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Abstract

The option framework in hierarchical reinforcement learning has notably advanced1

the automatic discovery of temporally-extended actions from long-horizon tasks.2

However, existing methods often struggle with ineffective exploration and unstable3

updates when learning action and option policies simultaneously. Addressing these4

challenges, we introduce the Variational Markovian Option Critic (VMOC), an5

off-policy algorithm with provable convergence that employs variational inference6

to stabilize updates. VMOC naturally integrates maximum entropy as intrinsic re-7

wards to promote the exploration of diverse and effective options. Furthermore, we8

adopt low-cost option embeddings instead of traditional, computationally expensive9

option triples, enhancing scalability and expressiveness. Extensive experiments in10

challenging Mujoco environments validate VMOC’s superior performance over ex-11

isting on-policy and off-policy methods, demonstrating its effectiveness in learning12

coherent and diverse option sets suitable for complex tasks.13

1 Introduction14

Recent advancements in deep reinforcement learning (DRL) have demonstrated significant successes15

across a variety of complex domains, such as mastering the human level of atari [36] and Go [44]16

games. These achievements underscore the potential of combining reinforcement learning (RL)17

with powerful function approximators like neural networks [5] to tackle intricate tasks that require18

nuanced control over extended periods. Despite these breakthroughs, Deep RL still faces substantial19

challenges, such as insufficient exploration in dynamic environments [18, 13, 42], inefficient learning20

associated with temporally extended actions [6, 9] and long horizon tasks [30, 4], and vast amounts21

of samples required for training proficient behaviors [16, 40, 15].22

One promising area for addressing these challenges is the utilization of hierarchical reinforcement23

learning (HRL) [11, 2, 12], a diverse set of strategies that decompose complex tasks into simpler, hier-24

archical structures for more manageable learning. Among these strategies, the option framework [47],25

developed on the Semi-Markov Decision Process (SMDP), is particularly effective at segmenting26

non-stationary task stages into temporally-extended actions known as options. Options are typically27

learned through a maximum likelihood approach that aims to maximize the expected rewards across28

trajectories. In this framework, options act as temporally abstracted actions executed over variable29

time steps, controlled by a master policy that decides when each option should execute and terminate.30

This structuring not only simplifies the management of complex environments but also enables the31

systematic discovery and execution of temporal abstractions over long-horizon tasks [24, 23].32

However, the underlying SMDP framework is frequently undermined by three key challenges:33

1) Insufficient exploration and degradation [20, 37, 23]. As options are unevenly updated using34

conventional maximum likelihood methods [4, 10, 45, 25, 26], the policy is quickly saturated with35

early rewarding observations. This typically results in focusing on only low-entropy options that lead36
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to local optima rewards, causing a single option to either dominate the entire policy or switch every37

timestep. Such premature convergence limits option diversity significantly. 2) Sample Inefficiency.38

The semi-Markovian nature inherently leads to sample inefficiency [47, 29]: each policy update39

at the master level extends over multiple time steps, thus consuming a considerable volume of40

experience samples with relatively low informational gain. This inefficiency is further exacerbated41

by the prevalence of on-policy option learning algorithms [4, 52], which require new samples to be42

collected simultaneously from both high-level master policies and low-level action policies at each43

gradient step, and thus sample expensive. 3) Computationally expensive. Options are conventionally44

defined as triples [4] with intra-option policies and termination functions, often modeled using neural45

networks which are expensive to optimize. These challenges collectively limit the broader adoption46

and effectiveness of the option framework in real-world scenarios, particularly in complex continuous47

environments where scalability and stability are critical [14, 34, 26].48

To address these challenges, we introduce the Variational Markovian Option Critic (VMOC), a49

novel off-policy algorithm that integrates the variational inference framework on option-induced50

MDPs [35]. We first formulate the optimal option-induced SMDP trajectory as a probabilistic51

inference problem, presenting a theoretical convergence proof of the variational distribution under52

the soft policy iteration framework [19]. Similar to prior variational methods [31], policy entropy53

terms naturally arise as intrinsic rewards during the inference procedure. As a result, VMOC not54

only seeks high-reward options but also maximizes entropy across the space, promoting extensive55

exploration and maintaining high diversity. We implements this inference procedure as an off-policy56

soft actor critic [19] algorithm, which allows reusing samples from replay buffer and enhances sample57

efficiency. Furthermore, to address the computational inefficiencies associated with conventional58

option triples, we follow [35] and employ low-cost option embeddings rather than complex neural59

network models. This not only simplifies the training process but also enhances the expressiveness of60

the model by allowing the agent to capture a more diverse set of environmental dynamics.61

Our contributions can be summarized as follows:62

• We propose a variational inference approach within the maximum entropy framework to63

enhance diverse and robust exploration of options.64

• We implement an off-policy algorithm that improves sample efficiency.65

• We introduce option embeddings into latent variable policies and enhance expressiveness66

and computational cost-effectiveness of option representations.67

• We conduct extensive experiments in OpenAI Gym Mujoco [49] environments, demonstrat-68

ing that VMOC significantly outperforms other option-based variants in terms of exploration69

capabilities, sample efficiency, and computational efficiency.70

2 Preliminary71

2.1 Control as Structured Variational Inference72

Conventionally, the control as inference framework [19, 31, 19, 53] is derived using the maximum73

entropy objective. In this section, we present an alternative derivation from the perspective of74

structured variational inference. We demonstrate that this approach provides a more concise and75

intuitive pathway to the same theoretical results, where the maximum entropy principle naturally76

emerges through the direct application of variational inference techniques.77

Traditional control methods focus on directly maximizing rewards, often resulting in suboptimal trade-78

offs between exploration and exploitation. By reinterpreting the control problem as a probabilistic79

inference problem, the control as inference framework incorporates both the reward structure and80

environmental uncertainty into decision-making, providing a more robust and flexible approach81

to policy optimization. In this framework, optimality is represented by a binary random variable82

E ∈ {0, 1}1. The probability of optimality given a state-action pair (s,a) is denoted as P (E =83

1 | s,a) = exp(r(s,a)), which is an exponential function of the conventional reward function84

r(s,a) that measures the desirability of an action in a specific state. Focusing on E = 1 captures the85

occurrence of optimal events. For simplicity, we will use E instead of E = 1 in the following text86

1Conventionally, the optimality variable is denoted by O. However, in this context, we use E to avoid conflict
with notation used in the option framework.
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to avoid cluttered notations. The joint distribution over trajectories τ = (s1,a1, . . . , sT ,aT ) given87

optimality is expressed as:88

P (τ |E1:T ) ∝ P (τ, E1:T ) = P (s1)

T−1∏
t=1

P (st+1|st,at)P (Et|st,at)

where P (s1) is the initial state distribution, P (st+1|st,at) is the dynamics model. As explained89

in [19, 31], direct optimization of P (τ | E1:T ) can result in an optimistic policy that assumes a degree90

of control over the dynamics. One way to correct this risk-seeking behavior [31] is through structured91

variational inference. In our case, the goal is to approximate the optimal trajectory P (τ) with the92

variational distribution:93

q(τ) = P (s1)

