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Abstract

In this work, we introduce the Geometry-Aware Large Reconstruction Model (Ge-
oLRM), an approach which can predict high-quality assets with 512k Gaussians and
21 input images in only 11 GB GPU memory. Previous works neglect the inherent
sparsity of 3D structure and do not utilize explicit geometric relationships between
3D and 2D images. This limits these methods to a low-resolution representation
and makes it difficult to scale up to the dense views for better quality. GeoLRM
tackles these issues by incorporating a novel 3D-aware transformer structure that
directly processes 3D points and uses deformable cross-attention mechanisms to
effectively integrate image features into 3D representations. We implement this
solution through a two-stage pipeline: initially, a lightweight proposal network gen-
erates a sparse set of 3D anchor points from the posed image inputs; subsequently,
a specialized reconstruction transformer refines the geometry and retrieves textural
details. Extensive experimental results demonstrate that GeoLRM significantly
outperforms existing models, especially for dense view inputs. We also demon-
strate the practical applicability of our model with 3D generation tasks, showcasing
its versatility and potential for broader adoption in real-world applications. The
project page: https://linshan-bin.github.io/GeoLRM/.

1 Introduction

In fields ranging from robotics to virtual reality, the quality and diversity of 3D assets can dramatically
influence both user experience and system efficiency. Historically, the creation of these assets has
been a labour-intensive process, demanding the skills of expert artists and developers. While recent
years have witnessed groundbreaking advancements in 2D image generation technologies, such as
diffusion models [43, 44, 42] which iteratively refine images, their adaptation to 3D asset creation
remains challenging. Directly applying diffusion models to 3D generation [20, 36] is less than
satisfactory, primarily due to a dearth of large-scale and high-quality data. DreamFusion [40]
innovatively optimize a 3D representation [2] by distilling the score of image distribution from
pre-trained image diffusion models [43, 44]. However, this approach lacks a deep integration of
3D-specific knowledge, such as geometric consistency and spatial coherence, leading to significant
issues such as the multi-head problem and the inconsistent 3D structure. Additionally, these methods
require extensive per-scene optimizations, which severely limits their practical applications.
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Figure 1: Image to 3D using GeoLRM. Initially, a 3D-aware diffusion model, specifically SV3D [60],
transforms an input image into multiple views. Subsequently, these views are processed by our
GeoLRM to generate detailed 3D assets. Unlike other LRM-based approaches, GeoLRM notably
improves as the number of input views increases.

The introduction of the comprehensive 3D dataset Objaverse [12, 11] brings significant advancements
for this field. Utilizing this dataset, researchers have fine-tuned 2D diffusion models to produce images
consistent with 3D structures [28, 47, 48]. Moreover, recent innovations [74, 64, 54, 72, 65] have
combined these 3D-aware models with large reconstruction models (LRMs) [18] to achieve rapid and
accurate 3D image generation. These methods typically employ large transformers or UNet models
that convert sparse-view images into 3D representations in a single forward step. While they excel in
speed and maintaining 3D consistency, they confront two primary limitations. Firstly, previous works
utilize triplanes [18, 72, 64] to represent the 3D models, wasting lots of features in regions devoid of
actual content and involving dense computations during rendering. This violates the sparse nature of
3D as our analysis shows that the visible portions of the 3D models in the Objaverse dataset constitute
only about 5% of the overall spatial volume. Though Gaussian-based methods [54, 74, 65] may use
pixel-aligned Gaussians for better efficiency, this representation is incapable of recovering the unseen
area and thus heavily relies on the input images. Secondly, previous works tend to overlook the
explicit geometric relationships between 3D and 2D images, which results in ineffective processing.
The tri-plane or pixel-aligned Gaussian tokens do not correspond to a specific space in 3D, thus being
unable to utilize the projection relationship between 3D points and images. In other words, they
conduct dense attention between the 3D queries and the image keys. This leads to the fact that these
methods tend to reconstruct 3D with sparse view inputs but cannot achieve better performance with
denser inputs.

