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ABSTRACT

Reinforcement Learning (RL) is known for its strong decision-making capabili-
ties and has been widely applied in various real-world scenarios. However, with
the increasing availability of offline datasets and the lack of well-designed online
environments from human experts, the challenge of generalization in offline RL
has become more prominent. Due to the limitations of offline data, RL agents
trained solely on collected experiences often struggle to generalize to new tasks
or environments. To address this challenge, we propose LLM-Driven Policy Dif-
fusion (LLMDPD), a novel approach that enhances generalization in offline RL
using task-specific prompts. Our method incorporates both text-based task de-
scriptions and trajectory prompts to guide policy learning. We leverage a large
language model (LLM) to process text-based prompts, utilizing its natural lan-
guage understanding and extensive knowledge base to provide rich task-relevant
context. Simultaneously, we encode trajectory prompts using a transformer model,
capturing structured behavioral patterns within the underlying transition dynam-
ics. These prompts serve as conditional inputs to a context-aware policy-level
diffusion model, enabling the RL agent to generalize effectively to unseen tasks.
Our experimental results demonstrate that LLMDPD outperforms state-of-the-art
offline RL methods on unseen tasks, highlighting its effectiveness in improving
generalization and adaptability in diverse settings.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a powerful paradigm for sequential decision-making
and control, achieving remarkable success across a wide range of applications, from robotics (Tang
et al.,[2024) and autonomous driving (Lee et al.|[2024)) to finance (Liu et al.,|2022) and healthcare (Yu
et al., 2021). With the growing application of RL in real-world scenarios, the limitations of real-
world RL environments have become increasingly evident—in many cases, access to either data or
the environment is restricted. This highlights the importance of generalization in RL, which focuses
on training RL agents on limited datasets or environments while ensuring their generalizability to
unseen tasks or environments (Kirk et al.l [2023), thereby reducing the need for extensive task-
specific training and direct access to all possible environments. This not only enhances efficiency
but also significantly reduces human effort in designing and collecting training data.

Generalization in RL however poses significant challenges, as it requires maximizing the perfor-
mance of RL agents on unseen tasks or environments that were not covered in the training data. Prior
research has identified several factors contributing to the generalization gap in deep RL agents, such
as overfitting and memorization in deep neural networks, which can lead to poor adaptability (Arpit
et al., |2017). To address these challenges, various methods have been explored, including data
augmentation to enhance generalization to unseen states (Yarats et al., [2021; |Raileanu et al., 2021}
Zhang and Guol [2021)), generation of synthetic environments to increase training diversity (Wang
et al., [2019; [2020), approaches to reduce discrepancies between different environments (Liu et al.,
2020), and optimization strategies that account for environment variations (Raileanu and Fergus,
2021). However, in many real-world applications, direct access to online environments is often im-
practical. For example, in autonomous driving (Lee et al.| |2024), training data is primarily collected
from human drivers, resulting in large offline datasets rather than interactive online environments.
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This makes generalization in offline RL an especially important area of study. The goal is to train
RL agents from offline data that can achieve strong performance while generalizing to unseen cir-
cumstances. Prior research has shown that generalization in offline RL is more challenging than
in online RL (Mazoure et al.l 2022} Mediratta et al.| [2024), highlighting both its significance and
inherent difficulties.

The main challenges of generalization in offline RL fall into two primary categories: (1) the gen-
eralization gap inherited from standard deep RL (Arpit et al.l |2017), and (2) the lack of sufficient
exploration data in offline RL training. Previous works have employed techniques such as data aug-
mentation (Laskin et al.}|2020; |Sinha et al., 2022; Modhe et al.,|2023)) and adversarial training (Qiao
and Yang| 2024)) to address the generalization gap caused by overfitting. To improve training ef-
ficiency in offline RL—where arbitrary exploration like in online RL is not possible—researchers
have sought to enhance data utilization (He et al.|[2023)) and mitigate the effects of out-of-distribution
data, thereby improving generalization (Ma et al.,|2024; [Wang et al., 2024a). However, most prior
work has primarily focused on reducing reliance on training data to enhance generalization. Few
studies have leveraged readily available task-specific information such as text descriptions from of-
fline data or incorporated easily collectible task-related data to enhance generalization.

