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ABSTRACT

Efficient traffic management at urban intersections is vital for reducing congestion
and improving safety. This paper presents MD3DQN, the first End-to-End novel
reinforcement learning model using surveillance video for real-time traffic signal
control. The model features two main components: an image reception module,
capturing traffic data from cameras positioned on signal poles, and a multi-agent
decision module, where each agent manages a traffic phase. These components
are connected via a bridge module for seamless integration.
Our novel Entropy Attention Mechanism enhances the multi-decision turn-based
traffic signal control by leveraging uncertainty and signal phase delays, leading
to more optimized decisions. Results show MD3DQN improved cumulative re-
ward by an average of 85.2% over Fixed-time 40 and 54.4% over DQN-VTP.
The entropy mechanism contributed to a 41.8% improvement upon ablation study,
demonstrating its impact on faster convergence and better performance.

1 INTRODUCTION

Traffic congestion at intersections remains a critical issue in urban areas, causing significant delays
and economic losses [Fonseca & Garcia (2021); Cheng et al. (2023)]. Efficient Traffic Signal Control
(TSC) is essential, especially as urbanization continues to increase [Wei et al. (2019)].

Recent advances in Reinforcement Learning (RL) have shown great promise in improving TSC
systems by dynamically adjusting signal timings in response to real-time traffic conditions, often
outperforming traditional approaches in simulations [Koh et al. (2020); Li et al. (2021); Noaeen
et al. (2022)]. As a result, RL has become a popular research direction for intersection control, with
a growing body of literature exploring its potential.

However, despite the impressive progress in RL-based TSC models, real-world deployment remains
limited. One key reason is the reliance of most RL models on processed inputs such as queue lengths,
which are easily obtained in simulation environments but challenging to measure accurately in real-
world settings [Comert & Cetin (2021)]. Data from loop detectors or cameras often lacks precision,
and additional algorithms are required to extract accurate queue length estimates from these sources
[Kessler et al. (2021); Gouran et al. (2023)]. Consequently, a seamless end-to-end solution is still
lacking and two crucial components are needed: robust methods for extracting queue length from
diverse data sources and the integration of these inputs into existing RL models. Until this challenge
is addressed, the full potential of RL-based TSC systems cannot be realized in practical deployments.

To address this challenge, our work presents the first end-to-end solution that directly utilizes real-
time video from traffic cameras to train RL models for urban TSC control. Unlike previous ap-
proaches that rely on pre-processed inputs, our model operates on raw traffic data, advancing recent
studies on deep RL in complex urban networks [Xu et al. (2023); Li et al. (2023b); He et al. (2023);
Wu et al. (2023)]. By training on real-world traffic data, our approach bridges the gap between sim-
ulation and practical application, making the model ready for immediate deployment in real-world
traffic systems.
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In summary, our contributions are as follows:

• We are the first to propose an end-to-end solution integrating surveillance camera data with
RL for TSC, moving beyond simulator-based features like vehicle speed and stopping time
by leveraging real-world sensor data from cameras.

• We designed a robust Entropy Attention Mechanism that significantly enhances turn-based
traffic signal control within the reinforcement learning framework.

• Performance evaluations demonstrate that our model excels in real-time intersection con-
trol, not only under normal conditions but also in challenging environments such as night-
time, rain, and fog, where reduced visibility and vehicle mobility pose significant chal-
lenges.

• Our extensive scripting efforts enable traffic flow research in highly realistic 3D-rendered
simulations within Carla Dosovitskiy et al. (2017), offering a more accurate reflection of
real-world scenarios.

2 RELATED WORK

The integration of video surveillance into traffic management systems has been shown to enhance
vehicle detection and traffic flow predictions through deep learning techniques applied to surveil-
lance images [Dilshad et al. (2020); Hu et al. (2021)]. Research has focused on detecting vehicle
density from video data for real-time signal optimization [Jamebozorg & Hami (2024)]. Addition-
ally, sensor fusion combining video cameras with LiDAR improves vehicle localization, though the
high cost of LiDAR limits its scalability [Liu et al. (2023)]. Our research leverages the widespread
deployment of traffic cameras to bridge the gap between theoretical solutions and practical imple-
mentation in signal control [Luo et al. (2018)].

