to 148

removing the relation label bias stemming from the 149

imbalanced relation class distribution. These works 150

have achieved more balanced performance across 151

all relation classes. However, these methods rely 152

on the interfere during training and are not feasible 153

to the predicate bias in pre-trained VLMs. 154

Pre-trained Vision-Language models (VLMs) 155

have been widely applied in diverse vision- 156

language tasks (Su et al., 2019; Radford et al., 2021; 157

Kim et al., 2021; Li et al., 2020) and have achieved 158

substantial performance improvements with the 159

vast knowledge base obtained during pre-training. 160

Recently works start to adapt the comprehensive 161

pre-trained knowledge in VLMs to relation recog- 162

nition and scene graph generation (He et al., 2022; 163

Gao et al., 2023; Li et al., 2023; Yu et al., 2023; 164
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Zhang et al., 2023; Zhao et al., 2023). Through165

prompt-tuning, (He et al., 2022) is the first employ-166

ing VLMs to open-vocabulary scene graph genera-167

tion. Then more approaches (Zhang et al., 2023; Yu168

et al., 2023; Gao et al., 2023) are designed towards169

this task. These works demonstrate the capability170

of VLMs on recognizing relation, inspiring us to171

utilize VLMs to improve the SGG representation.172

3 Methodology173

3.1 Setup174

Given an image data (x,G) from a SGG dataset175

Dsg, the image x is parsed into a scene graph176

G = {V, E}, where V is the object set and E is the177

relation set. Specifically, each object v ∈ V con-178

sists of a corresponding bounding box b and a cat-179

egorical label z either from annotation or predicted180

by a trained Faster R-CNN detector; each ei,j ∈ E181

denotes the relation for the subject-object pair vi182

and vj , represented by a predicate label y ∈ Ce.183

The predicate relation space Ce = {0}∪Cr includes184

one background class 0, indicating no relation, and185

K non-background relations Cr = [K]. The objec-186

tive is to learn a model f that, given the predicted187

objects zi and zj for each pair with their cropped188

image region xi,j = x(bi ∪ bj), produces logits o189

for all relations y ∈ Ce, i.e., o = f(zi, zj ,xi,j).190

3.2 Method Overview191

As depicted in Figure 2, our framework f compris-192

ing two branches: a fixed zero-shot VLM fzs and a193

task-specific SGG model fsg trained on Dsg. Here,194

we employ a SGG fine-tuned VLM as fsg, where195

we forward the image region xi,j to the visual en-196

coder and use the prompt template “what is the197

relationship between the {zi} and the {zj}?” as the198

text input. Then, a classifier head is added to the199

[CLS] token to generate logits osg of all relations200

y ∈ Ce. Our experiments also adopt SGG models201

from recent works as fsg.202

Another zero-shot model, represented as fzs,203

leverages pretrained knowledge to the SGG task204

without fine-tuning. By providing prompts to zero-205

shot VLMs in the form “{zi} is [MASK] {zj}”, one206

can derive the predicted logits okzs of K relation207

categories from the fill-in answers. In SGG, the208

background class is defined when a relation is out-209

side Cr = [K]. Predicting the background relation210

is challenging for fzs: In pretraining phase, the211

model has not been exposed to the specific defini-212

tion of background. Therefore, we rely solely on213

fsg to produce the logits of background class: 214{
okzs = fzs(zi, zj ,xi,j) ∈ RK

[o0sg,o
k
sg] = fsg(zi, zj ,xi,j) ∈ RK+1,

(1) 215

The two branches’ prediction reflect the label dis- 216

tribution of their training sets, leading to potential 217

predicates bias in output logits if the target distribu- 218

tion differs. To address this, we conduct predicate 219

debiasing using our Lagrange-Multiplier Estima- 220

tion (LM Estimation) method along with logits 221

adjustment, generating the debiased logits ôkzs and 222

ôksg. The details are demonstrated in Section 3.3. 223

To mitigate the underrepresentation issue, we 224

ensemble the debiased two branch to yield the final 225

improved prediction, where we employ a certainty- 226

aware indicator to dynamically adjust the ensem- 227

ble weights, which is discussed in Section 3.4. 228

3.3 Predicate Debiasing 229

Problem Definition. For each subject-object pair 230

that has a non-background relation, we denote its 231

relation label as r ∈ Cr. Given the logits ok of K 232

non-background relation classes, the conditional 233

probability on the training set Dtr is computed by: 234

Ptr(r|zi, zj ,xi,j) = softmax(ok)(r), r ∈ Cr (2) 235

In our task, the training set Dtr can be either the 236

SGG dataset Dsg or the pretraining dataset Dpt, on 237

which the SGG model fsg and the zero-shot model 238

fzs are respectively trained. 239

In the evaluation phase, our goal is to estimate 240

the target test probability Pta rather than Ptr. By 241

Bayes’ Rule, we have the following: 242

P (r|zi, zj ,xi,j) ∝ P (zi, zj ,xi,j |r) · P (r) (3) 243

where P ∈ {Ptr, Pta}. The relation-conditional 244

probability term P (zi, zj ,xi,j |r) can be assumed 245

as the same in training and testing. By changing 246

variables and omitting the constant factor, we have: 247

Ptr(r|zi, zj ,xi,j)

Ptr(r)
=

Pta(r|zi, zj ,xi,j)

Pta(r)
(4) 248

In a case where training distribution Ptr(r) not 249

equals to the target distribution Pta(r), known as 250

label shift, the misalignment results in the model’s 251

predicted probability Ptr(r|zi, zj ,xi,j) not equals 252

to the actual test probability, Pta(r|zi, zj ,xi,j). 253

In our framework in Figure 2, fzs is trained on 254

Dpt and fsg on Dsg, whose training label distribu- 255

tions Ptr(r) are πpt ∈ RK and πsg ∈ RK , respec- 256

tively. The prevalent evaluation metric, Recall, is 257
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Figure 2: Illustration of our proposed architecture. left: the visual-language inputs processed from image regions
xi,j and object labels (zi, zj), either provided or predicted by Faster R-CNN detector. middle: the fixed zero-shot
VLM fzs and the trainable task-specific models fsg, which we use a fine-tuned VLM as example. right: the relation
label debias process and the certainty-aware ensemble.