In this work, we introduce LLM-Driven Policy Diffusion (LLMDPD), a novel approach to improv-
ing generalization in offline RL by leveraging task-specific prompts. We introduce two types of
prompts: a text prompt, which is a textual description of the task or environment, and a trajectory
prompt, which consists of a single trajectory collected from the target task or environment, both
of which are easy and cheap to obtain. First, leveraging the capabilities of large language models
(LLMs) in natural language processing (Qin et al., 2024) and knowledge distillation (Xu et al.,
2024; |Yang et al.l 2024)), we use a pre-trained LLM to process the text prompt, extracting useful
insights from the task description while also drawing on the pre-collected knowledge embedded in
the LLM. Second, we train a transformer model to process the trajectory prompt, capturing task-
specific behavioral patterns from the transition dynamics of the prompt. Both prompts are encoded
into latent embeddings, which serve as conditional inputs to support adaptive and context-aware
policy training. We adopt policy diffusion as our policy function, which takes the state and the
task-specific prompt embeddings as inputs and outputs a task-aware action distribution, enabling
generalization to unseen tasks without fine-tuning. We evaluate LLMDPD on several benchmarks,
and our experimental results show that LLMDPD outperforms state-of-the-art methods in offline RL
generalization, demonstrating the effectiveness of our approach.

Our key contributions are summarized as follows:

* We are the first to incorporate text prompts leveraging the advantages of LLMs, along with
trajectory prompts, into offline RL. This approach significantly enhances the generalizabil-
ity of offline RL agents to unseen tasks.

* We introduce Context-aware Conditional Policy Diffusion (CCPD), which incorporates
prompt information as a conditioning mechanism within the offline RL framework. This
approach enhances policy flexibility while improving generalization to unseen tasks.

* Our experimental results show that LLMDPD significantly outperforms state-of-the-art of-
fline RL methods in generalization, demonstrating the effectiveness of our approach.

2 RELATED WORKS

Generalization in Offline RL  Generalization in RL focuses on addressing the generalization gap
to enhance RL agent’s ability to perform well on unseen tasks or environments. Traditional gener-
alization studies in RL primarily examine the generalizability of RL agents in online environments.
However, with the increasing availability of large offline datasets and the lack of direct access to on-
line environments in many real applications, present research has shifted toward a more challenging
yet practical objective: improving generalization in offline RL. Mazoure et al| (2022)) systemati-
cally analyzed the differences in generalization between online and offline RL, providing theoret-
ical evidence that online RL algorithms struggle to generalize in offline settings. Mediratta et al.
(2024) conducted experiments evaluating the generalization capabilities of widely used RL meth-
ods in both online and offline settings. Their results indicate that standard RL methods generalize
more poorly in offline environments, reinforcing that generalization in offline RL is a more diffi-
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cult problem. [Laskin et al.| (2020) and Sinha et al.|(2022) introduced data augmentation schemes to
enhance the generalization ability of offline RL agents. He et al.| (2023) proposed the Multi-Task
Diffusion Model (MTDIFF), which leverages knowledge from multi-task data to improve general-
ization in offline RL through shared information. |Qiao and Yang|(2024) introduced Soft Adversarial
Offline Reinforcement Learning (SAORL), which imposes constraints on traditional adversarial ex-
amples, formulating a worst-case optimization problem to generate soft adversarial examples. Zhao
et al.| (2024) proposed Offline Trajectory Generalization through World Transformers for Offline
Reinforcement Learning (OTTO), a method designed to learn state dynamics and reward functions,
thereby enhancing generalization to unseen states. Ma et al.| (2024) developed Representation Dis-
tinction (RD), a plugin method that improves offline RL generalization by detecting and preventing
out-of-distribution state-action pairs. Similarly, Wang et al.| (2024a)) introduced Adversarial Data
Splitting (ADS) to relax rigid out-of-distribution boundaries, ultimately improving generalization
in offline RL. Xu et al.|(2022) introduced Prompt-based Decision Transformer (Prompt-DT), which
adopts a prompt framework to enable few-shot adaptation in offline RL, thereby facilitating few-shot
policy generalization. |Li et al.| (2024)) and |Wang et al.| (2024b)) incorporate contextual information
into offline meta-RL, offering insights into how context can be utilized to improve task conditioning
or policy adaptation. |L1 et al.| (2024) introduced the UNICORN, which provides a theoretical per-
spective on the importance of task variables and their latent representations by incorporating contex-
tual information. Wang et al.| (2024b) proposed the Meta Decision Transformer (Meta-DT), which
learns a context-aware world model to encode task-specific information. While their work does not
explicitly focus on generalization, it provides a valuable perspective on leveraging contextual cues
within offline RL.