Real-time vehicle detection in challenging conditions such as fog or low light has benefited from
models like YOLO, which is widely adopted for traffic applications [Wang et al. (2022b); Meng et al.
(2023)]. Incorporating such deep learning models into traffic systems improves detection accuracy
and signal timing adjustments [Patel & Ganatra (2023); Meng et al. (2023)]. Multi-stream temporal
structures have further enhanced congestion detection from video, directly supporting traffic control
strategies [He et al. (2023)].

While RL methods have been effective for optimizing traffic signals [Wei et al. (2021); Xu et al.
(2023)], current approaches focus primarily on theoretical simulation without practical considera-
tion of real-world sensor inputs like surveillance cameras. Our MD3DQN model extends multi-agent
RL concepts by incorporating real-time video data, offering more adaptive and practical traffic con-
trol solutions [Liang et al. (2019); Huang et al. (2021)]. Multi-agent RL has demonstrated great
promise in improving urban traffic flow, and video input enhances decision-making capabilities fur-
ther [Wang et al. (2021); Liu et al. (2023)].

Our research addresses the limitations of existing RL-based traffic control systems, which often lack
real-world applicability, by integrating video data to provide a scalable and intelligent solution for
practical intersection management [He et al. (2023); Wu et al. (2023)].

3 PRELIMINARIES

3.1 TRAFFIC INTERSECTION DESCRIPTION

At a typical four-legged intersection, each approach has two lanes: one for left turns and one for
straight or right turns [Papageorgiou et al. (2003)]. These lanes are grouped into lane sets, which are
activated during the same signal phase when there are no conflicting movements. The incoming and
outgoing lanes are defined as:

Lin = {llW , l
s/r
W , llE , l

s/r
E , llN , l

s/r
N , llS , l

s/r
S }, Lout = {l′W , l′E , l

′
N , l′S}

where llW represents the west incoming left-turn lane and l
s/r
W represents the west incoming

straight/right-turn lane. Traffic movements are defined as (ltype
i , l′j), grouping non-conflicting lane

sets for signal timing adjustments.
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3.2 SIGNAL PHASES AND ACTION SPACE

The intersection operates with four distinct signal phases, each controlling traffic from different
directions and movements [Chen et al. (2015)]:

Phase 0 : West-East left-turn protection,

Phase 1 : West-East straight/right-turn,

Phase 2 : North-South left-turn protection,

Phase 3 : North-South straight/right-turn.

In each phase, non-conflicting lane sets are activated, allowing traffic to flow from specific lanes.
The phase activation is represented as:

pk = {(ltype
i , l′j) | a(l

type
i , l′j) = 1}

where pk is the active phase, and a(ltype
i , l′j) = 1 indicates that the signal is green for the movement

from incoming lane ltype
i to outgoing lane l′j .

For example, during Phase 0, both llW (west left-turn lane) and llE (east left-turn lane) may have
green lights, while opposing movements are stopped to prevent conflicts, as shown in Figure 1.

Figure 1: Traffic Intersection Signal Phases and Cycling.

Our model makes decision every 5 second, and the action space at each decision point consists of:

• Retain: Continue with the current phase pk for an additional 5 seconds.
• Switch: Transition to the next phase pk+1, with a 3-second yellow light followed by a

5-second green light.

The action space A is defined as:
A = {aretain, aswitch}

where aretain maintains the current phase, and aswitch initiates the transition to the next phase. This
action definition ensures flexibility while simplifying decision-making. [Salah Bouktif (2021)].

3.3 MARKOV DECISION PROCESS

The traffic signal control problem is modeled as a Markov Decision Process (MDP) [Puterman
(1990); Wang et al. (2023; 2022a)], defined by the tuple (S,A, P,R, γ):

State space: st includes vehicle density, queue length, and current signal phase:

st =
(
{x(li), q(li)}i∈{W,E,N,S}, pk

)
3
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Action space: Retaining or switching the signal phase.