designed to assess performance when the test label258

distribution Pta(r) is the same as the training dis-259

tribution πsg. In contrast, the mean recall metric260

seeks to evaluate performance in a uniform test261

distribution where Pta(r) = 1/K. The Ptr(r) and262

Pta(r) in each case can be summarized as follow:263

Ptr(r) =

{
πsg, if fsg

πpt, if fzs
, Pta(r) =

{
πsg, training
1
K , uniform

(5)264

From Equation 5, we observe that the inequality265

Pta(r) ̸= Ptr(r) holds in the following scenarios:266

• For the SGG model fsg with Ptr(r) = πsg, a267

label shift will be revealed when the test target is268

a uniform distribution evaluated by mean Recall.269

In this scenario, the target distribution Pta(r) =270

1/K diverges from the imbalanced distribution271

πsg in Dsg shown in top right of Figure 1.272

• For the zero-shot VLM fzs with Ptr(r) = πpt,273

the Pta(r) ̸= Ptr(r) holds in both training and274

uniform targets. Firstly, the label distribution275

πpt in the pretraining set Dpt differs from πsg,276

resulting in Ptr(r) ̸= πsg under the training-277

aligned target. Secondly, the imbalanced pred-278

icates distribution in Dpt also leads to Ptr(r) ̸=279

1/K under the uniform target distribution.280

Post-hoc Logits Adjustments. The first case,281

where Ptr(r) = πsg but Pta(r) = 1/K, is a long-282

existing issue with many effective approaches pro-283

posed in SGG. However, existing methods are not284

feasible in the second case for their debiasing in285

the training stage, while the pretraining stage of286

fzs are not accessible. A feasible debiasing method287

for already-trained models is the post-hoc logit ad- 288

justment (Menon et al., 2020). Denoting the initial 289

prediction logits as ok and the debiased logits as 290

ôk, one can recast Equation 4 into a logits form: 291

ôk(r) = ok(r)− logPtr(r) + logPta(r) (6) 292

It suggests that given the target label distribution, 293

the unbiased logits ôk(r) can be obtained through a 294

post-hoc adjustment on the initial prediction logits 295

ok(r), following the terms’ value in Equation 5. 296

While πsg can be obtained simply by counting the 297

label frequencies in Dsg, πpt is the predicates distri- 298

bution hidden in the pretraining stage. 299

Lagrange Multiplier Estimation. To estimate 300

πpt, we proposed a novel method based on con- 301

strained optimization. Our initial step involves 302

collecting all samples that have non-background 303

relation labels r ∈ Cr from the training or vali- 304

dation set of Dsg. Leveraging the collected data, 305

our optimization objective is to solve the optimal 306

πpt that minimizes the cross-entropy loss between 307

the adjusted logits ôkzs (following Equation 5 and 6 308

using πpt) and the ground truth relation labels r. 309

Since the data are collected from Dsg, we des- 310

ignate the term Pta(r) to πsg to offset the interfer- 311

ence of its label distribution and ensure the solved 312

Ptr(r) = πpt. This approach allows us to estimate 313

πpt by solving a constrained optimization problem, 314

where we set the constraints to ensure the solved 315

πpt representing a valid probability distribution: 316

πpt = argmin
πpt

Rce(o
k − log πpt + log πsg, r), 317

s.t. πpt(r) ≥ 0, for r ∈ Cr,
∑
r∈Cr

πpt(r) = 1 (7) 318
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where Rce is the cross-entropy loss. Equation 7 can319

be solved using the Lagrange-Multiplier method:320

πpt = argmin
πpt

max
λr≥0,v

Rce −
∑
r

λrπpt(r)321

+ v(1−
∑
r

πpt(r)) (8)322

After obtaining πpt and πsg, we can then apply323

the post-hoc logits adjustments for predicates debi-324

asing following Equation 5 and 6, which produces325

two sets of unbiased logits from the initial predic-326

tion of fzs and fsg, denoted as ôkzs and ôksg.327

Upon mitigating the predicates bias inside fzs,328

we can leverage the model to address the underrep-329

resentation issue in fsg. From the debiased logits330

ôkzs and ôksg, we compute the probabilities towards331

r ∈ Cr, where we adopt a τ -calibration outlined in332

(Kumar et al., 2022) to avoid over-confidence:333 {
P̂zs(r|zi, zj ,xi,j) = softmax(ôkzs/τ)(r)

P̂sg(r|zi, zj ,xi,j) = softmax(ôksg/τ)(r)
(9)334

3.4 Certainty-aware Ensemble335

Considering that each model may better represent336

different samples, we compute a dynamic confi-337

dence score inspired by (Hendrycks and Gimpel,338

2016) for each sample as its certainty in the two339

models, which determines the proportional weight340

Wcer of the two models in ensemble:341 conf = max
r∈Cr

P (r|zi, zj ,xi,j), P ∈ {P̂zs, P̂sg}

Wcer ∝ sigmoid(confsg − confzs)
(10)342

The weights are then used to obtain the ensembled343

prediction on Cr:344

Pens(r|zi, zj ,xi,j) = Wcer ∗ P̂sg(r|zi, zj ,xi,j)345

+ (1−Wcer) ∗ P̂zs(r|zi, zj ,xi,j) (11)346

Since fzs cannot predict the background relation,347

we rely solely on fsg to compute the background348

probability. Denoting osg = [o0sg,o
k
sg] as the initial349

logits predicted by fsg without debiasing (Equa-350

tion 1), the background and non-background prob-351

ability can be calculated by softmax function:352 {
Psg(y ̸= 0|zi, zj ,xi,j) = 1− softmax(osg)(0)