Diffusion-based RL  Diffusion models have recently emerged as a powerful generative modeling
approach for capturing complex data distributions, and their application to RL has gained traction.
Diffuser (Janner et al., 2022) introduces the concept of using diffusion models to model trajectory
distributions in offline RL. Several diffusion-based approaches have since extended this idea. De-
cision Diffuser (Ajay et al.| [2022) conditions trajectory generation on high-level task information,
such as rewards. PlanDiffuser (Sharan et al., [2024) integrates diffusion models with planning tech-
niques to enhance precision in control tasks. MetaDiffuser (Ni et al., [2023) learns a contextual
representation of tasks as conditional input to the diffusion model, enabling the generation of task-
oriented trajectories. Similarly, Hierarchical Diffuser (Chen et al.,[2024) decomposes long planning
horizons into smaller segments, learning subgoals for each to improve planning efficiency. In addi-
tion to trajectory-based diffusion models, Wang et al.|(2023)) introduced Diffusion Policy to offline
RL at the action level rather than the trajectory level, providing greater flexibility and more accurate
transitions. |Chi et al.|(2023) further extended Diffusion Policy to broader RL scenarios, enabling
effective policy learning for high-dimensional control tasks. Our proposed work is the first that
exploits diffusion policy for generalization in offline RL.

Applications of LLM in RL Large Language Models (LLMs) have demonstrated remarkable ca-
pabilities in understanding, generating, and reasoning over text, making them powerful tools for a
wide range of applications. Recently, many studies have started exploring the integration of LLMs
into RL to enhance learning efficiency and decision-making. |Sun et al.| (2024) surveyed the appli-
cation of LLMs in multi-agent RL frameworks, highlighting key advancements and future research
directions. (Cao et al.|(2024])) reviewed the existing literature on LLM-enhanced RL, summarizing ad-
vancements and challenges in the field. Du et al.| (2023) introduced Exploring with LLMs (ELLM),
a method that guides RL pretraining by generating prompted descriptions of the agent’s current
state. [Wang et al.| (2024c) proposed LLM-Empowered State Representation (LESR), which lever-
ages LLMs to generate task-relevant state representations, thereby improving the training efficiency
of standard RL methods. [Shi et al.[(2024) introduced Language Models for Motion Control (LaMo),
a framework that leverages pretrained language models to enhance Decision Transformers (Chen
et al} |2021) and improve the quality of policies learned from offline RL. |Yang and Xu|(2024) pro-
posed the Language Model-initialized Prompt Decision Transformer (LPDT), which builds upon
the standard Prompt-DT framework by replacing the learned prompt embeddings with those derived
from a pretrained language model. They further fine-tune the model using Low-Rank Adaptation
(LoRA) (Hu et al., 2022) to improve performance over Prompt-DT. Although LLMs have been
applied across various domains of RL, their potential for improving generalization in RL remains
largely unexplored. Our proposed work is the first to exploit the capacity of LLMs to enhance
generalization in offline RL.
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Task: Meta-world push.
Objective: Push the puck to a goal.
Constraints: Randomize puck and goal positions.

Figure 1: An example of a text prompt, where the description is structured as a short instruction
guiding the LLM on how to refine the prompt.

3 METHOD

Problem setting In generalization learning for offline RL, we assume an offline dataset D =
{(D?, 28, 21) } | that contains data for m seen tasks is given, where the training data D’ for each
task ¢ contains a collection of offline trajectory instances, paired with two additional prompts: a text
prompt 2%, , and a trajectory instance prompt z:. The text prompt provides a textual description for
the corresponding task, while the trajectory prompt consists of a single trajectory collected from
the given task using a behavior policy. Both prompts are easily collectible for either training or
test tasks and can provide task-specific context information for the RL model, thereby supporting
generalization to unseen tasks. Our goal is to learn an optimal policy 7* from the offline dataset D
over multiple seen tasks such that it can generalize effectively to unseen tasks without fine-tuning,
guided by the text and trajectory prompts from the target unseen tasks.

In this section, we present LLM-Driven Policy Diffusion (LLMDPD), a novel approach to enhanc-
ing generalization in offline RL. LLMDPD leverages both text and trajectory prompts for adaptive
policy diffusion learning. We utilize a pre-trained large language model (LLM) and a parametric
transformer as the embedding module to encode the text prompt and trajectory prompt, respectively.
The resulting prompt embeddings capture task specific information and serve as conditional inputs
for context-aware policy diffusion. We use diffusion Q-learning to jointly train the prompt em-
bedding module and the policy diffusion module in an end-to-end manner, inducing prompt-based
policy functions with enhanced adaptability and generalizability. The approach is elaborated below.

