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Summary
Skills are essential for unlocking higher levels of problem solving. A common approach

to discovering these skills is to learn ones that reliably reach different states, thus empower-
ing the agent to control its environment. However, existing skill discovery algorithms often
overlook the natural state variables present in many reinforcement learning problems, meaning
that the discovered skills lack control of specific state variables. This can significantly hamper
exploration efficiency, make skills more challenging to learn with, and lead to reward hack-
ing on downstream tasks. We introduce a general method that enables these skill discovery
algorithms to learn focused skills—skills that target and control specific state variables. Our
approach improves state space coverage by a factor of three, unlocks new learning capabilities,
and successfully mitigates reward hacking on downstream tasks.

Contribution(s)
1. This paper presents a general method allowing skill discovery algorithms to learn skills

which control individual state variables.
Context: Prior work Hu et al. (2024) explores a similar method, but is limited to skills that
are discovered by maximizing mutual information.

2. We apply this method to three different skill discovery algorithms, showing that it improves
exploration efficiency by a factor of three and unlocks new learning capabilities.
Context: None

3. These skills can automatically avoid negative side effects when the goal is underspecified.
Context: Prior work has discussed underspecified objectives but has not explored how
skill discovery as a pretraining step can help mitigate these effects.

4. Compared to an existing method, we show that our approach can be significancy more
effective at discovering skill which avoid side effects.
Context: Hu et al. (2024) penalize skills by minimizing mutual information on non-target
variables. We show that this is not sufficient in order to minimize side effects.

5. We show that our method is an effective pretraining step for mitigating reward hacking.
Context: Prior work has explored skill discovery in safety-critical environments(Zhang
et al., 2024; Kim et al., 2022).
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Abstract

Skills are essential for unlocking higher levels of problem solving. A common approach1
to discovering these skills is to learn ones that reliably reach different states, thus em-2
powering the agent to control its environment. However, existing skill discovery algo-3
rithms often overlook the natural state variables present in many reinforcement learning4
problems, meaning that the discovered skills lack control of specific state variables.5
This can significantly hamper exploration efficiency, make skills more challenging to6
learn with, and lead to reward hacking on downstream tasks. We introduce a general7
method that enables these skill discovery algorithms to learn focused skills—skills that8
target and control specific state variables. Our approach improves state space cover-9
age by a factor of three, unlocks new learning capabilities, and successfully mitigates10
reward hacking on downstream tasks.11

1 Introduction12

Skills are learned behaviours that allow an agent to decompose a challenging problem into a set of13
easier sub-problems. In reinforcement learning (RL), a key challenge is skill discovery: finding a14
useful collection of skills, either from the agent’s experiences or from an explicit task description.15
The main difficulty stems from needing to determine the best way to decompose a given problem16
before the agent has been told which problem to solve.17

A popular approach to discovering skills is to find ones that can reliably reach different areas of the18
state space, allowing the agent to both control and explore its environment. Skills learned in this19
way facilitate control, since each skill will consistently bring the agent to the same area of the state20
space. They improve exploration, since set of states visited by each skill is unique. These skills21
can be discovered without any task description by maximizing the mutual information between the22
agent’s selected skill and the state of the environment, or by aligning the representations of skills23
and states within a latent space.24

However, while this approach is effective at generating a diverse set of behaviours, those behaviours25
tend not to provide the agent with much actual control over the individual state variables present in26
many reinforcement learning (RL) environments. For example, in a robot navigation task where the27
state is decomposed into the positions of the agent and other objects, skills might learn to navigate28
to different positions without learning to collect—or avoid— specific objects. The issue with these29
objectives is that skills are only encouraged to reach different states, regardless of the individual30
state variables that are changed in the process.31

Learning a collection of focused skills that change one state variable at a time offers a number of32
benefits. First, it can significantly improve exploration when combining skills. For example, if one33
skill picks up a wrench while another skill picks up a hammer, then the agent can pick up both34
the tool and the hammer by executing one skill after the other. Second, these skills avoid making35
unnecessary changes to the environment, which make learning more efficient on downstream tasks36
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where some state variables don’t need to change. Lastly, by avoiding changes to non-target state37
variables, focused skills significantly limit the agent’s tendency to pursue alternative objectives when38
the reward function is misspecified.39

