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Abstract

Graph-structured data can be found in numerous domains, yet the scarcity of labeled in-
stances hinders its effective utilization of deep learning in many scenarios. Traditional un-
supervised domain adaptation (UDA) strategies for graphs primarily hinge on adversarial
learning and pseudo-labeling. These approaches fail to effectively leverage graph discrimi-
native features, leading to class mismatching and unreliable label quality. To address these
obstacles, we develop the Denoising and Nuclear-Norm Wasserstein Adaptation Network
(DNAN). DNAN employs the Nuclear-norm Wasserstein discrepancy (NWD), which can
simultaneously achieve domain alignment and class distinguishment. It also integrates a de-
noising mechanism via a Variational Graph Autoencoder. This denoising mechanism helps
capture essential features of both source and target domains, improving the robustness of
the domain adaptation process. Our comprehensive experiments demonstrate that DNAN
outperforms state-of-the-art methods on standard UDA benchmarks for graph classification.

1 Introduction

While deep learning has made substantial progress in handling graph-structured data, it shares a drawback
with other methods in the same category — a heavy reliance on labeled data. This requirement presents
a significant obstacle in real-world applications, where the gathering and annotating of graph-structured
data come with a steep price tag, both in terms of time and resources. Obtaining detailed labels for
graph-structured data, e.g., chemical molecules, is a considerable challenge because chemical molecules are
incredibly complex, comprising a large number of atoms connected in various ways through different kinds
of bonds. Collecting annotated graph-structured data like social networks is also challenging due to the
need to protect personal and sensitive information and the continual changes in network relationships. The
label scarcity makes it difficult to derive meaningful insights and hinders the development of strategies and
solutions based on deep learning. Therefore, it is highly desirable to relax the need for extensive graph-
structured data annotation to replicate the success of deep learning in applications.

To navigate the challenge of label scarcity, Unsupervised Domain Adaptation (UDA) (Ganin & Lempitsky,
2015) has emerged as a promising frontier, with the aim of leveraging labeled data from a related source
domain to inform an unlabeled target domain. The challenge of label scarcity requires Unsupervised Domain
Adaptation (UDA) due to the absence of labels in the target domain. The target domain is our primary
area of interest. To overcome this challenge, we utilize a source dataset rich in labels for training our model.
However, the inherent difference between the source and target datasets requires the application of domain
adaptation strategies. These strategies enable the effective application of models trained on the well-labeled
source data to achieve high performance on the target domain, despite its lack of labels. The principle of
UDA is to align the data distributions between the two domains within a common embedding space, enabling
a classifier trained on the source domain to perform competently on the target domain.

While UDA has been extensively applied to array-structured data (Long et al., 2016; Kang et al., 2019), its
translation to graph-structured data remains under-explored. Graph samples have a wide range of structural
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variations, including differences in connectivity patterns, node degrees, and subgraph structures. The pri-
mary challenge in applying UDA to graph classification is the domain shift in structural patterns, or simply,
the structural variations between the source and target domain graphs. These structural variations make
it challenging for models to identify and leverage invariant features across domains. Pioneering methods,
such as DANE (Zhang et al., 2019a), integrate generative adversarial networks (GANs) with graph convo-
lutional networks (GCNs) to align the domains. Others, like the approach by Wu et al. (2020), introduce
attention mechanisms to reconcile global and local consistencies, again employing GANs for cross-domain
node embedding extraction. However, these GAN-based methods have the drawback of class mismatching,
lacking clear separability between features from different classes, as they align target and source domain
features irrespective of their classes. In addition, these methods are designed for node classification. The
UDA strategy for graph classification has not been well-explored.

This paper focuses on the UDA setting for graph classification. We propose the Denoising and Nuclear-
Norm Wasserstein Adaptation Network (DNAN) to address the primary challenges in graph UDA tasks and
problems in the previous GAN-based methods. Our DNAN benefits from the denoising mechanism with
a Variational Graph Autoencoder (VGAE) and the Nuclear-Norm Wasserstein Discrepancy. By leveraging
the Nuclear-Norm Wasserstein Discrepancy, it tackles the class mismatch issue in existing graph-based UDA
methods. Unlike the previous GAN-based methods, DNAN performs a refined, class-specific alignment of
source and target domain distributions within a shared embedding space, preserving the distinct separability
of features across classes. The inclusion of the denoising mechanism is motivated by the stuctural variations
between source and target domain graphs for graph UDA setting. The denoising mechanism of VGAE
reconstructs clean adjacency matrices from corrupted versions. This process forces the model to learn
robust features that are more invariant to structural variations and helps the model focus on the underlying
structure and features that are relevant to the classification task. Thus, we believe the denoising mechanism
could help handle the domain shift in UDA tasks for graph classification. By using these two components,
DNAN performs competitively and achieves state-of-the-art performance on major UDA benchmarks for
graph classification.

Our contributions mainly lie in applying existing techniques to a new problem and introducing a new effective
combination of existing approaches. Our first contribution is applying denoising techniques to address the
domain shift in structural patterns in the graph UDA problem. This utilization of the denoising mechanism
is not trivial, and we believe we’re the first to apply the denoising mechanism in the graph UDA context. Our
second contribution is integrating Nuclear-norm Wasserstein Discrepancy (NWD) with VGAE. Typically,
VGAEs are used together with a domain classifier in previous domain adaptation methods. We use NWD to
remove the domain classifier and incorporate the domain adaptation directly into our class classifier. This
integration hasn’t been done before.

2 Related Work

Unsupervised Domain Adaptation A foundational approach within UDA is to reduce the discrepancy
between the source and target domain distributions using adversarial learning. A representative method
in this space, the Domain Adversarial Neural Network (DANN) (Ganin & Lempitsky, 2015), employs an
adversarial training framework to align domain representations by confusing a domain classifier in a shared
embedding space. This strategy is adapted from generative adversarial networks (GANs) (Goodfellow et al.,
2020), tailored for domain adaptation purposes. Expanding on this adversarial methodology, the FGDA
technique (Gao et al., 2021) used a discriminator to discern the gradient distribution of features, thereby
achieving better performance in mitigating domain discrepancy. Furthermore, DADA (Tang & Jia, 2020)
proposed an innovative strategy by integrating the domain-specific classifier with the domain discriminator
to align the joint distributions of two domains more effectively.

Adversarial approaches are complemented by statistical discrepancy measures like Maximum Mean Discrep-
ancy (MMD), utilized in the Joint Distribution Optimal Transport (JDOT) model (Courty et al., 2017b).
WD has been leveraged for distribution alignment in UDA methods (Courty et al., 2017a; Damodaran et al.,
2018), with Redko et al. (2017) providing theoretical foundations for model generalization on the target
domain when employing WD. However, the practical application of WD is computationally intensive due to
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the absence of a closed-form solution. The Sliced Wasserstein Distance (SWD) (Rabin et al., 2011; Bonneel
et al., 2015) offers a computationally feasible alternative. Reconstruction-based objectives constitute another
research direction, enforcing feature invariance across domains by reconstructing source domain data from
target domain features, as in the work by Ghifary et al. (2016). Additionally, the application of Varia-
tional Autoencoders (VAEs) Kingma & Welling (2013) to UDA, such as in the Variational Fair Autoencoder
(Louizos et al., 2015), showcases the capabilities of probabilistic generative models in domain-invariant fea-
ture learning. Our proposed method draws inspiration from the Variational Autoencoder’s framework. Other
notable approaches like ToAlign (Wei et al., 2021), SDAT (Rangwani et al., 2022), and BIWAA (Westfechtel
et al., 2023), mark the recent advancement in UDA, surpassing previous models in performance. These three
approaches are detailed in the experiment sections as our references for current state-of-the-art methods.
However, extending these existing methods to graph-structured data is often non-trivial.