To address these challenges, we introduce the geometry-aware large reconstruction model (GeoLRM)
for 3D Gaussian generation. Our method centres on a 3D-aware reconstruction transformer that
eschews conventional representations like triplanes or pixel-aligned Gaussians in favour of a direct
interaction within the 3D space. However, directly generating 3D Gaussians in the whole 3D space
requires huge memory costs. To this end, we first propose a specialized proposal network to predict
an occupancy grid from input images. Only the occupied voxels will be further processed to generate
3D Gaussian features. The proposed transformer replaces the dense cross attention with deformable
cross attention [86]. By projecting the input 3D tokens onto the corresponding image planes, these
tokens only focus on the most relevant features, which greatly improves the effectiveness.
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We trained our GeoLRM on the Objaverse dataset rendered by [41] and tested it on the Google
Scanned Objects [13]. By integrating geometric principles, our model not only outperforms existing
methods with the same number of inputs but also makes it possible to work with denser image
inputs. Significantly, the model efficiently handles up to 21 images (even more if necessary), yielding
superior 3D models in comparison to those generated from fewer images. Leveraging this capability,
we integrated GeoLRM with SV3D [60] for high-quality 3D model generation.

In summary, our contributions are as follows:

• We introduce a two-stage pipeline that leverages the sparse nature of 3D data, resulting in a
sparse 3DGS token representation suitable for extension to high resolution.

• We fully exploit the projection relationship between 3D points and 2D images, significantly
reducing the space complexity of attention mechanisms in LRMs, thus enabling denser
image input configurations.

• To the best of our knowledge, GeoLRM is the first to process dense inputs using LRM, po-
tentially paving the way for integrating video generation models into 3D AIGC applications.

2 Related Work

2.1 Optimization-based 3D reconstruction

3D reconstruction from multi-view images has been extensively studied in computer vision for
decades. While traditional methods like SfM [68, 58, 45] and MVS [46, 16] provide basic recon-
struction and calibration, they lack robustness and expressiveness. Recent advancements leverage
learning-based methods for better performance. Among these methods, NeRF [33] stands out for its
capability of capturing high-frequency details. Following works [2, 83, 3, 34, 77, 8, 53, 4] further
improve its performance and speed. Though NeRF has made a great improvement, the need to query
tons of points during the rendering process makes it hard for real-time applications. 3D Gaussians [21]
solves this problem by explicitly expressing a scene with 3D Gaussians and utilizing an efficient
rasterization pipeline. These methods involve a per-scene optimization process and require dense
multi-view images for a good reconstruction.

2.2 Large Reconstruction Model

Different from optimization-based 3D reconstruction methods, large reconstruction models [18, 22,
54, 74, 65, 82, 62, 64] are able to reconstruct 3D shapes in a feed-forward way. As the pioneer work
of this area, the LRM [18] illustrates that the transformer backbone can effectively leverage the
power of large-scale datasets and translate image tokens into implicit 3D triplanes under multi-view
supervision. Beyond LRM, Instant3D [22] improves reconstruction quality with sparse-view inputs.
It employs a two-stage paradigm, which first generates four views with the diffusion model and then
regresses NeRF [33] from generated multi-view images. Instead of NeRF, InstantMesh [72] utilizes
mesh representation to reconstruct 3D objects, which adopts a differentiable iso-surface extraction
module. However, many works [54, 82, 74, 71] choose 3D Gaussians [21] as the outputs. GRM [74]
proposes a transformer network to translate pixels to the set of pixel-aligned 3D Gaussians while
LGM [54] uses an asymmetric UNet to predict and fuse 3D Gaussians. Compared with these methods,
our GeoLRM projects multi-view features to the 3D space with cross-view attention mechanisms,
which explicitly explores geometric knowledge.