T−1∏
t=1

P (st+1 | st,at)q(at | st)

where the initial distribution P (s1) and transition distribution P (st+1 | st,at) is set to be the true94

environment dynamics from P (τ). The only variational term is the variational policy q(at | st),95

which is used to approximate the optimal policy P (at | st, E1:T ). Under this setting, the environment96

dynamics will be canceled out from the optimization objective between P (τ | E) and q(τ), thus97

explicitly disallowing the agent to influence its dynamics and correcting the risk-seeking behavior.98

With the variational distribution at hand, the conventional maximum entropy framework can be99

recovered through a direct application of standard structural variational inference [28]:100

logP (E1:T ) = L(q(τ), P (τ, E1:T )) +DKL(q(τ) ∥ P (τ |E1:T ))

= Eτ∼q(τ)[
T∑
t

r(st,at) +H(q(·|st))]︸ ︷︷ ︸
maximum entropy objective

+DKL(q(at|st) ∥ P (at|st, E1:T ))

where L(q, P ) = Eq[log P
q ] is the Evidence Lower Bound (ELBO) [28]. The maximum entropy101

objective arises naturally as the environment dynamics in P (τ, E) and q(τ) cancel out. Under this102

formulation, the soft policy iteration theorem [19] has an elegant Expectation-Maximization (EM)103

algorithm [28] interpretation: the E-step corresponds to the policy evaluation of the maximum104

entropy objective L(q[k], P ); while the M-step corresponds to the policy improvement of the DKL105

term q[k+1] = argmaxqDKL(q
[k](τ) ∥ P (τ | E)). Thus, soft policy iteration is an exact inference if106

both EM steps can be performed exactly.107

Theorem 1 (Convergence Theorem for Soft Policy Iteration). Let τ be the latent variable and E108

be the observed variable. Define the variational distribution q(τ) and the log-likelihood logP (E).109

Let M : q[k] → q[k+1] represent the mapping defined by the EM steps inference update, so that110

q[k+1] = M(q[k]). The likelihood function increases at each iteration of the variational inference111

algorithm until convergence conditions are satisfied.112

Proof. See Appendix A.1.113

2.2 The Option Framework114

In conventional SMDP-based Option Framework [47], an option is a triple (Io, πo, βo) ∈ O, whereO115

denotes the option set; o ∈ O = {1, 2, . . . ,K} is a positive integer index which denotes the o-th triple116

where K is the number of options; Io is an initiation set indicating where the option can be initiated;117

πo = Po(a|s) : A× S→ [0, 1] is the action policy of the oth option; βo = Po(b = 1|s) : S→ [0, 1]118

where b ∈ {0, 1} is a termination function. For clarity, we use Po(b = 1|s) instead of βo which is119

widely used in previous option literatures (e.g., Sutton et al. [47], Bacon et al. [4]). A master policy120

π(o|s) = P (o|s) where o ∈ O is used to sample which option will be executed. Therefore, the121

dynamics (stochastic process) of the option framework is written as:122

P (τ) = P (s0,o0)

∞∏
t=1

P (st|st−1,at−1)Pot(at|st)

[Pot−1
(bt = 0|st)1ot=ot−1

+ Pot−1
(bt = 1|st)P (ot|st)], (1)
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where τ = {s0,o0,a0, s1,o1,a1, . . .} denotes the trajectory of the option framework. 1 is an123

indicator function and is only true when ot = ot−1 (notice that ot−1 is the realization at ot−1).124

Therefore, under this formulation the option framework is defined as a Semi-Markov process since125

the dependency on an activated option o can cross a variable amount of time [47]. Due to the nature126

of SMDP assumption, conventional option framework is unstable and computationally expensive to127

optimize. Li et al. [34, 35] proposed the Hidden Temporal Markovian Decision Process (HiT-MDP):128

P (τ) = P (s0,o0)

∞∏
t=1

P (st|st−1,at−1)P (at|st,ot)P (ot|st,ot−1) (2)

and theoretically proved that the option-induced HiT-MDP is homomorphically equivalent to the129

conventional SMDP-based option framework. Following RL conventions, we use πA = P (at|st,ot)130

to denote the action policy and πO = P (ot|st,ot−1) to denote the option policy respectively. In131

HiT-MDPs, options can be viewed as latent variables with a temporal structure P (ot|st,ot−1),132

enabling options to be represented as dense latent embeddings rather than traditional option triples.133

They demonstrated that learning options as embeddings on HiT-MDPs offers significant advantages134

in performance, scalability, and stability by reducing variance. However, their work only derived an135

on-policy policy gradient algorithm for learning options on HiT-MDPs. In this work, we extend their136

approach to an off-policy algorithm under the variational inference framework, enhancing exploration137

and sample efficiency.138

3 Methodology139

In this section, we introduce the Variational Markovian Option Critic (VMOC) algorithm by extending140

the variational policy iteration (Theorem 1) to the option framework. In Section 3.1, we reformulate141

the optimal option trajectory and the variational distribution as probabilistic graphical models (PGMs),142

propose the corresponding variational objective, and present a provable exact inference procedure for143

these objectives in tabular settings. Section 3.2 extends this result by introducing VMOC, a practical144

off-policy option learning algorithm that uses neural networks as function approximators and proves145

the convergence of VMOC under approximate inference settings. Our approach differs from previous146

works [19, 33, 34] by leveraging structured variational inference directly, providing a more concise147

pathway to both theoretical results and practical algorithms.148

3.1 PGM Formulations of The Option Framework149

Formulating complex problems as probabilistic graphical models (PGMs) offers a consistent and150

flexible framework for deriving principled objectives, analyzing convergence, and devising practical151

algorithms. In this section, we first formulate the optimal trajectory of the conventional SMDP-based152

option framework (Eq. 1) as a PGM. We then use the HiT-MDPs as the variational distribution to153

approximate this optimal trajectory. With these PGMs, we can straightforwardly derive the variational154

objective, where maximum entropy terms arise naturally. This approach allows us to develop a stable155

algorithm for learning diversified options and preventing degeneracy. Specifically, we follow [31, 28]

Figure 1: PGMs of the option framework.

156
by introducing the concept of "Optimality" [48] into the conventional SMDP-based option framework157

(Equation equation 1). This allows us to define the probability of an option trajectory being optimal158

4



as a probabilistic graphical model (PGM), as illustrated in Figure 1 (a):159

P (τ, EA1:T , EO1:T ) = P (s0,o0)

T∏
t=1

P (st+1|st,at)P (EAt = 1|st,at)P (EOt = 1|st,at,ot,ot−1)P (ot)P (at)

∝ P (s0)
T∏
t=1

P (st+1|st,at)︸ ︷︷ ︸
Environment Dynamics

T∏
t=1

P (EAt = 1|st,at)P (EOt = 1|st,at,ot,ot−1)︸ ︷︷ ︸
Optimality Likelihood

, (3)

where E ∈ {0, 1} are observable binary “optimal random variables” [31], τ = {s0,o0,a0, s1 . . .}160

denotes the trajectory of the option framework. The agent is optimal at time step t when P (EAt =161

