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Abstract

Large language models have emerged as a promising approach towards achieving
general-purpose AI agents. The thriving open-source LLM community has greatly
accelerated the development of agents that support human-machine dialogue in-
teraction through natural language processing. However, human interaction with
the world extends beyond only text as a modality, and other modalities such as
vision are also crucial. Recent works on multi-modal large language models, such
as GPT-4V and Bard, have demonstrated their effectiveness in handling visual
modalities. However, the transparency of these works is limited and insufficient to
support academic research. To the best of our knowledge, we present one of the
very first open-source endeavors in the field, LAMM, encompassing a Language-
Assisted Multi-Modal instruction tuning dataset, framework, and benchmark. Our
aim is to establish LAMM as a growing ecosystem for training and evaluating
MLLMs, with a specific focus on facilitating AI agents capable of bridging the
gap between ideas and execution, thereby enabling seamless human-AI interac-
tion. Our main contribution is three-fold: 1) We present a comprehensive dataset
and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
Extensive experiments validate the effectiveness of our dataset and benchmark.
2) We outline the detailed methodology of constructing multi-modal instruction
tuning datasets and benchmarks for MLLMs, enabling rapid scaling and extension
of MLLM research to diverse domains, tasks, and modalities. 3) We provide a
primary but potential MLLM training framework optimized for modality exten-
sion. We also provide baseline models, comprehensive experimental observations,
and analysis to accelerate future research. Our baseline model is trained within
24 A100 GPU hours, framework supports training with V100 and RTX3090 is
available thanks to the open-source society. Codes and data are now available at
https://openlamm.github.io/.

1 Introduction

Humans interact with the real world through multi-modal information, such as vision and language,
since each modality possesses unique capabilities to describe the world, thereby providing us with
richer information to construct our world model. Developing AI agents capable of processing such
multi-modal information, learning and memorizing world knowledge from it, and comprehending
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open-world instructions from humans to take actions and complete complex tasks has long been a
core aspiration in artificial intelligence.

Large Language Models (LLM) have made remarkable progress toward achieving that aspiration.
ChatGPT and GPT-4 [1] model can directly comprehend user intents and generalize to unknown real-
world tasks [2]. LLM has become a universal task interface for general purposes. Almost all natural
language understanding and generation tasks can be transformed into instruction inputs, enabling
a single LLM to perform zero-shot generalization on various downstream applications [3, 4, 5].
Within the realm of open-source models, the LLaMA series [6, 7] stands out for its performance and
transparency. Building upon the LLaMA ecosystem, models like Alpaca [8] and Vicuna [9] employ
different strategies, such as utilizing various machine-generated high-quality instruction-following
samples, to enhance the performance of LLMs, showcasing impressive results. Notably, these
efforts are all text-only. While Multi-model Large Language Models (MLLM) like GPT-4V [10] and
Bard [10] demonstrate remarkable capabilities in processing visual inputs, unfortunately, they are not
currently available for use within the open-source academic community.

Hence, we present LAMM, encompassing the Language-Assisted Multi-Modal instruction tuning
dataset, framework, and benchmark. As one of the very first open-source endeavors in MLLMs,
our aim is to establish LAMM as a thriving ecosystem for training and evaluating MLLMs, and
further empower us to cultivate multi-modal AI agents capable of bridging the gap between ideas and
execution, facilitating seamless interaction between humans and AI machines. In this work, LLMs
serve as the universal task interface, with inputs from vision tokens provided by pre-trained multi-
modal encoders and language instructions. The powerful modeling capability of LLMs, combined
with a unified optimization objective, can help align the model to various modalities. This design sets
LAMM apart from visual foundation models [11, 12], where each model is finely tuned for a specific
task, or from multi-modal visual language foundation models that can only be used as pre-trained
models for visual tasks or possess limited zero-shot capabilities [13], or from multi-task foundation
models struggle in tag-of-war problems [14].

Thoroughly, we present a novel instruction tuning dataset, which extends the research of MLLMs
to both image and point cloud. Our dataset emphasizes fine-grained information and factual knowl-
edge. Additionally, we introduce the very first attempt of a benchmark for MLLMs that offers a
comprehensive evaluation of existing open-source models on various computer vision tasks, with
two new evaluation strategies designed explicitly for multi-modal language models. We conduct
over 200 experiments to provide extensive results and valuable observations on the capabilities
and limitations of MLLMs. Also, we establish an extensible framework to facilitate the extension
of multi-modal language models to additional modalities. Our baseline model surpasses existing
multi-modal language models in downstream tasks related to images, demonstrating the effectiveness
of our framework and dataset. Above all, we have open-sourced our complete codebase for training
and evaluating MLLMs, instruction tuning dataset covering both image and point cloud. various
baseline models trained with our dataset and framework utilizing different settings to promote the
development of an open research community for MLLMs.

Dataset We include an image instruction tuning dataset containing 186,098 image-language
instruction-response pairs and a point cloud instruction tuning dataset with 10,262 point cloud-
language instruction-response pairs. Motivated by LLaVA [15] and GPT-4V [10], we collect images
and point clouds from publicly available datasets and use the GPT-API through self-instruction [16]
methods to generate instructions and responses based on the original labels from these datasets. The
resulting dataset has three appealing properties: 1) To emphasize fine-grained and dense information,
we add more visual information, such as visual relationships and fine-grained categories as input for
the GPT-API. 2) We observe on our benchmark that existing MLLMs may struggle to understand
vision task instructions. To address this, we designed a method to convert vision task annotations into
instruction-response pairs, which enhances MLLMs’ understanding and generalization of vision task
instructions. 3) Considering the vulnerability of LLMs to the hallucination on factual knowledge, our
dataset also includes data pairs for commonsense knowledge question answering by incorporating
a hierarchical knowledge graph label system from the Bamboo [17] dataset and the corresponding
Wikipedia description.

Benchmark We evaluate 9 common image tasks, using a total of 11 datasets with over 62,439
samples, and 3 common point cloud tasks, by utilizing 3 datasets with over 12,788 data samples, while
existing works only provide quantitative results on fine-tuning and evaluating specific datasets such
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as ScienceQA, and most works only conduct demonstration or user studies. 1) We are the very first
attempt to establish a benchmark for MLLMs. We conducted a comprehensive benchmark to quantify
the zero-shot and fine-tuning performance of existing multi-modal language models on various
computer vision tasks and compare them against state-of-the-art methods of these tasks, including
classification, object detection, pose estimation, visual question answering, facial classification,
optical character recognition, object counting. 2) We also attempted two novel evaluation strategies
designed explicitly for MLLMs. Specifically, as for language performance on text generation, we
established a scoring logic based on the GPT-API. And for tasks involving interactions between
localization points and query images, such as object detection and pose estimation, we proposed an
object-locating evaluation method.

Framework To validate the effectiveness of our dataset, we propose a primary but potential MLLM
training framework. To avoid modality conflicts caused by introducing multiple modalities, we
differentiate the encoder, projector, and LLM finetuning blocks for different modalities in the
framework design. Meanwhile, by adding encoders and decoders for other modalities, our framework
can flexibly extend to cover more modalities and tasks, such as video understanding, image synthesis,
and so on. We provide the results of our baseline models trained using this framework on our
benchmark and present various observations to accelerate future research.

2 Related Work
Multimodal Large Language Model. With the rapid development of Large Language Models
(LLM) such as ChatGPT, GPT-4 [1], many studies manage to explore incorporating other modalities
based on LLM and they can be categorized into two perspectives. 1) System Design Perspective:
Visual ChatGPT [18] and MMREACT [19] invoke various vision foundation models by processing
user query to investigate the visual roles of ChatGPT with the help of Visual Foundation Models.
ViperGPT [20] instructs LLM to parse visual queries into interpretable steps expressed by Python
code. HuggingGPT [21] extends its framework to more modalities by integrating more expert models
on Huggingface. 2) End-to-End Trainable Model Perspective: The other methodology is to connect
models for different modalities into an end-to-end trainable model, also known as multimodal large
language model. Flamingo [22] proposes a unified architecture for language and vision modeling,
while BLIP-2 [23] introduces a Querying Transformer to connect information from image to text
modality. Kosmos [4] and PaLM-E [24] build an end-to-end trainable framework on web-scale
multi-modal corpora. With the open-sourced LLaMA [6], Mini-GPT4 [25] optimizes a trainable
projection matrix only, which connects pre-trained BLIP-2 style vision encoder and large language
model, while LLaVA [15] and mPLUG-OwL [26] also finetune LLM. Besides feeding visual info to
LLM as input only, LLaMA-Adapter [27], Multi-modal GPT [28] and Otter [29] also integrate multi
modal information with intermediate features in LLM.