3.1 ProMPT EMBEDDING
3.1.1 LLM-DRIVEN TEXT PROMPT EMBEDDING

The text prompt 2 for each task consists a natural language description that provides explicit in-
formation for the corresponding task. It can be utilized to extract high-level semantic representations
of the task, supporting subsequent learning. To facilitate information extraction, we convert the text
descriptions of the tasks into a structured format for expressing information of various components,
including the task name, objective, constraints, and other specific attributes. An example of the
structured text prompt zx; is provided in Figure

Next we utilize a pre-trained large language model (LLM), denoted as M, to produce a latent prompt
embedding zy from the structure text prompt 2. By harnessing LLMs’ ability to process nat-
ural language texts and leveraging knowledge distillation from their embedded prior knowledge,
the latent prompt embedding is expected to encode rich task-relevant information. To enhance the
efficiency of prompt interpretation, we also include a default brief instruction, e.g., “convert the
following task description into a structured policy representation”, to guide the LLM in processing
the text prompt. Specifically, by using the structured text prompt together with the interpretation
instruction as input, we obtain an embedding output by performing mean pooling to the token em-
beddings produced from the last hidden layer of the LLM, effectively capturing the overall context
to ensure a comprehensive representation of the processed prompt. To enable adaptation to the sub-
sequent policy learning task, we further introduce a multilayer perceptron (MLP) project head h.,
parameterized by ¢ on top of the LLM M, refining the embedding output to a final embedding
vector Zyy;. This embedding process can be expressed using the following equation:

Ziext = h’l/J (M (Ztext))- ()
Here the default interpretation instruction is omitted for simplicity. The parametric projection head
can be trained end-to-end within the overall policy learning framework.
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3.1.2 TRANSFORMER-DRIVEN TRAJECTORY PROMPT EMBEDDING

The trajectory instance prompt consists of a single trajectory collected from the corresponding task,
represented as a sequence of state-action transitions, such as

ZT:[SOaa()»Sl;alv"‘ y Sty &g, ,ST,aT] )

where s, and a; denote the state and action at timestep ¢ respectively, and 1" denotes the length
of the trajectory prompt. Unlike text prompts which explicitly provide task-specific descriptions, a
trajectory prompt captures the transition dynamics and behavior patterns of the environment for the
corresponding task. To generate informative embeddings from the trajectory prompts, we devise a
parametric transformer as the encoder for the trajectory prompts, leveraging Transformer’s ability for
capturing long-range dependencies in sequential data and supporting effective structural information
extraction (Vaswani et al.,|2017). Similar to text prompt embedding, we apply mean pooling over
the transformer’s output and deploy a parametric MLP projection head on top of it. We use a
function g, parameterized by ¢, to denote the overall trajectory prompt encoder that includes both
the transformer and the MLP projection head. The final prompt embedding z, for a trajectory
prompt z, can be produced from the encoder g, as follows:

27 = go(2r)- @)

This transformer based encoder g, can be trained in an end-to-end manner through back-propagation
within the policy learning framework, ensuring that the prompt embedding effectively supports the
learning of a context-aware adaptive policy.

3.2 CONTEXT-AWARE CONDITIONAL POLICY DIFFUSION

To effectively leverage prompt embeddings that encode rich task-specific information to support
generalizable policy learning from offline data, we propose to learn a context-aware conditional
policy diffusion (CCPD) module as our policy function: mg(als, Zex:, Z- ), where 6 denotes the pa-
rameters of the module. This function conditions the policy generation on task-specific contexts
encoded by the text prompt embedding zy and trajectory prompt embedding z..

The diffusion process of the CCPD module consists of two Markov Chain processes: a forward
process and a reverse process. The forward process incrementally adds noise to an action a® sampled
from offline data, transforming it into a Gaussian prior over K diffusion steps. In the reverse process,
starting from a Gaussian noise prior a’ ~ A(0, I'), the model progressively denoises the action at
each timestep k, conditioned on the given state s and the corresponding prompt embeddings Zx; and
z,. Specifically, at timestep k, the next action a*~! in the sequential denoising process is generated
from the following Gaussian distribution:

Do (ak71 |aka S, Ztext, ZT) = N(akili Ko (ak’ S, Ztext, 47 k)7 UIEI) 4)
. 1 1—ay
with ug(ak,s,ztexl,zT,k) = T — (ak - 7m69(3k757ztexuzn k))