1|st,at) and P (EOt = 1|st,at,ot,ot−1). We will use E instead of E = 1 in the following text to162

avoid cluttered notations. To simplify the derivation, priors P (o) and P (a) can be assumed to be163

uniform distributions without loss of generality [31]. Note that Eq. 3 shares the same environment164

dynamics with Eq. 1 and Eq. 2. With the optimal random variables EO and EA, the likelihood of a165

state-action {st,at} pair that is optimal is defined as:166

P (EAt |st,at) = exp(r(st,at)), (4)

as this specific design facilitates recovering the value function at the latter structural variational infer-167

ence stage. Based on the same motivation, the likelihood of an option-state-action {ot, st,at,ot−1}168

pair that is optimal is defined as,169

P (EOt |st,at,ot,ot−1) = exp(f(ot, st,at,ot−1)), (5)

where f(·) is an arbitrary non-positive function which measures the preferable of selecting an option170

given state-action pair [st,at] and the previous executed option ot−1. In this work, we choose f to171

be the mutual-information f = I[ot|st,at,ot−1] as a fact that when the uniform prior assumption of172

P (o) is relaxed the optimization introduces a mutual-information as a regularizer [35].173

As explained in Section 2.1, direct optimization of Eq. 3 results in optimistic policies that assumes a174

degree of control over the dynamics. We correct this risk-seeking behavior [31] through approximating175

the optimal trajectory P (τ) with the variational distribution:176

q(τ) = P (s0,o0)

T−1∏
t=1

P (st+1|st,at)q(at|st,ot)q(ot|st,ot−1) (6)

where the initial distribution P (s0,o0) and transition distribution P (st+1 | st,at) is set to be the true177

environment dynamics from P (τ). The variational distribution turns out to be the HiT-MDP, where178

the action policy q(at | st) and the option policy q(ot|st,ot−1) are used to approximate the optimal179

policy P (at|st,ot, EA1:T ) and P (ot|st,ot−1, EO1:T ). The Evidence Lower Bound (ELBO) [28] of the180

log-likelihood optimal trajectory (Eq. 3) can be derived as (see Appendix A.3):181

L(q(τ), P (τ, EA1:T , EO1:T )) = Eq(τ)[logP (τ, EA1:T , EO1:T )− log q(τ)]

= Eq(τ)[r(st,at) + f(·)− log q(at|st,ot)− log q(ot|st,ot−1)]

= Eq(τ)
[
r(st,at) + f(·) +H[πA] +H[πO]

]
(7)

where line 2 is substituting Eq. 3 and Eq. 6 into the ELBO. As a result, the maximum entropy182

objective naturally arises in Eq. 7. Optimizing the ELBO not only seeks high-reward options but also183

maximizes entropy across the space, promoting extensive exploration and maintaining high diversity.184

Given the ELBO, we now define soft value functions of the option framework following the Bellman185

Backup Functions along the trajectory q(τ) as bellow:186

QsoftO [st,ot] = f(·) + Eat∼πA
[
QsoftA [st,ot,at]

]
+H[πA], (8)

QsoftA [st,ot,at] = r(s, a) + Est+1∼P (st+1|st,at)

[
Eot+1∼πO

[
QsoftO [st+1,ot+1]

]
+H[πO]

]
(9)

Assuming policies πA, πO ∈ Π where Π is an arbitrary feasible set, under a tabular setting where the187

inference on L can be done exactly, we have the following theorem holds:188
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Theorem 2 (Soft Option Policy Iteration Theorem). Repeated optimizing L and DKL defined in189

Eq. 10 from any πA0 , π
O
0 ∈ Π converges to optimal policies πA∗, πO∗ such that Qsoft∗O [st,ot] ≥190

QsoftO [st,ot] and Qsoft∗A [st,ot,at] ≥ QsoftA [st,ot,at], for all πA0 , π
O
0 ∈ Π and (st,at,ot) ∈191

S ×A×O, assuming under tabular settings where |S| <∞, |O| <∞, |A| <∞.192

Proof. See Appendix A.2.193

Theorem 2 guarantees finding the optimal solution only when the inference can be done exactly194

under tabular settings. However, real-world applications often involve large continuous domains and195

employ neural networks as function approximators. In these cases, inference procedures can only be196

done approximately. This necessitate a practical approximation algorithm which we present below.197

3.2 Variational Markovian Option Critic Algorithm198

Formulating complex problems as probabilistic graphical models (PGMs) allowing us to leverage199

established methods from PGM literature to address the associated inference and learning challenges200

in real-world applications. To this end, we utilizes the structured variational inference treatment for201

optimizing the log-likelihood of optimal trajectory and prove its convergence under approximate202

inference settings. Specifically, using the variational distribution q(τ) (Eq. 6) as an approximator, the203

ELBO can be derived as (see Appendix A.3):204

L(q(τ), P (τ, EA1:T , EO1:T )) = −DKL(q(τ)||P (τ |EA1:T , EO1:T )) + logP (EA1:T , EO1:T ) (10)

where DKL is the KL-Divergence between the trajectory following variational policies q(τ) and205

optimal policies P (τ |EA1:T , EO1:T ). Under the structural variational inference [28] perspective, con-206

vergence to the optimal policy can be achieved by optimizing the ELBO with respect to the the207

variational policy repeatedly:208

Theorem 3 (Convergence Theorem for Variational Markovian Option Policy Iteration). Let τ be209

the latent variable and EA, EO be the ground-truth optimality variables. Define the variational210

distribution q(τ) and the true log-likelihood of optimality logP (EA, EO). iterates according to the211

update rule qk+1 = argmaxq L(q(τ), P (τ, EA1:T , EO1:T )) converges to the maximum value bounded212

by the true log-likelihood of optimality.213

Proof. See Appendix A.4.214

We further implements a practical algorithm, the Variational Markovian Option Critic (VMOC)215

algorithm, which is suitable for complex continuous domains. Specifically, we employ parameterized216

neural networks as function approximators for both the Q-functions (Qsoft
ψA

, Qsoft
ψO

) and the policies217

(πθA , πθO ). Instead of running evaluation and improvement to full convergence using Theorem 2, we218

can optimize the variational distribution by taking stochastic gradient descent following Theorem 3219

with respect to the ELBO (Eq. 7) directly. Share the same motivation with Haarnoja et al. [19]220

of reducing the variance during the optimization procedure, we derive an option critic framework221

by optimizing the maximum entropy objectives between the action Eq. 9 and the option Eq. 8222

alternatively. The Bellman residual for the action critic is:223

JQA(ψ
A
i ) = E(st,ot,at,st+1)∼D

[(
min
i=1,2

QψAi (st,ot,at)−(
r(st,at) + Eot+1∼πO

[
QsoftO [st+1,ot+1]

]
+ αOH[πO]

))2]
where αO is the temperature hyper-parameter and the expectation over option random variable224

Eot+1∼πO can be evaluated exactly since πO is a discrete distribution. The Bellman residual for the225

option critic is:226

JQO (ψ
O
i ) = E(st,ot)∼D

[(
min
i=1,2

QOψOi
(st,ot)−

(
f(·) + Eat∼πA

[
QsoftA [st,ot,at]− αA log q(at|st,ot)

] ))2]
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αA is the temperature hyper-parameter. Unlike Eot+1∼πO can be trivially evaluated, evaluating227