Graph Representation Learning Graph representation learning (GRL) has emerged as an important
approach in machine learning, tasked with distilling complex graph-structured data into a tractable, low-
dimensional vector space to enable the use of architectures developed for array-structured data. Previously,
spectral methods laid the foundation, leveraging graph Laplacians to capture topological structures of graphs
despite the limitations in scalability for larger graphs (Belkin & Niyogi, 2003; Chung, 1997). The field then
evolved with algorithms such as DeepWalk (Perozzi et al., 2014) and Node2Vec (Grover & Leskovec, 2016),
which utilized random walks to encode local neighborhood structures into node embeddings, balancing the
preservation of local and global graph characteristics. The introduction of Graph Neural Networks (GNNs)
marked a significant advancement in GRL. GNNs, specifically Graph Convolutional Networks (GCNs), offer
a way to generalize neural network approaches to graph data, integrating neighborhood information into
node embeddings (Kipf & Welling, 2016a). This was further refined by GraphSAGE, which scaled GNNs by
learning a function to sample and aggregate local neighborhood features (Hamilton et al., 2017b;a). Moreover,
Graph Attention Networks (GATs) introduced an attention mechanism, enabling the model to adaptively
prioritize information from different parts of a node’s neighborhood, thus enhancing the expressiveness of
the embeddings (Velickovic et al., 2017). These advances, along with the development of graph autoencoders
like VGAEs that focused on graph reconstruction from embeddings, have broadened the applications of GRL
and continue to shape its trajectory (Kipf & Welling, 2016b). For a fair comparison, when we compare with
methods originally not proposed for graph domain adaptation, we replace their feature extraction backbones
with GAT. This is because GAT is the graph encoder we use in our approach.

3 Problem Description

We operate under the assumption that there is a source domain with labeled data and a target domain
with unlabeled data. In both domains, each input instance is a graph-structured data sample. Our primary
objective is to develop a predictive model for the target domain by transferring knowledge from the source
domain.

Graph Classification We focus on a graph classification task, where a graph sample can be represented
as G = (X,A). X ∈ Rn×K , where n represents the number of nodes in G and K represents the dimension
of the features for each node. Note that the number of nodes may vary across different graphs. Specifically,
xi ∈ X corresponds to the feature associated with a node vi. Let A ∈ Rn×n denote the adjacency matrix.
The matrix A encapsulates the topological structure of G. Each graph is associated with a class, and we use
y to denote the ground truth label of the graph sample G. The goal is to train a model capable of classifying
graphs effectively and accurately.

Source Domain Dataset We consider a fully labeled source domain dataset as (Ds, Ys) = ({Gks}, {yks }),
where Gks is the kth batch of graph samples in Ds and yks is the ground truth labels of Gks .

Target Domain Dataset We consider that only an unlabeled target domain dataset Dt = {Gkt } is acces-
sible, where Gkt is the kth batch of graph samples in the target dataset Dt.

UDA for Graph Classification The comprehensive pipeline of an UDA model for graph classification
begins by leveraging a neural network to extract relevant features from the input graph samples. Then, it
aligns the domains by utilizing either a distance metric to minimize the discrepancy between the source and
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target feature distributions or employs adversarial techniques to achieve domain-invariant feature represen-
tations. Subsequently, the classification task is performed using the aligned feature. Usually, the classifier for
the classification task is trained with source labels, but different UDA models may have different strategies
on training the classifier. The performance of the UDA model is evaluated based on how well it performs
the classification task on the test portion of the target domain dataset.

4 Proposed Method

Figure 1 visualizes a high-level description of our proposed pipeline. Our algorithm benefits from a denoising
mechanism via Variational Graph Autoencoder (VGAE) and the Nuclear-norm Wasserstein discrepancy for
distribution alignment. In a nutshell, our method embeds the graph-structured data from both domains into
a shared feature space via VGAE with a denoising mechanism. Then, we align the distributions of both
domains in this shared feature space by minimizing the Nuclear-norm Wasserstein discrepancy.

Figure 1: The block-diagram visualization of DNAN: The inputs are source batch Gs and target batch Gt.
We first add noise to the graph samples of the source and target batches by applying data augmentation
to their adjacency matrices As and At, using masks Mdrop

t , Mdrop
s , Madd

s , and Madd
t . Then, the graph

encoder of the VGAE produces the latent variables Zs and Zt from node features Xs, Xt and augmented
adjacency matrices Aos, Aot . We train a label classifier using a cross-entropy loss LCE between the output of
the label classifier and the ground-truth label. To align the latent variables of both domains, we compute a
Nuclear-norm Wasserstein discrepancy (NWD) using Zs, Zt, and the label classifier. The graph decoder of
VGAE reconstructs the original adjacency matrices As, At from Zs, Zt. Then, the Evidence Lower Bound
(ELBO) loss is computed based on the outputs of the graph encoder and original and reconstructed adjacency
matrices. Lastly, the model applies maximum entropy regularization Le to the latent variables Zt, Zs.

4.1 Latent Variables Construction with Denoising Mechanism

In a system composed of the random variables X and Z, X denotes the observed variable, while Z is the latent
variable. The conditional probability density P (X|Z) is known as the likelihood. From Bayes’ theorem, we
can compute the posterior probability density P (Z|X) as

P (Z|X) = P (X|Z)P (Z)
P (X) (1)

The marginal probability density P (X) can be computed as

P (X) =
∫
Z

P (X|Z)P (Z) dZ (2)
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The marginal probability density P (X) is known as the evidence and p(Z) is termed the prior probability
density, as it encapsulates the prior information regarding Z.

Variational inference (Blei et al., 2017) is an estimation technique aimed at approximating the complex,
often intractable posterior distribution P (Z|X) with a more computationally manageable parameterized
distribution qϕ(Z). A Variational Autoencoder (VAE) is a type of generative model that uses variational
inference within a probabilistic framework to encode input data into a latent space and reconstruct outputs
from this space. This process allows for the generation of new data points that are similar to the original
inputs. In a VAE, the model defines an approximate distribution, qϕ(Z|X), which is conditioned on an
input observation X. This distribution typically takes the form of a neural network, where X serves as
the input and the latent variable Z as the output. The parameters ϕ, representing the neural network’s
weights, are shared across all input observations X. This neural network, known as the inference network,
essentially learns to encode the input data into a latent representation. Conversely, the model also defines a
parameterized distribution Pθ(X|Z) that models the probability of observing X given the latent variable Z.
Pθ(X|Z) is also typically chosen as a neural network with Z as the input and a distribution over possible
values of X as the output. The weights of this neural network are denoted by θ, and this network is referred
to as the generative network. The generative network is tasked with decoding latent representations back
into data points, thereby enabling the generation of new data points by sampling from the latent space. The
prior distribution for the latent variable Z, denoted as P (Z), is typically chosen to be an isotropic Gaussian
distribution, expressed as N (0, σI). To train a VAE, we maiximize the following lower bound, known as the
evidence lower bound (ELBO), with regard to the parameters θ and ϕ.

LELBO = Eqϕ(Z|X)

[
logPθ(X,Z)
qϕ(Z|X)

]
= Eqϕ(Z|X) [logPθ(X|Z)] − KL (qϕ(Z|X) ||P (Z)) (3)

where KL represents the Kullback-Leibler divergence.

The Variational Graph Autoencoders (Kipf & Welling, 2016b) is based on Variational Autoencoder concepts
and is especially for graph-structured data. Given a graph sample G = (X,A) with n nodes, the graph
encoder (inference network) in VGAE generates a corresponding latent variable Z. qϕ(Z|A,X) is used to
denote the graph encoder, characterized by the parameter ϕ. qϕ(Z|A,X) aims to approximate the real pos-
terior distribution P (Z|A,X). The graph decoder (generative network) of a standard VGAE is represented
as Pθ(A|Z), defined by parameters θ. The prior distribution is denoted by P (Z), assumed to be a normal
distribution, specifically P (Z) ∼ N (0, I). The ELBO for standard VGAE is given as:

LELBO = Eqϕ(Z|A,X)[logPθ(A|Z)] − KL(qϕ(Z|A,X)||P (Z)) (4)

The standard VGAE is trained through maximizing the LELBO.