Transition function: P (st+1 | st, a) models system dynamics.

Reward function:

R(st, a) = −

(
α
∑
i

tstop(li) + β
∑
i

q(li)

)
where α and β weigh stopping time and queue length.

The objective is to find the optimal policy:

π∗ = argmax
π

E

[ ∞∑
t=0

γtR(st, at)

]

4 METHODOLOGY

4.1 SOLUTION OVERVIEW

Our proposed solution utilizes image-based inputs to manage traffic signal control through rein-
forcement learning. The images are captured at three time stamps: t− 30, t− 15, and tnow, enabling
the model to capture both current and past traffic dynamics. This temporal information is crucial for
allowing the model to understand evolving traffic states [Wang et al. (2020)].

The model consists of three main components:

- Image Processing Module: This component extracts high-level semantic features from the input
images, transforming them into a lower-dimensional feature space Φ(It). The module is designed to
be modular, allowing flexibility to replace it with various image processing techniques as required.

- Feature Space Mapping (Bridge): This part of the model serves as a bridge, aligning and map-
ping the extracted image features with additional traffic metrics, such as vehicle density and queue
lengths, into a unified decision-making space. The mapping is represented by f : RH′×W ′×D →
Sbridge, where Sbridge is the intermediate space for reinforcement learning.

- Multi-Decision Agent: Each agent focuses on one lane set, processing its features through an
entropy module. The entropy module incorporates both phase timing (phase timing distance, i.e.,
the time until the next or subsequent signal phases) and state uncertainty. The agent optimizes a
policy π(st), balancing rewards such as minimizing queue lengths and reducing vehicle stopping
times.

This modular and flexible architecture enables the system to make informed, real-time traffic control
decisions based on image data and traffic metrics. As shown in Figure 2, the model integrates these
components seamlessly to improve traffic flow and decision-making efficiency.

Figure 2: Overall MD3DQN Model Structure.
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4.2 INPUT REPRESENTATION

The input to the model consists of images captured at three distinct time stamps: t − 30, t − 15,
and tnow, where tnow represents the current time. Each time stamp includes four directional images
representing North (N), South (S), West (W), and East (E) orientations of the intersection. Thus,
a total of 12 images are fed into the model as input, capturing the real-time and historical traffic
conditions from surveillance cameras positioned at the intersection.

This temporal sequence of images provides the model with both current and past traffic states, en-
abling it to learn traffic dynamics over time. These inputs, combined with temporal features, are
processed by the model to inform the decision-making process. The input images are visualized in
Figure 3.

Figure 3: Model Input: Traffic Images from Different Directions at Three Time Stamps.

4.3 VIDEO RECEPTION MODULE

The video reception module processes traffic images captured at three timestamps: t−30, t−15, and
tnow, covering four directions (North, South, West, and East). This module extracts structured fea-
tures from raw images, which are then used for reinforcement learning. We tested three approaches
for feature extraction:

1. Customized ResNet: This method applies spatial and temporal attention [Vaswani et al. (2017)]
for a ResNet [He et al. (2016)]. Spatial attention αsp(p) highlights key regions in each image:

αsp(p) =
exp(WT

spp+ bsp)∑
p′ exp(WT

spp
′ + bsp)

, αtmp(ti) =
exp(UT

tmphti + ctmp)∑
tj
exp(UT

tmphtj + ctmp)

where Wsp, Utmp, and corresponding biases are learnable parameters. Temporal attention captures
traffic flow changes across timestamps. Both attentions are combined with residual connections
R(x) = x+ Attention(x) to retain key information.

2. YOLO: YOLOv10-S Pre-trained model [Ao Wang et al. (2024)], a real-time object detection
model, was fine-tuned to detect vehicles, positions, and densities.

3. ViT: The ViT-Base-Patch16-224 model [Wu et al. (2020)], utilizing self-attention, captures long-
range image dependencies and extracts traffic features like congestion and vehicle distribution.

These approaches enable robust feature extraction, feeding crucial information into downstream RL
tasks to optimize traffic signal control.