Eat∼πA is typically intractable. Therefore, in implementation we use at sampled from the replay228

buffer to estimate the expectation over πA.229

Following Theorem 3, the policy gradients can be derived by directly taking gradient with respect to230

the ELBOs defined for the action Eq. 9 and the option Eq. 8 policies respectively. The action policy231

objective is given by:232

JπA(θ
A) = −E(st,ot)∼D

[
min
i=1,2

QψAi (st,ot, ãt)− α
A log q(ãt|st,ot)

]
, ãt ∼ q(·|st,ot)

where in practice the action policy is often sampled by using the re-parameterization trick introduced233

in [19]. The option objective is given by:234

JπO (θ
O) = −E(st,ot−1)∼D

[
min
i=1,2

QψOi (st,ot) + αOH[πO]
]

The variational distribution q(τ) defined in Eq. 6 allows us to learn options as embeddings [34, 35]235

with a learnable embedding matrix W ∈ Rnum_options×embedding_dim. Under this setting, the embedding236

matrix W can be absorbed into the parameter vector θO. This integration into VMOC ensures that237

options are represented as embeddings without any additional complications, thereby enhancing the238

expressiveness and scalability of the model.239

The temperature hyper-parameters can also be adjusted by minimizing the following objective:240

J(αA) = −Eãt∼πA
[
αA(log πA(ãt | st,ot) +H)

]
for the action policy temperature αA, where H is a target entropy. Similarly, the option policy241

temperature αO can be adjusted by:242

J(αO) = −Eot∼πO
[
αO(log πO(ot | st,ot−1) +H)

]
where H is also a target entropy for the option policy. In both cases, the temperatures αA and αO243

are updated using gradient descent, ensuring that the entropy regularization terms dynamically adapt244

to maintain a desired level of exploration. This approach aligns with the methodology proposed245

in SAC [19]. By adjusting the temperature parameters, the VMOC algorithm ensures a balanced246

trade-off between exploration and exploitation, which is crucial for achieving optimal performance in247

complex continuous control tasks. We summarize the VMOC algorithm in Appendix B.248

4 Experiments249

In this section, we design experiments on the challenging single task OpenAI Gym MuJoCo [7]250

environments (10 environments) to test Variational Markovian Option Critic (VMOC)’s performance251

over other option variants and non-option baselines.252

For VMOC in all environments, we fix the temperature rate for both αO and αA to 0.05; we add an253

exploration noise N (µ = 0, σ = 0.2) during exploration. For all baselines, we follow DAC [52]’s254

open source implementations and compare our algorithm with six baselines, five of which are option255

variants, i.e., MOPG [35], DAC+PPO, AHP+PPO [32], IOPG [45], PPOC [27], OC [4] and PPO256

[41]. All baselines’ parameters used by DAC remain unchanged over 1 million environment steps257

to converge. Figures are plotted following DAC’s style: curves are averaged over 10 independent258

runs and smoothed by a sliding window of size 20. Shaded regions indicate standard deviations.259

All experiments are run on an Intel® Core™ i9-9900X CPU @ 3.50GHz with a single thread and260

process. Our implementation details are summarized in Appendix C. For a fair comparison, we follow261

option literature conventions and use four options in all implementations. Our code is available in262

supplemental materials.263

5 Experiments264

We evaluate the performance of VMOC against six option-based baselines (MOPG [35],265

DAC+PPO [52], AHP+PPO [32], IOPG [45], PPOC [27], and OC [4]) as well as the hierarchy-free266
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PPO algorithm [41]. Previous studies [27, 45, 20, 52] have suggested that option-based algorithms267

do not exhibit significant advantages over hierarchy-free algorithms in single-task environments.268

Nonetheless, our results demonstrate that VMOC significantly outperforms all baselines in terms269

of episodic return, convergence speed, step variance, and variance across 10 runs, as illustrated in270

Figure 2. The only exception is the relatively simple InvertedDoublePendulum environment, which271

we suspect is due to hyper-parameter tuning issues and will be addressed in future work.272

Figure 2: Experiments on Mujoco Environments. Curves are averaged over 10 independent runs with different
random seeds and smoothed by a sliding window of size 20. Shaded regions indicate standard deviations.
Notably, VMOC exhibits superior performance on the Humanoid-v2 and HumanoidStandup-v2273

environments. These environments are characterized by a large state space (S ∈ R376) and action274

space (A ∈ R17), whereas other environments typically have state dimensions less than 20 and275

action dimensions less than 5. The enhanced performance of VMOC in these environments can be276

attributed to its maximum entropy capability: in large state-action spaces, the agent must maximize277

rewards while exploring a diverse set of state-action pairs. Maximum likelihood methods tend to278

quickly saturate with early rewarding observations, leading to the selection of low-entropy options279

that converge to local optima.280

A particularly relevant comparison is with the Markovian Option Policy Gradient (MOPG) [35],281

as both VMOC and MOPG are developed based on HiT-MDPs and employ option embeddings.282

Despite being derived under the maximum entropy framework, MOPG utilizes an on-policy gradient283

descent approach. Our experimental results show that VMOC’s performance surpasses that of MOPG,284

highlighting the limitations of on-policy methods, which suffer from shortsighted rollout lengths285

and quickly saturate to early high-reward observations. In contrast, VMOC’s variational off-policy286

approach effectively utilizes the maximum entropy framework by ensuring better exploration and287

stability across the learning process. Additionally, the off-policy nature of VMOC allows it to reuse288

samples from a replay buffer, enhancing sample efficiency and promoting greater diversity in the289

learned policies. This capability leads to more robust learning, as the algorithm can leverage a broader290

range of experiences to improve policy optimization.291

6 Related Work292

The VMOC incorporates three key ingredients: the option framework, a structural variational in-293

ference based off-policy algorithm and latent variable policies. We review prior works that draw294
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on some of these ideas in this section. The options framework [47] offers a promising approach295

for discovering and reusing temporal abstractions, with options representing temporally abstract296

skills. Conventional option frameworks [39], typically developed under the maximum likelihood297

(MLE) framework with few constraints on options behavior, often suffer from the option degra-298

dation problem [32, 4]. This problem occurs when options quickly saturate with early rewarding299

observations, causing a single option to dominate the entire policy, or when options switch every300

timestep, maximizing policy at the expense of skill reuse across tasks. On-policy option learning301

algorithms [4, 3, 52, 34, 35] aim to maximize expected return by adjusting policy parameters to in-302

crease the likelihood of high-reward option trajectories, which often leads to focusing on low-entropy303

options. Several techniques [20, 21, 23] have been proposed to enhance on-policy algorithms with304

entropy-like extrinsic rewards as regularizers, but these often result in biased optimal trajectories. In305

contrast, the maximum entropy term in VMOC arises naturally within the variational framework and306

provably converges to the optimal trajectory.307

Although several off-policy option learning algorithms have been proposed [10, 43, 45, 50], these308

typically focus on improving sample efficiency by leveraging the control as inference framework.309