Instead using plain VGAE, we proposed to use VGAE with denoising mechanism. Particually, we adopt the
denoising criterion of Denoising Variational Autoencoders (DVAE) (Im Im et al., 2017) and translate it to
varitaionl graph autoencoder. Like DVAE, the VGAE with denoising mechanism reconstructs clean graph
data from inputs perturbed with noise. Similar to the training process of VGAE, however, we have some
variations. Given a graph sample G = (X,A), we train the VGAE on both G = (X,A) and Go = (X,Ao),
where Ao is the adjacency matrix with noise. We implement data augmentation to add noise to the adjacency
matrices. Specifically, we benefit from a random manipulation-based approach (Cai et al., 2021). To this
end, edges are dropped and added randomly by modifying the values in the adjacency matrix A of the
original graph. Ao is constructed as follows:

Ao = Mdrop ⊙A+Madd, madd
ij ∼ Bernoulli(padd · pedge), mdrop

ij ∼ Bernoulli(pdrop) (5)

where padd, pedge, and pdrop denote the edge addition rate, the sparsity of the adjacency matrix A, and the
edge dropping rate. ⊙ represents the element-wise multiplication between two matrices. Mdrop and Madd

represent mask matrices with the same dimensions as A. For each element madd
ij ∈ Madd or mdrop

ij ∈ Mdrop,
we sample its value from a Bernoulli distribution.

When the input is A, the evidence lower bound for VGAE with denoising mechanism is same as Equation 4.
When the input is Ao, we modify the evidence lower bound and called the modified variational lower bound
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to be Ldvgae. Ldvgae is presented as follows.

Ldvgae = Eq̃ϕ(Z|A,X)

[
log Pθ(A,Z)

qϕ(Z|Ao, X)

]
(6)

The network q̃ϕ(Z|A,X) is defined to include the component qϕ(Z|Ao, X) along with an additional stochastic
layer. This stochastic layer takes the adjacency matrix A as its input and produces the distribution of noised-
perturbed A (Ao) as its output. In section B of Appendix, a comprehensive description of q̃ϕ(Z|A,X) and
the reason to use an extra stochastic layer is provided. We also show Ldvgae is a valid variational lower
bound. Specifically, we prove the following theorem in Appendix.

Theorem 1. Maximizing Ldvgae is equivalent to minimizing the following objective

EP (Ao|A) [KL (qϕ(Z|Ao, X)||P (Z|A,X))] (7)

In other words,
logPθ(A) = Ldvgae + EP (Ao|A) [KL (qϕ(Z|Ao, X)||P (Z|A,X))]

Though Ldvgae is different from LELBO and can not be directly computed, we apply the Monte Carlo sampling
to approximate Ldvgae.

Ldvgae ≈ 1
M

M∑
m=1

Eqϕ(Z|Aom,X) [logPθ(A|Z)] − KL(qϕ(Z|Aom, X)||P (Z)) (8)

The derivation of this approximation is also in section B of the Appendix. With this approximation, the
training procedure turns to be similar to how the regular VAE is trained except that the input is corrupted
by a noise distribution.

We utilize Graph Attention Networks (GAT) as the graph encoder qϕ of the VGAE. The encoding equations
when the input is Ao are given as follows:

µ = GATµ(Ao, X)
log σ = GATσ(Ao, X)

zi = µi+εi · σi, εi ∼ N (0, 1)
qϕ(zi|Ao, X) = N (zi|µi,diag(σ2

i ))

qϕ(Z|Ao, X) =
n∏
i=1

qϕ(zi|Ao, X)

(9)

The element zi corresponds to the ith row of Z. This same row-wise correspondence applies to µi and log σi
as well. Using the reparameterization trick, we transform the generated µi and σi into latent variable zi. To
achieve a cleaner construction of the latent variable, we apply an element-wise maximum entropy loss, Le, as
a regularization term. This maximum entropy loss removes irrelevant information from the latent variable,
enhancing its clarity and effectiveness. The specifics of the maximum entropy loss are described below:

Le = 1
Ns +Nt

∑
Gk∈(Ds,Dt)

ME(Zk)

ME(Zk) = 1
nk × F

nk∑
i=1

F∑
j=1

σ(zij) log σ(zij)
(10)

where nk is the number of nodes in the graph sample Gk and F denotes the dimension of Gk’s latent variable
Zk. After obtaining the latent variable Z, an inner product decoder Pθ(A|Z) is applied to Z to reconstruct
the adjacency matrix before data augmentation. This decoder translates each pair of node representations
into a binary value, indicating whether an edge exists in the reconstructed adjacency matrix Ao. Specifically,
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we first use an MLP (multilayer perceptron) described by parameters {W0,W1} to improve the expressive
capacity of the latent variable Z. Then, we compute the dot product for each node representation pair as:

H = ReLU((Z ·W0) ·W1)
p(Aoij = 1|hi, hj) = σ(hTi hj)

p(Ao|Z) =
n∏
i=1

n∏
j=1

p(Aoij |hi, hj)
(11)

where hi represents the ith row of H and Aoij is an element of reconstructed adjacency matrix Ao. The
parameter θ describes the graph decoder includes {W0,W1}.

4.2 Distribution Alignment

By using Ldvgae, the graph encoder of VGAE is better equipped to grasp the essential features. However, we
still face a crucial challenge: addressing the performance degradation that occurs when a model trained on
data from a source domain is applied to a target domain with a different data distribution. As mentioned
in the previous sections, traditional approaches in unsupervised domain adaptation often use a domain
discriminator that engages in a min-max game with a feature extractor to produce domain-invariant features.
However, these methods primarily focus on confusing features at the domain level, which might negatively
impact class-level information and lead to the mode collapse problem (Kurmi & Namboodiri, 2019; Tang &
Jia, 2020). To address these challenges, our approach integrates the Nuclear-norm Wasserstein discrepancy
(NWD) (Chen et al., 2022) to effectively align the source and target domains’ feature representations while
maintaining class-level discrimination by considering it as a loss function. In section A of the Appendix, we
provide the detailed background of NWD for reference. The NWD addresses the class mismatch issue by
incorporating class information into the domain adaptation process. The class classifier not only performs
class classification but also serves as a domain discriminator. The class classifier is capable of identifying
correlations both within and among different classes. These correlations, however, vary between the source
domain data and the target domain data. To achieve domain alignment, NWD aligns the correlations
within and between classes in the target domain with those in the source domain. This alignment ensures
consistency of class across different domains, so the class mismatch problem is mitigated. .

Our method utilizes a Variational Graph Autoencoder described in the previous section and a classifier C
with parameter θc. We construct C with two fully connected layers. The empirical NWD loss is defined as:

Lnwd = 1
N train
s

Ntran
s∑
k=1

∥C(Zks )∥∗ − 1
N train
t

Ntrain
t∑
k=1

∥C(Zkt )∥∗ (12)

where Zks represents the latent variables for the k-th batch of graph samples Gks and where Zkt represents
the latent variables for the k-th batch of graph samples Gkt . ∥ · ∥∗ denotes the Nuclear norm. N train

s is the
number of training batches in the source dataset, and N train

t is the number of training batches in the target
dataset. To avoid complex alternating updates, we employ a Gradient Reverse Layer (GRL) (Ganin et al.,
2016), which allows for updating in a single backpropagation step. The distribution alignment is achieved
through a min-max game, optimized as:

min
ϕ

max
θc

Lnwd (13)

4.3 Algorithm Summary

In addition to distribution alignment, to ensure accurate classification, we optimize the graph encoder in
VGAE and the classifier C using a supervised classification loss Lcls for the source domain:

Lcls = 1
N train
s

Ntrain
s∑
j=1

LCE(C(Zks , yks )) (14)
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Algorithm 1 DNAN Method
Input: (Ds, Ys), Dt

Parameters: VGAE parameters {ϕ (Graph Encoder), θ (Graph Decoder)}, Classifier parameter {θc}
Output: Trained Parameters ϕ, θ, θc

1: Randomly sample a batch of {(Gks , yks )}
2: Randomly sample a batch of {Gtk}
3: Forward Propagation
4: Update ϕ, θ, θc based on Equation (10)
5: Add noise to {Gks}, {Gkt } based on Equation (2)
6: Forward Propagation
7: Update ϕ, θ, θc based on Equation (10)
8: return ϕ, θ, θc

Then, by combining all the loss described in the previous sections, our total optimization object is formulated
as follows:

min
ϕ,θ,θc

{
Lcls − LELBO(or Ldvgae) + λeLe

}
+ min

ϕ
max
θc

Lnwd, (15)

where ϕ is the parameter of the graph encoder of the VGAE, θ is the parameter of the graph decoder of the
VGAE, θc is the parameter of the classifier and λe is a hyperparameter that weighs the maximum entropy
loss Le. It is worth noting that we balance the supervised classification loss and the NWD loss equally.
In this case, our model effectively learns transferable and distinct features, leading to accurate and diverse
predictions in the target domain. The complete procedures of our UDA approach for graph-structured data
are summarized in Algorithm 1.