Psg(y = 0|zi, zj ,xi,j) = softmax(osg)(0)

(12)353

Finally, the ensembled prediction on Ce is:354

Pens(y|zi, zj ,xi,j) = [Psg(y = 0|zi, zj ,xi,j),355

Psg(y ̸= 0|zi, zj ,xi,j) · Pens(r|zi, zj ,xi,j)] (13)356

which serves as the final representation-improved 357

prediction of our proposed framework. 358

3.5 Summary 359

We integrate VLMs to mitigate the underrepre- 360

sentation challenge inherent to SGG, where we 361

propose the novel LM Estimation to approximate 362

the unattainable pretraining distribution of predi- 363

cates, πpt, and conduct predicate debiasing for each 364

model. Unlike previous SGG methods that are op- 365

timized for one target distribution per training, our 366

method enables seamlessly adaptation between dif- 367

ferent targets without cost, outperforming existing 368

SGG approaches under each target distribution. 369

4 Experiment 370

We conduct comprehensive experiments on SGG 371

to assess our efficacy. In Section 4.2, we show 372

our significant performance improvement through 373

a comparative analysis with previous methods. Sec- 374

tion 4.3 provides an illustrative analysis of the pred- 375

icates distribution estimated by our LM Estimation. 376

Subsequently, Section 4.4 offers an ablation study, 377

analysing the contribution of individual compo- 378

nents in our design to the overall performance. 379

4.1 Experiment Settings 380

Datasets. We tested on Visual Genome (Krishna 381

et al., 2017) and Open Images V6 (Kuznetsova 382

et al., 2020) datasets. For Visual Genome, we 383

adopted a split with 108,077 images focusing on 384

the most common 150 object and 50 predicate cat- 385

egories, allocating 70% for training and 30% for 386

testing, alongside a validation set of 5,000 images. 387

Open Images V6 comprises 126,368 training, 1,813 388

validation, and 5,322 test images. 389

Evaluation Protocol. For the Visual Genome 390

dataset, we focus on two key sub-tasks: Pred- 391

icate Classification (PredCls) and Scene Graph 392

Classification (SGCls). For the sub-task Scene 393

Graph Detection (SGDet), we present a brief re- 394

sult in the Appendix, considering its limited rele- 395

vance to the objectives of our methods on repre- 396

sentation improving and debiasing. Our primary 397

evaluation metrics are Recall@K and mean Re- 398

call@K (mRecall@K). Additionally, we propose 399

another task of relation classification that calcu- 400

lates the top-1 predicate accuracy (Acc) for sam- 401

ples labeled with non-background relations. For 402

the Open Image v6 dataset, we followed previous 403

settings by evaluating Recall and two weighted 404
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Models
Predicate Classification Scene Graph Classification

Debiased Models
Predicate Classification Scene Graph Classification

R@50 R@100 R@50 R@100 mR@50 mR@100 mR@50 mR@100

KERN (Chen et al., 2019) 65.8 67.6 36.7 37.4 VTransE (Zhang et al., 2017) 17.1 18.6 8.2 8.7
R-CAGCN (Yang et al., 2021) 66.6 68.3 38.3 39.0 SG-CogTree (Yu et al., 2020) 28.4 31.0 15.7 16.7

GPS-Net (Lin et al., 2020) 66.9 68.8 39.2 40.1 BGNN (Li et al., 2021) 30.4 32.9 14.3 16.5
VTransE (Zhang et al., 2017) 65.7 67.6 38.6 39.4 PCPL (Yan et al., 2020) 35.2 37.8 18.6 19.6
VCTree (Tang et al., 2019) 66.4 68.1 38.1 38.8 Motifs-Rwt (Zellers et al., 2018) 33.7 36.1 17.7 19.1

MOTIFS (Zellers et al., 2018) 66.0 67.9 39.1 39.9 Motifs-GCL (Dong et al., 2022) 36.1 38.2 20.8 21.8
SGGNLS (Zhong et al., 2021) 65.6 67.4 40.0 40.8 VCTree-TDE (Tang et al., 2020) 25.4 28.7 12.2 14.0

RU-Net (Lin et al., 2022b) 68.1 70.1 41.2 42.1 VCTree-GCL (Dong et al., 2022) 37.1 39.1 22.5 23.5
PENET (Zheng et al., 2023) 68.2 70.1 41.3 42.3 PENET-Rwt (Zheng et al., 2023) 38.8 40.7 22.2 23.5

Oscar ft 65.7 67.6 40.3 41.3 Oscar ft-la 38.4 41.3 22.6 23.8
Oscar ft + Ours 67.4(+1.8) 69.3(+1.7) 41.4(+1.1) 42.3(+1.0) Oscar ft-la + Ours 39.4(+1.0) 42.7(+1.4) 23.4(+0.8) 25.0(+1.2)

ViLT ft 65.7 68.4 40.2 41.8 ViLT ft-la 40.5 44.5 22.5 24.3
ViLT ft + Ours 66.7(+1.0) 69.8(+1.4) 41.2(+1.0) 42.9(+1.1) ViLT ft-la + Ours 42.3(+1.8) 46.5(+2.0) 23.5(+1.0) 25.5(+1.2)

PENET 68.2 70.1 41.3 42.3 PENET-Rwt 38.8 40.7 22.2 23.5
PENET + Ours 69.0(+0.8) 71.1(+1.0) 41.8(+0.5) 42.9(+0.6) PENET-Rwt + Ours 39.9(+1.1) 42.3(+1.6) 23.0(+0.8) 24.5(+1.0)

Table 1: The Recall (R@K) and mRecall (mR@K) results on Visual Genome dataset comparing with previous
models and debiasing methods. The performance and gain of our method is below each corresponding baseline. ft:
The model is fine-tuned on Visual Genome. la: The prediction logits is debiased by logits adjustment with πsg.