4.4 BRIDGE LAYER MODULE

The Bridge Layer Module maps the enriched feature space from the Video Reception Module into
actionable inputs for the SUMO pre-trained RL agent [Lopez et al. (2018)]. The concatenated
feature map F , combining original input and attention-enhanced features, is transformed into a
lower-dimensional space for decision-making via:

F̃ = ϕ(WbF + bb)

5
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where ϕ is a non-linear activation, Wb the weight matrix, and bb the bias vector. The output F̃
captures both spatial and temporal relationships.

A cross-attention mechanism αcr [Cai & Wei (2020)] integrates spatial focus and temporal changes:

αcr(Fsp,i, Ftmp,j) =
exp(WT

c (Fsp,i ⊕ Ftmp,j))∑
k exp(W

T
c (Fsp,i ⊕ Ftmp,k))

where Fsp,i and Ftmp,j represent spatial and temporal features, respectively. This mechanism ensures
effective integration of spatial and temporal dependencies. The final output is sent to the Multi-
Decision Module for traffic signal control.

4.5 MULTI MINI DECISION AGENT MODULE

The Multi Mini Decision Agent Module consists of four mini-agents [Zhang et al. (2021);
Hernandez-Leal et al. (2020)], each responsible for one lane set (North-South left, North-South
straight/right, West-East left, West-East straight/right), processing features through an entropy mod-
ule that accounts for both phase timing and state uncertainty.

Each mini-agent calculates an action score Si = σ(WdFi + bd), where σ is the sigmoid function,
Wd and bd are the weight matrix and bias, and Fi represents the feature set for a given lane. The
scores S1, S2, S3, S4 are then normalized into probabilities:

Pi =
Si∑4
j=1 Sj

Shannon entropy [Lin (1991)] H = −
∑4

i=1 Pi log(max(Pi, ϵ)), is used to quantify decision uncer-
tainty and adjust the decay constant k′ = k ·H . The weights wi = e−k′di are then computed based
on phase timing distance di. These integrated weights are multiplied by the positional embedding
[Vaswani et al. (2017); Li et al. (2023c)] of the traffic signal phase sequence delay, ensuring that
phase timing is incorporated into the decision-making process for more robustness:

w′
i = wi · αcr(Si)

Finally, the weighted scores are used to compute the Q-values for two possible actions, with the
action corresponding to the larger Q-value being selected:

Qretain, Qswitch = fQ(w
′
i · Si)

The Entropy Attention Module, as shown in Figure 4, boosts performance, with its effectiveness
proven by the ablation study results.

Figure 4: Entropy Attention Module: Integrating phase timing distance, entropy, and uncertainty
weight to compute entropy-adjusted weights for each decision.

4.6 DUELING NETWORK

The decision-making process in the Multi Mini Decision Agent Module uses a Dueling Network
architecture [Wang et al. (2016)]. The Q-value Q(s, a) is split into the value function V (s), which
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estimates the reward of being in a state, and the advantage function A(s, a), which measures the
benefit of an action:

Q(s, a) = V (s) +

(
A(s, a)− 1

|A|
∑
a′

A(s, a′)

)
This separation improves learning by distinguishing the value of the state from the relative advantage
of each action, stabilizing the decision-making process [Konda & Tsitsiklis (1999)].

The Dueling Network, combined with entropy-based attention and the multi-agent framework, en-
hances the system’s ability to make intelligent, real-time traffic control decisions.

5 EXPERIMENT

5.1 MULTI MINI DECISION AGENT PRE-TRAINING ON SUMO

The Multi Mini Decision Agent Module was pre-trained in the SUMO traffic simulation environment
using non-image features such as vehicle counts, queue lengths, and cumulative stopping times. The
objective was to establish decision-making capability in traffic signal control before introducing
complex video inputs.

The intersection settings mirrored those in later stages, with 3 timestamps (t− 30, t− 15, and tnow)
per lane set. Each timestamp captured cumulative stopping time tstop(li) and queue length q(li) for
lane set li. This simplified pre-training setup ensures faster convergence and explainability before
integrating video-based inputs.