5 Experimental Validation

We validate our algorithm using two graph classification benchmarks. Our code is provided as a supplement.

5.1 Experimental Setup

Datasets We use the IMDB&Reddit Dataset (Yanardag & Vishwanathan, 2015) and the Ego-network
Dataset (Qiu et al., 2018) in our experiments. Following the previous works, we include Coreness (Batagelj
& Zaversnik, 2003), Pagerank (Page et al., 1999), Eigenvector Centrality (Bonacich, 1987), Clustering Coef-
ficient (Watts & Strogatz, 1998), and Degree/Rarity (Adamic & Adar, 2003) as the node features for both
datasets.

IMDB&Reddit Dataset IMDB&Reddit consists of the IMDB-Binary (1000 samples) and Reddit-Binary
(2000 samples) datasets, each denoting a single domain.

• IMDB-BINARY Each graph in this dataset represents an ego network for an actor/actress. Nodes
correspond to actors/actresses. There will be an edge between two actors/actresses who appear in
the same movie. A graph is generated from either romance or action movies. The task is to classify
the graph into romance or action genres.

• REDDIT-BINARY Each graph represents an online discussion thread. Nodes correspond to users.
If one of the users has responded to another’s comments, then an edge exists between them. The dis-
cussion threads are drawn from four communities: AskReddit and IAmA are question/answer-based
communities. Atheism and TrollXChromosomes are discussion-based communities. The binary clas-
sification task is to classify a graph into discussion-based or question/answer-based communities.

Ego-network Dataset Ego-network consists of data from four social network platforms, Digg, OAG,
Twitter, and Weibo, each representing a domain. Each network is modeled as a graph. Each graph has 50
nodes, and nodes in the graphs represent users. Every graph has an ego user. An edge is drawn between
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two nodes if a social connection occurs between two users. The definitions of social connection of these four
social network platforms are different. We extract the descriptions of social connections and social actions
of each social network according to Qiu et al. (2018):

• Digg allows users to vote for web content such as stories and news (up or down). The social
connection is users’ friendship, and the social action is voting for the content.

• OAG is generated from AMiner and Microsoft Academic Graph. The social connection is repre-
sented as the co-authorship of users, and the social action is the citation behavior.

• Twitter currently known as X, the social connection on Twitter represents users’ friendship, and
the social action is posting tweets related to the Higgs boson, a particle discovered in 2012.

• Weibo is a social platform similar to Twitter. The Weibo dataset includes posting logs between
September 28th, 2012, and October 29th, 2012, among 1,776,950 users. The social connection is
defined as users’ friendship, and the social action is re-posting messages on Weibo.

All the graphs in the four domains are labeled as active or inactive, the ego user’s action status. If the user
makes the social action, then the user is active. The task is to identify whether the ego users are active or
inactive. In addition to previously referenced node features, Ego-nework dataset also contains DeepWalk
embeddings for each node (Perozzi et al., 2014), the number/ratio of active neighbors (Backstrom et al.,
2006), the density of subnetwork induced by active neighbors (Ugander et al., 2012), and the number of
connected components formed by active neighbors (Ugander et al., 2012).

Baselines for Comparison There is a limited number of UDA algorithms specifically designed for graph
classification tasks. As a result, we conduct a comparative analysis between our proposed method and up-
dated versions of several representative methods (DANN, MDD, DIVA) and current state-of-the-art UDA
methods (SDAT, BIWAA, ToAlign) for array-structured data. To facilitate the adaptation of these algo-
rithms to graph-structured data and consistent with the structure of our VGAE’s graph encoder, we replace
the feature extraction backbones originally designed for array-structured data with GATs. These methods
are explained below:

• Sources: Plain GATs trained without domain adaptation techniques.

• DANN: Domain Adversarial Neural Network (DANN) (Ganin et al., 2016) adopts an adversarial
learning strategy. It contains a domain classifier. The domain classifier tries to distinguish the
samples from which domain and the feature extractor aims to confuse the domain classifier.

• MDD: Margin Disparity Discrepancy (MDD) (Zhang et al., 2019b) is first proposed for computer
vision tasks. It measures the distribution discrepancy and is tailored to the minimax optimization
for training.

• DIVA: Domain Invariant Variational Autoencoders (DIVA) (Ilse et al., 2020) disentangles the inputs
into three latent variables, domain latent variables, semantic latent variables, and residual variations
latent variables. It is proposed to solve problems in fields such as medical imaging.

• SDAT: Smooth Domain Adversarial Training (SDAT) (Rangwani et al., 2022) focuses on achieving
smooth minima with respect to classification loss, which stabilizes adversarial training and improves
the performance on the target domain.

• BIWAA: Backprop Induced Feature Weighting for Adversarial Domain Adaptation with Itera-
tive Label Distribution Alignment (BIWAA) (Westfechtel et al., 2023) employs a classifier-based
backprop-induced weighting of the feature space, allowing the domain classifier to concentrate on
features that are important for classification and coupling the classification and adversarial branch
more closely.

9



Under review as submission to TMLR

• ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation (ToAlign) (Wei et al.,
2021) decomposes features in the source domain into classification task-related and classification
task-irrelevant parts under the guidance of classification meta-knowledge, ensuring that the domain
adaptation is beneficial for the performance on the classification task.

Evaluation Metrics Following the literature (Cai et al., 2024), the F1-Score is employed as a metric for
the quantitative assessment of all methods. This score, which is the harmonic mean of precision and recall.
The formula for the F1-Score is as follows:

F1 = 2 · precision · recall
precision + recall (16)

Training Scheme In our evaluation, we rigorously train five models for each baseline method by employ-
ing five distinct random seeds for parameter initialization and dropping or adding edges during the data
augmentation phase. We report both the average performance and standard deviation of the obtained F1-
score. To ensure a fair comparison across all methods, we maintain the same seed for data shuffling. The
optimization process uses the Adam (Kingma & Ba, 2014) optimizer. Please refer to the last section in the
Appendix for a comprehensive description of our training scheme.

5.2 Performance Results and Comparison

Tables 1 and 2 present our performance results. The bold font denotes the highest performance in each
column.