Our Contributions. We introduce a general method that enables skill discovery algorithms to40
control specific state variables. Rather than treating the agent’s state as a unified whole, we leverage41
the factored state representation to learn skills focused on changing just one state variable at a time.42
We apply our method to a variety of skill discovery algorithms and show that focused skills are able43
to reach three times as many states for same number of skill executions compared to their un-focused44
counterparts. In downstream task, we show that these skills can solve problems that their un-focused45
skills struggle with and can automatically avoid side effects with no modification to the agent’s goal.46
We compare our method to a recent skill-focusing method of Hu et al. (2024), highlighting that our47
method is more effective at learning focused skills, achieves stronger performance on downstream48
tasks and is less prone to reward hacking.49

2 Background50

We model interactions between an agent and its environment as a factored Markov decision process.51

Definition 1. A factored Markov decision process (S,A, P,R, µ, γ) consists of a set of factored52
states S = S1×· · ·×SN , a set of actions A, a transition probability function P : S×A×S → [0, 1],53
a reward function R : S ×A → R, an initial state distribution µ and a discount factor γ ∈ [0, 1).54

Many existing RL domains are factored Markov Decision Processes (MDPs). For example, the state55
of a cart-pole balancing task might be specified in terms of the positions of the cart and pole, along56
with their respective linear and angular velocities. The state of a board game task might be specified57
as a list of locations and piece types. In this paper, we assume that each state variable si is in Rdi .58

We use capital R to denote the reward of the Markov decision process (MDP), which is not observed59
when learning skills. We assume learning proceeds in two phases: first, the agent interacts with60
the environment reward-free, and has the opportunity to construct a set of skills (defined below).61
Next, the agent must learn a policy over its actions and skills that maximizes expected return, the62
discounted sum of future rewards from R.63

We model skills using the options framework (Sutton et al., 1999), which we modify slightly to64
allow skills to depend on their interaction history. A history ht = (s0, a0, . . . , at−1, st) is a se-65
quence of state-action pairs that begins and ends with states. H denotes the set of all histories of66
finite length. For each state variable i, we also let Hi be the set of finite sequences of the form67
(si0, a0, . . . , at−1, s

i
t).68

Definition 2. A skill (I, π, β) consists of an initiation set I ⊆ S, a policy π : H×A → [0, 1] and69
a termination condition β : H → [0, 1].70

A skill might learn to pickup a tool, reach certain positions in a board game or swing a tennis racket.71
Defining skills in terms of histories —rather than environment states— allows us to conveniently72
model skills which end after a fixed number of timesteps. We assume that all skills terminate with73
probability one, and let Prπ,P (·|s) the distribution over states induced by following policy π from74
state s according to the transition probability function P until the skill terminates.75

Definition 3. A focused skill (I, π, β,V) is a skill (I, π, β) together with a non-empty set of target76
variables V ⊂ {1, . . . , N}.77

The target variables V are a proper subset of {1, . . . , N}; otherwise the skill would not focus on any78
specific variables. Changes to non-target variables are called side effects.79

Definition 4. The side effects of a focused skill (I, π, β,V) in state s0 ∈ I the expected number of80
state variables j ̸∈ V that differ between s0 and the final state sT of the skill:81 ∑

sT∈S
Prπ,P (sT |s0)

∑
j ̸∈V

1{sjT ̸= sj0}. (1)
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A focused skill might learn to pick up a tool without knocking over other objects, and would be said82
to have side effects if it knocks over objects while picking up the tool. We aim to minimize side83
effects with a side effects penalty.84

Definition 5. Let P[N ] be the power set of {1, . . . , N}. A function ℓ : H × P[N ] → R≥0 is85
called a side effects penalty if, for any history ht ∈ H and L ∈ P[N ], ℓ satisfies the following two86
properties:87

• If hj
0 ̸= hj

t for some j ∈ L, then ℓ(h,L) > 0,88

• If hj
0 = hj

t for all j ∈ L then ℓ(h,L) = 089

When the side effects penalty depends only on the initial state s0 and the final state st of a history90
ht, we will overload notation and write ℓ(s0, st,L) instead of ℓ(ht,L).91

Skill discovery is the process of finding a set of skills {(Iz, πz, βz) : z ∈ Z}, where Z is an index92
set used to label each skill. We will often refer to the index z as the skill itself, in order to avoid93
re-writing (Iz, πz, βz).94

When skills are focused, it is convenient to decompose the skill index set as Z = Z1 × · · · × ZN .95
The elements zi, referred to as skill components, indicate the effect that a skill z has on variable i.96
We can think of focused skills as skills z = (z1, . . . zn) for which zi ̸= 0 if and only if i is a target97
variable of z. We would expect two focused skills z1 and z2 to have the same effect on a target98
variable i if zi1 = zi2.99