Instruction Tuning. Instruction tuning [30] is a method proposed to improve the ability of large
language models to follow instructions and enhance downstream task performance. Instruction-tuned
models like InstructGPT [31], OPT-IML [32], Alpaca [8], have shown promising improvement
compared to their based model. The existing instruction tuning datasets are primarily derived from
collections of academic datasets like FLAN [30], chatbot data collected from ChatGPT usage such
as ShareGPT, or constructed using self-instruction [16] methods like Alpaca. Apart from pure
text instruction tuning datasets, Multi-Instruct [33] covers 47 multi-modal tasks. Mini-GPT4 [25]
constructs instruction following dataset by composing image-text datasets and handwritten instruction
templates. Moreover, LLaVA [15] feeds captions and bounding boxes as the context of COCO images
to GPT-4 and therefore get 150K instruction data. Otter [29] builds such instruction tuning datasets
from multi-modal MMC4 dataset [34] and incorporates in-contextual examples into instruction tuning
by grouping similar instructions together.

3 Dataset
We introduce a comprehensive multi-modal instruction tuning dataset, which involves images and
point clouds from publicly available datasets for diverse vision tasks, as well as high-quality instruc-
tions and responses based on the GPT-API and self-instruction methods [16]. To be specific, our
dataset contains 186K language-image instruction-response pairs, and 10K lanuage-3D instruction-
response pairs. Figure 1 provides an overview of its construction process. We provide detailed
information on how to construct the multi-modal instruction tuning dataset to guide the academic
community, facilitating the replication and further development of our work. We showcase additional
demonstrations of sample data and provide a complete prompting method in the Appendix.
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Instruction: <image> What are the man and woman doing?
Response: The man and woman in the image are walking arm in arm down a 
street, with the man also holding a cell phone.
Instruction: What does their interaction say about their relationship?
Response: The image shows a man and woman walking arm in arm, suggesting 
that they have a close relationship. 

Instruction: <image> Give an elaborate explanation of the image you see.
Response: This image captures a moment between a man and a woman 
walking arm in arm along a city street. The woman, donning sunglasses and 
carrying a handbag, is clothed in a shirt and yellow pants …

Instruction: <image> What is the type of aircraft depicted 
in the image?
Response: The aircraft depicted in the image is the 
Tupolev Tu-160.
Instruction: <image> When and where was the Tupolev 
Tu-160 designed?
Response: The Tupolev Tu-160 was designed by the 
Tupolev Design Bureau in the Soviet Union in the 1970s.

Instruction: <image> Can you locate and 
identify all the objects in the image and 
describe their positions accurately?
Response: Upon close inspection of the 
image, it can be observed that there is an 
object positioned at [0.12, 0.22, 0.68, 0.96]
that belongs to the dog category. There is 
an object at …Detection

Instruction: <image> What time is on the 
watch?
Response: The answer to this question can 
be found by observing the image closely, 
and it is 10:58.

Instruction: <point cloud> Is there a TV cabinet in the room?
Response: Yes. The point cloud describes a full-sized corner cabinet with a 
large opening in the center for a television.
Instruction: Where is the desk located in the room?
Response: The desk is located in front of a black office chair with wheels. 

Instruction: <point cloud> What is this point cloud about?
Response: The point cloud shows a living space with a large gray L-shaped 
couch positioned in the middle of the room. The couch is adjacent to the 
kitchen area and across from the bedroom area, providing a cozy and 
functional gathering space.…

Inputs GPT API Outputs

C1: n-round Daily Dialogue
C2: n-round Factual Knowledge Dialogue
C3. 1-round Detailed Description
C4: 1-round Visual Task Dialogue

Object Detection 
Image Classification
Keypoint Detection
Object Counting
OCR 
3D indoor Detection 

Instruction Pool & Response Template

Instructions: [What are the names of the objects 
present in the image, and where are they positioned?,  
How many items in the image belong to a particular 
category? …]
Responses: [There is an object at the {P} position of 
the image, and its category is {C}. , There are {N} {C} 
visible in image …]

2D & 3D Vision Tasks

Instruction: <point cloud> Provide a detailed account 
of the objects observed in the point cloud, including 
their precise locations?
Response: An object within the table category can 
be observed at the [0.070, 3.632, 0.624, 1.110, 1.976, 
1.083] position in the point cloud. Positioned at the [-
1.705, 0.211, 0.417, 0.611, 9.417, 1.632] location, an 
object within the window category…

C1: n-round Daily Dialogue C3: 1-round Detailed Description

C2: n-round Factual Knowledge Dialogue C4: 1-round Visual Task Dialogue

OCR

3D Detection

In-context Learning Pairs

Human-labeled <instruction, response> pairs

2

System Message

You are an AI visual assistant …
C1. You need generate a conversation …
C2. You need to generate multiple rounds conversations 
based on Bamboo label and Wikipedia description … 
C3. You need to describe the scene in detail …
C4. Give me 20 similar instruction-response prompts…

1

Query

C1. <Caption> + <Boxes> + <Relationships>
C2. <Bamboo labels> + <Wikipedia description>
C3. <Caption> + <Boxes> + <Relationships>
C4. N/A

3

D
a
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t Bamboo CLS 3RScan CLEVR3D 3DSSG ShapeNetBamboo DET COCO Captions COCO DET COCO Keypoint Visual Genome Locount Text VQA

Figure 1: Overview of our dataset, demonstrating the process of constructing our Instruction Tuning
dataset using the GPT-API. By designing different system messages, in-context learning pairs, and
queries, we have created the dataset that covers almost all high-level vision tasks for both 2D and
3D vision. The dataset includes four distinct groups: n-round Daily Dialogue, n-round Factual
Knowledge Dialogue, 1-round Detailed Description, and 1-round Visual Dialogue. It is worth noting
that for the introduction of vision tasks, we only used the GPT-API to generate instruction-response
templates and did not directly generate dialogue data. Finally, some examples of the dataset are
presented below, including 2D and 3D scenes and their corresponding instruction-response pairs.

We design four kinds of multi-modal instruction-response pairs: 1) C1: n-round daily dialogue
focuses on multi-modal daily conversations. 2) C2: n-round factual knowledge dialogue aims at
dialogues requiring factual knowledge reasoning. 3) C3: 1-round detailed description aims to
elaborate images and 3D scenes in texts. 4) C4: 1-round visual task dialogue transfers vision tasks
into instruction-response pairs, aiming at enhancing generalization ability towards visual tasks.

We include diverse 2D and 3D vision tasks into the dataset, such as captioning, scene graph recognition
and VQA that are directly compatible with natural languages, as well as classification, detection,
counting and OCR that output labels, bounding boxes, digits and a list of words instead. Note that
the point-cloud instruction tuning dataset does not include data in the C2: n-round factual knowledge
dialogue category. This is due to the current lack of publicly available 3D datasets with a well-defined
labeling system containing factual knowledge. In our dataset, the instruction-response pairs are
gathered from 8 image datasets and 4 point cloud datasets, which are referred in Figure 1.

The first three types of instruction-response pairs are generated by inputting several special designed
prompts to the GPT-API, namely system messages, in-context learning pairs and queries: (1) System
messages are to inform the GPT-API about the task definitions and requirements. (2) Several in-

4



Query:<image> What is the category of the scene shown in the image?

You are performing an object detection task. Your goal is to locate all 
objects in the image,  and give the corresponding coordinates.

Your output should be a single class name. Your answer should be 
the object name and the bounding box, represented as [x1, y1, x2, y2] 
with floating numbers ranging from 0 to 1. 

Query: <image>How many seashells are there in this image?

You are performing an object counting task. Your goal is to
accurately count the number of objects in an image. Object
counting is a computer vision task that involves detecting and
counting the number of instances of specific objects within an
image.

The answer needs to be an Arabic numeral.

Query: <point cloud>There is a TV  in the room. It is on the wall. 
Give  me the bounding box of it in the point cloud.

You are performing a point cloud grounding task, and our goal 
is to locate the position of objects in the question.

Your answer should be a bounding box, represented as [x1, y1, 
z1,  x2, y2, z2] with floating numbers ranging from 0 to 1. 

Query: <point cloud>What is placed next to the fridge?

You are performing a visual question answering task, and your 
goal is to generate natural language answers that accurately 
solve the question.

Generate complex reasoning process and  accurate answers to 
questions about visual content

Response: There is a 
dog [0.1, 0.4, 0.6, 
0.7] , and a person
with the position from 
[0,0] to [1,1].

Response: There are
eight seashells in this
image.

Classification Accuracy

…

Detection mAP

Caption BLEU

Counting MAE

OCR Word ACC

Model B 
Response

Model A 
Response

Model C 
Response

{Task Definition | Output Structure | Instruction}

Response: It locates 
at [0.790, 1.477, 
0.219, 0.434, 0.687, 
0.3667].

Response: Upon 
thorough examination 
of the point cloud, it can 
be inferred that the 
answer to this question 
is door.

MLLM

E
n
tity
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c
tio

n
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II. Binary-Loc. Metric

III. GPT Metric
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Figure 2: An overview of our Benchmark. It includes both 2D and 3D pipelines, covering multiple
computer vision tasks. For each task, we provide the task definition, output structure, and a set of
questions as instructions to the MLLM model. Then the entity extraction is applied on the output to
extract the key answer. The LAMM Evaluation is used to evaluate the model’s performance, which
includes traditional metrics, binary-location metric and the GPT Metric.

context learning pairs are manually annotated to ensure that the rest instruction-response pairs can be
generated by a similar fashion. (3) Queries include comprehensive annotations of captions, bounding
boxes of objects, relations between objects, factual knowledges from the Bamboo’s label system and
their Wikipedia descriptions.