Table 1: Performance results on Ego-network dataset

Method O→T O→W O→D T→O T→W T→D W→O W→T W→D D→O D→T D→W Avg

Source 40.0±0.0 40.4±0.3 43.8±2.4 40.2±0.0 48.0±1.2 41.3±0.0 40.2±0.0 46.6±0.9 41.3±0.1 40.2±0.0 40.0±0.0 39.8±0.0 41.8
DANN 42.0±0.6 41.7±0.6 51.3±0.8 40.7±0.7 42.0±0.9 49.9±1.7 40.3±0.1 41.3±0.6 50.9±0.4 40.3±0.0 40.4±0.3 42.5±0.7 43.6
MMD 40.2±0.1 41.2±1.1 48.0±3.2 40.2±0.0 45.5±1.5 41.3±0.0 40.2±0.0 46.2±2.9 41.9±1.3 40.2±0.0 40.1±0.1 40.0±0.2 42.1
DIVA 42.1±0.5 42.4±1.4 48.9±0.7 40.3±0.2 42.0±0.4 50.3±0.5 40.4±0.3 41.2±0.3 48.7±0.9 40.6±0.5 41.3±0.4 42.5±0.5 43.4
SDAT 40.2±0.1 40.1±0.5 42.2±1.6 40.2±0.0 41.6±1.3 42.9±3.2 40.3±0.2 41.1±0.7 43.1±2.8 40.2±0.0 40.1±0.1 39.9±0.1 41.0
BIWAA 40.1±0.2 41.5±0.2 45.1±1.3 40.3±0.2 48.0±2.9 43.3±3.0 40.2±0.0 50.4±0.5 45.7±3.8 40.3±0.1 41.0±0.9 43.1±0.3 43.2
ToAlign 36.5±13.343.0±0.9 49.1±1.4 40.8±0.3 43.1±1.1 50.2±0.5 40.7±0.4 42.8±1.3 48.4±3.2 40.5±0.2 43.4±0.9 42.6±1.6 43.4

DNAN 42.9±1.6 43.4±1.2 53.7±0.6 40.8±0.2 45.3±3.0 53.9±1.0 40.8±0.4 48.6±0.8 53.4±2.9 40.6±0.2 44.1±1.5 42.8±0.9 45.9

Table 2: Perofmrance results on IMDB&Reddit dataset
Task Source DANN MMD DIVA SDAT BIWAA ToAlign DNAN

I→R 63.4±0.2 63.9±0.8 63.7±0.4 63.6±0.5 63.6±0.6 64.0±0.8 63.3±0.2 64.2±0.6
R→I 72.3±1.7 72.0±1.7 73.6±1.7 71.1±0.3 74.1±2.0 71.4±1.0 73.4±0.8 74.9±2.0

Avg 67.8 68.0 67.3 68.0 68.8 67.7 68.3 69.6

Ego-network Results Results for this dataset are presented in Table 1. In this benchmark, twelve UDA
tasks can be defined by pairing the four domains. Our experimental results indicate that the DNAN performs
the best on average and achieves state-of-the-art performance on nine tasks: O to T, O to W, O to D, T to
O, T to D, W to O, W to D, D to O, and D to T. DNAN has good performances on T to W and W to T,
and achieve SOTA performance on D to T and T to D tasks, showing that DNAN can successfully handle
similar domains, as Digg, Twitter, and Weibo are similar content-sharing platforms. Notably, it exceeds the
second-best methods by about 4% on T to D and about 3% on W to D. In addition, DNAN can also achieve
SOTA performance when there is a large distribution gap between domains, such as on tasks between OAG
and Twitter or OAG and Weibo. It is important to underscore that no single method can achieve the best
performance on all tasks, likely due to the diverse range of domain gaps.
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Figure 2: UMAP visualizations showing the test data representations before softmax activation on the Oag
to Weibo task. Blue and red points denote the different classes. The middle plot displays the target domain
data representations obtained from a model trained on the source dataset before adaptation. The left and
right plots show the source and target domain data representations after adaptation using DNAN.

IMDB&Reddit Results Results for this dataset are presented in Table 2. We note that the experiments
demonstrate that all UDA methods perform better on the Reddit to IMDB task (R to I) than on the IMDB
to Reddit task (I to R), indicating that the two tasks are not equally challenging. We hypothesize that
the smaller size of IMDB-Binary compared to Reddit-Binary may result in performance degradation when
testing on the larger Reddit-Binary dataset, as less knowledge can be transferred to the target domain. Our
experiment results show that DNAN outperforms all other methods on both the R to I and I to R tasks,
leading to SOTA results on average. On the I to R task, we observe that all methods perform similarly.
Though DNAN does not outperform other methods by a large margin on the I to R task, the results still
indicate that DNAN has a competitive performance compared to other methods. It is worth noting that the
performance of a UDA algorithm may vary to some extent based on hyperparameter tuning. Therefore, when
comparing two UDA algorithms with similar performance, they should be considered equally competitive.
Based on this consideration, we can conclude that our proposed method performs competitively on all the
UDA tasks and outperforms other UDA methods on average. These findings suggest that DNAN can serve
as a robust UDA algorithm.

5.3 Analytic and Ablative and Experiments

We first perform analytic experiments to offer a deeper insight into our approach. We then performed an
ablative experiment to demonstrate that all components in our algorithm are important to achieve optimal
performance.

The effect of DNAN on data representations in the output space of the classifier To evaluate the
effectiveness of our proposed approach, we analyze how DNAN influences the target domain’s distribution
in the classifier’s output space on the Oag to Weibo task (O to W). We picked this task to demonstrate the
effect of our model because it is challenging as Weibo and Oag are very dissimilar platforms; one is connected
by co-authorship, and the other is friendship. We utilize the UMAP (McInnes et al., 2018) visualization
tool and compare the representations of the source domain’s test data, the target domain’s test data before
using DNAN, and the target domain’s test data after applying DNAN. In Figure 2, each point represents
a single data point in the output space of the classifier before the softmax activation. Blue and red colors
denote the two classes. In Figure 2, the middle plot shows that the classifier doesn’t work well with the
target domain data before adaptation. It’s hard to distinguish the class boundary as red dots are mixed with
blue ones. However, after applying DNAN, the class boundary becomes clearer, and the data representation
distribution of the target domain matches well with the source domain. This is evident in the left and right
plots of Figure 2, where the patterns of dots are consistent. These visualization results demonstrate that
DNAN successfully mitigates the performance degradation caused by the domain shift.

Ablative study The ablation experiments are conducted to demonstrate the effectiveness of the two ideas
we benefit from to develop DNAN. To this end, we remove one of the two components at a time and report
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Table 3: Ablation Study Results on Ego-network Dataset

Method O→T O→W O→D T→O T→W T→D W→O W→T W→D D→O D→T D→W Avg

DNAN-D 42.8±1.3 42.5±1.7 52.3±2.6 40.5±0.2 46.9±2.050.0±3.5 40.4±0.2 50.1±0.652.8±2.4 40.6±0.242.1±1.3 42.5±1.8 45.4
DNAN-N 44.4±2.243.1±0.7 52.6±1.0 41.0±0.345.0±2.4 52.7±2.7 40.7±0.3 46.9±2.2 53.3±2.5 40.5±0.2 43.0±1.1 43.6±0.945.6
DNAN-L 44.1±1.2 43.1±1.2 53.6±1.4 40.8±0.3 46.6±2.7 52.9±3.4 40.8±0.348.0±2.6 53.3±3.3 40.5±0.2 43.0±0.6 44.3±1.345.9

DNAN 42.9±1.6 43.4±1.253.7±0.640.8±0.2 45.3±3.0 53.9±1.040.8±0.448.6±0.8 53.4±2.940.6±0.244.1±1.542.8±0.9 45.9

Table 4: Ablation Study Results on IMDB&Reddit Dataset

Task DNAN-D DNAN-N DNAN-L DNAN

I to R 63.8±0.4 64.0±0.5 64.2±0.4 64.2±0.6
R to I 72.3±2.4 74.2±1.8 73.9±2.0 74.9±2.0

Avg 68.0 69.0 69.1 69.6

our performance. We denote the ablated versions of DNAN as: (i) DNAN-D: We exclude the denoising
mechanism and only apply the NWD loss and the maximum entropy loss. (ii) DNAN-N: We exclude the
NWD loss and only apply the denoising mechanism and the maximum entropy loss. (iii) DNAN-L: We
exclude the maximum entropy loss and only apply the NWD loss and the denoising mechanism.