Without access to the MDP reward R, many skill discovery methods learn skills which maximize a100
skill reward.101

Definition 6. A skill reward is a function r : Z ×H → R.102

An example skill reward might incentivize one skill for making coffee and another skill for making103
toast. When the skill reward is a function only the initial state s0 and final state st of a history ht,104
we will overload notation and write r(s0, z, st) instead of r(z, ht). Skill rewards will always be105
denoted a lower case r and are agnostic to the MDP reward R.106

3 Related Work107

Unsupervised skill discovery aims to learn a collection of useful skills without an explicit task de-108
scription. It can be thought of as a pretraining step to overcome challenges of exploration and data109
efficiency on downstream tasks. These methods typically assume that for all skills, the initiation set110
is equal to S and that skills terminate after a pre-defined number of timesteps.111

Mutual-information-based skill discovery. A common approach to skill discovery is to maxi-112
mize the mutual information be tween skills and states, allowing the agent to control its environment.113
Gregor et al. (2017)’s Variational Intrinsic Control (VIC) algorithm maximizes the conditional mu-114
tual information I(Z;ST |s0), where s0 is a starting state, Z is sampled from a distribution ν over115
Z and ST is sampled by following skill Z from start state s0 until termination. Since this mutual116
information is challenging to compute, VIC maximizes the lower bound developed by Barber &117
Agakov (2003):118

I(Z;ST |s0) = −H(Z|ST , s0) +H(Z|s0) (2)
= E[log p(Z|ST , s0)]− E[log ν(Z|s0)] (3)
≥ E[log d(Z|ST , s0)]− E[log ν(Z|s0)]. (4)

Here H(·) and H(·|·) are the entropy and conditional entropy. The skill discriminator d(Z|ST , s0)119
is a learned estimate of p(Z|ST , s0), the posterior distribution over skills. This lower bound gets120
tighter as d approaches the posterior distribution over skills. Therefore, the goal of VIC is to learn121
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both the skill policies and a good skill discriminator. As shown by Gregor et al., this can be achieved122
by training a set of skill policies to maximize the reward123

rVIC(s0, z, sT ) = log(d(z|sT , s0))− log ν(z|s0), (5)

while updating d to estimate the posterior distribution over skills. In a similar spirit, Eysenbach124
et al.’s A Diversity Is All You Need (DIAYN) algorithm maximizes the mutual information between125
skills and all states states that the skill visits during its execution, discovering skills with the reward126

rDIAYN(s0, z, st) = log(d(z|st))− log ν(z). (6)

A wide range of innovations to this basic approach have been studied in the literature (Achiam et al.,127
2018; Sharma et al., 2020; Campos et al., 2020; Hansen et al., 2020; Zhang et al., 2021; Kim et al.,128
2021; Liu & Abbeel, 2021). While maximizing mutual information produces diverse skills, Park129
et al. (2022) observe that these approaches struggle to discover skills for covering long distances in130
the state space.131

Lipschitz-based skill discovery. Recent work has explored Lipschitz constraints to discover skills132
which maximize the distance travelled during skill execution. Lipschitz-constrained Skill Discovery133
(LSD) (Park et al., 2022) learns a Lipschitz-constrained function ϕ : S → Z (i.e. ∥ϕ(s′)− ϕ(s)∥ ≤134
∥s′ − s∥ for all s, s′ ∈ S) and a set of skills that maximize the reward135

rLSD(s0, z, sT ) = ⟨ϕ(sT )− ϕ(s0), z⟩, (7)

where ⟨·, ·⟩ is the inner product. This reward encourages ϕ(sT )− ϕ(s0) to be large in the direction136
of the skill z. Due to the Lipschitz constraint, maximizing ϕ(sT ) − ϕ(s0) requires the Euclidean137
distance ∥sT − s0∥ to be large. Lipschitz-based skill discovery algorithms can learn skills that138
maximize non-Euclidean notions of distance (Park et al., 2023) and have recently achieved state-of-139
the-art results in pixel-based environments (Park et al., 2024).140

Leveraging State Variables in Skill Discovery. Several methods have used state variables to141
improve skill discovery. Skills can be encouraged to achieve subgoals on specific variables (Lee142
et al., 2020; Choi et al., 2023) or to cause specific interactions between state variables (Hu et al.,143
2022; Wang et al., 2024). While these algorithms improve control of state variables, they do not144
penalize side effects to other state variables. The benefits of skills which minimize side effects has145
been studied in the planning literature Allen et al. (2021).146