Models Recall@50 wmAPrel wmAPphr scorewtd

MOTIFS (Zellers et al., 2018) 71.6 29.9 31.6 38.9
G R-CNN (Yang et al., 2018) 74.5 33.2 34.2 41.8

GPS-Net (Lin et al., 2020) 74.8 32.9 34.0 41.7
VCTree (Tang et al., 2019) 74.1 34.2 33.1 40.2

BGNN (Li et al., 2021) 75.0 33.5 34.2 42.1
RU-Net (Lin et al., 2022b) 76.9 35.4 34.9 43.5

PENET (Zheng et al., 2023) 76.5 36.6 37.4 44.9
ViLT ft 74.9 34.9 34.7 42.8

ViLT ft + Ours 75.8(+0.9) 35.9(+1.0) 35.4(+0.7) 43.7(+0.9)
PENET 76.5 36.6 37.4 44.9

PENET + Ours 77.2(+0.7) 37.5(+0.9) 37.9(+0.5) 45.6(+0.7)

Table 2: The evaluation results of on Open Image V6
comparing with previous models. The performance of
our method is below each corresponding baseline.

mAP metrics. Then a weighted score is calculated405

as 0.2×Recall+0.4×wmAPrel+0.4×wmAPphr.406

Baselines and Implementation. We utilize407

two prominent zero-shot vision-language models,408

ViLT (Kim et al., 2021) and Oscar (Li et al., 2020),409

as fzs. For the task-specific branch fsg, we em-410

ploy three baseline models trained in SGG: (1) To411

explore the fine-tuning performance of VLMs on412

SGG, we fine-tune ViLT and Oscar using the Pred-413

Cls training data and establish them as our first two414

baselines. (2) To show our methods’ compatibility415

with existing SGG models, we undertake PENET416

(Zheng et al., 2023), a cutting-edge method with417

superior performance, as our third baseline. In our418

ensemble strategy, we explore three combinations:419

"fine-tuned ViLT + zero-shot ViLT", "fine-tuned420

Oscar + zero-shot Oscar", and "PENET + zero-shot421

ViLT", where each model is debiased by our meth-422

ods. Following previous settings, an independently423

trained Faster R-CNN is attached to the front of424

each VLM model for object recognition.425

4.2 Efficacy Analysis426

To assess the efficacy of our method, in this section,427

we compare our method with recent studies through428

a detailed result analysis on Visual Genome. The 429

Recall and mean Recall results are presented in Ta- 430

ble 1, which showcases a performance comparison 431

with a variety of cutting-edge models and debiasing 432

methods. We ensure to compare against previous 433

methods under their best-performance metric. For 434

baseline models without debiasing strategies, we 435

compare with their superior Recall metrics and ex- 436

clude their lower mean Recall performances. Simi- 437

larly, for the debiased SGG models, we only focus 438

on their mean Recall outcomes. 439

Baseline Performance. Our analysis begins 440

with the three fsg baselines: fine-tuned ViLT, fine- 441

tuned Oscar, and PENET. Specifically, for scenar- 442

ios where the desired target is a uniform distribu- 443

tion assessed by mean Recall, we apply the post- 444

hoc logits adjustment to the two fine-tuned base- 445

lines following Equations 5 and 6. For PENET, 446

we implement a reweighting loss strategy (PENET- 447

Rwt) following (Zheng et al., 2023) to train a debi- 448

ased version tailored for the uniform target distri- 449

bution, which achieved optimal performance. 450

As shown in Table 1, without task-specific de- 451

signs, the two fine-tuned VLMs fall behind the 452

SGG models on Recall and scored 67.6 and 68.4 453

on R@100, while PENET takes the lead. How- 454

ever, when evaluated under the uniform target dis- 455

tribution and adjusted using simple post-hoc logits 456

adjustment, the fine-tuned VLMs surpass all the 457

cutting-edge debiased SGG models in mean Recall, 458

achieving 41.3 and 44.5 of mR@100. 459

Our Improvements. Subsequently, we employ 460

our certainty-aware ensemble to integrate debiased 461

zero-shot VLMs fzs into the fsg baselines, where 462

each fzs is debiased by our LM Estimation. In 463

Table 1, for each fsg baseline, we observed a no- 464
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table performance boost after applying our meth-465