2.3 3D generation

Early methods [6, 7, 15, 35, 51, 73, 37] in 3D generation area utilize 3D GANs to generate 3D-aware
contents. Although some methods [32, 32, 85, 30, 10, 49, 80] replace 3D GANs with 3D diffusion
models for high-quality generation, their generalization ability is bounded by the limited training data.
Recently, proposed in DreamFusion [40], score distillation sampling (SDS) requires no 3D data and
is able to leverage the great power of 2D text-to-image diffusion models [44, 43, 42]. Specifically, it
optimizes a randomly-initialized 3D model and diffuses the render images with a pretrained diffusion
model. As the follow-up works [63, 9, 26, 61, 55, 76, 27, 78, 25, 23, 41], many methods have
been proposed to accelerate the optimization process or improve 3D generation quality. Different
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Figure 2: Pipeline of the proposed GeoLRM, a geometry-powered method for efficient image to 3D
reconstruction. The process begins with the transformation of dense tokens into an occupancy grid via
a Proposal Transformer, which captures spatial occupancy from hierarchical image features extracted
using a combination of a convolutional layer and DINOv2 [38]. Sparse tokens representing occupied
voxels are further processed through a Reconstruction Transformer that employs self-attention and
deformable cross-attention mechanisms to refine geometry and retrieve texture details with 3D to 2D
projection. Finally, the refined 3D tokens are converted into 3D Gaussians for real-time rendering.

with SDS-based methods, Zero-1-to-3 [28] fine-tunes the 2D diffusion models on a large-scale
synthetic dataset to change the camera viewpoint of a given image. Similar to Zero-1-to-3, many
other works [47, 60, 48, 75, 29, 67, 31, 69] aim to synthesize multi-view consistent images. Our
method can reconstruct 3D contents based on these synthesis multi-view images.

3 Methodology

3.1 Overview

Figure 2 illustrates the pipeline of our proposed method. Our approach takes a set of images {Ii}Ni=1

with their corresponding intrinsic {Ki}Ni=1 and extrinsic {T i}Ni=1 as input. Initially, we encode input
images into hierarchical image features and predict an occupancy grid with a proposal transformer.
Each occupied voxel within this grid is considered a 3D anchor point. These 3D anchor points are
then processed by a reconstruction transformer, refining their geometry and retrieving textural details.
The proposal and reconstruction transformers share the same model architecture, which is further
discussed in Section 3.2. The outputs of the reconstruction transformer are decoded into Gaussian
features with a shallow MLP for rendering. Loss functions are described in Section 3.3.

3.2 Model Architecture

Our model architecture features a hierarchical image encoder for extracting high and low-level image
feature maps along with a geometry-aware transformer for lifting 2D features into 3D representations.

Hierarchical Image Encoder Our method integrates both high and low-level features to enhance
model performance. For high-level features, we utilize DINOv2 [38], which excels in single-image
3D tasks [1]. To capture low-level features, we combine Plücker ray embeddings and RGB values.
The Plücker ray parameterizes each ray corresponding to a pixel by r = (d, o×d), with d representing
the ray’s direction and o its origin [50, 75]. These embeddings, denoted as Rv for each image Iv , are
concatenated with the RGB values of the image. This combined data is then integrated through a
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convolution layer. The encoding processes are succinctly described by the equations:

Fv
H = DINOv2(Iv), (1)

Fv
L = Conv(Concat(Iv, Rv)), (2)

where Fv
H and Fv

L represent the high and low-level feature maps of image Iv , respectively.

Geometry-aware Transformer The geometry-aware transformer aims to efficiently lift image
features to 3D. The proposal transformer and reconstruction transformer are both instances of
this architecture. Previous methods [18, 54, 74, 65, 82] use tri-planes or pixel-aligned Gaussians
to represent 3D contents. However, these data structures make it hard to utilize the projection
relationships, causing dense computations. Instead, we use 3D anchor points, which serve as proxies
for their surrounding points, significantly reducing the number of points we need to process. As
detailed in Figure 2, each transformer block contains a self-attention layer, a deformable cross-
attention layer and a feed-forward network (FFN). The model takes N anchor point features FA =
{f i}Ni=1 as input tokens. Each token f i comprises the coordinate of the corresponding point and a
shared learnable feature.