The most relevant point of comparison to our work is Disentangled Unsupervised Skill Discovery147
(DUSDi) (Hu et al., 2024), a method designed to make mutual-information-based skill discovery148
algorithms learn focused skills. DUSDi maximizes the mutual information between skills and values149
on target variables while minimizing the mutual information between skills and values of non-target150
variables. However, we show that this objective is not always effective at learning focused skills151
because the mutual information penalty does not explicitly minimize side effects. We provide a more152
detailed comparison with DUSDi in Section 4.1 and compare the two methods in our experiments.153
A second distinction between DUSDi and our approach is that our approach is compatible with non154
mutual-information-based skill discovery algorithms, such as Lipschitz-based algorithms.155

Reward Hacking. In downstream tasks, specifying reward functions can be challenging. Reward156
hacking (Amodei et al., 2016; Skalse et al., 2022; Laidlaw et al., 2025) studies issues that arise157
when the MDP reward function is only an approximation of the true objective. Kim et al. (2022)158
and Zhang et al. (2024) propose skill discovery algorithms to mitigate reward hacking in robotics159
tasks by forcing skills to stay within a pre-defined “safe” region of the state space with high prob-160
ability. However, this constraint may be infeasible in stochastic environments. Moreover, without161
minimizing side effects in safe states, these skills may lead to undesired outcomes that are not safety-162
critical. For instance, it may be safe for the skills of a house-cleaning robot to move furniture around163
but would be undesirable for the skills to move furniture unnecessarily. An interesting are of future164
work might be to combine our approach with those of Kim et al. and Zhang et al., learning skills165
that satisfy hard safety constraints while minimizing side effects in safe states.166
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Algorithm 1 Focused Variational Intrinsic Control

for episode = 1,M do
Sample s0 from the initial state distribution µ
Sample skill z from ν(·|s0)
Follow policy πz until termination state sT
for i in Vz do

Update the skill discriminator di from (si0, z
i, siT )

end for
Calculate the reward rfocused-VIC(s0, z, sT ) using Equation 9.
Update πz to maximize rfocused-VIC
Update option prior ν(·|s0) based on rfocused-VIC

end for

4 Focused Skill Discovery167

In this section, we present focused skill discovery: a general method of transforming existing skill168
discovery algorithms into ones that discover focused skills. Our method can be applied to any skill169
discovery algorithm that learns skills in a factored Markov decision process using a skill reward.170
We first outline our general concept and then illustrate how it can be applied to mutual-information-171
based and Lipschitz-based skill discovery algorithms. Lastly, we describe the key differences be-172
tween our method and DUSDi (2024) which allow our method to minimize side effects more effec-173
tively.174

We create a focused skill discovery algorithm from a baseline skill discovery algorithm by con-175
structing a focused skill reward from the baseline algorithm’s skill reward. Focused skill rewards176
incentivize focused skills to control their target variables while minimizing side effects to other177
state variables. The original skill discovery algorithm is instantly transformed into a focused skill178
discovery algorithm by replacing the baseline skill reward with the focused skill reward.179

Focused skill rewards consist of two terms: one which encourages focused skills to manipulate180
their target variables and another which penalizes side effects. The first term is a sum of reward181
components ri : Z × Hi → R, each generated by restricting a copy of the original skill reward182
to Z × Hi. The second term is a side effects penalty ℓ, which discourages the skill from affecting183
non-target variables. Together, these terms define a focused reward184

rfocused(z, ht) =

[∑
i∈Vz

ri(z, h
i
t)

]
− ℓ(ht,V c

z ). (8)

Example 1 (Focused skill rewards for VIC and DIAYN) To create focused skill rewards for
VIC and DIAYN, we learn a separate skill discriminator di for each target variable i, which
predicts skills based on the values of state variable i. This encourages skills to reliably reach
different values of their respective target variables. Starting with the VIC reward in Equation 5,
we obtain the focused VIC reward

rfocused-VIC(s0, z, sT ) =

[∑
i∈Vz

log(di(z|siT , si0))− log(ν(z|si0))

]
− ℓ(s0, sT ,V c

z ). (9)

Similarly, the DIAYN reward in Equation 6 leads to the focused DIAYN reward

rfocused-DIAYN(s0, z, st) =

[∑
i∈Vz

log(di(z|sit))− log(ν(z))