ods (+1.4 / + 2.0 / + 1.6 in mR@100 and +1.7466

/ +1.4 / + 1.0 in R@100). In both mRecall and467

Recall, our methods achieve the best performance468

(46.5 on mR@100 and 71.1 on R@100), while469

the improvement on mean Recall is particularly470

striking and surpasses the gains observed on Recall471

(+1.4/+2.0/+1.6 vs. +1.7/+1.4/+1.0). Besides, we472

extend our assessment of generalization capabili-473

ties by examining performance on the Open Image474

v6 dataset, with findings detailed in Table 2. The475

results show that our methods also achieve a signif-476

icant improvement in each baseline, achieving the477

best performance compared to all existing methods.478

Our results indicate the effectiveness of our meth-479

ods, leading to a marked boost in performance.480

Moreover, the improvement in PENET baselines481

shows the adaptability of our method to existing482

SGG-specialized models. In addition, we observe483

that our representation improvements leads to a484

more significant gain in mean recall than in re-485

call, suggesting the underrepresentation problem is486

more common in tail relation classes.487

4.3 Estimated Distribution Analysis488

In Figure 3, we depict the predicate distributions489

of zero-shot ViLT and Oscar solved by LM Estima-490

tion, comparing them with the distribution in VG491

training set. The upper chart in Figure 3 depicts492

the distributions across all relations, where we find493

that all three distributions exhibit a significant im-494

balance. Furthermore, we extract the distribution495

of typical relations in the lower chart, where we496

see a substantial discrepancy among the three dis-497

tributions. This variation affirms the two scenarios498

of Pta(r) ̸= Ptr(r) discussed in Section 3.3, pre-499

cluding the direct application of zero-shot VLMs500

without debiasing, indicating the necessity of our501

LM Estimation and subsequent debiasing method.502

4.4 Ablation Study503

In this section, we conduct an ablation study on504

Visual Genome dataset. Initially, we assess the505

effectiveness of our LM Estimation in addressing506

the predicates bias of zero-shot VLMs. Further-507

more, we evaluate the capability of our method to508

enhance representation by focusing on the unseen509

triplets, which are entirely absent during training.510

To precisely evaluate the performance in rela-511

tion recognition and eliminate any influence from512

the background class, we require the model to per-513

form relation classification exclusively on samples514

Models
All mAcc All Acc Unseen mAcc Unseen Acc

Initial Debiased Initial Debiased Initial Debiased Initial Debiased
ViLT-ft 46.53 68.92 14.98 17.72
ViLT-zs 21.88 37.42 57.15 67.09 8.99 16.92 18.81 20.93
ViLT-ens 46.86 48.70 68.95 70.75 15.66 20.07 20.01 21.73
Ens. Gain +0.33 +2.17 +0.03 +1.83 +0.68 +5.09 +2.29 +4.01
Oscar-ft 41.99 67.16 13.85 18.01
Oscar-zs 17.18 33.96 45.78 57.31 6.68 16.01 19.11 20.05

Oscar-ens 42.02 44.28 67.77 69.03 14.83 19.56 20.97 22.08
Ens. Gain +0.03 +3.29 +0.61 +1.87 +0.98 +5.71 +2.96 +4.07

Table 3: Top-1 accuracy and class-wise mean accuracy
of relation classification on Visual Genome. All: The
test results for all triplets with non-background relation
labels. Unseen: The test results for triplets that are
absent from the training set. Initial: The initial zero-
shot VLMs without debiasing. Debiased: The zero-
shot VLMs after debiasing using our LM Estimation.
ens: Ensemble of the fine-tuned VLMs and Initial or
Debiased zero-shot model. Ens. Gain: the performance
gain of ensemble compared to the fine-tuned model.

labeled with non-background relations. Subse- 515

quently, we calculate the top-1 accuracy (Acc) and 516

class-wise mean accuracy (mAcc) as new metrics 517

to accurately gauge the model’s effectiveness in this 518

context. Our findings are comprehensively detailed 519

in Table 3, which details on two sample splits: one 520

encompassing all triplets and the other exclusively 521

focusing on unseen triplets. For each splits, we ex- 522

amine the performance of the two fine-tuned VLMs, 523

fsg, their initial and debiased zero-shot models, fzs, 524

and the ensemble of corresponding models. 525

Predicate Debiasing. In Section 3.3, we introduce 526

our LM Estimation method for predicate debias- 527

ing. Here, we further evaluate the efficacy of our 528

debiasing. We initially analysis on the relation clas- 529

sification accuracy of the zero-shot VLMs before 530

and after debiasing. As presented in Table 3 (the 531

ViLT-zs and Oscar-zs rows), without debiasing, the 532

accuracies of initial predictions are lower either 533

in all triplets or unseen triplets. However, after 534

debiasing through LM Estimation, there is a no- 535

table enhancement in the zero-shot performance. 536

For unseen triplets, the debiased zero-shot VLMs 537

even surpass the performance of their fine-tuned 538

counterparts, suggesting our method effectively ad- 539

dresses the predicate bias and smoothly adapts the 540

pretraining knowledge to the SGG task. 541

Furthermore, from the ensemble performance 542

in Table 3 (the ViLT-ens and Oscar-ens rows), we 543

notice that ensembling the initial fzs hardly im- 544

proves the performance, only achieving a slight 545

gain of +0.33/+0.03 on all triplets and +0.68/+2.29 546

on unseen triplets. In contrast, ensembling the debi- 547

ased fzs achieves a significantly more pronounced 548

improvement, achieving +2.17/+1.83 gain on all 549
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Figure 3: The relation label distributions on Visual
Genome. The upper figure illustrates the distribution
across all classes, while the lower one shows the prob-
ability distribution on some typical categories. Train
Set: The class distribution πsg in training set. ViLT and
Oscar: The estimated distribution πpt using LM Estima-
tion in the two pre-training stages.

triplets and +5.09/+4.01 on unseen triplets.550

To keep consistent with previous settings, we551

present the Recall and mean Recall ablation results552

in Table 4. We observe a substantial improvement553

in both mean Recall and Recall when ensembling554

with our debiased zero-shot VLMs (the highlighted555

row in each group), while directly ensembling the556

initial zero-shot VLMs even harm to the perfor-557

mance (the middle row in each group). These re-558

sults starkly underlines the necessity and efficacy559

of our LM Estimation in predicate debiasing.560

Representation Enhancement. To validate the561

enhancement of representation, we specifically ex-562

amine the samples labeled with unseen triplets.563

These triplets are present in the test set but ab-564

sent from the training set, which is the worst tail565

distribution in the underrepresentation issue.566

Table 3 reveals that, across all triplets, the accura-567

cies of both zero-shot VLMs (fzs) fall short of their568

fine-tuned counterparts (fsg). For example, the de-569

biased zero-shot Oscar model achieves 33.96/57.31570

of mAcc/Acc, which are lower than the fine-tuned571

Oscar (41.99/67.16). However, within the subset of572

unseen triplets, the debiased zero-shot fzs outper-573

forms the fine-tuned fsg: The debiased zero-shot574

Oscar achieves 16.01/20.05 of mAcc/Acc, outper-575

forming the fine-tuned model (13.85/18.01).576

These findings substantiate our hypothesis that577

zero-shot models, with their pretraining knowledge578

Models mR@20 mR@50 mR@100
ViLT-ft 31.2 40.5 44.5

ViLT-ens (Initial) 30.9(-0.3) 40.5(+0.0) 44.6(+0.1)
ViLT-ens (Debiased) 32.3(+0.9) 42.3(+1.8) 46.5(+2.0)