For the self-attention layer, a crucial problem is how to inject positional information into the sparse
3D tokens. We extend the Rotary Positional Embedding (RoPE) [52] to 3D conditions for relative
positional embedding. For a query qm and a key kn at absolute position m and n, we ensure that
the inner product of embedded values reflects only the relative position information m− n. A direct
yet promising way is splitting the features into three parts and applying RoPE [52] on each part with
x, y, and z positions respectively.

As we can locate each anchor point in the 3D space, a possible way to lift 2D features to 3D is to
project them to the feature maps with known poses and average the corresponding features. However,
this method assumes an accurate anchor position, an equal contribution of all images and a good 3D
correspondence of input images, which is often impractical, especially in 3D generation tasks. To
tackle these issues, we employ deformable attention [86, 24, 66] for a robust fusion of image features.
Given a 3D anchor point feature f i, its spatial coordinate xi and multiple feature maps {Fv}Vv=1,
the deformable attention mechanism is formulated as:

DeformAttn(f i,xi, {Fv}Vv=1) =

V∑
v=1

wv[

K∑
k=1

AkFv ⟨piv +∆pivk⟩], (3)

where k indexes the sampled keys and K is the total sampled key numbers. piv is the projected
2D coordinate on feature map Fv and ∆pivk is the sampled offset. ⟨·⟩ indicates the interpolation
operation. Ak is the attention weight predicted from f i. wv is a per-view weight derived from the
feature it weights. Notably, the prediction of ∆pivk allows the network to correct the geometry
error of anchor points and the inconsistency of input images; The wv enables different importance
levels for each image. To further enhance the representation ability of the model, this mechanism is
extended to multi-head and multi-scale conditions.

Given input tokens F in
A , the transformer block enhances these tokens through a series of sophisticated

transformations described as follows:

Fself
A = F in

A + SelfAttn(RMSNorm(F in
A )), (4)

Fcross
A = Fself

A + DeformCrossAttn(RMSNorm(Fself
A ), {(Fv

H ,Fv
L)}Vv=1), (5)

Fout
A = Fcross

A + FFN(RMSNorm(Fcross
A )). (6)

This design introduces several improvements over the original transformer architecture [59]. By
incorporating RMSNorm [79] for normalization and SiLU [14] for activation, we achieve more stable
training dynamics and better performance.

Post-processing The proposal network takes a low-resolution dense grid (163) as anchor points.
The output is upsampled to a high-resolution grid (1283) with a linear layer. This grid is formulated
to represent the occupancy probability of the corresponding area ([−0.5, 0.5]3). The reconstruction
transformer takes occupied voxels as anchor points. Each output token f i is decoded into multiple
3D Gaussians {Gij}Mj=1 with a multilayer perceptron. The 3D Gaussian Gij is parameterized by the
offset oij regarding the anchor points, 3-channel RGB cij , 3-channel scale sij , 4-channel rotation
quaternion σij , and 1-channel opacity αij . We employ activation functions to limit the range of the
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offset, scale and opacity for better training stability similar to [54]:

oij = Sigmoid(o′
ij) · omax, (7)

sij = Sigmoid(s′ij) · smax, (8)

αij = Sigmoid(α′
ij), (9)

where omax, smax are predefined maximum values of offsets and scales. Given target camera views
{ct}Tt=1, the 3D Gaussians can be further rendered into images {Ît}Tt=1, alpha masks {M̂t}Tt=1 and
depth maps {D̂t}Tt=1 through Gaussian splatting [21].

3.3 Training Objectives

We employ a two-stage training mechanism for our model. In the first stage, we train the proposal
transformer using 3D occupancy ground truth. This stage presents a challenge as it involves a highly
unbalanced binary classification task; only about 5% of the voxels are occupied. To address this
imbalance, we employ a combination of binary cross-entropy loss and the scene-class affinity loss, as
proposed in [5], to supervise the training process. For the generation of ground truth data, see A.1.