]
− ℓ(s0, st,V c

z ). (10)

185
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Example 2 (Focused skill reward for LSD) A focused skill reward for Lipschitz-constrained
skill discovery is constructed by learning a Lipschitz-constrained function ϕi : Si → Z for
each target variable i. From the LSD reward in Equation 7, we derive the focused LSD reward

rfocused-LSD(s0, z, sT ) =

[∑
i∈τz

⟨ϕi(s
i
0)− ϕ(siT ), z⟩

]
− ℓ(s0, sT ,V c

z ). (11)

This reward motivates skills to maximize the distance between initial and final states on their
target variables.

186

When a skill reward is substituted for a focused skill reward in a skill discovery algorithm, we obtain187
a focused skill discovery algorithm—one which is capable of learning focused skills. Algorithm 1188
applies this transformation to Variational Intrinsic Control, and algorithms for the focused versions189
of DIAYN and LSD are provided in Appendix A.190

4.1 Comparison with DUSDi191

While both focused skill discovery and DUSDi (2024) aim to learn focused skills, they differ in192
two key ways. First, the DUSDi objective is defined through mutual information, while our method193
remains agnostic for how the skill reward is generated. This allows our method to be applied to a194
wider range of skill discovery algorithms, such as LSD (2022). Second, our methods differ in how195
they mitigate side effects.196

DUSDi mitigates side effects by minimizing the mutual information I(Zi, S¬i) between skill com-197
ponents Zi and the values of the remaining state variables, S¬i = (S1, . . . , Si−1, Si+1, . . . SN ).198
However, this mutual information does not necessarily penalize side effects; it only encourages199
skills to have the same effects on non-target state variables.200

To understand the discrepency between side effects and “same effects”, consider the case of a robotic201
arm with two state variables: one for the position of the arm’s gripper and another indicating whether202
a cup of coffee on a nearby table has been knocked over. If i is the position variable of the arm, then203
I(Zi, S¬i) can be minimized if all skill components for the arm gripper knock over the cup of204
coffee, because the components are indistinguishable from one another on the coffee cup variable if205
they all knock the cup over.206

While this may seem like a contrived example, the issues with penalizing side effects through min-207
imizing mutual information become apparent when state variables are entangled—i.e. a change in208
one state variable is correlated with changes in other state variables. In this case, during skill dis-209
covery, the skill discriminator may begin to encourage focused skills to make unnecessary changes210
their non-target state variables in order to minimize mutual information. This behaviour is observed211
empirically in our experiments.212

On the other hand, focused skill discovery explicitly penalizes side effects, making it impossible to213
maximize a focused skill reward if skills cause unnecessary changes to their non-target variables. In214
our experiments below, we will study how this leads to substantial differences between skills learned215
with DUSDi and skills learned focused skill discovery.216

5 Experiments217

We seek to develop a principled understanding of how skills learned with focused skill discovery218
compare to baseline skill discovery algorithm and focused skills learned with DUSDi. We consider219
three gridworld environments that differ in their types of interactions and their opportunities for side220
effects. Qualitatively, we find that our method consistently learns skills that minimize side effects.221
Focused skills dramatically outperform unfocused skills across all downstream tasks we consider,222
and can reach three times as many states in the same amount of skill execution steps as unfocused223
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(a) FourRooms (b) MudWorld

(c) ForageWorld

Figure 1: Skill trajectories for VIC (Blue), DIAYN (green) and LSD (purple) algorithms. Solid lines
are trajectories from focused skills, dashed lines are from DUSDi skills and grey lines are from the
baseline algorithms. Skills start in the blue square and terminate at the circles. Focused skills learn
to collect objects and return to the start state in order to minimize side effects.

skills. The difference in the side effect penalties between focused skill discovery and DUSDi leads224
to significantly different skills learned from the same baseline algorithms. When side effects must225
be minimized to accomplish the task, our skills outperform DUSDi, and are the only ones that can226
accomplish the task in our most challenging environment. When agents optimize a proxy reward227
which does not penalize side effects, all focused skill discovery algorithms automatically avoid228
making unnecessary changes, while all other methods fall short.229