Oscar-ft 30.4 38.4 41.3
Oscar-ens (Initial) 30.3(-0.1) 38.5(+0.1) 41.6(+0.3)

Oscar-ens (Debiased) 31.2(+0.8) 39.4(+1.0) 42.7(+1.4)

Models R@20 R@50 R@100
ViLT-ft 57.1 65.7 68.4

ViLT-ens (Initial) 56.9(-0.2) 65.7(+0.0) 68.8(+0.4)
ViLT-ens (Debiased) 58.0(+0.9) 66.7(+1.0) 69.8(+1.4)

Oscar-ft 59.1 65.7 67.6
Oscar-ens (Initial) 59.2(+0.1) 65.9(+0.2) 67.9(+0.3)

Oscar-ens (Debiased) 60.5(+1.4) 67.4(+1.7) 69.3(+1.7)

Table 4: The mean Recall and Recall ablation results
on Visual Genome. Initial: The initial zero-shot VLMs
without debiasing. Debiased: The zero-shot VLMs after
predicates debiasing. ens: Ensemble of the fine-tuned
VLMs and Initial or Debiased zero-shot model.

fully preserved, are better at handling underrepre- 579

sented samples compared to SGG-specific models. 580

This advantage is particularly evident in the con- 581

text of unseen triplets, where comprehensive pre- 582

training knowledge of zero-shot models confers a 583

significant performance benefit. 584

Moreover, we find that the gain of ensemble is 585

significantly higher for unseen triplets (Debiased 586

ViLT: +5.09/+4.01, Debiased Oscar: +5.71/4.07) 587

than for all triplets (Debiased ViLT: +2.17/+1.83, 588

Debiased Oscar: +3.29/1.87). This indicates that 589

the underrepresented samples are improved much 590

more than the well-represented samples, receiving 591

higher gains than average. Considering the pro- 592

portion of unseen triplets in all triplets, we infer 593

the overall performance gain mainly comes from 594

the improvement on unseen triplets. Since unseen 595

triplets composing the worst case of underrepre- 596

sentation, their performance gain can confirm our 597

enhancement on representation. 598

5 Conclusion 599

In conclusion, our study has made significant 600

strides in efficiently and effectively integrate pre- 601

trained VLMs to SGG. By introducing the novel 602

LM Estimation, we effectively mitigate the predi- 603

cate bias inside pre-trained VLMs, allowing their 604

comprehensive knowledge to be employed in SGG. 605

Besides, our certainty-aware ensemble strategy, 606

which ensembles the zero-shot VLMs with SGG 607

model, effectively addresses the underrepresenta- 608

tion issue and demonstrates a significant improve- 609

ment in SGG performance. Our work contributes to 610

the field of SGG, suggesting potential pathways for 611

reducing language bias of pretraining and leverage 612

them in more complex language tasks. 613
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6 Limitation614

Though our methods does not require any train-615

ing, comparing with original fsg, our ensemble616

framework still adds computational cost from fzs’s617

inference. This inference can be costly in an ex-618

treme case that one scene has too many objects to619

predict their relations. Besides, even after we solve620

the word bias inside VLMs, the final ensemble per-621

formance relies highly on the pre-training quality,622

which requires the fzs to be pre-trained on compre-623

hensive data to improve SGG’s representation.624
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A More Theoretical Justifications827

In the main paper, we introduce the post-hoc logits828

adjustment methods (Menon et al., 2020) for label829

debiasing, which is first proposed in long-tail clas-830

sification. In the main paper, we skipped part of831

the derivation due to the limit of length. Here, we832

provide a detailed derivation for easier understand-833

ing.834

Taking (zi, zj ,xi,j) as input for a subject-object835

pair, the conditional probability for the relations is836

P (r|zi, zj ,xi,j). From the Bayes’ Rule, the condi-837

tional probability can be expressed as:838

P (r|zi, zj ,xi,j) =
P (zi, zj ,xi,j |r)P (r)

P (zi, zj ,xi,j)
(14)839

We further denote the empirical probability fitted840

to the training set as Ptr and the target test proba-841

bility as Pta. We further rewrite Equation 14 with842

the two probabilities as:843

Ptr(r|zi, zj ,xi,j) =
Ptr(zi, zj ,xi,j |r)Ptr(r)

Ptr(zi, zj ,xi,j)
(15)844

Pta(r|zi, zj ,xi,j) =
Pta(zi, zj ,xi,j |r)Pta(r)

Pta(zi, zj ,xi,j)

(16)

845

Then let us look into each term. Firstly, the846

P (zi, zj ,xi,j) is irrelavant with r and thus has no847

effect on the relation label bias. Therefore, the nu-848

merator term can be replaced by a constant C and849

omitted in further computation. Secondly, when fo-850

cusing on the label bias, according to the prevalent851

label-shift hypothesis proposed in long-tail classi-852

fication, one can assume P (zi, zj ,xi,j |r) to be the853

same in the training and testing domains. Based on854

this equality, we connect the two probabilities by:855

Ptr(r|zi, zj ,xi,j)

Ptr(r)
· Ctr =

Pta(r|zi, zj ,xi,j)