Recent works [45] aim to enhance sample efficiency by inferring and marginalizing over options,310

allowing all options to be learned simultaneously. Wulfmeier et al. [50] propose off-policy learning of311

all options across every experience in hindsight, further boosting sample efficiency. However, these312

approaches generally lack constraints on options behavior. A closely related work [33] also derives313

a variational approach under the option framework; however, it is based on probabilistic graphical314

model that we believe are incorrect, potentially leading to convergence issues. Additionally, our315

algorithm enables learning options as latent embeddings, a feature not present in their approach.316

Recently, several studies have extended the maximum entropy reinforcement learning framework to317

discover skills by incorporating additional latent variables. One class of methods [22, 17] maintains318

latent variables constant over the duration of an episode, providing a time-correlated exploration319

signal. Other works [19, 51] focus on discovering multi-level action abstractions that are suitable for320

repurposing by promoting skill distinguishability, but they do not incorporate temporal abstractions.321

Studies such as [38, 1, 8] aim to discover temporally abstract skills essential for exploration, but they322

predefine their temporal resolution. In contrast, VMOC learns temporal abstractions as embeddings323

in an end-to-end data-driven approach with minimal prior knowledge encoded in the framework.324

7 Conclusion325

In this paper, we have introduced the Variational Markovian Option Critic (VMOC), a novel off-policy326

algorithm designed to address the challenges of ineffective exploration, sample inefficiency, and com-327

putational complexity inherent in the conventional option framework for hierarchical reinforcement328

learning. By integrating a variational inference framework, VMOC leverages maximum entropy329

as intrinsic rewards to promote the discovery of diverse and effective options. Additionally, by330

employing low-cost option embeddings instead of traditional, computationally expensive option331

triples, VMOC enhances both scalability and expressiveness. Extensive experiments in challenging332

Mujoco environments demonstrate that VMOC significantly outperforms existing on-policy and333

off-policy option variants, validating its effectiveness in learning coherent and diverse option sets334

suitable for complex tasks. This work advances the field of hierarchical reinforcement learning by335

providing a robust, scalable, and efficient method for learning temporally extended actions.336

8 Limitations337

Due to limited computing resources, we did not conduct an ablation study of VMOC. Additionally,338

the temperature parameter was fixed in our experiments, whereas an automatically tuned parameter339

could potentially enhance performance (see SAC [19]). While our baselines focus on option variants,340

a thorough comparison to other off-policy algorithms is also worth investigating. It is particularly341

important to explore whether VMOC exhibits performance improvements in scalability when the342

number of option embeddings is significantly increased. These investigations are left for future work.343
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A Proofs467

A.1 Theorem 1468

Theorem 1 (Convergence Theorem for Structured Variational Policy Iteration). Let τ be the469

latent variable and E be the observed variable. Define the variational distribution q(τ) and the470

log-likelihood logP (E). Let M : q[k] → q[k+1] represent the mapping defined by the EM steps471

inference update, so that q[k+1] =M(q[k]). The likelihood function increases at each iteration of the472

variational inference algorithm until the conditions for equality are satisfied and a fixed point of the473

iteration is reached:474

logP (E | q[k+1]) ≥ logP (E | q[k]), with equality if and only if
475

L(q[k+1], P ) = L(q[k], P )
and476

DKL(q
[k+1](τ) ∥ P (τ | E)) = DKL(q

[k](τ) ∥ P (τ | E)).
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Proof. Let τ be the latent variable and E be the observed variable. Define the evidence lower bound477

(ELBO) as L(q, P ) and the Kullback-Leibler divergence as DKL(q ∥ P ), where q(τ) approximates478

the posterior distribution and P (E | τ) is the likelihood.479

The log-likelihood function logP (E) can be decomposed as:480

logP (E) = L(q, P ) + DKL(q(τ) ∥ P (τ | E)),

where481

L(q, P ) = Eq(τ) [logP (E , τ)− log q(τ)]

and482

DKL(q(τ) ∥ P (τ | E)) = Eq(τ)
[
log

q(τ)

P (τ | E)

]
.

Let M : q[k] → q[k+1] represent the mapping defined by the variational inference update, so that483

q[k+1] = M(q[k]). If q∗ is a variational distribution that maximizes the ELBO, so that logP (E |484

q∗) ≥ logP (E | q) for all q, then logP (E | M(q∗)) = logP (E | q∗). In other words, the485

maximizing distributions are fixed points of the variational inference algorithm. Since the likelihood486

function is bounded (for distributions of practical interest), the sequence of variational distributions487

q[0], q[1], . . . , q[k] yields a bounded nondecreasing sequence logP (E | q[0]) ≤ logP (E | q[1]) ≤488

· · · ≤ logP (E | q[k]) ≤ logP (E | q[k]) which must converge as k →∞.489

490

A.2 Theorem 2491

Theorem 2 (Soft Option Policy Iteration Theorem). Repeated optimizing L and DKL defined in492

Eq. 10 from any πA0 , π
O
0 ∈ Π converges to optimal policies πA∗, πO∗ such that Qsoft∗O [st,ot] ≥493

QsoftO [st,ot] and Qsoft∗A [st,ot,at] ≥ QsoftA [st,ot,at], for all πA0 , π
O
0 ∈ Π and (st,at,ot) ∈494

S ×A×O, assuming |S| <∞, |O| <∞, |A| <∞.495

Proof. Define the entropy augmented reward as rsoft(st,at) = r(st,at) + H[πA] and496

fsoft(ot, st,at,ot−1) = f(ot, st,at,ot−1) +H[πO] and rewrite Bellman Backup functions as,497

QO[st,ot] = fsoft(·) + Eat∼πA [QA[st,ot,at]] ,

QA[st,ot,at] = rsoft(s, a) + Est+1∼P (st+1|st,at)
[
Eot+1∼πO [QO[st+1,ot+1]]

]
We start with proving the convergence of soft option policy evaluation. As with the standard Q-498

function and value function, we can relate the Q-function at a future state via a Bellman Operator499

T soft. The option-action value function satisfies the Bellman Operator T soft500

T softQA[st,ot,at] = E[Gt|st,ot,at]

= rsoft(s, a) + γ
∑
st+1

P (st+1|st,at)QO[st+1,ot],

As with the standard convergence results for policy evaluation [46], by the definition of T soft (Eq. 11)501

the option-action value function QπAA is a fixed point.502

To prove the T soft is a contraction, define a norm on V -values functions V and U503

∥V − U∥∞ ≜ max
s̄∈S̄
|V (s̄)− U(s̄)|. (11)

where s̄ = {s, o}.504

By recurssively apply the Hidden Temporal Bellman Operator T soft, we have:505
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QO[st,ot−1] = E[Gt|st,ot−1] =
∑
ot

P (ot|st,ot−1)QO[st,ot]

=
∑
ot

P (ot|st,ot−1)
∑
at

P (at|st,ot)
[
r(s, a) + γ

∑
st+1

P (st+1|st,at)QO[st+1,ot]

]
= r(s, a) + γ

∑
ot

P (ot|st,ot−1)
∑
at

P (at|st,ot)
∑
st+1

P (st+1|st,at)QO[st+1,ot]

= r(s, a) + γ
∑

ot,st+1

P (st+1,ot|st,ot−1)QO[st+1,ot]