We apply focused skill discovery to three baseline algorithms: VIC (Gregor et al., 2017), DI-230
AYN (Eysenbach et al., 2018) and LSD (Park et al., 2022), obtaining three focused skill discovery231
algorithms: Focused VIC, Focused DIAYN and Focused LSD. These baselines were selected be-232
cause they are have similarities with a broad range of other skill discovery algorithms, while each233
being unique from one another. In particular, the difference between DIAYN and VIC is largely234
whether the skill reward is sparse or dense, which allows us to examine the effect of sparse and235
dense focused skill rewards. LSD takes an entirely different approach to discovering skills. We236
compare these methods to DUSDi VIC and DUSDi DIAYN, the algorithms obtained by applying237
DUSDi VIC and DIAYN. There is no analog of DUSDi for LSD since it only works for mutual-238
information-based skill discovery algorithms. We compare these focused skills with the original239
VIC, DIAYN and LSD algorithms.240

Environments. We learn skills in the FourRooms, ForageWorld and MudWorld environments241
shown in Figure 1. Each environment has four “primitive” actions that move the agent in each242
of the cardinal directions. When an agent selects an action to move in one direction, it moves in one243
of the other three directions with probability 0.1.244

FourRooms has the same map as Sutton et al. (1999), with four added tools that the agent can pick up245
(shown in pink). It contains five state variables: one for the agent’s position and one binary variable246
for each tool indicating whether it has been picked up. This environment is quite challenging to247
explore completely: a sixteenth of the state space (i.e. the set of states where all tools have been248
collected) is only accessible once agent has navigated through all four rooms.249

ForageWorld contains yellow resources for an agent to collect, as well as delicate plants (green250
cells) that should be avoided. If the agent walks over plant, the cell is destroyed and does not regen-251
erate. The states in ForageWorld contain six state variables: one variable for the agent’s position,252
two integer-valued variables for the quantity of each resource collected and three binary variables253
indicating which plants have been destroyed. The challenge for skills in this environment is not254
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exploration, but how to control the position and resource variables while avoiding damage to the255
plants.256

The MudWorld environment contains a patch of mud (brown), a piece of treasure (yellow), and a257
puddle (teal). The agent becomes muddy if it moves to the mud patch and, when it is muddy, it258
tracks mud onto the vacant (white) cells. The agent can become clean again if it moves into the259
puddle. We simplify the agent state in the MudWorld environment to contain four state variables:260
one for the agent’s position, one indicating whether the agent is muddy, one variable that indicates261
whether the treasure has been collected and a variable for the number of muddy cells. The agent has262
only partial observability on its environment it has sufficient information to find an optimal policy263
in the downstream task. Unlike FourRooms and ForageWorld, the state variables in MudWorld are264
entangled; it is impossible for the agent to collect treasure without becoming muddy. Once in the265
mud-patch, the only way to become less muddy is to move to the puddle, which increases the number266
of muddy cells.267

Implementation. We trained all policies using tabular Q-learning with ϵ-greedy exploration and268
a discount factor of 0.99. We trained a set of skill policies Z with |Z| = 16 skills in each skill269
discovery algorithm. We assign each focused skill a single target variable (i.e. |Vz| = 1). For270
the focused skill discovery algorithms and DUSDi algorithms, we assign two skills to target each271
tool, resource or treasure and use the remaining skills (8 in FourRooms, 12 in ForageWorld, 14 in272
MudWorld) to control the agent’s position. All skills were allowed to execute for a maxmium of 40273
steps in FourRooms and 20 steps in ForageWorld and MudWorld.274

For the side effects penalty of focused skill rewards, we apply a weighted 2-norm ∥ · ∥λ, where275
λ ∈ Rd1 × · · · × RdN , to penalize changes on non-target variables. More precisely, for history276
ht = (s0, a0, . . . , at−1, st) and target variables V , ℓ(h,V c

z ) = ∥s0 − st∥λ|V=0
, where λV=0 is the277

weight matrix obtained by setting the values of λ on target variables equal to zero, thus avoiding278
penalties on target variables. Using a weight matrix to control the penalty strength is useful since279
each state variable may have a different range of values. For each focused skill discovery algorithm,280
we chose a single hyperparemeter λ > 0 and set λij equal to λ divided by the maximum 2-norm281
between any two values on variable j. So, for a state variable whose values range from 0 to k, the282
weight was λ/k. This ensures that the strength of the side effect penalty for each variable is between283
0 and λ. We used λ = 10 for Focused VIC and Focused DIAYN and λ = 2 for Focused LSD,284
discussing the effects for different values of λ in Section 5.5.285