Pta(r)
· Cte

(17)856

Taking the logarithm form for both sides, we857

derive the final form of post-hoc logits adjust-858

ments (Menon et al., 2020):859

logPta(r|zi, zj ,xi,j) = logPtr(r|zi, zj ,xi,j)860

− logPtr(r) + logPta(r) + log
Ctr

Cte
(18)861

In our main paper, the last term of constant is omit-862

ted since the softmax function will naturally erase863

any constant term that irrelavant to r. Given the tar-864

get distribution Pta. From Equation 18, by taking865

softmax operation on both sides, we can derive: 866

Pta(r|zi, zj ,xi,j ) = softmax(logPtr(r|zi, zj ,xi,j) 867

− logPtr(r) + logPta(r)) (19) 868

After adjusting using our strategy, the final pre- 869

dicted label is determined by an argmax operation: 870

r = argmax
r∈Cr

(softmax(logPtr(r|zi, zj ,xi,j) 871

− logPtr(r) + logPta(r))) (20) 872

Then from Equation 19, we can rewrite Equation 20 873

as: 874

r = argmax
r∈Cr

(Pta(r|zi, zj ,xi,j)) (21) 875

it is called a Bayes optimal classifier. According 876

to the definition of Bayes optimal classifier, on av- 877

erage no other classifier using the same hypothesis 878

and prior knowledge can outperform it. Thus, when 879

considering only label bias, our strategy is not only 880

effective, but also optimal among all adjustments. 881

B More Experiment Analysis 882

B.1 Scene Graph Detection 883

In our main paper, we skipped the SgDet sub-task, 884

considering its substantial computational demands 885

when employing VLMs and limited relevance to 886

our method’s core objectives. In this section, we 887

provides a discussion and a brief corresponding 888

experiments results. 889

Existing SGG models usually employs a Faster 890

R-CNN (Sun et al., 2018) detector and fix the num- 891

ber of generated proposals to be 80 per image for a 892

fair comparison. However, unlike the existing rela- 893

tion recognition networks that processes all pairs 894

of proposals in an image simutaniously, the atten- 895

tion module in VLMs requires a one-by-one pair as 896

input. In this case, inferencing one image requires 897

80×80 times of forwarding. 898

This huge inference cost make it less practical to 899

compare with existing methods under the current 900

prevalent settings. However, it does not suggest 901

using VLMs in SGG is meaningless. We strongly 902

believe that the main concern of SGG task is to 903

correctly recognize the relation given a pairs of 904

objects, instead of the object detection, given the 905

fact that the detector could be trained separately 906

while achieving the same good performance. And 907

by equipping with more efficient and effective de- 908

tectors, the performance in Scene Graph Detection 909

and Scene Graph Classification should be closed to 910

Predicate Classification. 911

11



However, to show the efficacy of our method912

and be consistent with previous settings, we imple-913

ment our methods on cutting-edge SGG models and914

debiasing methods following the prevalent Faster915

R-CNN settings. From the results in Table 5, we ob-916

serve a marked performance gain in both the recall917

and the mean recall for all baselines. Same with918

the other two sub-tasks, the gain on mean Recall is919

higher than on Recall.920

Scene Graph Detection
Models mR@20 mR@50 mR@100

Motifs-GCL 12.9 16.8 19.3
Motifs-GCL + Ours 13.3(+0.4) 17.4(+0.6) 20.0(+0.7)

PENET-Rwt 13.0 16.7 18.8
PENET-Rwt + Ours 13.4(+0.4) 17.2(+0.5) 19.5(+0.7)

Models R@20 R@50 R@100
RU-Net 25.7 32.9 37.5

RU-Net + Ours 25.9(+0.2) 33.4(+0.5) 38.1(+0.6)
PENET 25.5 32.4 36.9

PENET + Ours 25.8(+0.3) 32.8(+0.4) 37.4(+0.5)

Table 5: The mean Recall and Recall results of Scene
Graph Detection on Visual Genome comparing with
state-of-the-art models and debiasing methods. The
results and performance gain applying our method is
below the row of corresponding baseline.

B.2 Analysis on Tail Categories921

In this section, we conducted an additional experi-922

ment to demonstrate the performance enhancement923

for tail relation classes. We divided the relation924

categories into three splits, frequent, medium, and925

rare, based on the frequency in the training set.926

Subsequently, we evaluated and reported the en-927

semble gain on mean Recall@100 for each split928

brought by our methods. We opted for mean Re-929

call@100 as the metric due to its superior represen-930

tation of rare relations and reduced susceptibility931

to background class interference. Across all three932

baselines, we observed a substantial improvement933

in performance for rare relation categories, which934

confirms our hypothesis that the underrepresenta-935

tion issue is more severe in rare relation classes.936

Ensemble Gain on mRecall@100.
Models frequent medium rare

ViLT ft-la + Ours +0.12 +1.78 +4.13
Oscar ft-la + Ours +0.04 +1.04 +3.15

PENET + Ours +0.06 +1.27 +3.49

Table 6: The performance gain of mRecall@100 on
PredCls sub-task achieved by our methods compared
with each baseline, where the rare categories achieve
significantly higher improvement.

Models
PredCls SgCls

zs-R@50 zs-R@100 zs-R@50 zs-R@100
MOTIFS (Zellers et al., 2018) 3.24 5.36 0.68 1.13

VCTree (Tang et al., 2019) 3.27 5.51 1.17 2.08
Motifs-TDE (Tang et al., 2020) 14.4 18.2 3.4 4.5

VCTree-TDE (Tang et al., 2020) 14.3 17.6 3.2 4.0
Motifs-EBM (Suhail et al., 2021) 4.87 - 1.25 -

VCTree-EBM (Suhail et al., 2021) 5.36 - 1.87 -
PENET (Zheng et al., 2023) 17.1 20.9 5.4 6.5

ViLT ft 14.6 18.1 3.8 4.9
ViLT ft + Ours 15.8(+1.3) 21.0(+2.9) 4.7(+0.9) 6.5(+1.6)

PENET 17.1 20.9 5.4 6.5
PENET + Ours 19.0(+1.9) 24.6(+3.7) 6.5(+1.1) 8.8(+2.3)

Table 7: Comparison with different methods on Zero-
shot Recall (zs-R@50/100) under the Predicate Classi-
fication (PredCls) and the Scene Graph Classification
(SgCls) sub-tasks on VG dataset.