For the second stage, we supervise the rendered T images, alpha masks and depth maps with
corresponding ground truth:

L =

T∑
t=1

(
Limg(Ît, It) + Lmask(M̂t,Mt) + 0.2Ldepth(D̂t, Dt, It)

)
, (10)

Limg(Ît, It) = ||Ît − It||2 + 2LLPIPS(Ît, It), (11)

Lmask(M̂t,Mt) = ||M̂t −Mt||2, (12)

Ldepth(D̂t, Dt, It) =
1

|D̂t|

∣∣∣∣∣∣exp(−∆It)⊙ log(1 + |D̂t −Dt|)
∣∣∣∣∣∣
1
, (13)

where LLPIPS is the perceptual image patch similarity loss [84], |D̂t| is the total number of pixels
in |D̂t|, ∆It is the gradient of the current RGB image and ⊙ is the element-wise multiplication
operation. As demonstrated in [57], applying a logarithmic penalty and weighting the per-pixel depth
errors with the image gradients result in a smoother geometric representation.

4 Experiments

4.1 Datasets

G-buffer Objaverse (GObjaverse) [41]: Used for training. Derived from the original Objaverse [12]
dataset, GObjaverse includes high-quality renderings of albedo, RGB, depth, and normal images.
These images are generated through a hybrid technique combining rasterization and path tracing. The
dataset comprises approximately 280,000 normalized 3D models scaled to fit within a cubic space of
[−0.5, 0.5]3. GObjaverse employs a diverse camera setup involving:

• Two orbital paths yielding 36 views per model. This includes 24 views at elevations between
5° and 30° (incremented by 15° rotations) and 12 views at near-horizontal elevations from
-5° to 5° (with 30° rotation steps).

• Additional top and bottom views for comprehensive spatial coverage.

Google Scanned Objects (GSO) [13]: Used for evaluation, this dataset is rendered similarly to
GObjaverse. A random subset of 100 objects is selected to streamline the evaluation process.

OmniObject3D [70]: Also used for evaluation, this dataset is consistently rendered like GObjaverse.
A random subset of 100 objects is chosen for efficient evaluation.

4.2 Implementation details

Our model features 330 million parameters distributed across two distinct image encoders and two
transformers. The first encoder processes geometry with the 6-layer proposal transformer, while the
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Table 1: Quantitative results on Google Scanned Objects (GSO) [13], where we used six views for
inputs and four for evaluation. Inference time and memory usage account only for the reconstruction
process. Bold and underline denote the highest and second-highest scores, respectively.

Method PSNR ↑ SSIM ↑ LPIPS ↓ CD ↓ FS ↑ Inf. Time (s) Memory (GB)

LGM 20.76 0.832 0.227 0.295 0.703 0.07 7.23
CRM 22.78 0.843 0.190 0.213 0.831 0.30 5.93
InstantMesh 23.19 0.856 0.166 0.186 0.854 0.78 23.12
Ours 23.57 0.872 0.167 0.167 0.892 0.67 4.92

Table 2: Quantitative results on OmniObject3D [70]. Bold and underline denote the highest and
second-highest scores, respectively.

Method PSNR ↑ SSIM ↑ LPIPS ↓ CD ↓ FS ↑
LGM 21.94 0.824 0.203 0.256 0.787
CRM 23.12 0.855 0.175 0.204 0.810
InstantMesh 23.86 0.860 0.139 0.178 0.834
Ours 24.74 0.883 0.134 0.156 0.863

second focuses more on textures crucial with the 16-layer reconstruction transformer. During training,
we maintain a maximum number of transformer input tokens of 4k and randomly select 8 views from
a possible 38 for supervision. From these 8 views, we randomly select 1 to 7 views as inputs to
predict the remaining views. This flexibility in view selection not only tests the robustness of our
method but also mimics real-world scenarios where complete data may not always be available. Both
input and rendering resolutions are maintained at 448x448 pixels. At the testing and inference stages,
we use a resolution of 512x512 to align with existing methods. Besides, the number of input tokens is
extended to 16k during testing, showcasing its scalability without the need for fine-tuning. Detailed
information on our model’s architecture and training procedures can be found in Section A.3.