The last type of instruction-response pairs also apply the system messages and in-context learning
pairs, but use GPT-API to generate a pool of templates of instruction-response pairs instead. In
this way, ground-truth annotations of many vision tasks, such as object/keypoint detection, OCR,
counting and etc., can be inserted into these templates, and thus are easier to be converted into reliable
language responses, rather than aforementioned query-based conversion.

4 Benchmark
Different from LLaVA [15], MiniGPT4 [25] and mPLUG-owl [26] that only provide demos and user
studies to qualitatively evaluate the performances of their MLLMs, we propose the first benchmark
of MLLMs, which instead evaluates the quantitative performance of MLLMs on various 2D and 3D
vision tasks. It includes an inference pipeline and a set of evaluation metrics. To be specific, the
benchmark on 2D vision tasks evaluates 9 common image tasks, using a total of 11 datasets with
over 62,439 samples. The benchmark on 3D vision tasks evaluates 3 common point cloud tasks, by
utilizing 3 datasets with over 12,788 data samples.

Inference Pipeline. It ensures that the MLLMs can produce reasonable responses that can be
fairly evaluated, which includes the way of processing input instructions and the extracting output
entities. We construct the Inference Instruction to help the model better understand the task it is
performing and the output structure that is required, aim to improve the stability and reliability of
the benchmarking process. Inference Instruction includes Task Definition, Output Structure and the
usually employed Query Questions, as shown in Figure 2. Inspired by chain-of-thought prompting
methods [35], we also prompt the MLLM to perform complex reasoning followed by the final answer,
so as to obtain a more reliable answer. Then, we employ the Natural Language Toolkit (NLTK) and
regular expression matching to extract entities from the output text. These entities act as the results.

Evaluation Metrics. The set of evaluation metrics includes Traditional Metrics, Binary Locating
Metric, and GPT Metric. The Traditional Metrics are task-specific metrics from the listed 2D and 3D
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Image
Projector

Point Cloud
Projector

Instruction

What’s the type of room
in the <point cloud>?

Instruction

How many fruits are
there in the <image> and
what are they?

Response

There’re 15 fruits. There
are 3 apples, 2 pears and…

Response

The room shown can be a
bathroom with a separate
toilet…

Large
Language
Model

LoRA

LoRA

Image
Encoder

Point
Cloud
Encoder

Figure 3: Framework of multi-modality language model. Each modality is encoded by corresponding
pre-trained encoder and decoded by LLM. LLM is shared among modalities and trainable projection
layers and LoRA parameters are modality-specific.

vision tasks, which are the most rigorous to evaluate how MLLMs handle vision tasks. In the Binary
Locating Metric, the model needs to output an approximated location of a recognized object through
the instruction “output the position of the object”, whose result is considered true if it is within the
object’s groundtruth bounding box. It is a straightforward metric to compare the localization ability of
an MLLM model. To evaluate the understanding and question-answering abilitis of MLLM models,
we utilize the GPT metric to evaluate the answers’ relevance and accuracy to the groundtruth. To
be specific, we prompt GPT to assign scores to the outputs generated by each model through the
instruction described in Figure 2. The scoring criteria were based on accuracy, relevance, fluency,
logical coherence, and information richness.

Evaluation Settings. All 2D and 3D vision tasks can be evaluated in a zero-shot manner, where
the testing data have no intersection with MLLM’s training data. Moreover, we also evaluate the
finetuning ability of MLLMs on the test dataset about several mainstream tasks, such as detection,
classification and VQA in 2D tasks, as well as detection, grounding and VQA in 3D tasks.

5 Experiments and Results

5.1 Framework

The overall framework of our baseline MLLM is depicted in Figure 3. Each modality, image or point
cloud, is processed by corresponding encoder, whose features are then projected to the same feature
space as the text embeddings by a trainable projection layer. Instructions are directly tokenized by
SentencePiece tokenizer [36], then the vision and text tokens are concatenated to feed into the LLM
model. To finetune LLM efficiently, we add LoRA [37] parameters to all projection layers in the
self-attention layers. LoRA parameters for different vision modalities are not shared. Multi-modal
tokens are decoded by a shared LLM model and the corresponding LoRA parameters. As shown
in Figure 3, only feature projectors and LoRA parameters are optimized during training. We use
Vicuna-13B [9], as our LLM. Rank of LoRA modules are set to 32. We train all parameters including
projection layers and LoRA modules in a one-stage end-to-end fashion with 4 A100 GPUs.

Input images are resized to be 224×224 and split into 256 patches. We use CLIP [38] pre-trained
ViT-L/14 and use image patch features output from transformer layers as image representations. We
follow the design of FrozenCLIP [39] to encode point clouds, in which point cloud is tokenized to be
256 tokens by PointNet++ [40] and further encoded by CLIP pretrained ViT-L/14.

5.2 Results on Traditional Metrics

Zero-shot Setting on 2D Vision Tasks. Table 1 shows the results of MLLM on 2D vision tasks
by the Traditional Metrics. All the MLLM models were tested in a zero-shot setting. Although
MLLM models demonstrated certain abilities of recognizing open-vocabulary classes, understanding
images, and answering questions, they performed poorly on tasks involving object localization,
including object detection, counting and keypoints detection. Localization-aware Tasks: In detection
tasks, our baseline model demonstrated stronger localization ability, but there is still a significant
gap between the predicted and the ground-truth bounding boxes, indicating MLLMs’ weakness
to output certain digits representing points and reasoning spatial information. In counting tasks,
the MLLM models showed a significant gap between the predicted and ground truth number of
objects. MiniGPT4 failed in this task as it is unable to provide a specific number for most of the
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Table 1: Comparison of Multi-modal Large Language Models on 2D vision tasks.

Task Dataset Metric LLaVA[15]MiniGPT4[25]mPLUG-owl[26]LAMM

Classification CIFAR10 [41] Acc ↑ 60.83 46.22 42.5 37.9
Detection VOC2012 [42] mAP ↑ 1.42 0.92 0.158 7.20

VQA
SQAimage [43]

Acc ↑ 40.5 43.43 36.39 49.88
AI2D [44] 18.13 Failed 19.31 20.92

Image Caption flickr30k [45] BLEU4 ↑ 6.65 5.1 2.74 2.56
F-g classification UCMerced [46] Acc ↑ 47 33.6 32.5 18.23

Counting FSC147 [47] MAE ↓ 56.2 Failed 60.67 46.88
OCR SVT [48] Word Acc ↑ 37.78 16.97 30.39 29.14

Facial Classification
CelebA(Smile) [49]

Acc ↑ Failed 66.36 Failed 57.50
CelebA(Hair) [49] 46.42 43.47 40.93 56.96

Keypoints Detection LSP [50] PCK ↑ Failed Failed Failed Failed

Table 2: Results of our baseline model on selected 2D vision tasks. Both zero-shot test result and
finetuned results reported. Metrics for classification and VQA is accuracy, and that for object
detection is mAP@0.5.

Task Dataset LAMM (Zero-Shot) LAMM (Finetune)
Classification CIFAR10 [41] 37.9 91.2

Object Detection VOC2012 [42] 7.20 13.48
VQA SQAimage [43] 49.88 74.27

data. As for the keypoints detection task, we asked the MLLM models to predict the position of each
human keypoint in turn. However, all the predicted positions were not in an acceptable range. The
MLLMs show a significant gap in this task, indicating that they have difficulty in accurately predicting
the locations of the keypoints. VQA Tasks: Our baseline model demonstrated certain advantages
in image understanding and multiple-choice question answering compared to other models. Note
that the LLaVA model we compared to was evaluated in the zero-shot setting. Additionally, we
removed the random choice process from the LLaVA evaluation to obtain a more straightforward
evaluation. Captioning Tasks: All MLLM models performed poorly on image captioning. We argue
that BLEU4 is not an appropriate metric since longer captions may lead to lower scores, and MLLMs
tend to output detailed description. Classification Tasks: In fine-grained classification tasks and face
classification tasks, all MLLMs performed poorly. Specifically, on the CelebA (Smile) dataset, the
LLaVA model outputs "yes" to all the queries, while the mPLUG model randomly gives predictions.
However, regarding the CelebA (Hair) dataset, the MLLMs can recognize hair color since the ability
to infer visual knowledge for color recognition is relatively straightforward. These results suggest
that the MLLM models may have difficulty in tasks that require fine-grained distinctions. OCR Tasks:
As for OCR tasks, LLaVA can recognize and extract text from images. However, our baseline model
performed poorly on this task. We provide more analysis of the results and identify several potential
reasons for the performance gap in the Appendix.