5.2 CARLA FINE-TUNING

Fine-tuning in the Carla simulation environment involved using real-time image inputs to capture
dynamic traffic flow. Carla offers more realistic vehicle dynamics, making it crucial for testing in
real-world intersection scenarios. The setup and data collection were similar to SUMO, with images
taken at t− 30, t− 15, and tnow.

A key component is the weighted reward function [Li et al. (2023a); Peters et al. (2010)]:

Rweighted = 0.4 · r1 + 0.3 · r2 + 0.2 · r3 + 0.1 · r4
This reflects the cumulative impact of decisions, with rewards normalized across light (plight = 0.01)
and heavy (pheavy = 0.04) traffic flows. Stopping time weight α = 0.1 and queue length weight
β = 1 were chosen to balance both metrics based on prior training.

Fine-tuning showed that the MD3DQN model can handle complex, real-world scenarios by lever-
aging both image inputs and weighted rewards, optimizing signal control in adaptive and intelligent
ways.

5.3 HYBRID ONLINE-OFFLINE TRAINING STRATEGY

We use a hybrid online-offline strategy to improve training efficiency [Nair et al. (2020)]. Let E be
the Carla environment and πθ(a|s) the policy parameterized by θ.

1. Data Collection We interact with E to gather experiences D0 = {(st, at, rt, st+1)}, storing
them in a buffer B: B = D0.

2. Offline Training In the offline phase, πθ is updated using mini-batches of size 150 from B. The
policy parameters are adjusted as θ ← θ − η∇θL(θ), where η = 0.0005. We run 5 iterations per
cycle, improving sample efficiency.

3. Periodic Online Updates After each offline cycle, new experiences Dn are collected from E
and added to B, replacing old data: B ← B ∪ Dn. Roughly 10-20% of the buffer is updated.

4. Iteration This process repeats: π(n)
θ

Offline−−−→ π
(n+1)
θ

Online−−−→ Dn+1 → B.
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Hyperparameters Key parameters include: buffer size = 2000, γ = 0.97, η = 0.0005, τ = 0.01,
batch size = 150, and ϵ annealing from 1 to 0.1 over 20,250 steps.

5.4 METRICS

We evaluated the MD3DQN model using two key metrics [Kim et al. (2023); Ault & Sharon (2021)]:
average stopping time (AST) and average queue length (AQL) [Akçelik (1980)], measured over a
single run in both light (plight = 0.01) and heavy (pheavy = 0.04) traffic conditions. The metrics
were balanced to ensure equal importance for both traffic flows, accounting for the difference in
probabilities.

AST is defined as:

AST =
1

T

N∑
i=1

tstop(Si), AQL =
1

T

N∑
i=1

q(Si)

where tstop(Si) and q(Si) represent the stopping time and queue length for lane set Si, respectively,
and T is the flow duration in minutes. These metrics provide a comprehensive view of the traffic
dynamics in both light and heavy traffic conditions.

5.5 BASELINES

Since no direct comparisons exist for our end-to-end video-to-signal control model, we selected
two fixed-time signal control methods and a customized model for baseline comparison [Ouyang
et al. (2024); Zhao et al. (2021)]. Additionally, we tested our MD3DQN-Res model under extreme
conditions (fog, rain, and night) to evaluate its generalization without explicitly training on those
scenarios.

The baseline methods are:

1. Fixed-Time 30: A signal timing scheme where each phase is set to 30 seconds, independent of
traffic conditions.

2. Fixed-Time 40: Similar to Fixed-Time 30, but with each phase lasting 40 seconds.

3. DQN-VTP: A customized model combining a YOLO-based vehicle detection system to assess
traffic pressure (the number of vehicles approaching the intersection on specified lane sets). These
features are then used to train a DQN model to control traffic signals via reinforcement learning.

The traffic pressure detection system is illustrated in Figure 5, which shows how traffic pressure is
estimated for use in the reinforcement learning model.

Figure 5: Traffic Pressure Detection System on predefined lane sets.

We further tested the MD3DQN-res model under extreme weather conditions (fog, rain, and night),
without explicit training for these scenarios, to assess its generalization capabilities. As shown in
Figure 6, the model was tested under various weather conditions to demonstrate its adaptability.