4.3 Quantitative Results

We evaluated the quality of reconstructed assets from sparse view inputs by analyzing both 2D visual
and 3D geometric aspects on the GSO and OmniObject3D dataset [13]. Visual quality was assessed
by comparing rendered views to ground truth images using metrics such as PSNR, SSIM, and LPIPS.
Geometric accuracy was evaluated by aligning our models to the ground truth coordinate systems
and measuring discrepancies using Chamfer Distance and F-Score at a threshold of 0.2, with point
samples totalling 16,000 from the ground truth surfaces. Our method was quantitatively compared
against established baselines, including LGM [54], CRM [64], and InstantMesh [72]. We avoided
comparisons with proprietary methods due to the unavailability of their test splits. Similarly, we
excluded comparisons with OpenLRM [17] and TripoSR [56] as these methods are tailored for single
image inputs, which would be unfair to compare with.

Our approach achieved state-of-the-art performance in four out of the five metrics studied. Although
InstantMesh showed slightly higher LPIPS on the GSO dataset, attributed to its mesh-based smoothing
capabilities, our method demonstrated superior geometric accuracy, benefiting from explicit modelling
of the 3D-to-2D relationship.

In another experiment, outlined in Table 3, we observed a notable trend: our model’s performance
consistently improves with more input views while maintaining low computational costs. This
indicates robust scalability, a critical feature for practical applications. In contrast, the performance
of InstantMesh [72], does not follow this pattern. Specifically, InstantMesh shows a decline in perfor-
mance when the input views increase to 12. This degradation could be due to two primary factors.
First, the low-resolution tri-planes may reach their maximum capacity to represent details. Second,
the model tends to oversmooth details when handling a large volume of image tokens. Our approach
strategically addresses these issues. We employ an extendable sequence of 3D tokens that can be
dynamically adjusted to fit the resolution requirements. Additionally, our model features deformable
attention mechanisms that intelligently focus on the most pertinent information, preventing the loss
of critical details.
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Table 3: Quantitative results on Google Scanned Objects (GSO) with different numbers of input
views. We keep the same four views for testing while changing the number of input views. Bold
denotes the highest score.

Num Input PSNR SSIM Inf. Time (s) Memory (GB)
InstantMesh Ours InstantMesh Ours InstantMesh Ours InstantMesh Ours

4 22.87 22.84 0.832 0.851 0.68 0.51 22.09 4.30
8 23.22 23.82 0.861 0.883 0.87 0.84 24.35 5.50

12 23.05 24.43 0.843 0.892 1.07 1.16 24.62 6.96
16 23.15 24.79 0.861 0.903 1.30 1.51 26.69 8.23
20 23.25 25.13 0.895 0.905 1.62 1.84 28.73 9.43

InputIm
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TripoSR
LG
M

C
R
M

Figure 3: Qualitative comparisons of different image-3D methods. Better viewed when zoomed in.

4.4 Qualitative Results

We conducted a qualitative analysis comparing our method with several LRM-based baselines,
including TripoSR [17], LGM [54], CRM [64], and InstantMesh [72], maintaining their original
settings to ensure optimal performance. In our approach, we utilized the SV3D [60] technology
to generate 21 multi-view images, significantly enhancing the resolution and textural details of the
3D Gaussians produced, as illustrated in Figure 3. Furthermore, as shown in Figure 4, employing
InstantMesh to reconstruct these images did not yield satisfactory outcomes, corroborating our
quantitative findings. This demonstrates the superior capability of our method in handling more
complex 3D reconstructions.
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Figure 4: Qualitative comparison concerning scalability in input views.

4.5 Ablation Study

In this part, We provide ablation studies for the key designs of our method as shown in Table 4. Due
to the limited computational sources, the ablation is done using a smaller reconstruction model (12
layers) and lower resolution (224x224).

Table 4: Ablation study of some key designs. Models are tested on the GSO dataset [13]. Upper: 6
input views and 4 testing views. Lower: different input views. Bold and underline denote the highest
and second-highest scores, respectively.