Additional training details are available in Appendix B.286

5.1 Qualitative Analysis of Learned Skills287

Figure 1 shows skill trajectories sampled from each skill discovery algorithm. As expected, all288
focused skill discovery algorithms find skills that change control individual state variables while289
minimizing side effects. The DUSDi skills are less effective at avoiding side effects; in ForageWorld290
and MudWorld, the skills that are designed to control the resource and treasure state variables do291
so while damaging nearby green cells and without cleaning off after stepping into the mud patch.292
This is consistent with the differences between focused skill discovery and DUSDi described in293
Section 4.1.294

5.2 Exploration Efficiency295

One major benefit of focusing skills is that they can provide the agent with a way to structure its296
exploration of the environment. Equipped with skills for each tool in the FourRooms environment,297
agents are capable of traversing across the four different rooms in just four skill execution steps.298
This drastically improves exploration efficiency. To measure exploration efficiency, we used the299
Area Under the Curve (AUC) of the State Coverage Fraction vs. Skill Chain Length graph, shown300
in Figure 2. This measures how many states a set of skills is able to reach for a given number of301
skill executions. To compute the state coverage fraction of a skill chain of length l, we measured the302
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Figure 2: State coverage in the FourRooms environment. Focused skills explore three times more
efficiently than un-focused skills, as measured by the Area Under the Curve (AUC).

Figure 3: Learning performance in downstream tasks. Focused skills (solid lines) lead to faster
learning and are the only ones which can accomplish the task in MudWorld.

fraction of unique final states that could be reached after executing all possible skill chain combina-303
tions of length l from a given start state s0. We plotted the mean state coverage fraction and 90%304
confidence intervals over 10 random start states. In all cases, the exploration benefits of focusing305
skills are remarkable: exploration improves by 5.3× for VIC (AUC 1.86 vs AUC 0.35), 2.7× for306
DIAYN (AUC 1.69 vs AUC 0.62) and 3.0× for LSD (AUC 1.84 vs. 0.61). This corresponds to an307
average improvement in exploration efficiency of 3.67× across these three methods.308

The exploration efficiency of the skills learned with DUSDi and our method are comparable. This309
was expected, since both objectives explicitly learn skills that can pick up each tool, facilitating the310
agent’s exploration of hard-to-reach states. Because DUSDi is limited to mutual-information-based311
skill discovery algorithms, there is no DUSDi version of LSD.312

5.3 Performance on Downstream Tasks313

With a set of focused skills that facilitate structured exploration while minimizing side effects, an314
agent is much more capable to solve downstream tasks. We define downstream tasks as follows.315
In all environments, the agent’s goal is to collect all of the tools or resources and navigate to the316
bottom-right corner. In the FourRooms environment, the agent’s goal is to pick up all four tools and317
navigate to the bottom-right corner. In the ForageWorld environment, the agent must collect two318
units of both resources without destroying any delicate plants. In the MudWorld environment, the319
agent must collect the treasure while tracking fewer than five mud cells. In all tasks, the agent starts320
in the top-left corner and receives a (sparse) reward of +1 for accomplishing the task. The agent can321
take up to 320 steps in FourRooms (a maximum of 8 skill execution steps) and up to 60 steps in322
ForageWorld and MudWorld (a maximum of 3 skill execution steps). We conduct 50 independent323
training runs for each of the agents we consider, plotting the mean and 90% confidence intervals of324
our results in Figure 3.325

Without focused skills, agents fail to accomplish their goals. Moreover, while the performance326
of DUSDi and focused skills are comparable in FourRooms, focused skills lead to significantly327
better results in ForageWorld and MudWorld, where an agent must minimize side effects in order328
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to accomplish its goal. This is consistent with our observations from Figure 1, where DUSDi skills329
seem to have the same effects on non-target state variables, while the focused skills learn to minimize330
side effects. In the MudWorld environment, only the agents with focused skills can accomplish the331
task.332

5.4 Mitigating Reward Hacking333

In addition to exploration and learning benefits, focused skill discovery is an effective pretraining334
step for minimizing reward hacking. Figure 4 shows the results of downstream tasks in ForageWorld335
and MudWorld, where the agent is not given the true task rewards from Section 5.3, but instead336
rewards proxy which do not penalize side effects. In ForageWorld, the proxy reward gives a score of337
+1 for reaching the bottom-right corner after picking up all of the resources, regardless of the number338
of plants destroyed. In the MudWorld task, the proxy reward assigns a score of +1 for reaching the339
bottom-right corner after picking up the treasure and cleaning itself off, regardless of the number of340
tracked mud cells. Across both environments and all baseline algorithms, focused skill discovery341
illustrates a striking ability to accomplish the true task even if it is only given the proxy reward. In342
contrast, the DUSDi and un-focused skills maximize the proxy reward at the expense of the true343
reward.