Fine-tuning Setting on Image Tasks. We also fine-tuned our baseline model on several vision
datasets, including CIFAR10, VOC2012, and SQAimage. The results are shown in Table 2. The
fine-tuned baseline achieved an accuracy of 91% on CIFAR10. It also achieved an mAP of 13% on
VOC2012, in comparison with 4.8% in the zero-shot setting. These results indicate that our baseline
models can receive the ability of localizing objects after being fine-tuned on detection data.

Zero-shot Setting on Point Cloud Tasks. Table 3 shows the result of our baseline model on 3D
scene understanding tasks, under the zero-shot and fine-tuning settings, respectively. The results after
finetuning are significantly better than the zero-shot setting, in all test tasks. Our baseline model
finetuned on ScanQA multiple choice data almost achieves 100% accuracy, which may have an
overfitting issue due to the narrow training/test gap and small scale of 3D dataset.

5.3 Results of Binary Locating Metric and GPT Metric

Binary Locating Metric. Table 4 shows the zero-shot results of the MLLMs on the proposed Binary
Locating Metric and GPT Metric. The Binary Locating Metric covers the data from VOC2012,
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Table 3: Results of 3D tasks. Metrics for 3D object detection and visual grounding is mAP@0.5, and
that for 3D VQA is accuracy of multiple choice problem.

Task Dataset LAMM (Zero-Shot) LAMM (Finetune)
3D Object Detection ScanNet[51] 9.3 11.89
Visual Grounding ScanRefer[52] Failed 3.38
3D VQA ScanQA[53] 26.54 99.89

Table 4: Comparison of results of Binary Locating Metric and GPT Metric of existing MLLMs. The
Binary-Locating Metric is the accuracy of the predicted position, and the GPT Metric is the score
from GPT response.

LLaVA MiniGPT4 mPLUG-owl LAMM
Binary-Loc Metric 14.73 13.12 4.42 31.2
GPT Metric 50.16 7.28 41.88 48.44

FSC147, and LSP. Since the our baseline model has been trained on a small amount of data with
detection instructions, it significantly improves in localizing accuracy.

GPT Metric. We calculated GPT scores using a variety of tasks, including VQA, classification,
captioning, as well as a small number of detection and counting tasks. As shown in Table 4, LLaVA
surpasses other models in performance, while LAMM, although slightly lower than LLaVA, still
outperforms Minigpt4 and mPLUG-owl by a wide margin.

5.4 Observation and Analysis

We conducted dozens of experiments and observations on the MLLM model across various tasks to
summarize its current capabilities and limitations.

Better Performance in Counting Tasks with Small Number of Objects. As shown in the Table 1,
recent MLLMs perform poorly on counting tasks. In the FSC147 dataset, there are data samples with
dozens or even hundreds of objects, and the MLLMs would reply with “I cannot accurately count the
number” for such data samples. Therefore, we conducted tests on the subset of the FSC147 dataset
with less than 10 objects to evaluate the performance of the models on simple data, as shown in
Figure 5 (b). The results show that the MLLMs are able to roughly estimate the number of specified
objects in the image, but it is still unable to provide an exact numerical value.

GPT Metric is More Appropriate Than BLEU. Figure 4 illustrates the comparison between the
generated captions by LLaVA and LAMM on a sample data from the Flickr30k dataset. It is evident
that LAMM model produces more detailed image descriptions. However, a notable drawback is the
low correlation between its generated sentences and the ground truth sentences, which consequently
results in the low BLEU scores indicated in Table 1. Thus, we tried to adopt the GPT Metric to
assess the relevance and accuracy of the model’s output captions to the ground truth captions. GPT
gives a higher score to LAMM model, compared to LLaVA, suggesting that our model is more able
to generate high-quality, image-relevant text outputs. This observation also raises the possibility
that using GPT-based metrics for evaluating captioning tasks instead of BLEU might offer a more
effective evaluation criterion.

Capable of Object Localization but Struggles with Precise Bounding Box Prediction. We
visualize the results of LLaVA on VOC2012 dataset. Figure 4 (a) shows that the LAMM model was
able to roughly point out the bird in the image, but was unable to accurately locate the entire object.

LAMM Model Exhibits Fine-Grained Classification Ability on CIFAR10. As shown in Figure 4,
when presented with a 32x32 pixel image of a car, the model’s prediction was a more granular
category: “Fiat 500L 2012”, which accurately identifies the car’s brand and model. The left sub
figure in Figure 4 (b) shows the image of Fiat 500L 2012 on Autoevolution [54], revealing that it has
very similar features to the input image from CIFAR10. These results demonstrate that the MLLM
trained with our dataset has the ability to perform more fine-grained classification, and is capable of
recognizing subtle differences in images and assigning them to more specific categories.

Instruction and Reasoning Enhance Performance on SQAimage Data Following LLaVA [15],
we conducted experiments on the SQAimage dataset using different inference approaches, including
prompts with or without reasoning or instruction. The prompts with reasoning make the MLLM
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Figure 4: Observation and analysis on various tasks. (a) Visualization results on VOC2012. (b)
Visualization results on CIFAR10. The right subfigure is from [54]. (c) Results on Flickr30k.

Figure 5: (a) Zero-shot Accuracy of LLaVA with different inputs on SQAimage. R. indicates
reasoning and inst. indicates instruction. (b) Counting Performance on FSC147 of MLLMs. (c) Zero-
shot accuracy of LAMM model trained on various data combinations on SQAimage. (d) Zero-shot
accuracy of LAMM model trained additional instruction data in our dataset.

output the reasoning process before presenting the final results. The prompts with instruction give
MLLM the task definition and output structure to the question to help the model better understand the
task. The results in Figure 5 (a) shows that the instruction and reasoning both improve the MLLM’s
VQA ability. These results highlight the importance of incorporating task-specific information and
reasoning process into MLLMs.

Difficulty in Comprehending Visual Information for Domain Shifted Data. We conducted an
analysis on several datasets that exhibit significant deviations from the training dataset, including
UCMerced, CelebA, and LSP. The UCMerced dataset consists of top-down views of scenes, CelebA
is a facial dataset that can describe the expressions and hair colors, and the LSP dataset involves
14 key points of the human body, they are significantly different from the COCO dataset during
the training phase. These results suggest that the performance of the MLLM model may degrade
significantly on datasets that exhibit significant deviations from the training dataset.

Difficulty in Reading Text on SVT data. We analyzed the performance of our baseline model on the
SVT dataset and observed unsatisfactory results in Table 1. A possible explanation is that we used the
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TextVQA [55] dataset to generate visual task dialogue, which is more geared towards conversational
text rather than OCR-related vision tasks. This mismatch in dataset characteristics may have resulted
in suboptimal generalization of our model to the SVT dataset. To address this issue, we intend to
conduct further investigations and incorporate more appropriate OCR data during the training process
to improve our model’s performance on OCR-related vision tasks.

Data volume validation on SQAimage data. As shown in Figure 5 (c) (d), our four types of
image instruction tuning datasets outperform LLaVA[15] on all subsets, resulting in a 7% overall
performance improvement for the complete dataset. Furthermore, we investigated the impact of
sampling Daily Dialogue and Detailed Description data at different proportions. Notably, even with
the small size of 10k examples, our dataset achieved comparable results to LLaVA-Dataset. As the
dataset size increased, the overall performance of our model continuously improved, indicating that
our dataset is scalable and can be further optimized by adding more data.

6 Limitations
In this part, we discuss limitation and social impact of this work from perspectives of dataset,
benchmark and framework.

Dataset In our study, we utilized GPT-API, a state-of-the-art language model, to generate the multi-
modal instruction data. To achieve the desired format, which includes multi-round dialogue and
one-round detailed descriptions, we provided system messages and example dialogues as guidance
for the data generation process using GPT-API. The use of GPT-API for generating text-based
conversations has been widely adopted in Natural Language Processing, and previous work in
multi-modal data [8, 15, 16] has demonstrated promising results in various tasks.

However, it is important to acknowledge the limitations inherent to the underlying GPT model, which
are not altered by the use of GPT-API. GPT-API lacks direct access to visual information and relies
solely on textual context such as captions and attributes, which restricts its understanding of images
and may result in missing detailed information. While GPT-API excels at generating coherent and
contextually relevant responses, it can occasionally produce responses that appear plausible but
are factually incorrect or lack proper context. It may also struggle with understanding complex or
ambiguous queries. Moreover, the generated data used for training may inadvertently reflect inherent
biases and other truthworthy issues of GPT-API. To address ethical concerns regarding data generated
with GPT-API, we performed manual sampling to examine the data, ensuring that the generated data
aligns with societal values, privacy, security, toxicity, and fairness requirements and expectations.
In Appendix, we provide an evaluation of the data quality and showcase additional data samples.
We also transparently provide the complete prompts used to invoke GPT-API, ensuring transparency
throughout our work.

Benchmark LAMM evaluates MLLMs on formatted computer vision tasks and datasets. Due to
the diversity of language models’ outputs, metrics may fluctuate across experiments. Additionally,
LAMM currently adopts metrics such as GPT-eval and binary localization as an initial attempt to eval-
uate MLLMs’ performance. Further research is needed to enhance the stability of benchmark results
and design more appropriate metrics, which can be a promising direction for future investigations.