Method PSNR ↑ SSIM ↑ LPIPS ↓
W/o Plücker rays 20.64 0.826 0.244
W/o low-level features 20.29 0.817 0.246
W/o high-level features 15.85 0.798 0.289
W/o 3D RoPE 20.52 0.827 0.224
Fixed # input views 20.97 0.839 0.220
Full model 20.73 0.831 0.216

4 Inputs 8 Inputs 12 Inputs
Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
Fixed # input views 19.72 0.822 20.85 0.833 21.43 0.838
Full model 19.94 0.835 21.16 0.840 22.04 0.853

Input image W/o high-level features W/o low-level feature Full model

Figure 5: Effects of excluding high-level and low-level features in the image encoder.

Hierarchical Image Encoder Our ablation study underscores the critical role of hierarchical image
features in reconstruction tasks, which necessitate both high-level semantic information (e.g., object
identity and arrangement) and low-level texture information (e.g., surface patterns and colors). As
illustrated in Figure 5, the absence of high-level features leads to model instability, while omitting
low-level features results in a loss of textural detail. This dual requirement emphasizes the model’s
reliance on a comprehensive feature set for accurate image reconstruction. We also performed an
ablation study regarding the Plücker ray embeddings in the low-level encoder. These coordinates
assist the model in learning camera directions, contributing to an improved performance.
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3D RoPE In transformer-based architectures, the role of positional embeddings is critical for accu-
rately interpreting sequence data positions. A key question arises: With the reconstruction transformer
employing deformable cross-attention to elevate 2D features to 3D, is positional embedding still
necessary? Our ablation studies confirm its necessity. Notably, 3D RoPE significantly enhances the
model’s ability to handle longer sequences. For instance, increasing the sequence length from 4k to
16k elements, models equipped with 3D RoPE exhibited a PSNR improvement of 0.4, compared to a
0.2 improvement in models lacking 3D RoPE. This observation aligns with the 1D RoPE [52].

Dynamic Input The ablation study demonstrates a decrease in performance when employing
our dynamic input view strategy compared to the fixed 6-input view setting when the training and
testing phases were consistent. Despite this, the dynamic input strategy enhances the model’s ability
to generalize across different input configurations. This adaptability is critical for handling more
complex scenarios, aligning with our primary objectives.

Deformable attention As shown in Table 5, the ablation results indicate that increasing the number
of sampling points in the deformable attention generally improves performance. Given the trade-off
between computational cost and performance gain, we find that using 8 sampling points strikes the
best balance.

Table 5: Ablation study of deformable attention. ‘0 sampling points’ means directly using the
projected points without any deformation. Bold and underline denote the highest and second-highest
scores, respectively.

Method PSNR ↑ SSIM ↑ LPIPS ↓
0 sampling points 19.52 0.802 0.265
4 sampling points 20.21 0.819 0.238
8 sampling points 20.73 0.839 0.220
16 sampling points 20.80 0.846 0.219

5 Conclusion

In this paper, we present GeoLRM, a geometry-aware large reconstruction model designed to improve
the efficiency and quality of 3D generation. Our approach distinguishes itself from previous methods
by effectively utilizing the inherent sparsity of 3D structures and explicitly integrating geometric
relationships between 3D and 2D images. The GeoLRM framework employs a 3D-aware transformer
architecture that predicts 3D Gaussians through a sophisticated coarse-to-fine methodology. Initially,
a proposal network estimates coarse occupancy grids, which serve as foundational 3D anchor points
for subsequent refinement. The second stage leverages deformable cross-attention to enhance the 3D
structure, integrating detailed textural information. Extensive experiments validate that GeoLRM can
process higher resolutions and accommodate denser image inputs, outperforming existing models
in terms of detail and accuracy. This innovation demonstrates significant potential for real-world
applications, particularly in domains where dense view inputs can enhance output quality and user
experience. GeoLRM’s ability to handle up to 21 images efficiently underscores its scalability and
adaptability, paving the way for integration with advanced video generation technologies.