Here, oy, = Hle «;, and oy, follows a predefined variance schedule (Ho et al., [2020); ¢y denotes
a learned noise prediction network which estimates the added noise at each diffusion step, allowing
the model to recover the clean action after K timesteps. This CCPD module is trained together with
the prompt embedding module on the offline data D by minimizing a diffusion loss L4(v, ¢, ),
defined as the mean squared error (MSE) between the true noise € and the predicted noise:

— f—— i i 2
‘Cd(wawve) =Ec |:H€_69 (\/ ara+ 1 _ak€as7h’([)(M(Ztext))?gSO(zr)vk)H :| (5
where C = {i ~ [L: m],(s,a) ~ D"k~ [1: K],e ~N(0,I)}.
Given a trained policy diffusion module, the policy function 7y is obtained by progressively denois-

ing from a Gaussian prior, following the reverse diffusion process indicated by Eq.(@).

Incorporating Reward Maximization via Actor-Critic Policy Diffusion Minimizing only the
diffusion loss L4(1, ¢, 0) results in a behavior-cloned policy, which mimics the offline dataset D
without optimizing for rewards. To address this problem, we introduce a Q-function Q4(s,a) to
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estimate the expected cumulative reward. Specifically, we deploy the double Q-Learning strategy
(Hasselt, |2010) that uses two Q-networks, @4, and ()4,, to prevent Q-value overestimation, which
are trained by minimizing the following Q-losses (Wang et al., 2023):

. 2
EQ(¢€) = Ecq H (Tt + ’Y;r:ulrg Qd_’g/ (St+17 az(t)+1)> - Q¢'e (Sta at)H ’ for £ € {17 2} (6)
where Cq = {i ~ [1:m], (S¢, ¢, 74, Se41) ~ Di,a?+1 ~ 7r9(~|st+1,zfext,zf.)}

where ¢ indicates the stopping-gradient network used for Q-value estimation, and r; denotes the
reward observed in the trajectories of the offline dataset. The two Q-networks will converge to the
same solution ¢ in the limit. We utilize the Q-values estimated by either one of the Q-networks
(¢ = ¢1 or ¢ = @) to guide the reverse policy diffusion process, generating actions that maximize
the expected cumulative reward:

['r(wa ®, 9) = Eiw[l:m],sti,aON-rrg(~\s,h,¢, (M(2Ee)) 90 (22)) [Q¢(Sv aO)} (7N

To balance behavior cloning and reward maximization, the total training loss for the policy diffusion
module is formulated as a weighted combination of £, and the negation of the reward objective L,.:

5(1/1»9079) = ['d(i/%%e) - Aﬁr(/(bv@ag) (8)

where A is a hyperparameter controlling the trade-off between action denoising and reward-driven
optimization. The policy diffusion module can be viewed as an actor and the Q-networks can be
treated as critics. They can be simultaneously learned using the actor-critic learning strategy. The
overall actor-critic diffusion training algorithm is illustrated in Algorithm [I] By combining pol-
icy diffusion with Q-learning, our LLMDPD model learns a generalizable and reward-maximizing
policy, capable of adapting to unseen tasks under the guidance of task-aware prompts.

Algorithm 1 LLMDPD Training
Input: offline dataset D = {D*},, initialized embedding module (v, ¢) with pre-trained LLM

i=1>
M, initialized policy diffusion module 6, initialized Q-networks ¢, and @4,
Output: Trained model parameters 1, @, 0, ¢1, Po.

1: for each epoch do

2:  Sample a task i ~ [1 : m].

3 Extract text prompt 2%, and trajectory prompt z% for task i.

4:  Sample a batch B = {(sy,ay,7¢,8¢41), - - - } from seen offline data D*.
5:  for each transition (s;, as, 7+, St+1) in batch B do
6.
7
8

Compute prompt embeddings: zl.,, = hy (M (2L,)) and 22 = g, (2L).

Sample action: af, | ~ 7o (+[St41, Ziey, 25 ).
Update the Q-networks ¢, ¢» by minimizing the Q-loss in Eq.equation [6]

9: Randomly select ¢ or ¢- as the critic ¢

10: Sample action: a9 ~ g (-|st, Zly, ZL).

11: Sample diffusion timestep k& ~ [1 : K] and noise e ~ N (0, I).