Framework Our work establishes a simple MLLM framework to build up a baseline model for our
dataset and benchmark. However, there is potential for further development and careful design of
MLLMs for future work to enhance their capabilities and performance.

7 Conclusion
In conclusion, our work presents LAMM, an open-source endeavor in the field of multi-modal large
language models. We introduce the image and point-cloud instruction tuning dataset and benchmark,
aiming to establish LAMM as a thriving ecosystem for training and evaluating MLLMs. We also
provide an extensible framework to facilitate the extension of MLLMs to additional modalities. Our
research showcases the effectiveness of MLLMs in handling visual modalities, including images and
point clouds, and highlights their potential for generalization via instruction tuning. By making our
codebase, baseline model, instruction tuning dataset, and evaluation benchmark publicly available,
we aim to foster an open research community for MLLMs. We believe that our work will contribute
to the advancement of MLLMs and the development of general-purpose multi-model agents.

10



Acknowledgement

This work is done during Zhenfei Yin, Jiong Wang, Jianjian Cao, Zhelun Shi and Dingning Liu’s in-
ternship at Shanghai Artificial Intelligence Laboratory. This work is supported in part by the National
Key R&D Program of China (NO. 2022ZD0160100), and National Natural Science Foundation of
China (62132001).

References
[1] OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023. 2, 3

[2] Hao Fu, Yao; Peng and Tushar Khot. How does gpt obtain its ability? tracing emergent abilities
of language models to their sources. Yao Fu’s Notion, Dec 2022. 2

[3] Yaru Hao, Haoyu Song, Li Dong, Shaohan Huang, Zewen Chi, Wenhui Wang, Shuming Ma, and
Furu Wei. Language models are general-purpose interfaces. arXiv preprint arXiv:2206.06336,
2022. 2

[4] Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao, Saksham Singhal, Shuming Ma, Tengchao
Lv, Lei Cui, Owais Khan Mohammed, Qiang Liu, et al. Language is not all you need: Aligning
perception with language models. arXiv preprint arXiv:2302.14045, 2023. 2, 3

[5] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of
language models. arXiv preprint arXiv:2211.09110, 2022. 2

[6] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023. 2, 3

[7] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. 2

[8] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023. 2, 3, 10

[9] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. 2, 6, 23, 24

[10] OpenAI. Gpt-4v(ision) system card. https://cdn.openai.com/papers/GPTV_
System_Card.pdf", 2023. 2

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 2

[12] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021. 2

[13] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021. 2

[14] Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing change: Contin-
ual learning in deep neural networks. Trends in cognitive sciences, 24(12):1028–1040, 2020.
2

11

https://github.com/tatsu-lab/stanford_alpaca
https://cdn.openai.com/papers/GPTV_System_Card.pdf"
https://cdn.openai.com/papers/GPTV_System_Card.pdf"


[15] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.
2, 3, 5, 7, 8, 10, 15, 21, 23

[16] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instruc-
tions. arXiv preprint arXiv:2212.10560, 2022. 2, 3, 10

[17] Yuanhan Zhang, Qinghong Sun, Yichun Zhou, Zexin He, Zhenfei Yin, Kun Wang, Lu Sheng,
Yu Qiao, Jing Shao, and Ziwei Liu. Bamboo: Building mega-scale vision dataset continually
with human-machine synergy, 2022. 2

[18] Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan.
Visual chatgpt: Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671, 2023. 3

[19] Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Ehsan Azarnasab, Faisal Ahmed,
Zicheng Liu, Ce Liu, Michael Zeng, and Lijuan Wang. Mm-react: Prompting chatgpt for
multimodal reasoning and action. arXiv preprint arXiv:2303.11381, 2023. 3

[20] Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution
for reasoning. arXiv preprint arXiv:2303.08128, 2023. 3

[21] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang.
Hugginggpt: Solving ai tasks with chatgpt and its friends in huggingface. arXiv preprint
arXiv:2303.17580, 2023. 3

[22] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. Advances in Neural Information Processing Systems,
35:23716–23736, 2022. 3

[23] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597, 2023. 3

[24] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied
multimodal language model. arXiv preprint arXiv:2303.03378, 2023. 3

[25] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023. 3, 5, 7

[26] Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang,
Anwen Hu, Pengcheng Shi, Yaya Shi, Chaoya Jiang, Chenliang Li, Yuanhong Xu, Hehong
Chen, Junfeng Tian, Qian Qi, Ji Zhang, and Fei Huang. mplug-owl: Modularization empowers
large language models with multimodality, 2023. 3, 5, 7

[27] Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng Li,
Peng Gao, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init
attention. arXiv preprint arXiv:2303.16199, 2023. 3

[28] Tao Gong, Chengqi Lyu, Shilong Zhang, Yudong Wang, Miao Zheng, Qian Zhao, Kuikun Liu,
Wenwei Zhang, Ping Luo, and Kai Chen. Multimodal-gpt: A vision and language model for
dialogue with humans. arXiv preprint arXiv:2305.04790, 2023. 3

[29] Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Jingkang Yang, and Ziwei Liu. Otter: A
multi-modal model with in-context instruction tuning. arXiv preprint arXiv:2305.03726, 2023.
3

[30] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv
preprint arXiv:2109.01652, 2021. 3

12



[31] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in Neural Information Processing Systems,
35:27730–27744, 2022. 3

[32] Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru, Todor Mihaylov, Daniel Simig, Ping
Yu, Kurt Shuster, Tianlu Wang, Qing Liu, Punit Singh Koura, Xian Li, Brian O’Horo, Gabriel
Pereyra, Jeff Wang, Christopher Dewan, Asli Celikyilmaz, Luke Zettlemoyer, and Ves Stoyanov.
Opt-iml: Scaling language model instruction meta learning through the lens of generalization,
2023. 3

[33] Zhiyang Xu, Ying Shen, and Lifu Huang. Multiinstruct: Improving multi-modal zero-shot
learning via instruction tuning. arXiv preprint arXiv:2212.10773, 2022. 3

[34] Anas Awadalla, Irena Gao, Joshua Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani
Marathe, Yonatan Bitton, Samir Gadre, Jenia Jitsev, Simon Kornblith, Pang Wei Koh, Gabriel
Ilharco, Mitchell Wortsman, and Ludwig Schmidt. Openflamingo, March 2023. 3

[35] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:24824–24837, 2022. 5

[36] Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing: System Demonstrations, pages 66–71,
Brussels, Belgium, November 2018. Association for Computational Linguistics. 6

[37] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021. 6

[38] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021. 6, 24

[39] Xiaoshui Huang, Sheng Li, Wentao Qu, Tong He, Yifan Zuo, and Wanli Ouyang. Frozen clip
model is efficient point cloud backbone. arXiv preprint arXiv:2212.04098, 2022. 6

[40] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. arXiv preprint arXiv:1706.02413, 2017. 6

[41] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Handbook
of Systemic Autoimmune Diseases, 1(4), 2009. 7, 21

[42] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html. 7, 21

[43] Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind
Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought
chains for science question answering. In The 36th Conference on Neural Information Process-
ing Systems (NeurIPS), 2022. 7, 21

[44] Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Min Joon Seo, Hannaneh Hajishirzi, and Ali
Farhadi. A diagram is worth A dozen images. CoRR, abs/1603.07396, 2016. 7, 21

[45] Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions
to visual denotations: New similarity metrics for semantic inference over event descriptions.
Transactions of the Association for Computational Linguistics, 2:67–78, 2014. 7, 21

[46] Yi Yang and Shawn Newsam. Bag-of-visual-words and spatial extensions for land-use clas-
sification. In Proceedings of the 18th SIGSPATIAL international conference on advances in
geographic information systems, pages 270–279, 2010. 7, 21

13



[47] Viresh Ranjan, Udbhav Sharma, Thu Nguyen, and Minh Hoai. Learning to count everything. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2021. 7, 21

[48] Kai Wang, Boris Babenko, and Serge Belongie. End-to-end scene text recognition. In 2011
International conference on computer vision, pages 1457–1464. IEEE, 2011. 7, 21

[49] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes
(celeba) dataset. Retrieved August, 15(2018):11, 2018. 7, 22

[50] Sam Johnson and Mark Everingham. Clustered pose and nonlinear appearance models for
human pose estimation. In British Machine Vision Conference, 2010. 7, 22

[51] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE, 2017. 8, 23

[52] Dave Zhenyu Chen, Angel X Chang, and Matthias Nießner. Scanrefer: 3d object localization
in rgb-d scans using natural language. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XX, pages 202–221. Springer,
2020. 8, 23

[53] Daichi Azuma, Taiki Miyanishi, Shuhei Kurita, and Motoki Kawanabe. Scanqa: 3d question
answering for spatial scene understanding. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022. 8, 23

[54] https://www.autoevolution.com/cars/fiat-500l-2012.html#aeng_
fiat-fiat-500l-2012-09l-105-hp-twinair. 8, 9

[55] Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi
Parikh, and Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019. 10