B.3 Zero-shot Recall 937

In Section 4.4, we analyze the capability of our 938

method in handling unseen triplets. Aligning with 939

established benchmarks, we present zero-shot Re- 940

call results adopted in existing works, which also 941

focuses on the performance of unseen triplets. 942

From the results shown in Table 7, we observe 943

that the fine-tuned ViLT fails to outperform other 944

models due to the forgetting of pretraining knowl- 945

edge. However, after ensemble with our debiased 946

VLMs, both the two baseline models achieve a sig- 947

nificant boost on zero-shot Recall, suggesting that 948

our methods effectively alleviate the underrepresen- 949

tation. Given that zero-shot Recall is significantly 950

influenced by the background class, which is deter- 951

mined by the ability of fsg and beyond the purview 952

of this work, we primarily utilize Acc and mAcc 953

metrics for a more precise evaluation of relation 954

recognition regarding unseen triplets, as discussed 955

in Section 4.4. 956

C More Details of Implementation 957

This section shows more details of our implemen- 958

tation. In existing models designed for SGG, the 959

object detector is attached in front of the relation 960

recognition network and jointly trained with the ob- 961

jectives of SGG tasks. However, when fine-tuning 962

VLMs on SGG tasks, this paradigm could be time- 963

consuming and less flexible, given the higher train- 964

ing cost of VLM comparing with existing models 965

on SGG. 966

Therefore, we decide to take the Faster R-CNN 967

detector out and train it separately without the 968

main network. This implementation is proved 969

to be effective when we take the detector out of 970

PENET (Zheng et al., 2023) and train it separately 971

with the PENET relation network. We observe 972

that the independently trained detector achieved 973
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the same performance with that jointly trained with974

the PENET. Hence, all fine-tuned VLMs in this975

paper used a separately-trained Faster R-CNN de-976

tector. In the fine-tuning stage on Visual Genome,977

we employ two different paradigms for ViLT (Kim978

et al., 2021) and Oscar (Li et al., 2020) for a more979

general comparison. We freeze the ViLT backbone980

while training the MLP head for 50 epochs. In981

another way, we use an end-to-end fine-tuning for982

70k steps on Oscar. We keep the fine-tuning cost983

comparable to the existing SGG models, which984

ensures its practical feasibility.985

Why don’t we debias on the triplets’ distribution986

instead of the relation words distribution? In the987

paper, we declare the relation words bias caused988

by different frequency of relation labels. And the989

underrepresentation issue caused by different rep-990

resentation level of samples. One can infer that991

the representation level is largely effect by the fre-992

quency of triplets. In other words, the samples993

of frequent triplets are usually better represented994

in training compared with those samples of rare995

triplets.996

Therefore, one intuitive thinking is to debias997

directly on the triplets’ distribution by substract-998

ing logP (zi, zj , r) instead of the relation words999

distribution logP (r). This thought is indeed the1000

most throughly debiasing strategy. However, one1001

need to consider that the conditional prior of1002

logP (r|zi, zj) could largely help the prediction1003

of relationship (Tang et al., 2020). For example, in1004

natural world, the relation between a “man" and a1005

“horse" is more likely to be “man riding horse" than1006

“man carrying horse". Directly debiasing on the1007

triplets’ distribution would erase all these helpful1008

conditional priors, resulting in a drastically drop in1009

performance.1010

D Other Discussions1011

Question 1: Is our improvement from repre-1012

sentation improvement or simply parameter in-1013

crease from ensembled VLMs? Because of1014

the predicates biases in pretraining data, integrat-1015

ing large pretrained models does not guarantee1016

improvement. In Table 2 of the main paper, we1017

showed that ensembling the original VLMs with-1018

out debiasing cannot bring any improvements. We1019

further test the ensemble of PENET-Rwt and raw1020

ViLT-zs and get 30.6/38.5/40.1 of mRecall, which1021

is also worse than not integration or integration of1022

our debiased ViLT shown in Table 1 of the main1023

paper. Only by integrating the VLM debiased by 1024

our LM Estimation can enhancements be brought. 1025

By integrating our debiased VLM, the under- 1026

representation issue is alleviated since underrepre- 1027

sented samples are improved much more than well- 1028

represented samples. In Table 2 in the main paper, 1029

we show that unseen triplets are improved higher 1030

than all triplets’ average. Integrating our debiased 1031

VLMs indeed brings a slight overall improvement, 1032

but most are from addressing the representation 1033

improvement. This conclusion is also affirmed by 1034

the results in Table 6. 1035

Question 2: Is it fair for us to use distinct Pta 1036

to measure Recall and mRecall and compare 1037

with existing methods? Unlike previous methods 1038

in SGG, our framework accepts a user-specified 1039

target distributions Pta as input. In SGG settings, 1040

measuring both Recall and mRecall is to evaluate 1041

under two distinct test distributions, as discussed 1042

in Section 3.3 of our main paper. For our method, 1043

using the same Pta under these two distinct distri- 1044

butions will input a wrong distribution Pta that is 1045

far from the actual target. This goes against our 1046

original intention. 1047

Previous methods are measured by both metrics 1048

without any change because once trained, unless 1049

by time-costing re-training, they cannot be trans- 1050

ferred from one target distribution Pta to another 1051

P ′
ta. However, our method achieves this transfer 1052

instantaneously by simply + log (P ′
ta/Pta) to the 1053

logits. So it is fair to compare with previous meth- 1054

ods since our transfer adds no extra time cost. 1055

Question 3: Is underrepresentation issue a spe- 1056

cific characteristic problem for SGG? The prob- 1057

lem of this inadequate sample representation is a 1058

typical and specific characteristics of SGG and is 1059

far more severe than that in other related fields, like 1060

long-tailed classification in Computer Vision. In 1061

SGG, a sample’s representation includes two ob- 1062

jects’ attributes and their high-level relationship. 1063

Due to this unique complexity, it is extremely hard 1064

for SGG datasets to adequately represent all triplets 1065

combinations. For instance, there are 375k triplets 1066

combinations in Visual Genome (Krishna et al., 1067

2017), much more than the label sets of any classi- 1068

fication dataset in Computer Vision. This inevitably 1069

leads to the majority of triplets having only a few 1070

samples in training. 1071
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