12: Update parameters v, ¢, # by minimizing the total loss in Eq.equation
13:  end for

14: end for

4 EXPERIMENTS

To thoroughly evaluate the generalization performance of our LLMDPD method, we conducted
experiments on the Meta-World dataset (Yu et al., 2020) and the D4RL dataset (Fu et al., [2020),
both of which serve as benchmarks for evaluation an RL agent’s generalizability to unseen tasks.

4.1 EXPERIMENT ON META-WORLD

Environment Meta-World (Yu et al.l [2020) is a widely used benchmark designed for multi-task
and meta-RL. It is implemented using the MuJoCo physics engine (Todorov et al.l 2012), which
provides a diverse set of near-realistic robotic manipulation tasks, such as picking, pushing, and
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Table 1: This table presents the average success rates for various comparison methods on Meta-
World-V2 tasks, evaluated over 500 episodes per task. Results are averaged over three runs.

Type Task SAC S4RL RAD MTDIFF LLMDPD
box-close 2346711 73.13£351 71.20£4.84 65.73£8.36 75.24+4.90

Unseen hand-insert 30.60+£9.77 60.20£1.57 43.79+£344 T7087£3.59 T7871+£5.33
bin-picking  42.13 +£14.33 72.20+4.17 43.27+£4.38 55.73+£7.63 74.65+6.28
sweep-into 91.80+1.14 90.53+3.52 88.06+£9.86 92.87+1.11 91.84+242

Seen coffee-push  28.60 £14.55 28.73+8.44 33.19+2.86  74.67+£6.79 76.56 +2.89
disassemble  60.20 £16.29 52.20+5.68 60.93+£20.80 69.00+4.72 72.30+6.48

reaching. A notable subvariant, Multi-Task 50 (MT50), consists of 50 robotic manipulation tasks
well-suited for offline data collection, with each task accompanied by a detailed description. Among
these 50 tasks, 45 are designated as training tasks, while the remaining 5 serve as unseen test tasks
to evaluate an RL agent’s generalizability to novel tasks. With its pre-collected offline data and
comprehensive task descriptions, Meta-World serves as an ideal testbed for our LLMDPD method.

Comparison Methods We compare our LLMDPD method against four baselines on the Meta-
World benchmark: SAC, S4RL, RAD, and MTDIFF. SAC (Haarnoja et al.l [2018) is an off-policy
actor-critic RL algorithm used to collect the offline dataset in Meta-World, serving as a fundamental
baseline. RAD (Laskin et al., 2020) applies data augmentation in the state space, enhancing gen-
eralization, particularly for image-based observations. S4RL (Sinha et al.| [2022) extends this idea
by integrating advanced state-space augmentation techniques to improve generalization in offline
RL. MTDIFF (He et al 2023) is a diffusion-based multi-task RL method that facilitates implicit
knowledge sharing across tasks, enabling better adaptation to unseen tasks.

Implementation Details For offline data collection in Meta-World tasks, we follow the same cri-
teria as (He et al.,[2023)), using SAC (Haarnoja et al.,|2018) to pre-collect 40M timesteps of offline
data. Our model adopts the same transformer architecture as MTDIFF (He et al., [2023)) and learns
policy diffusion based on the Diffusion-QL framework (Wang et al.,[2023). We use the formal text
descriptions from Meta-World (Yu et al.| 2020) as text prompts and employ the same trained SAC
agent to generate trajectory prompts. We primarily use Llama3-7B (Dubey et al.| 2024) as our base
LLM, and the last hidden layer embeddings are mean-pooled and then passed through a 3-layer
MLP projection head (hidden size 512, ReLU activation) to obtain the final text prompt embedding.
The RL agent is trained on three seen tasks: sweep-into, coffee-push, and disassemble, and its gen-
eralization performance is evaluated on three unseen tasks: box-close, hand-insert, and bin-picking.

Experimental Results The experimental results for Meta-World tasks are presented in Table
We evaluate the generalization ability of our LLMDPD method on three unseen tasks while using
its performance on seen tasks to evaluate its overall sample efficiency during training. The results
show that LLMDPD significantly outperforms all other methods on the three unseen tasks. Notably,
on the bin-close task, LLMDPD achieves an 7.84 improvement in average success rate compared
to the previous best method, MTDIFF. Similarly, it shows an improvement of 2.45 on bin-picking
and 2.45 on hand-insert, demonstrating strong generalization capabilities, even when compared to
state-of-the-art data augmentation methods.