= r(s, a) + γEst+1,ot

[
QO[st+1,ot]

]
(12)

Therefore, by applying Eq. 12 to V and U we have:506

∥TπV − TπU∥∞

= max
s̄∈S̄

∣∣∣∣γEst+1,ot

[
QO[st+1,ot]

]
− γEst+1,ot

[
U [st+1,ot]

]∣∣∣∣
= γmax

s̄∈S̄
Est+1,ot

[∣∣∣∣QO[st+1,ot]− U [st+1,ot]

∣∣∣∣]
≤ γmax

s̄∈S̄
Est+1,ot

[
γmax
s̄∈S̄

∣∣∣∣QO[st+1,ot]− U [st+1,ot]

∣∣∣∣]
≤ γmax

s̄∈S̄
|V [s̄]− U [s̄]|

= γ∥V − U∥∞ (13)

Therefore, T soft is a contraction. By the fixed point theorem, assuming that throughout our computa-507

tion the QA[·, ·] and QO[·] are bounded and A <∞, the sequence QkA defined by Qk+1
A = T softQkA508

will converge to the option-action value function QπAA as k →∞.509

The convergence results of and the Soft Option Policy Improvement Theorem then follows conven-510

tional Soft Policy Improvement Theorem Theorem 1. Consequently, the Soft Option Policy Iteration511

Theorem follows directly from these results.512

513

A.3 Derivation of Eq. 10514

L(q(τ), P (τ, EA1:T , EO1:T )) = Eq(τ)[logP (τ, EA1:T , EO1:T )− log q(τ)]

= Eq(τ)[logP (τ |EA1:T , EO1:T ) + logP (EA1:T , EO1:T )− log q(τ)]

= Eq(τ)[logP (τ |EA1:T , EO1:T )− log q(τ)] + Eq(τ) logP (EA1:T , EO1:T )

= Eq(τ)[
logP (τ |EA1:T , EO1:T )

log q(τ)
] + logP (EA1:T , EO1:T )

= −DKL(log q(τ) ∥ logP (τ |EA1:T , EO1:T )) + logP (EA1:T , EO1:T )

A.4 Theorem 3515

Theorem 3 (Convergence Theorem for Variational Markovian Option Policy Iteration). Let τ be516

the latent variable and EA, EO be the ground-truth optimality variables. Define the variational517

distribution q(τ) and the true log-likelihood of optimality logP (EA, EO). iterates according to the518

update rule qk+1 = argmaxq L(q(τ), P (τ, EA1:T , EO1:T )) converges to the maximum value bounded519

by the data log-likelihood.520
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Proof. The objective is to maximize the ELBO with respect to the policy q. Formally, this can be521

written as:522

qk+1 = argmax
q
L(q, P ).

Suppose we q is a neural network function approximator, assuming the continuity and differentiability523

of q with respect to its parameters. Using stochastic gradient descent (SGD) to optimize the parameters524

guarantees that the ELBO increases, such that L(qk+1, P ) ≥ L(qk, P ).525

Rearranging Eq. 10 we get:526

DKL(q
k+1(τ)||P (τ |EA1:T , EO1:T )) = −L(qk+1(τ), P (τ, EA1:T , EO1:T )) + logP (EA1:T , EO1:T )

≤ −L(qk(τ), P (τ, EA1:T , EO1:T )) + logP (EA1:T , EO1:T )
= DKL(q

k(τ)||P (τ |EA1:T , EO1:T ))

Thus, each SGD update not only potentially increases the ELBO but also decreases the KL divergence,527

moving q closer to P . Given the properties of SGD and assuming appropriate learning rates and528

sufficiently expressive neural network architectures, the sequence {qk} converges to a policy q∗ that529

minimizes the KL divergence to the true posterior.530

B VMOC Algorithm531

Algorithm 1 VMOC Algorithm

1: Initialize parameter vectors ψA, ψO, θO, θA
2: for each epoch do
3: Collect trajectories {ot−1, st,at,ot} into the replay buffer
4: for each gradient step do
5: Update Qsoft

ψAi
: ψAi ← ψAi − ηQA∇JQsoft

ψA
i

for i ∈ {1, 2}

6: Update Qsoft
ψOi

: ψOi ← ψOi − ηQO∇JQsoft
ψO
i

for i ∈ {1, 2}

7: Update πOθO : θO ← θO − ηπO∇JπO
8: Update πAθA : θA ← θA − ηπA∇JπA
9: Update target networks: ψ̄A ← σψA + (1− σ)ψ̄A, ψ̄O ← σψO + (1− σ)ψ̄O

10: Update temperature factors: αO ← αO − ηαO∇JαO , αA ← αA − ηαA∇JαA
11: end for
12: end for

C Implementation Details532

C.1 Hyperparameters533

In this section we summarize our implementation details. For a fair comparison, all baselines:534

MOPG [35], DAC+PPO [52], AHP+PPO [32], PPOC [27], OC [4] and PPO [41] are from DAC’s535

open source Github repo: https://github.com/ShangtongZhang/DeepRL/tree/DAC. Hyper-536

parameters used in DAC [52] for all these baselines are kept unchanged.537

VMOC Network Architecture: We use Pytorch to build neural networks. Specifically, for option538

embeddings, we use an embedding matrix WS ∈ R4×40 which has 4 options (4 rows) and an539

embedding size of 40 (40 columns). For layer normalization we use Pytorch’s built-in function540

LayerNorm 2. For Feed Forward Networks (FNN), we use a 2 layer FNN with ReLu function as541

activation function with input size of state-size, hidden size of [256, 256], and output size of action-542

dim neurons. For Linear layer, we use built-in Linear function3 to map FFN’s outputs to 4 dimension.543

2https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html
3https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
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Each dimension acts like a logit for each skill and is used as density in Categorical distribution4. For544

both action policy and critic module, FFNs are of the same size as the one used in the skill policy.545

Preprocessing: States are normalized by a running estimation of mean and std.546

Hyperparameters for all on-policy option variants: For a fair comparison, we use exactly the same547

parameters of PPO as DAC . Specifically:548

• Optimizer: Adam with ϵ = 10−5 and an initial learning rate 3× 10−4549

• Discount ratio γ: 0.99550

• GAE coefficient: 0.95551

• Gradient clip by norm: 0.5552

• Rollout length: 2048 environment steps553

• Optimization epochs: 10554

• Optimization batch size: 64555

• Action probability ratio clip: 0.2556

Computing Infrastructure: We conducted our experiments on an Intel® Core™ i9-9900X CPU @557

3.50GHz with a single thread and process with PyTorch.558

4https://github.com/pytorch/pytorch/blob/master/torch/distributions/categorical.py
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NeurIPS Paper Checklist559

1. Claims560

Question: Do the main claims made in the abstract and introduction accurately reflect the561

paper’s contributions and scope?562

Answer: [Yes]563

Justification: The abstract and introduction accurately reflect the claims and findings of the564

paper.565

Guidelines:566

• The answer NA means that the abstract and introduction do not include the claims567

made in the paper.568

• The abstract and/or introduction should clearly state the claims made, including the569

contributions made in the paper and important assumptions and limitations. A No or570