8
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Rain Fog Night

Figure 6: Camera shot from different extreme weather conditions.

5.6 RESULTS

The MD3DQN variants were evaluated against several baselines, as shown in Table 1. The
MD3DQN-res model achieved an average reward (AR) of -13.76, a 54.4% improvement over DQN-
VTP (-30.19). MD3DQN-yolo and MD3DQN-ViT also outperformed DQN-VTP with AR values
of -12.46 and -18.23, respectively.

For average stopping time (AST), MD3DQN-res reduced vehicle stopping time by 57.7%, reaching
267.72 seconds per minute compared to 633.06 seconds for DQN-VTP. Similarly, average queue
length (AQL) saw a 50.8% reduction, with 27.94 vehicles per minute versus 56.74 for DQN-VTP.

As shown in Figure 7, MD3DQN consistently achieved better rewards and lower stopping times
across varying conditions. Even in challenging weather like fog, rain, and night, MD3DQN-res
outperformed DQN-VTP baseline without needing retraining.

Figure 7: Cumulative Reward Comparison: MD3DQN vs. Baseline Models.

Overall, MD3DQN demonstrated superior stability and efficiency, making it an effective solution
for real-time traffic signal control.

5.7 ABLATION STUDY: IMPACT OF ENTROPY ATTENTION MECHANISM

The entropy attention mechanism provides a significant boost to the model’s performance by dynam-
ically adjusting decisions based on signal phase sequence delays and state uncertainty. As shown
in Figure 8, MD3DQN-res with the entropy mechanism achieved an average reward (AR) of -38.97
under rain conditions, whereas the model without entropy (MD3DQN-res no entropy) only reached
-65.57 under fog conditions. This represents an improvement of approximately 40.6%, demonstrat-
ing the importance of entropy in both faster convergence and enhanced overall performance.

By considering the sequence delay between signal phases, the entropy module allows the model
to make more informed decisions, leading to more efficient and adaptive traffic management, even
under challenging weather conditions.

9
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Figure 8: Impact of Entropy Attention on Average Reward.

6 CONCLUSION

This paper introduced MD3DQN, the first End-to-End video-to-signal control framework for urban
intersections, integrating real-time video inputs with reinforcement learning. MD3DQN surpasses
traditional baselines, including fixed-time and object-detection-based DQN approaches, in metrics
such as average stopping time (AST), queue length (AQL), and average reward (AR), as shown in
Table 1.

As shown in Figure 8, the ablation study of the entropy-based attention mechanism highlights its
key role in enhancing decision accuracy by accounting for signal phase timing and uncertainty.

Our model also demonstrated robust performance in extreme weather conditions like rain, fog, and
night, maintaining superior performance compared to DQN-VTP without the need for retraining, as
shown in Table 2.

Future work will explore multi-intersection control, pedestrian integration, and further refinement
of the model in complex environments to enhance real-time traffic management.

Method AR (/min) ↑ AST (s/min) ↓ AQL (veh/min) ↓
MD3DQN-res -13.76 267.72 27.94
MD3DQN-yolo -12.46 238.04 25.72
MD3DQN-ViT -18.23 346.52 37.73
DQN-VTP -30.19 633.06 56.74
Fixed-time 30 -59.03 1790.99 57.82
Fixed-time 40 -93.00 3007.91 73.84

Table 1: Performance result of MD3DQN against other baseline methods. AR (Average Reward),
AST (Average Stopping Time), AQL (Average Queue Length).

Weather Model AR (/min) ↑ AST (s/min) ↓ AQL (veh/min) ↓

Rain
MD3DQN-res -38.97 1450.76 117.40

DQN-VTP -49.42 1927.92 119.44

Fog
MD3DQN-res -65.57 2213.90 237.05

DQN-VTP -69.44 2577.51 244.65

Night
MD3DQN-res -86.74 2776.76 262.08

DQN-VTP -101.94 2598.96 288.22

Table 2: Comparison of models under extreme weather conditions.
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