On seen tasks, our LLMDPD method achieves strong results, outperforming all other methods on
coffee-push and disassemble tasks. This demonstrates that LLMDPD not only exhibits strong gen-
eralization on unseen tasks but also efficiently learns from training on seen tasks. However, on the
sweep-into task, our method falls slightly behind MTDIFF. This may be because text descriptions
primarily enhance performance on complicated tasks, while offering limited gains on simpler tasks.

4.2 EXPERIMENT ON D4RL

Environment D4RL (Fu et al. |2020) is a benchmark dataset for offline RL, aiming to simulate
real-world applications. Its locomotion suite, built on the MuJoCo physics engine (Todorov et al.,
2012), includes pre-collected offline datasets at three expertise levels: medium-replay, medium, and
medium-expert. D4RL is widely used to evaluate an offline RL agent’s generalization ability, as its
datasets do not fully cover all possible state-action pairs. Among them, medium-replay consists of
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Table 2: This table presents the normalized scores of various comparison methods on the D4RL
locomotion suites using medium-replay offline data. Results are averaged over three runs.

Environment PnF-Qgrad SAORL Diffusion-QL OTTO RD ADS LLMDPD
halfcheetah 412445 40+2.6 47.8 £ 0.3 47.84+0.2 57.7+£0.9 594431 57.3+3.6
hopper 51.6 155 68+8.8 101.3+0.6 103.84+0.6 104.1+0.8 105.0+0.9 1059+1.5
walker2d 70.4 £ 2.0 80 + 23 95.5+1.5 93.6 £2.2 92.1 £2.7 96.1+£0.6 102.24+0.8
Average 54.4 62.7 81.5 81.7 84.6 86.8 88.5

Table 3: This table presents the average success rates for all ablation variants on Meta-World-V2
tasks, evaluated over 500 episodes per task. Results are averaged over three runs.

Task LLMDPD LLMDPD-OLMo-1B  w/o-prompt W/0-Z4et w/o-z, w/o-DP

box-close 75.24 + 4.90 72.18 £+ 5.66 67.29+6.89 70.14£8.57 72.01 £8.37 70.53+6.44
hand-insert 78.71 +5.33 76.61 +4.21 69.31 +5.38 7216 +£7.93 7543+6.70 73.19+6.31
bin-picking 74.65 + 6.28 71.76 +6.39 61.48 +£8.85 64.55+10.73 70.13+£8.64 66.86+9.59

all samples collected during training until the policy reaches the medium level. Lacking a clean and
optimal behavior policy, it is well-suited for evaluating an RL agent’s generalization capability.

Comparison Methods We evaluate six comparison methods on the D4RL dataset: PnF-Qgrad,
SAORL, Diffusion-QL, OTTO, ADS, and RD. PnF-Qgrad (Modhe et al., 2023) augments unseen
states to fine-tune hyperparameters for existing offline RL methods, and we use its COMBO variant,
referred to as PnF-Qgrad. SAORL (Qiao and Yang, |2024) enhances generalization by learning soft
adversarial examples, while Diffusion-QL (Wang et al., [2023)) trains a diffusion policy to maximize
offline RL performance. OTTO (Zhao et al.,2024) leverages World Transformers to simulate high-
reward trajectories for improved generalization, and we adopt its best variant, CQL+OTTO, referred
to as OTTO. ADS (Wang et al., 2024a) splits data and generates adversarially hard examples to en-
hance generalization, and we use its best variant, MCQ+ADS, referred to as ADS. Finally, RD (Ma
et al., 2024)) improves generalization by differentiating in-sample and OOD state-action pairs, and
we adopt its best variant, TD3-N-UNC+RD, referred to as RD. These methods provide a strong
benchmark for evaluating our approach against state-of-the-art offline RL generalization techniques.

Implementation Details We adopt the model architecture discussed in the previous section. The
text prompt consists of task descriptions derived from the base MuJoCo environments (Todorov
et al.,[2012), along with detailed representations of action and state observations, the reward func-
tion, initial state, and termination conditions. The RL agent is trained on the pre-collected D4RL
offline datasets of HalfCheetah, Hopper, and Walker2D at the medium-replay expertise level.

Experimental Results The experimental results on the DARL dataset are presented in Table [2]
We evaluate the ability of the offline RL agent to generalize to unseen states and actions compared
to the medium-replay offline datasets. The results show that LLMDPD achieves the highest overall
performance based on average normalized scores. It also attains the best normalized scores in the
Hopper and Walker2D environments, while in HalfCheetah, it performs comparably to the best
method, ADS. These results demonstrate that LLMDPD not only generalizes to unseen tasks but
also exhibits strong sample efficiency in training on offline datasets and adapting to unseen state
observations not covered in the offline data.