NA answer to this question will not be perceived well by the reviewers.571

• The claims made should match theoretical and experimental results, and reflect how572

much the results can be expected to generalize to other settings.573

• It is fine to include aspirational goals as motivation as long as it is clear that these goals574

are not attained by the paper.575

2. Limitations576

Question: Does the paper discuss the limitations of the work performed by the authors?577

Answer: [Yes]578

Justification: Limitations of the study are discussed in the discussion section.579

Guidelines:580

• The answer NA means that the paper has no limitation while the answer No means that581

the paper has limitations, but those are not discussed in the paper.582

• The authors are encouraged to create a separate "Limitations" section in their paper.583

• The paper should point out any strong assumptions and how robust the results are to584

violations of these assumptions (e.g., independence assumptions, noiseless settings,585

model well-specification, asymptotic approximations only holding locally). The authors586

should reflect on how these assumptions might be violated in practice and what the587

implications would be.588

• The authors should reflect on the scope of the claims made, e.g., if the approach was589

only tested on a few datasets or with a few runs. In general, empirical results often590

depend on implicit assumptions, which should be articulated.591

• The authors should reflect on the factors that influence the performance of the approach.592

For example, a facial recognition algorithm may perform poorly when image resolution593

is low or images are taken in low lighting. Or a speech-to-text system might not be594

used reliably to provide closed captions for online lectures because it fails to handle595

technical jargon.596

• The authors should discuss the computational efficiency of the proposed algorithms597

and how they scale with dataset size.598

• If applicable, the authors should discuss possible limitations of their approach to599

address problems of privacy and fairness.600

• While the authors might fear that complete honesty about limitations might be used by601

reviewers as grounds for rejection, a worse outcome might be that reviewers discover602

limitations that aren’t acknowledged in the paper. The authors should use their best603

judgment and recognize that individual actions in favor of transparency play an impor-604

tant role in developing norms that preserve the integrity of the community. Reviewers605

will be specifically instructed to not penalize honesty concerning limitations.606

3. Theory Assumptions and Proofs607

Question: For each theoretical result, does the paper provide the full set of assumptions and608

a complete (and correct) proof?609

Answer: [Yes]610
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Justification: The paper provides a full derivation of assumptions and proofs of the theoretical611

result (convergence of the evidence lower bound)612

Guidelines:613

• The answer NA means that the paper does not include theoretical results.614

• All the theorems, formulas, and proofs in the paper should be numbered and cross-615

referenced.616

• All assumptions should be clearly stated or referenced in the statement of any theorems.617

• The proofs can either appear in the main paper or the supplemental material, but if618

they appear in the supplemental material, the authors are encouraged to provide a short619

proof sketch to provide intuition.620

• Inversely, any informal proof provided in the core of the paper should be complemented621

by formal proofs provided in appendix or supplemental material.622

• Theorems and Lemmas that the proof relies upon should be properly referenced.623

4. Experimental Result Reproducibility624

Question: Does the paper fully disclose all the information needed to reproduce the main ex-625

perimental results of the paper to the extent that it affects the main claims and/or conclusions626

of the paper (regardless of whether the code and data are provided or not)?627

Answer: [Yes]628

Justification: Yes. Our code is provided in supplementary materials. Full details of the629

experimental setup, model architectures are provided.630

Guidelines:631

• The answer NA means that the paper does not include experiments.632

• If the paper includes experiments, a No answer to this question will not be perceived633

well by the reviewers: Making the paper reproducible is important, regardless of634

whether the code and data are provided or not.635

• If the contribution is a dataset and/or model, the authors should describe the steps taken636

to make their results reproducible or verifiable.637

• Depending on the contribution, reproducibility can be accomplished in various ways.638

For example, if the contribution is a novel architecture, describing the architecture fully639

might suffice, or if the contribution is a specific model and empirical evaluation, it may640

be necessary to either make it possible for others to replicate the model with the same641

dataset, or provide access to the model. In general. releasing code and data is often642

one good way to accomplish this, but reproducibility can also be provided via detailed643

instructions for how to replicate the results, access to a hosted model (e.g., in the case644

of a large language model), releasing of a model checkpoint, or other means that are645

appropriate to the research performed.646

• While NeurIPS does not require releasing code, the conference does require all submis-647

sions to provide some reasonable avenue for reproducibility, which may depend on the648

nature of the contribution. For example649

(a) If the contribution is primarily a new algorithm, the paper should make it clear how650

to reproduce that algorithm.651

(b) If the contribution is primarily a new model architecture, the paper should describe652

the architecture clearly and fully.653

(c) If the contribution is a new model (e.g., a large language model), then there should654

either be a way to access this model for reproducing the results or a way to reproduce655

the model (e.g., with an open-source dataset or instructions for how to construct656

the dataset).657

(d) We recognize that reproducibility may be tricky in some cases, in which case658

authors are welcome to describe the particular way they provide for reproducibility.659

In the case of closed-source models, it may be that access to the model is limited in660

some way (e.g., to registered users), but it should be possible for other researchers661

to have some path to reproducing or verifying the results.662

5. Open access to data and code663
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Question: Does the paper provide open access to the data and code, with sufficient instruc-664

tions to faithfully reproduce the main experimental results, as described in supplemental665

material?666

Answer: [Yes]667

Justification: The paper provides open access to the code and data.668

Guidelines:669

• The answer NA means that paper does not include experiments requiring code.670

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/671

public/guides/CodeSubmissionPolicy) for more details.672

• While we encourage the release of code and data, we understand that this might not be673

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not674

including code, unless this is central to the contribution (e.g., for a new open-source675

benchmark).676

• The instructions should contain the exact command and environment needed to run to677

reproduce the results. See the NeurIPS code and data submission guidelines (https:678

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.679

• The authors should provide instructions on data access and preparation, including how680

to access the raw data, preprocessed data, intermediate data, and generated data, etc.681

• The authors should provide scripts to reproduce all experimental results for the new682

proposed method and baselines. If only a subset of experiments are reproducible, they683

should state which ones are omitted from the script and why.684

• At submission time, to preserve anonymity, the authors should release anonymized685

versions (if applicable).686

• Providing as much information as possible in supplemental material (appended to the687

paper) is recommended, but including URLs to data and code is permitted.688

6. Experimental Setting/Details689

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-690

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the691

results?692

Answer: [Yes]693

Justification: Justification: All details are provided in the main content and the appendix.694

Guidelines:695

• The answer NA means that the paper does not include experiments.696

• The experimental setting should be presented in the core of the paper to a level of detail697

that is necessary to appreciate the results and make sense of them.698

• The full details can be provided either with the code, in appendix, or as supplemental699

material.700

7. Experiment Statistical Significance701

Question: Does the paper report error bars suitably and correctly defined or other appropriate702

information about the statistical significance of the experiments?703

Answer: [Yes]704

Justification: All gym env experiments are run with 10 different random seeds. Performance705

are reported by 1 sigma shaded area over all 10 runs.706

Guidelines:707

• The answer NA means that the paper does not include experiments.708

• The authors should answer "Yes" if the results are accompanied by error bars, confi-709

dence intervals, or statistical significance tests, at least for the experiments that support710

the main claims of the paper.711

• The factors of variability that the error bars are capturing should be clearly stated (for712

example, train/test split, initialization, random drawing of some parameter, or overall713

run with given experimental conditions).714
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• The method for calculating the error bars should be explained (closed form formula,715

call to a library function, bootstrap, etc.)716

• The assumptions made should be given (e.g., Normally distributed errors).717

• It should be clear whether the error bar is the standard deviation or the standard error718

of the mean.719

• It is OK to report 1-sigma error bars, but one should state it. The authors should720