(a) ForageWorld (b) MudWorld

Figure 4: Reward hacking behaviours in the ForageWorld and MudWorld when agents are trained
with a proxy reward instead of the true reward. Focused skills (solid lines) are the only ones which
mitigate reward hacking in MudWorld.

344

5.5 Ablation Studies345

The tendency for focused skills to avoid side effects in our experiments was controlled by the side346
effects hyperparameter λ. To better understand impact of the penalty strength, we re-ran the Mud-347
World task for focused skills learned with varying penalty strengths. We chose values of λ that were348
half and four times the values of λ that were used in our previous experiments, comparing these349
to focused skill discovery algorithms without a side effects penalty (λ = 0). In general, higher350
values of λ tend to lead to better performance and the methods were relatively robust to the penalty351

Figure 5: Impact of the side effect penalty strength on focused skills in the MudWorld domain.
Skills are not effective when there is no side effects penalty (i.e. when λ = 0)..
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strength. Without the side effects penalty, agents with focused skills are not able to accomplish the352
MudWorld task.353

6 Discussion & Conclusion354

We presented focused skill discovery, a general approach that allows skill discovery algorithms to355
learn focused skills. Focused skills are useful not just for minimizing side effects but also for im-356
proving exploration and learning efficiency. We showed that focused skill can dramatically improve357
both an agent’s exploration and learning capabilities, while also providing a natural buffer for reward358
hacking when downstream rewards are under-specified. Compared to a recently proposed approach359
to discovering focused skills, our method showed substantial improvement, particularly in an en-360
vironment where states were entangled. We are excited to keep exploring the benefits of focused361
skills.362

There are a number of interesting avenues of future work to consider. Empirically, it would be363
interesting to scale these experiments up to larger environments and test our method for sets of364
continous skills. Since the baseline methods we considered scale well to these settings, we are365
confident that focused skill discovery will also scale. While pre-defined state variables play a key366
role in our approach, we hope to extend this idea to include other kinds of state abstractions. There367
is also interesting theoretical territory to explore at the intersection of reward hacking and focused368
skill discovery. It seems plausible that in some cases, focused skill discovery could be guaranteed to369
lead to improvements an agent’s capabilities while at the same time mitigating reward hacking.370
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A Algorithms for Focused DIAYN and LSD450

In this section, we describe the additional algorithms used in our experiments.451

Algorithm 2 Focused Diversity is All You Need

for episode = 1,M do
Sample s0 from the initial state distribution µ
Sample skill z from ν
for t = 1, tmax do

Select action at ∼ πz(·|st)
Observe st+1 ∼ p(·|st, at)
Calculate the skill reward rfocused-DIAYN(s0, z, st+1) using Equation 10.
Update policy πz

for i ∈ Vz do
Update the skill discriminators di from (zi, sit+1)

end for
end for

end for

Algorithm 3 Focused Lipschitz Constrained Skill Discovery

for episode = 1,M do
Sample s0 from the initial state distribution µ
Sample skill z from ν
Follow policy πz until termination state sT
for i ∈ Vz do

Update ϕi using (si0, z
i, siT )

end for
Calculate the reward rfocused-LSD(s0, z, sT ) using Equation 11.
Update πz to maximize rfocused-LSD

end for

B Additional Training Details452

Following prior work (Gregor et al., 2017; Eysenbach et al., 2018; Park et al., 2022), the skill dis-453
tribution ν way uniform over all skills and held constant during training. The skill discriminators454
for all mutual-information-based skill discovery algorithms made predictions using an exponentially455
weighted moving average of the previous samples.456
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For LSD, the state representation function ϕ was a linear function of the state trained with stochastic457
gradient descent. Following Park et al., we used spectral normalization (Miyato et al., 2018) to458
satisfy the Lipschitz constraint during training.459

For the DUSDi algorithms, we used a penalty strength of 0.1 as in Hu et al. (2024). We also460
experimented with penalty strengths of 0.01, 0.2, and 0.5, finding that a penalty strength 0.1 lead to461
the best performance. Higher values of λ did not effect the performance of DUSDi in the MudWorld462
environment.463
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