[56] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context, Jan 2014.
15

[57] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and Li Fei-Fei.
Visual genome: Connecting language and vision using crowdsourced dense image annotations.
CoRR, abs/1602.07332, 2016. 15

[58] Xu Yan, Zhihao Yuan, Yuhao Du, Yinghong Liao, Yao Guo, Zhen Li, and Shuguang Cui.
Clevr3d: Compositional language and elementary visual reasoning for question answering in 3d
real-world scenes. arXiv preprint arXiv:2112.11691, 2021. 18

[59] Johanna Wald, Armen Avetisyan, Nassir Navab, Federico Tombari, and Matthias Niessner.
Rio: 3d object instance re-localization in changing indoor environments. In Proceedings IEEE
International Conference on Computer Vision (ICCV), 2019. 17

[60] Shun-Cheng Wu, Johanna Wald, Keisuke Tateno, Nassir Navab, and Federico Tombari. Scene-
graphfusion: Incremental 3d scene graph prediction from rgb-d sequences. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7515–7525,
2021. 18

[61] https://en.wikipedia.org/wiki/Toad. 24

[62] https://robbreport.com/motors/cars. 24

[63] https://en.wikipedia.org/wiki/Dassault_Mirage_2000. 24

[64] https://en.wikipedia.org/wiki/Police_car. 24

14

https://www.autoevolution.com/cars/fiat-500l-2012.html#aeng_fiat-fiat-500l-2012-09l-105-hp-twinair
https://www.autoevolution.com/cars/fiat-500l-2012.html#aeng_fiat-fiat-500l-2012-09l-105-hp-twinair
https://en.wikipedia.org/wiki/Toad
https://robbreport.com/motors/cars
https://en.wikipedia.org/wiki/Dassault_Mirage_2000
https://en.wikipedia.org/wiki/Police_car


Appendix

A Overview

Dataset and code in LAMM has been open sourced at https://github.com/OpenLAMM/
LAMM. In this Appendix, we present construction pipeline and more examples of our dataset in
Sec. B. Then, Sec. C shows details of benchmark and related evaluation metrics. Sec.D presents
implementation details of our framework. Training a model based on our framework takes about 20
A100 GPU hours. Finally, more examples and results are visualized in Sec. E.

B Dataset

The paper introduces a novel method for constructing instruction tuning data, which represents
an innovative departure from traditional techniques that rely solely on daily dialogue and detailed
description. Instead, our dataset leverages additional factual knowledge extracted from Wikipedia
to improve the quality and diversity of the training data. In addition, we also explore the use of
traditional vision task data, covering common tasks in both 2D and 3D fields, which is converted into
instruction tuning data for training purposes. By combining our new data construction method with
traditional vision task data, we aim to improve the accuracy and effectiveness of instruction-tuned
models in various vision-related applications. Specifically, we delve into the design of 2D and 3D
portion of our dataset in Section B.1 and B.2, respectively. We also outlined the manual approach
for checking the quality of the generated data in Section B.3. Finally, we provide a comprehensive
explanation of the license and social impact information of our dataset in Section B.4.

B.1 Image Instruction Tuning Dataset

C1: n-round Daily Dialogue & C3: 1-round Detailed Description. The first step of our approach
involves incorporating more visual information, such as visual relationships and fine-grained cate-
gories as input to GPT-API, providing dense visual context to the generated responses. To construct
the C1: n-round Daily Dialogue and C3: 1-round Detailed Description data, we use the COCO
images [56], similar to the LLaVA [15] approach. However, we further extract object attributes and
relationships from the Visual Genome dataset [57] to emphasize fine-grained and dense information
in the generated responses. Specifically, Our approach leverages image scene graph information to
provide a structured representation of the objects and their relationships within the image. By doing
so, we generated multi-modal dialogue data that enables us to capture the relationships between
objects in the image and generate more accurate and natural language instructions. Figures 6 and 7
display the messages utilized to generate daily dialogue and detailed description data in the GPT-API.
Additionally, Figure 8 provides detailed examples of the generated results for both types of data.

C2: n-round Factual Knowledge Dialogue. In the second step of our approach, we expand the dataset
by incorporating 42K classes of knowledge graph facts from Wikipedia using the Bamboo dataset.
This addition enables MLLMs to generate question-answering data related to factual knowledge,
which is a valuable addition to the dataset. To generate C2: n-round Factual Knowledge Dialogue
data, we utilize the Bamboo dataset and Wikipedia to obtain relevant information, and then use
GPT-API to generate a dialogue based on the given content. Specifically, we extract the QID labels
and their corresponding Wikipedia descriptions from the Bamboo dataset to generate instruction
tuning data. This approach allows us to incorporate common sense knowledge into the dataset,
thereby enhancing the ability of MLLMs to generate responses that draw upon a broader range
of factual knowledge. The messages used to generate factual knowledge data in the GPT-API are
presented in Figure 9, while Figure 10 showcases detailed examples of the factual knowledge data
generated by these messages.

C4: 1-round Visual Task Dialogue. In addition to the three types of data discussed earlier, we
also incorporate established computer vision tasks, such as image classification, object detection,
keypoint detection, OCR, and object counting, into our dataset. This enables MLLMs to handle
traditional computer vision tasks and generate responses that incorporate both language and visual
information. The typical computer vision dataset consists of a set of images or videos, along with
their corresponding labels or annotations that represent the desired output of the computer vision task,
such as the class of objects present in the image or the location of an object. However, these discrete
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Figure 6: Messages used to construct n-round Daily Dialogue data for image instruction tuning.

Figure 7: Messages used to construct 1-round Detailed Description data for image instruction tuning.

results are not suitable for large language model dialogues, as they do not allow for natural language
interactions. To address this issue, our proposed approach involves converting computer vision tasks,
such as image classification, into natural language dialogues to enable large language models to
perform these tasks through dialogue interactions. In detail, we first use GPT-API to generate a
template pool of questions and answers for each task. Then, we randomly select a pair from the
question template pool and answer template pool to combine with a piece of data from the computer
vision dataset, creating the C4: 1-round Visual Task Dialogue data. Figure 27-30 provide some
examples of the dialogues generated using our proposed approach for converting computer vision
tasks into natural language dialogues. This approach allows us to leverage the rich visual information
in traditional computer vision datasets and incorporate it into the instruction tuning process, thereby
enhancing the ability of MLLMs to understand and respond to natural language instructions related
to these tasks.

In summary, the construction of 2D part in our dataset provides a comprehensive and diverse samples
of real-world scenarios, incorporating fine-grained and dense information from object relationships
and factual knowledge sources. The dataset contains 186K unique language-image instruction-
following samples, including 49K in daily dialogues, 49K in detailed descriptions, 42K in factual
Knowledge dialogues, and 46K in visual task dialogues. Our experiments showed that the use of
GPT-API consistently provides higher-quality instruction-following data, such as spatial reasoning.
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Figure 8: Example of generated n-round daily dialogue and 1-round detailed description data.

Figure 9: Messages used to construct n-round Factual Knowledge Dialogue data for image instruction
tuning.

These features make our dataset a valuable resource for researchers and practitioners working in the
computer vision and natural language processing fields.

B.2 Point Cloud Instruction Tuning Dataset

The construction pipeline of point cloud instruction tuning data is similar to that of image instruction
tuning data. However, due to the limited availability of 3D data, point cloud instruction tuning dataset
only consists of three major components: n-round plain conversation and 1-round detalied description
data from GPT-API and 1-round visual dialogue data converted from datasets for existing 3D vision
tasks.

C1: n-round Daily Dialogue & C3: 1-round Detailed Description. To construct the C1: n-round
Daily Dialogue and C3: 1-round Detailed Description data, we choose point clouds from 3RScan [59]
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Figure 10: The example for constructing n-round Factual Knowledge Dialogue data. The description
is from Wikipedia page.

Figure 11: Message to transfer visual question answering annotations from CLEVR3D [58] to
declarative sentences for 3D data.

as data source and use its original 3D bounding box annotations. Since there is no caption annotation
for 3RScan, we input visual question answering (VQA) annotations from CLEVR3D [58] to GPT-API
and ask it to convert the Q&A data into declarative sentences, which serves as point cloud captions in
further steps. Figure 11 shows the corresponding prompts. Object attributes and relationships are
extracted from scene graph annotation in 3DSSG [60]. Figure 12 and 13 show the prompts to let
GPT-API generate daily dialogue and detailed description data for point clouds. Since full annotation
of a scene point cloud may easily exceed input token limits of GPT-API, we randomly selected 10
captions and keep bounding box and relationships of corresponding objects as input contexts. For
GPT-generated data, We limit the number of turns in each dialogue data to no more than 10, and
any data exceeding this limit will be split into different samples. Figure 14 shows an example of
GPT-generated data.