4.3 ABLATION STUDY

We conducted an ablation study on six variants of our model across three unseen tasks: (1)
‘LLMDPD’, our full model, which includes all components; (2) ‘LLMDPD-OLMo-1B’, which
replaces the base LLM with OLMo-1B (Groeneveld et al., 2024) for processing text prompt em-
beddings; (3) ‘w/o-prompt’, which removes both text and trajectory prompts; (4) ‘W/0-zex: , which
excludes only the text prompt; (5) ‘w/o-z.’, which excludes only the trajectory prompt; and (6)
‘w/o-DP’, which replaces the policy’s diffusion model with a standard trajectory-based diffusion
model. This study systematically evaluates each component’s contribution to overall performance.

The results of the ablation study are presented in TableE} The full model, ‘LLMDPD’, achieves the
highest performance across all three tasks. Removing any component results in a performance drop,
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Performance Improvement by Adding Prompts

w/o-prompt
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Figure 2: The figure illustrates the performance improvement achieved by incorporating prompts
into our LLMDPD method. The blue column represents the average success rate of the ‘w/o-prompt’
ablation variant, while the orange column represents the full LLMDPD model. The shaded area
indicates the standard deviation.

demonstrating the effectiveness of each part of our method. Replacing the base LLM with a smaller
model in ‘LLMDPD-OLMo-1B’ leads to a decline in performance on all three tasks, indicating
that larger models provide more detailed guidance to the policy by leveraging natural language
processing and pre-collected knowledge. However, this variant still maintains strong generalization
performance. Excluding both the text and trajectory prompts (‘w/o-prompt’) causes a significant
performance drop, highlighting the importance of prompting in our method. The ‘w/o-prompt’
variant, which removes only the text prompt, results in an even more severe decline, particularly on
hand-insert and bin-picking tasks. This suggests that without explicit textual guidance, the RL agent
struggles to generalize to complex unseen tasks. Similarly, the ‘w/o-z;’ variant, which removes the
trajectory prompt, exhibits degraded performance, demonstrating its role in helping the agent capture
transition behaviors in unseen tasks. Additionally, ‘w/o-DP’, which replaces the policy diffusion
model with a standard trajectory-based diffusion model, also experiences a significant performance
drop. This demonstrates the importance of policy diffusion in reducing overfitting to seen offline
data. Overall, the ablation results highlight the contribution of each component to LLMDPD’s
performance, with prompts playing a particularly crucial role in achieving optimal generalization.

We provide a visualization of the performance improvement achieved by incorporating both text
and trajectory prompts into our model, as shown in Figure 2] This figure illustrates the impact
of prompts on the model’s performance across six tasks, with three unseen tasks (left) and three
seen tasks (right). Across all tasks, the inclusion of prompts consistently enhances the average suc-
cess rate, with the orange bars (LLMDPD) outperforming the blue bars (‘w/o-prompt’). Notably,
incorporating prompts leads to a greater improvement in the three unseen tasks compared to the
seen tasks, demonstrating better generalization performance beyond training on the existing offline
dataset. Additionally, the inclusion of prompts slightly reduces the standard deviation, indicating
more stable training on the offline dataset and improved consistency in performance. These findings
suggest that prompt-driven learning not only boosts success rates but also contributes to more reli-
able and robust decision-making. Overall, these results highlight the crucial role of prompt-driven
guidance in enhancing task understanding, execution, and generalization in offline RL.-

5 CONCLUSION

In this work, we propose LLM-Driven Policy Diffusion (LLMDPD), a novel approach to enhancing
generalization in offline RL through task-specific prompts. LLMDPD utilizes both easily collectible
text-based task descriptions and single trajectory instances as prompts to guide policy learning. To
provide rich task-relevant context, LLMDPD leverages LLMs to encode text-based prompts while
using a transformer model to encode trajectory prompts. These prompts serve as conditional in-
puts to a context-aware policy diffusion module, enabling the RL agent to generalize effectively to
unseen tasks. By integrating policy diffusion with Q-learning, LLMDPD employs an actor-critic
diffusion algorithm to learn a generalizable, reward-maximizing policy. Experimental results on
benchmark tasks show that LLMDPD outperforms state-of-the-art offline RL methods in terms of
generalization, demonstrating its effectiveness in improving generalizability and adaptability.
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