Our ablation study results for the Ego-network and the IMDB&Reddit datasets are illustrated in Table 3
and 4, respectively. The Ego-network dataset results reveal that the integration of both NWD loss and the
denoising mechanism (DNAN) yields the highest average performance at 45.9%. The DNAN-D configuration,
lacking the denoising mechanism, shows competitive performance with an average of 45.4%. However, the
DNAN-N configuration, which excludes NWD loss, displays an even smaller decrease in performance, with
an average of 45.6%. For the IMDB&Reddit dataset, the full DNAN model again demonstrates superior
performance with an average score of 69.6%. Interestingly, the DNAN-N variant outperforms DNAN-D
with averages of 69.0% and 68.0%, respectively. This observation indicates that the denoising mechanism
is more critical in this context. The results from DNAN-L indicate that the entropy term does not play as
important a role as the methods we have introduced. While the average performance on the Ego-network
Dataset remains unchanged, DNAN-L falls short of SOTA results in as many tasks as DNAN. Moreover,
there’s a reduction, specifically by 0.5%, in the average performance on the IMDB&Reddit Dataset. The
maximum entropy can be viewed as a auxiliary method that provides support. The ablation study highlights
the importance of both the denoising mechanism and NWD loss in our proposed method, and confirms the
. While the NWD loss and the denoising techniques contribute more evenly to the Ego-network dataset, the
denoising mechanism is more beneficial for the IMDB&Reddit dataset. This suggests that the effectiveness
of each component is context-dependent.

Additionally, we have performed an analysis of hyperparameter sensitivity and time and model complexity
analysis. These findings are presented in Sections C and D of the Appendix, respectively.

6 Conclusions

We developed a new UDA method, which is specifically designed for graph-structured data. Our pro-
posed method includes denoising and using the NWD for domain alignment in a shared embedding space.
The experiments demonstrate our approach to be a promising method. By innovatively combining domain
alignment through NWD with a denoising mechanism via a Variational Graph Autoencoder, DNAN has
outperformed state-of-the-art methods across two major benchmarks without adding significant computa-
tional overload. The ability of our method to handle subtle and significant domain differences showcases
its versatility and robustness. From ablative studies, the two ideas that DNAN benefits from are proven
to be crucial for optimal performance. Future work can explore extending our approach to partial domain
adaptation scenarios or situations where the source domain data can not be directly accessible.
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A Nuclear-norm Wasserstein Discrepancy

From Intra-class and Inter-class Correlations to Domain Discrepancy Consider a prediction ma-
trix P ∈ Rb×k predicted by classifier C, where b represents the number of samples and k represent the
number of classes. P has the following properties:

k∑
j=1

Pij = 1, Pij ≥ 0, ∀i ∈ 1, 2, ...b (17)

The self-correlation matrix R ∈ Rk×k then can be computed by R = ZTZ. The intra-class correlation Ia is
defined as the sum of the main diagonal elements in R, and the inter-class correlation Ie is defined as the
sum of the off-diagonal elements in R:

Ia =
k∑

i,j=1
Rij , Ie =

k∑
i̸=j

Rij (18)

The Ia and Ie are very different for source and target domains. For the source domain, the Ia is large while
the Ie is relatively small, as we train with labels available so that most samples are correctly classified. For
the target domain, the Ia is small while the Ie is relatively large due to the lack of supervised training. Based
on linear algebra, we can represent Ia = ∥P∥F , the Frobenius norm of P , and

Ia − Ie = 2∥P∥F − b (19)

For the source domain, Ia−Ie will be large; for the target domain, Ia−Ie will be small. Therefore, Ia−Ie can
represent the discrepancy between two domains. Since the prediction matrix P is generated by the classifier
C, we can rewrite P = C(Z), where Z is the feature representation of the sample from either the source or
the target domain. With inspiration from WGAN (Arjovsky et al., 2017) and 1-Wasserstein distance, the
domain discrepancy can be formally formulated as

WF (Ds, Dt) = sup
∥∥C∥F ∥L≤K

EZs∼Ds [∥C(Zs)∥F ] − EZt∼Dt [∥C(Zt)∥F ] (20)

We call WF (Ds, Dt) the Frobenius norm-based 1-Wasserstein distance, where Ds denotes the source domain,
Dt denotes the target domain, ∥ · ∥L denotes the Lipschitz semi-norm (Villani et al., 2009), and K denotes
the Lipschitz constant.

From Frobenius Norm to Nuclear Norm From the domain discrepancy formulated above, we can
see that the classifier C works like a discriminator in GAN. Therefore, we can perform adversarial training
to train the feature generator via WF (Ds, Dt). However, adversarial training with WF (Ds, Dt) limits the
diversity of predictions. This is because it tends to push the samples in a class with fewer samples near
the decision boundary closer to a neighboring class with a significantly larger number of samples far from
the decision boundary (Cui et al., 2021). To address this limitation, the author proposes to use the nuclear
norm instead of the Frobenius norm. The nuclear norm has been shown to be bound by the Frobenius norm
(Chen et al., 2022). In addition, maximizing the nuclear norm maximizes the rank of the prediction matrix
P when ∥ · ∥F is nearby

√
b (Cui et al., 2020; 2021). In consequence, the diversity of predictions will be

enhanced. Thus, the domain discrepancy can be improved to be

WN (Ds, Dt) = sup
∥∥C∥∗∥L≤K

EZs∼Ds [∥C(Zs)∥∗] − EZt∼Dt [∥C(Zt)∥∗] (21)

WN (Ds, Dt) is called the Nuclear-norm 1-Wasserstein discrepancy (NWD). To integrate NWD into imple-
mentation, we can approximate the empirical NWD W̄N by maximizing Lnwd that is defined below

Lnwd = 1
Ns

Ns∑
k=1

∥C(Zks )∥∗ − 1
Nt

Nt∑
k=1

∥C(Zkt )∥∗, W̄N (Ds, Dt) ≈ max Lnwd (22)
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where Zks is the feature representation of the kth sample in the source domain dataset and Zkt is the feature
representation of the kth sample in the target domain dataset. Ns and Nt represent the number of samples
in the source and target domain, respectively.

B The Denoising Variational Lower Bound for VGAE

The concept of using a denoising criterion in the context of variational autoencoders is discussed in the
Denoising Variational Autoencoder (DVAE) paper (Im Im et al., 2017). We’re using the similar logic from
this paper to explain how the denoising mechanism can be applied to variational graph autoencoder. It
helps explain why Equation 6 and Equation 8 are valid. In the following explanation, we use the corruption
to refer adding noise procedure. We start with how the denoising mechanism will affect on the inference
process of the variational graph autoencoder. We first translate the Proposition 1 in the DVAE paper to
VGAE setting as follows.

Proposition 1. Let qϕ(Z|Ao, X) = N (z|µϕ(Ao, X), σϕ(Ao, X)) be a Gaussian distribution, where µϕ(Ao, X)
and σϕ(Ao, X) are non-linear functions of (Ao, X). Let P (Ao|A) be a corruption distribution around A and
Ao be the corrupt adjaceny matrix. Then,

EP (Ao|A)[qϕ(Z|Ao, X)] =
∫
qϕ(Z|Ao, X)P (Ao|A) dAo (23)

is a mixture of Gaussian.

If the distribution is over a discrete variable, the integral in Equation 23 can be replaced by a summation.
It’s instructive to examine the distribution in the discrete domain to understand that Equation 23 takes on
the form of a Gaussian mixture. Basically, for each instance Ao drawn from P (Ao|A), substituting it into
qϕ(Z|Ao, X) results in a Gaussian distribution. In our scenario, given that each element within the adjacency
matrix can only be 0 or 1, P (Ao|A) is a discrete distribution. Thus, we can formulate our case as follows.

Example 1. Let A ∈ {0, 1}N×N be the adjacency matrix of graph G that has N nodes, and consider a
corruption distribution Pπ(Ao|A) around A and Ao is corrupted adjacency matrix. Then,

EPπ(Ao|A)[qϕ(Z|Ao, X)] =
K∑
i=1

qϕ(Z|Aoi , X)Pπ(Aoi |A) (24)

has the form of a finite mixture of Gaussian and the number of mixture components K is 2N×N .