C4: 1-round Visual Task Dialogue. On the other hand, we also leverage annotations for existing 3D
vision tasks, such as point cloud classification, 3D object detection, and CLEVR3D for 3D VQA.
Similar to 2D datasets, we designed 15 templates for instruction and response by sending definitions
of the corresponding tasks to GPT-API. Then instruction data are formulated by replacing keywords
with corresponding annotations. Templates of 3 tasks involved are presented in Figure 31, 32 and 33,
respectively.
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Figure 12: Message to generate n-round Daily Conversation Dialogue data in 3D portion of our
dataset.

Figure 13: Message to generate 1-round Detailed Description data in 3D portion of our dataset.

Finally, 3D portion of our dataset contains 10K samples in total, and the number of ShapeNet, 3RScan
detection, CLEVR3D, and GPT-generated dialogue are 2K, 1.3K, 2K, and 4.9K, respectively.

B.3 Quality Check

In order to ensure the quality of the generated instruction tuning data, we implemented several
measures. Firstly, we generate a small amount of data as a cold start and conduct manual check on
the generated data. This involved carefully assessing the quality and making necessary adjustments
to the message information provided as input to GPT-API. The iterative process aimed to eliminate
ethical concerns and establish a strong correlation between the generated data and the corresponding
inputs. We repeated this process until the desired level of quality was achieved. Once satisfied, we
proceeded to generate a large volume of data. Furthermore, to verify the quality of the generated
dataset, we randomly select a subset of 10% data for manual checks. This step allowed us to evaluate
the generated data against our specific requirements and quality standards. During this evaluation, any
formatting issues or incorrect answers generated by GPT-4 were filtered out to ensure the usability
and reliability of the data. By combining manual checks during the iterative generation process and
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Figure 14: Example of GPT-generated n-round daily dialogue and 1-round detailed description data
in 3D portion of our dataset.

subsequent random manual checks on the final dataset, we strive to ensure that the generated data
meets our rigorous quality standards and aligns with the specific needs of our dataset.

B.4 Social Impact

Our dataset is a compilation of publicly available datasets that have been licensed under the Creative
Commons license (CC-BY). We have taken great care to follow all necessary legal protocols to use
this data in our research, and believe that transparency in data licensing is crucial for ensuring proper
attribution and appropriate use of the data. Besides, the dataset includes images sourced from publicly
available datasets and language data generated using the GPT-API. While we have taken steps to
ensure appropriate content, we acknowledge that problematic content may exist. If you encounter any
such content, please notify us immediately, and we will make necessary modifications to maintain
a high-quality dataset that is free of inappropriate content. To protect the privacy of individuals
and vehicles captured in the images, we plan to obfuscate sensitive information, such as faces and
license plates, before publishing the dataset. We are committed to maintaining a dataset that is both
high-quality and ethically responsible and pledge to uphold principles of privacy and transparency in
our work.

C Benchmark

C.1 Benchmark on image tasks

We selected a set of nine commonly used CV tasks to evaluate the performance of MLLM models
in our benchmark on image tasks. Our task selection criteria were based on widely studied tasks
in the CV field that can showcase the MLLM model’s abilities in visual interpretation, localization,
and question-answering. Table 5 provides a summary of the tasks and the corresponding common
evaluation metrics, which are based on the output that the MLLM models are required to generate for
each task. We utilized a prompt-based approach to instruct the MLLM models to understand the task
definition and generate the desired output. The ability of the models to understand and interpret the
given instruction was also evaluated as part of the assessment criteria. As the models’ outputs are
text, we use different text-processing techniques for each task to extract entities as the final answers
for evaluation. For each task, We selected datasets that are distinct from the training datasets, as our
benchmark evaluation is conducted in an out-of-distribution zero-shot setting.

20



Table 5: CV tasks in Our Benchmark

Task Output Metrics

Classification label name Acc
Detection list of object label and bbox mAP50
VQA option and answer Acc
Image Caption captions BLEU4
Fine-grained classification fine-grained label name Acc
Object counting number MAE
OCR list of words word Acc
Facial classification answer Acc
Keypoints detection keypoints PCK
3D Detection list of object label and bbox mAP50
3D VQA option and answer Acc
3D Visual Grounding bbox mAP50

Classification This task involves predicting the most likely category label for an image. For MLLM
models, the task involves performing open-vocabulary classification. We selected CIFAR-10 [41]
as the test dataset for the evaluation of classification. CIFAR10 contains 10000 test images across
10 common categories. We utilize NLTK to extract noun entities from the models’ output text, and
expand them to a synonym set for accuracy evaluation calculation.

Object Detection We selected the VOC 2012[42] datasets to evaluate the model’s ability to detect
objects in images while considering both its visual interpretation and localization capabilities. To
evaluate the accuracy of object category predictions, we employ a similar approach to classification
tasks. We also use regular expression matching to extract the models’ output bounding boxes for
mAP50 calculation.

Visual Question Answering We selected the ScienceQA[43] and AI2D[44] datasets to evaluate
the MLLM model’s ability to answer questions about images. The ScienceQA and AI2D datasets
include over 2017 and 5793 multiple-choice questions with images, respectively. We extract the
image-containing data from the ScienceQA dataset to create the SQAimage dataset. We then tested
MLLM models on the SQAimage dataset to evaluate their multimodal understanding skills. As both
ScienceQA and AI2D datasets are presented in a multiple-choice format, we evaluated the model’s
performance using the accuracy metric. Following LLaVA [15], we prompt the MLLM to output the
complex reasoning procession, followed by the final option answer.

Image Caption The image caption task involves generating a textual description of an image. We
selected the Flickr30k[45] dataset to evaluate the MLLM model’s ability to understand images and
generate descriptive captions. Flickr30k contains a variety of objects and scenes with diverse captions,
providing a challenging task for the MLLM model. To evaluate the quality of the models’ text outputs,
we split the generated text into sentences and calculate the BLEU-4 score for each. The highest score
is selected as the final result.

Fine-grained classification Similar to the classification task, the fine-grained classification task
requires the model to make predictions across a large number of fine-grained categories. We selected
UCMerced Land Use dataset [46] as the test set. UCMerced Land Use contains 21 classes of land-use
categories, including airports, forests, and residential areas. Similar to classification, we report
Accuracy.

Object counting We selected the FSC147 dataset for object counting evaluation. FSC147[47] is a
dataset of 1190 images containing various objects, including animals, vehicles, and household items.
The images in this dataset are challenging and contain occlusions and overlapping objects, making
it a suitable choice to test the model’s object recognition and localization capabilities. We utilize
regular expression matching to extract the numeric entity and evaluate the model’s performance using
the mean absolute error (MAE) metric.

Optical Character Recognition The OCR (Optical Character Recognition) task involves recognizing
and transcribing text from images. To evaluate the MLLM model’s ability to recognize text from
images, we selected SVT dataset [48]. We extract the entities enclosed in quotation marks from the
generated text as the predicted word list. Word Accuracy is adopted as the evaluation metric.
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Figure 15: Template instructions for VQA inference. "Response a" is the generated reasoning process,
which is the output of the first inference. "Response b" is the output answer, which is the ouput
following the prompt "### ANSWER".

Facial Classification Due to the difficulty of performing face recognition tasks using MLLM, we
evaluated the model’s performance on facial attribute classification tasks. We selected the CelebA[49]
dataset, which contains 19962 images for testing with annotations for 40 facial attributes, including
hair color and facial expression. Specifically, we evaluated the model’s ability to predict whether
a person in an image is smiling, named CelebA(Smile) dataset, and the color of their hair, named
CelebA(Hair) dataset. We aimed to evaluate the MLLM model’s ability to understand facial images.
Classification accuracy is used as the evaluation metric.

Keypoints Detection To evaluate the models’ ability to perform fine-grained point localization, we
utilized the LSP[50] dataset for keypoint detection. To simplify the task difficulty for MLLM models,
we employed a grounding approach, where we sequentially asked the model to predict the position
of each human body keypoints in the image. The evaluation metric used for this task was PCK
(Percentage of Correct Keypoints).

C.2 Inference Details

C.2.1 System messages for image tasks

Figure 17 shows the system messages defined for each image task. The system messages, which
include the task definition and the output structure, is a part of the instruction that prompt the MLLM
models to generated responses. This is designed to enable the model to better understand the task it is
performing, focus on the critical aspects, and output the appropriate structure. Note that some tasks
do not require a defined output structure. In such cases, the model can output any text as a response.

C.2.2 Instructions for VQA

Different from other common image tasks, besides the system messages designed in C.2.1, we prompt
MLLM to generate the reasoning process additionally, as figure 15 shows. To prompt the model to
output its reasoning process, we first use conventional instruction texts to generate "Response a". We
then combine the first instructions , the "Response a", and the prompt "### ANSWER" to make the
model generate the option as the final answer.

C.2.3 Metrics

Our benchmark includes two evaluation settings. The first is a zero-shot setting, where we selected
downstream tasks that have no intersection with the MLLM’s training data. We provide the zero-shot
results of the current MLLM models on these datasets. The second setting involves fine-tuning on
mainstream task datasets, covering tasks such as detection, classification, and VQA.