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis721

of Normality of errors is not verified.722

• For asymmetric distributions, the authors should be careful not to show in tables or723

figures symmetric error bars that would yield results that are out of range (e.g. negative724

error rates).725

• If error bars are reported in tables or plots, The authors should explain in the text how726

they were calculated and reference the corresponding figures or tables in the text.727

8. Experiments Compute Resources728

Question: For each experiment, does the paper provide sufficient information on the com-729

puter resources (type of compute workers, memory, time of execution) needed to reproduce730

the experiments?731

Answer: [Yes]732

Justification: Computational details are provided in the Appendix.733

Guidelines:734

• The answer NA means that the paper does not include experiments.735

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,736

or cloud provider, including relevant memory and storage.737

• The paper should provide the amount of compute required for each of the individual738

experimental runs as well as estimate the total compute.739

• The paper should disclose whether the full research project required more compute740

than the experiments reported in the paper (e.g., preliminary or failed experiments that741

didn’t make it into the paper).742

9. Code Of Ethics743

Question: Does the research conducted in the paper conform, in every respect, with the744

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?745

Answer: [Yes]746

Justification: The research was conducted in accordance with the NeurIPs Code of Ethics.747

Guidelines:748

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.749

• If the authors answer No, they should explain the special circumstances that require a750

deviation from the Code of Ethics.751

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-752

eration due to laws or regulations in their jurisdiction).753

10. Broader Impacts754

Question: Does the paper discuss both potential positive societal impacts and negative755

societal impacts of the work performed?756

Answer: [NA]757

Justification: The work in the paper has no potential for societal impacts.758

Guidelines:759

• The answer NA means that there is no societal impact of the work performed.760

• If the authors answer NA or No, they should explain why their work has no societal761

impact or why the paper does not address societal impact.762

• Examples of negative societal impacts include potential malicious or unintended uses763

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations764

(e.g., deployment of technologies that could make decisions that unfairly impact specific765

groups), privacy considerations, and security considerations.766
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• The conference expects that many papers will be foundational research and not tied767

to particular applications, let alone deployments. However, if there is a direct path to768

any negative applications, the authors should point it out. For example, it is legitimate769

to point out that an improvement in the quality of generative models could be used to770

generate deepfakes for disinformation. On the other hand, it is not needed to point out771

that a generic algorithm for optimizing neural networks could enable people to train772

models that generate Deepfakes faster.773

• The authors should consider possible harms that could arise when the technology is774

being used as intended and functioning correctly, harms that could arise when the775

technology is being used as intended but gives incorrect results, and harms following776

from (intentional or unintentional) misuse of the technology.777

• If there are negative societal impacts, the authors could also discuss possible mitigation778

strategies (e.g., gated release of models, providing defenses in addition to attacks,779

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from780

feedback over time, improving the efficiency and accessibility of ML).781

11. Safeguards782

Question: Does the paper describe safeguards that have been put in place for responsible783

release of data or models that have a high risk for misuse (e.g., pretrained language models,784

image generators, or scraped datasets)?785

Answer: [NA]786

Justification: The paper poses no such risks.787

Guidelines:788

• The answer NA means that the paper poses no such risks.789

• Released models that have a high risk for misuse or dual-use should be released with790

necessary safeguards to allow for controlled use of the model, for example by requiring791

that users adhere to usage guidelines or restrictions to access the model or implementing792

safety filters.793

• Datasets that have been scraped from the Internet could pose safety risks. The authors794

should describe how they avoided releasing unsafe images.795

• We recognize that providing effective safeguards is challenging, and many papers do796

not require this, but we encourage authors to take this into account and make a best797

faith effort.798

12. Licenses for existing assets799

Question: Are the creators or original owners of assets (e.g., code, data, models), used in800

the paper, properly credited and are the license and terms of use explicitly mentioned and801

properly respected?802

Answer: [Yes]803

Justification: The only applicable assets are the code which are credited and distributed804

under a Creative Commons Attribution License.805

Guidelines:806

• The answer NA means that the paper does not use existing assets.807

• The authors should cite the original paper that produced the code package or dataset.808

• The authors should state which version of the asset is used and, if possible, include a809

URL.810

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.811

• For scraped data from a particular source (e.g., website), the copyright and terms of812

service of that source should be provided.813

• If assets are released, the license, copyright information, and terms of use in the814

package should be provided. For popular datasets, paperswithcode.com/datasets815

has curated licenses for some datasets. Their licensing guide can help determine the816

license of a dataset.817

• For existing datasets that are re-packaged, both the original license and the license of818

the derived asset (if it has changed) should be provided.819
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• If this information is not available online, the authors are encouraged to reach out to820

the asset’s creators.821

13. New Assets822

Question: Are new assets introduced in the paper well documented and is the documentation823

provided alongside the assets?824

Answer: [Yes]825

Justification: New assets include the code required to run the experiments described in the826

paper. Documentation is provided along with the code.827

Guidelines:828

• The answer NA means that the paper does not release new assets.829

• Researchers should communicate the details of the dataset/code/model as part of their830

submissions via structured templates. This includes details about training, license,831

limitations, etc.832

• The paper should discuss whether and how consent was obtained from people whose833

asset is used.834

• At submission time, remember to anonymize your assets (if applicable). You can either835

create an anonymized URL or include an anonymized zip file.836

14. Crowdsourcing and Research with Human Subjects837

Question: For crowdsourcing experiments and research with human subjects, does the paper838

include the full text of instructions given to participants and screenshots, if applicable, as839

well as details about compensation (if any)?840

Answer: [NA]841

Justification: The paper does not involve crowdsourcing nor research with human subjects.842

Guidelines:843

• The answer NA means that the paper does not involve crowdsourcing nor research with844

human subjects.845

• Including this information in the supplemental material is fine, but if the main contribu-846

tion of the paper involves human subjects, then as much detail as possible should be847

included in the main paper.848

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,849

or other labor should be paid at least the minimum wage in the country of the data850

collector.851

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human852

Subjects853

Question: Does the paper describe potential risks incurred by study participants, whether854

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)855

approvals (or an equivalent approval/review based on the requirements of your country or856

institution) were obtained?857

Answer: [NA]858

Justification: The paper does not involve crowdsourcing nor research with human subjects.859

Guidelines:860

• The answer NA means that the paper does not involve crowdsourcing nor research with861

human subjects.862

• Depending on the country in which research is conducted, IRB approval (or equivalent)863

may be required for any human subjects research. If you obtained IRB approval, you864

should clearly state this in the paper.865

• We recognize that the procedures for this may vary significantly between institutions866

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the867

guidelines for their institution.868

• For initial submissions, do not include any information that would break anonymity (if869

applicable), such as the institution conducting the review.870
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