From the DVAE paper (Im Im et al., 2017), the corruption process at the input can be viewed as adding a
stochastic layer at the bottom of the inference network (qϕ). Specifically, Pπ(Ao|A) can be seen as a neural
network, with π as its weights. Pπ(Ao|A) takes A as input and outputs the corruption distribution. If
the corruption distribution is explicitly defined (such as Bernoulli or Gaussian distributions), the network
parameter π can be trained through backpropagation using the reparameterization trick. It’s important to
highlight that an explicit formula for the corruption distribution is not a prerequisite for our analysis to be
valid. This is because the Universal Approximation Theorem (Lu & Lu, 2020) states that a neural network
is capable of approximating any continuous function, regardless of its explicit form, and our analysis is not
involved any training process. Now, before we show the denoising variational lower bound for VGAE, we
first explain the variational lower bound that includes an extra stochastic layer. We first present Lemma 0,
a result we will use in the later proof. Following Lemma 0, we present the variational lower bound when an
extra stochastic layer is included in Lemma 1.

Lemma 0. For all nonnegative measurable functions f, g : R → [0,∞) that satisfies
∫ ∞

−∞ f(X) dX = 1,∫ ∞

−∞
f(X) log g(X) dX ≤

∫ ∞

−∞
f(X) log f(X) dX
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Proof. Let x be a random variable with f(X) be its probability density function. Consider the random
variable log

[
f(X)
g(X)

]
with Ef(X)

[
log g(X)

f(X)

]
= −Ef(X)

[
log f(X)

g(X)

]
. By Jensen’s inequality,

Ef(X)

[
log g(X)

f(X)

]
≤ logEf(X)

[
g(X)
f(X)

]
= log

(∫ ∞

−∞
g(X) dX

)
= 0

Therefore, Ef(X) [log g(X)] ≤ Ef(X) [log f(X)].

Lemma 1. Consider an approximate posterior distribution of the following form:

qΦ(Z|A,X) =
∫
Ao
qφ(Z|Ao, X)qψ(Ao|A) dAo (25)

Here, we use Φ = {φ,ψ}. Then, given Pθ(A,Z) = Pθ(A|Z)P (Z), we obtain the following inequality:

logPθ(A) ≥ EqΦ(Z|A,X)

[
log Pθ(A,Z)

qφ(Z|Ao, X)

]
≥ EqΦ(Z|A,X)

[
log Pθ(A,Z)

qΦ(Z|A,X)

]
(26)

Proof. By Jensen’s inequality, we have

EqΦ(Z|A,X)

[
log Pθ(A,Z)

qφ(Z|Ao, X)

]
= Eqψ(Ao|A)

[
Eqφ(Z|Ao,X)

[
log Pθ(A,Z)

qφ(Z|Ao, X)

]]
Eqψ(Ao|A)

[
Eqφ(Z|Ao,X)

[
log Pθ(A,Z)

qφ(Z|Ao, X)

]]
≤ log

(
Eqψ(Ao|A)

[
Eqφ(Z|Ao,X)

[
Pθ(A,Z)

qφ(Z|Ao, Z)

]])
= log

(
Eqψ(Ao|A)

[∫
Z

Pθ(A,Z)
qφ(Z|Ao, X)qφ(Z|Ao, Z) dZ

])
= log

(∫
Ao
Pθ(A)qψ(Ao|A) dAo

)
= log

(
Pθ(A) ·

∫
Ao
qψ(Ao|A) dAo

)
= logPθ(A)

Therefore, the left inequality of Equation 26 holds, and now, for the right inequality,

EqΦ(Z|A,X)

[
log Pθ(A,Z)

qφ(Z|Ao, X)

]
= EqΦ(Z|A,X)[logPθ(A,Z)] − EqΦ(Z|A,X)[log qφ(Z|Ao, X)]

Applying Lemma 0 to the second term, we have∫
Z

log qφ(Z|Ao, X)qΦ(Z|A,X) dZ ≤
∫
Z

log qΦ(Z|A,X)qΦ(Z|A,X) dZ

Hence,
EqΦ(Z|A,X)[log qφ(Z|Ao, X)] ≤ EqΦ(Z|A,X)[log qΦ(Z|A,X)]

Then, we have

EqΦ(Z|A,X)

[
log Pθ(A,Z)

qφ(Z|Ao, X)

]
≥ EqΦ(Z|A,X)[logPθ(A,Z)] − EqΦ(Z|A,X)[log qΦ(Z|A,X)]

= EqΦ(Z|A,X)

[
log Pθ(A,Z)

qΦ(Z|A,X)

]
.

Therefore, we obtain

logPθ(A) ≥ EqΦ(Z|A,X)

[
log Pθ(A,Z)

qφ(Z|Ao, X)

]
≥ EqΦ(Z|A,X)

[
log Pθ(A,Z)

qΦ(Z|A,X)

]
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Recalling Example 1, our approximate distribution can be defined as follows.

q̃ϕ(Z|A,X) =
K∑
i=1

qϕ(Z|Aoi , X)P (Aoi |A)

By treating denoising mechanism via adding one stochastic layer, now we can apply Lemma 1 and define
the denosing variational lower bound as:

logPθ(A) ≥ Eq̃ϕ(Z|A,X)

[
log Pθ(A,Z)

qϕ(Z|Ao, X)

]
def= Ldvgae (27)

To check whether Ldvgae is a valid lower bound, we need to examine what is achieved by maximizing
Ldvgae. In fact, maximizing Ldvgae can minimize the expectation of KL divergence between the true posterior
distribution (P (Z|A,X)) and approximate posterior distribution for each noised input (qϕ(Z|Ao, X)). This
is an effective objective as the inference network tries to map the noise-perturbed training data points to the
the true posterior distribution. In Theorem 1, we prove that maximizing Ldvgae achieves the goal.

Theorem 1. Maximizing Ldvgae is equivalent to minimizing the following objective

EP (Ao|A) [KL (qϕ(Z|Ao, X)||P (Z|A,X))] (28)

In other words,
logPθ(A) = Ldvgae + EP (Ao|A) [KL (qϕ(Z|Ao, X)||P (Z|A,X))]

Proof. Let us consider θ being fixed just for the sake of simpler analysis.

logPθ(A) − Ldvgae = logPθ(A) − Eq̃ϕ(Z|A,X)

[
log Pθ(A,Z)

qϕ(Z|Ao, X)

]
= logPθ(A,X) − Eq̃ϕ(Z|A,X)

[
log Pθ(A,X,Z)

qϕ(Z|Ao, X)

]
= Eq̃ϕ(Z|A,X)[logPθ(A,X)] − Eq̃ϕ(Z|A,X)

[
log P (Z|A,X)Pθ(A,X)

qϕ(Z|Ao, X)

]
= Eq̃ϕ(Z|A,X)

[
log qϕ(Z|Ao, X)

P (Z|A,X)

]
= EP (Ao|A)

[
Eqϕ(Z|Ao,X)

[
log qϕ(Z|Ao, X)

P (Z|A,X)

]]
= EP (Ao|A) [KL(qϕ(Z|Ao, X)||P (Z|A,X))]

Now we prove the Ldvgae is a valid variational lower bound. To train the VGAE with Ldvgae, in the DVAE
paper, the authors adopt the Monte Carlo sampling. In Monte Carlo sampling, we sample from the domain
of the a function and we take the average of the samples to estimate the expected value of the function. The
authors in DVAE apply Monte Carlo sampling twice, one to the inner expection EP (Ao|A), one to the outer
expection Eqϕ(Z|A,X). Their approximation is shown below.