6 Limitation

While GeoLRM achieves impressive reconstruction quality, it does so through a two-stage process,
which is not inherently end-to-end. This segmentation can lead to the accumulation of errors.
The reliance on a proposal network is currently indispensable due to the computational intensity
of processing Gaussian points across the entire 3D space. This necessity introduces potential
inefficiencies and constraints that could hinder real-time applications. Future research will focus on
developing an end-to-end solution that integrates these stages seamlessly, reducing error propagation
and optimizing processing time. By addressing these limitations, we aim to enhance the model’s
robustness and applicability across a broader range of 3D generation tasks.
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A Appendix

A.1 Occupancy Ground Truth

Previous studies [39, 81, 19] have investigated the task of vision-centric occupancy prediction.
However, these approaches often exhibit significant performance discrepancies when compared to
3D methods. To bridge this gap, we leverage depth maps from the GObjaverse dataset to generate
accurate 3D occupancy ground truths. This process begins by transforming each pixel in the depth
map, represented as pi = [u, v, 1]T , into a point in world coordinates. This transformation uses
both the intrinsic matrix K and the extrinsic parameters T , consisting of a rotation matrix R and a
translation vector t, as shown in the equation:

pw = R(d ·K−1pi) + t, (14)

where d denotes the depth at pixel pi. Subsequently, these world coordinates are voxelized to pinpoint
occupied voxel centres:

V =

{⌊
P

ϵ

⌉}
· ϵ, (15)

where P includes all points in three-dimensional space, V represents the voxel centers, and the voxel
size ϵ is set at 1/128. The voxelization helps in reducing redundancy by removing duplicate entries.

Input image Rendering Mesh

Figure A: Image-to-3D generation with mesh extraction results.
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A.2 Mesh Extraction from 3D Gaussians

We adopt the mesh extraction pipeline from [54] to derive high-quality mesh representations from 3D
Gaussians. Figure A illustrates the mesh generation results of our method, while Figure B compares
our generated mesh with other techniques. The results demonstrate the effectiveness of our approach,
despite some loss of detail during conversion.
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Figure B: Comparison of the generated meshes.

A.3 More Implementation Details

We illustrate the details of network architecture and training procedure in Table A. We train both the
proposal transformer and the reconstruction transformer for 12 epochs on GObjaverse [41], which
takes 0.5 and 2 days respectively on 32 A100 40G. For the proposal transformer, we use a batch
size of 2 per GPU and apply mixed-precision training with BF16 data type. For the reconstruction
transformer, we use a batch size of 1 per GPU and keep the full precision. We note that the second
stage is particularly sensitive to the data type and would fail if using mixed-precision.
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Table A: Implementation details.

Proposal Transformer

Image encoder DINOv2 (ViT-B/14) + Conv
# layers 6
# attention head 16
# deformed points 8
Image feature dimension 384
3D feature dimension 384
Max sequence length 4096

Reconstruction Transformer

Image encoder DINOv2 (ViT-B/14) + Conv
# layers 16
# attention head 16
# deformed points 8
Image feature dimension 384
3D feature dimension 768
Max sequence length 4096
# Gaussians per token 32

Training details

Epoch 12
Learning rate 1e-4
Learning rate scheduler Cosine
Optimizer AdamW
(Beta1, Beta2) (0.9, 0.95)
Weight decay 0.05
Warm-up 1500
Gradient accumulation 8
Gradient clip 4
# GPU 32

A.4 Social Impact

3D AIGC is transforming sectors by automating realistic 3D model creation. In entertainment, it
streamlines film and game production, reducing costs and enhancing experiences. Education benefits
from immersive VR simulations for deeper learning. Architecture sees rapid design visualization and
urban planning improvements. Challenges include job displacement and ethical concerns over content
authenticity. Addressing these requires legal and policy measures, such as clear copyright laws and
standards to protect intellectual property. Developing advanced content moderation tools can detect
false content, and enhancing AI security can prevent misuse. By focusing on these solutions, we can
mitigate negative impacts and maximize the positive contributions of 3D AIGC to society.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction do reflect the paper’s
contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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to make their results reproducible or verifiable.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We have released the code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have included necessary details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The computationally intensive nature of the training procedure made it imprac-
tical to report error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We reported sufficient information on the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research adheres fully to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed both the positive and negative social impacts of our method
in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The dataset we use has no risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credited used assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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