C.2.4 Binary Locating Metric

The ability to accurately localize objects in an image is a crucial component of MLLM models’ visual
understanding skills. In addition to using conventional detection tasks to calculate mAP, we attempted
a more direct method for evaluating the models’ localization ability, namely Binary Locating Metric.
Distinct from object detection, which requires the model to output a bounding box, we instructed the
model with "output the position of the object" instead of "output the bounding box of the object" to
output the approximate position. During the evaluation phase, the model’s predicted keypoint was
considered correct as long as it was within the object’s bounding box. Object locating is evaluated on
all datasets involving object localization, including object detection, object counting, and keypoints
detection. Compared to the traditional detection evaluation methods, the object locating evaluation
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method provides a more reasonable and direct approach for evaluating the localization ability of
MLLM.

C.2.5 GPT Metric

To evaluate the overall understanding and question-answering abilities of MLLM models, we utilized
the GPT Metric. Unlike LLaVA[15] and Vicuna [9], we ranked the answers of multiple models using
GPT. Similar to the pipeline approach, we give GPT an instruction, informing it of the task definition,
the question, and the answer provided by each model. We then ranked each model’s response based
on its relevance and accuracy with the answer. Each model received a score based on its ranking,
and the average score obtained on all test data served as a metric for measuring the model’s overall
ability. Our GPT evaluation datasets cover various visual tasks, including captioning and VQA tasks
involving image description and answering, as well as a small number of detection and counting tasks
related to object localization.

C.3 Benchmark on point cloud tasks

For benchmark on point cloud tasks, we focus on three tasks of scene perception, including 3D object
detection, visual grounding, and 3D visual question answering. Figure 18 presents system messages
for point cloud tasks.

3D Object Detection. As it’s widely used in 3D object detection, we select ScanNetv2 [51] as the
dataset to evaluate MLLM’s ability to locate objects in a point cloud and identify semantics, whose
validation set contains 312 scenes. In this task, MLLM is expected to list all objects along with
bounding boxes, and we extract bounding boxes from the response text by entity extraction. Boxes
whose IoU with ground truth is larger than 50% count for positive predictions and we use mean
Average Precision (mAP) to evaluate performance.

Visual Grounding. This task aims to locate the object described by a given caption and output the
corresponding bounding box. We test on ScanRefer [52] in this task, which provides human-labeled
captions towards each object in ScanNet and its test set contains 9508 samples. Similar with object
detection, mean average precision (mAP) is reported to evaluate MLLM’s capacity.

3D Visual Question Answering. ScanQA [53] is proposed for 3D visual question answering
before, and models are required to answer the given questions based on the point cloud. It has been
formatted as an attribute classification task in previous work [53]. However, MLLM’s output cannot
be constrained with several classes consistently and is usually long text to explain details, so the
original metrics in ScanQA, Exact Matching & BLEU, cannot be used for test, as long text is different
from the style of given ground truth and the BLEU score inevitably decreases for long-text results.
Following ScienceQA in 2D VQA task, we transfer this task to be a multiple-choice problem. First,
we feed the original question-answer pairs to GPT-API and ask for 5 confusing options. Then MLLM
is expected to choose the correct option or output the correct content. Thus, a metric of accuracy is
used to evaluate model performance.

Evaluation Settings Similar to evaluation for 2D tasks, our 3D benchmark includes two settings for
evaluation. The first one is a zero-shot setting. MLLM is trained on instruction data from 3D portion
of our dataset, whose point clouds come from 3RScan or ShapeNet and has no overlap with ones in
downstream tasks. Furthermore, we finetune the models trained on our 3D datasets by training a set
of downstream tasks and reporting metrics on the corresponding test set.

D Implementation Details

In our experiments, 2D and 3D models are trained independently, and only the feature projection
layer and LoRA parameters are optimized during training while LLM can be shared among tasks.

For all experiments, trainable parameters are optimized by Adam optimizer with a learning rate
initialized to be 5e-4, and scheduled using a linear decay scheduler. We For 2D experiments, models
are trained for 2 epochs. For 3D experiments, we increase the number of iterations to 10,000 in case
of too few samples. We use 4 A100-80GB to conduct experiments. Each GPU process 2 samples
every iteration and the effective batch size are set to 64 by gradient accumulation. For reference, 2D
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Figure 16: Template for multi-modal data pairs. Bold words stand for corresponding text data and
italic words indicate fixed templates. < vision > & < /vision > stand for start & end token for
vision contents.

experiments at most last for about 8 hours for 186K samples, while 3D experiments require about 3
hours.

Following Vicuna [9], we format multi-modal training data as Figure 16. [SystemMesssage]
specifies the corresponding task of sample, [Query] refers to position of texts from human and
[Response] refers to contents expected for LLM. The special tokens < vision > & < /vision >
represents start and end positions for vision content. We use < Img >< /Img > and < Pcl ><
/Pcl > in 2D and 3D datasets, respectively. The training objective used is next token prediction loss,
and only text tokens of [Response] count for loss computation. As we use CLIP [38] pre-trained
ViT-Large-14 as visual encoder, the number of vision tokens are 256 and length of text tokens after
vision tokens are limited to 400 in training.

E Demonstrations

E.1 Results on CIFAR10

Figure 19 presents some examples responses from model trained by our dataset on CIFAR10, where
the model’s answers were judged as incorrect in the evaluation, but in fact, our model provided a more
granular classification result. The left column shows the test images from CIFAR10, and the right
column displays the images of the objects that the model classified, including toad [61], Land Rover
Series II [62], Mirage 2000D fighter aircraft [63] and police car [64]. It is evident that the fine-grained
objects classified by our model have very similar features to the input images, demonstrating its
ability to perform fine-grained classification.

E.2 More detailed information on image caption

Our model performed poorly on the Flickr30k dataset in terms of BLEU scores. This is because
model’s responses include additional details that are not captured by the ground truth captions. Figure
20 illustrates this phenomenon, where the highlighted text in red represents the matching ground
truth captions, while the text in orange is not matched but is still relevant to the image content. It is
evident that our model is capable of providing more detailed descriptions of the image, which is not
captured by the traditional BLEU metric.

E.3 Comparison with LLaVA on detection and counting tasks

We compared the performance of model trained by our dataset with that by LLaVA on both object
detection and counting tasks. Figure 21 illustrates the comparison results on detection, where
the leftmost images represent the ground truth bounding box, and the rightmost images show the
visualizations of the responses after entity extraction.

Although LLaVA was able to identify the approximate location of the object, it was unable to provide
precise bounding box coordinates. On the other hand, our model demonstrated superior detection
capabilities after fine-tuning on detection-related data and was able to provide more accurate bounding
box coordinates. Additionally, our model also exhibited better counting performance, as shown in
Figure 22. It is worth noting that counting is essentially a task that tests the model’s localization
ability.

E.4 Results of binary-loc metric and GPT metric

We present the results of our model and LLaVA on the binary locating metric in Figure 24 (a),
where our model demonstrates more precise localization abilities. The green points in the image are
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the visualization of the predicted key points. In the second row of the figure, our model outputs a
bounding box, which we break down into two position coordinates (top-left and bottom-right) during
entity extraction.

In Figure 24 (b), we show the evaluation results of the two models’ image captioning responses using
the GPT metric. The GPT metric considers our model’s responses to be more specific and accurate
compared to LLaVA, resulting in a higher ranking. These results further demonstrate the effectiveness
of the model trained on our dataset in accurately detecting, locating, and describing objects in images.

E.5 More demonstration examples

Figure 23 shows the results of our model on VQA task and Figure 25 shows its example results on
3DVQA task. Figure 26 shows the results on in-the-wild images.
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Figure 17: System messages for benchmark on image tasks
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Figure 18: System messages for benchmark on point cloud tasks

Figure 19: Results of model trained by our dataset on CIFAR10. (a) The images from CIFAR10 test
set. (b) The instruction, response from our model and the ground truth. (c) The reference images.

27



Figure 20: Our model’s Response on fickr30k dataset. The highlighted text in red represents the
matching ground truth captions in BLEU evaluation. The text in orange is not matched but is still
relevant to the image content.
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Figure 21: Comparison of models trained on our dataset and LLaVA on VOC2012.

Figure 22: Comparison of models trained on our dataset and LLaVA on FSC147.

Figure 23: (a) Example results of models trained on our dataset on SQAimage. (b) Example results
of our model on AI2D.
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Figure 24: Comparison of models trained on our dataset and LLaVA on binary-loc metric and GPT
metric. (a) The comparison on binary-loc metric. (b) The results of GPT metric.
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Figure 25: Example results of our model on ScanQA.

Figure 26: Example results of our model on in-the-wild images.
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Figure 27: Question template pool and Answer template pool for classification task.
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Figure 28: Question template pool and Answer template pool for detection task in 2D vision.
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Figure 29: Question template pool and Answer template pool for keypoint detection task in 2D vision.
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Figure 30: Question template pool and Answer template pool for counting task in 2D vision.

Figure 31: Question template pool and Answer template pool for object classification in 3D vision.

35



Figure 32: Question template pool and Answer template pool for object detection in 3D vision.

Figure 33: Question template pool and Answer template pool for visual question answering in 3D
vision.
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