Ldvgae = Eq̃ϕ(Z|A,X)

[
log Pθ(A,Z)

qϕ(Z|Ao, X)

]
= Eqϕ(Z|Ao,X)

[
EP (Ao|A)

[
Pθ(A,Z)

qϕ(Z|Ao, X)

]]

Ldvgae = Eqϕ(Z|Ao,X)

[
EP (Ao|A)

[
Pθ(A,Z)

qϕ(Z|Ao, X)

]]
≈ 1
KM

K∑
k=1

M∑
m=1

log Pθ(A,Z(k|m))
qϕ(Z(k|m)|Aom, X) (29)

where Aom ∼ P (Ao|A) and Z(k|m) ∼ qϕ(Z|Aom, X). We also use Monte Carlo sampling in our scenario but
only for the inner expectation EP (Ao|A) since we adopt the procedure how the regular VAE is trained: (i)
sample a corrupted input (Ao, X), (ii) sample latent variable from qϕ(Z|Ao, X), (iii) reconstruct the original
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adjacency matrix A. As the authors of DVAE state in their section 3.2 (Training Procedure), our procedure
can be viewed as a special case for Equation 29. Our estimation is shown as follows.

Ldvgae = Eqϕ(Z|Ao,X)

[
EP (Ao|A)

[
Pθ(A,Z)

qϕ(Z|Ao, X)

]]
≈ 1
M

M∑
m=1

Eqϕ(Z|Aom,X)

[
log Pθ(A,Z)

qϕ(Z|Aom, X)

]

= 1
M

M∑
m=1

Eqϕ(Z|Aom,X)

[
log Pθ(A|Z)P (Z)

qϕ(Z|Aom, X)

]

= 1
M

M∑
m=1

Eqϕ(Z|Aom,X) [logPθ(A|Z)] + Eqϕ(Z|Aom,X)

[
log P (Z)

qϕ(Z|Aom, X)

]

= 1
M

M∑
m=1

Eqϕ(Z|Aom,X) [logPθ(A|Z)] − KL(qϕ(Z|Aom, X)||P (Z))

With above reasoning, we show Ldvgae is a valid variational lower bound and Equation 8 is a valid approxi-
mation to Ldvgae.

C Hyperparameters Sensitivity Analysis

An important concern for most algorithms is tuning the hyperparameters and measuring the performance
sensitivity with respect to them. We evaluate the sensitivity of DNAN with respect to various hyperparam-
eters on two tasks: Twitter to Digg (T to D) and Digg to Twitter (D to T). We varied the dimension of the
latent embedding space, the output dimension of the graph decoder (before taking the dot products), the
weight of the maximum entropy loss (Le), and the batch size. We present the F1-scores of the DNAN model
as a linear function of these hyperparameters in Figure 3, with the blue lines representing the T to D task
and the yellow lines representing D to T task. Through inspecting this figure, we deduce:

• Dimension of the Latent Embedding Space: We test the performance of DNAN on five different
dimension sizes for the embedding space: 32, 64, 128, 256, and 300. The performance of DNAN
peaks at a latent variable size of 256 for the T to D task and a less pronounced peak on the D to T
task, indicating that a moderately large value for the dimension of the latent variable is beneficial
for capturing the salient features of the data. Performance declines when the dimension is too
small to capture the complexity or too large, potentially introducing noise or overfitting. We note,
however, that the result indicates that the performance remains relatively decent for a wide range
of embedding sizes.

• Output Dimension of the Graph Decoder: Similar to the experiments on the dimension of the
latent variable, we test the performance of DNAN on five dimension sizes: 32, 64, 128, 256, and 300.
The output dimension of the graph decoder shows a performance peak at 64 for the T to D task
and the D to T task. This observation suggests that a moderately small representation capacity in
the graph decoder is more beneficial. Compared with performances on the D to T task, the T to D
task is less sensitive to this hyperparameter.

• Weight of the Le: We test the DNAN on six weights: 0.1,0.5,1.0,2.0,3.0,5.0. The weight of the
maximum entropy loss presents a clear peak at 1.0 for both the T to D and D to T tasks, suggesting
that a balanced contribution of the entropy loss is critical for performance.

• Batch Size: We test five batch sizes: 64, 128, 256, 512, 1024. For batch size, there is a trend of
increasing performance as the size grows, with a notable peak at a batch size of 1024 for the T to
D and D to T tasks. This implies that the performance of DNAN benefits from larger batch sizes,
possibly due to more stable gradient estimates. Compared with the T to D task, the D to T task is
less affected by batch size variations.
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Figure 3: The performance of DNAN with different hyperparameter settings on Twitter to Digg (Blue lines)
and Digg to Twitter (Yellow lines) tasks.

Table 5: Training time for IMDB&Reddit dataset

Task DANN MMD DIVA SDAT BIWAA ToAlign DNAN

I→R 10 260 14 12 899 10 10
R→I 3 2 5 6 34 3 5

Table 6: Model complexity on IMDB&Reddit-Binary dataset. K represents the input feature dimension, M
represents the hidden dimension, and D represents the output dimension of the decoder.

DANN MMD DIVA SDAT BIWAA ToAlign DNAN

(K+3M+3)M (K+4M+4)M (K+11M+3D+3)M (K+3M+4)M (K+3M+3)M (K+2M+11)M (K+4M+D+2)M

D Time Complexity and Model Complexity Analysis

The analysis of the training time (in minutes) and model complexity for various domain adaptation methods
on the IMDB&Reddit dataset is presented in Table 5 and Table 6.

• Training Time: The training times reported in Table 5 illustrate the efficiency of the DNAN
model relative to its counterparts. For the I to R task, DNAN required 10 minutes, positioning it
the fastest in terms of training time, together with DANN and ToAlign, compared to other methods.
In the R to I task, DNAN again demonstrated moderate efficiency with 5 minutes, with MMD being
the fastest at 2 minutes and BIWAA the slowest at 34 minutes. These results suggest that DNAN
provides a balanced trade-off between model performance and training efficiency without adding a
significant computational overload.

• Model Complexity: The model complexity, as shown in Table 6, is assessed based on the number
of parameters in the models, which is a function of the input feature dimension (K), hidden dimension
(M), and the output dimension of the decoder before taking the dot products (D). Compared to other
methods like DANN and SDAT, which have similar forms, DNAN introduces additional complexity
due to the parameters in the graph decoder. However, it remains less complex than DIVA, which
includes an extra (7M+2D+1)M term.

We conclude that the DNAN model shows competitive training time that is significantly lower than the most
time-consuming method (BIWAA) while maintaining comparable or better performance. Model complexity
analysis reveals that DNAN, while not the simplest, avoids the higher complexity seen in more complex meth-
ods such as DIVA. DNAN balances the computational cost with the capacity to learn and transfer knowledge
effectively for better UDA performance. This observation is important because, in certain applications, it is
crucial to perform UDA quickly. This is due to the constant changes in the input distribution and the limited
time available to update the model. The sensitivity analysis of hyperparameters for the DNAN model on the
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T to D and D to T tasks demonstrates the stability of DNAN models when using different hyperparameter
values, as there is a moderate fluctuation around ±3%. However, fine-tuning hyperparameters to the specific
characteristics of the task and the dataset is beneficial. Although optimal performance is achieved with a
latent variable dimension of 256, a decoder output dimension of 64, an entropy loss weight of 1.0, and a batch
size of 1024, tuning the hyperparameter is not essential to achieve performance in the competitive range.

E Implementation Details of DNAN

In this section, we present our implementations of DNAN. Our codes are in Python, mainly with PyTorch
(Paszke et al., 2019) and PyTorch Geometric (Fey & Lenssen, 2019) libraries. We train five models for every
baseline using five random seeds for parameter initialization. The five random seeds are 27, 28, 29, 30, and
31. We also conducted a hyperparameter search, described in the hyperparameter sensitivity section in the
paper, to find suitable hyperparameters for optimal performance. The hyperparameters we use to achieve
the results listed in the main paper are presented in Table 7.

Parameter Ego-network IMDB&Reddit

Batch size 1024 64
Learning rate 0.01 0.001
Dropout rate 0.5 0.2
Encoder hidden size 256 128
Decoder output size 64 128
Learning decay rate 0.75 0.75
Entropy weight 1.0 1.0
Weight decay 0.0005 0.0005
padd 0.1 0.1
pdrop 0.1 0.1

Table 7: Hyper-parameters of DNAN
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