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ABSTRACT

Equivariant structures have been widely adopted in graph neural networks due to
their demonstrated effectiveness in various machine learning tasks, such as point
clouds, biology, and chemistry. We focuses on investigating the approximation
power of equivariant neural networks. Specifically, we prove that equivariant neu-
ral networks with any continuous activation function can approximate any contin-
uous equivariant function. Our theorem is established based on a novel composi-
tion of any subgroup G of a symmetric group SM . Additionally, we note that this
representation may not work for certain invariant continuous functions when the
dimension of the latent space is smaller than the dimension of the input space.

1 INTRODUCTION

Deep learning has achieved wide application in many fields such as image recognition Gao et al.
(2019) and extreme weather event prediction Chattopadhyay et al. (2020), but it usually requires a
lot of data. However, some data is inherently very expensive and difficult to acquire, such as med-
ical images in Ma et al. (2020). To utilize data more efficiently, Vinyals et al. (2015) proposed a
basic setup of learning from unordered sets, and research in this area has received increasing at-
tention in recent years. This setup mainly considers the case where set elements are represented
as feature vectors, with little emphasis on set elements themselves obeying their own symmetries.
Building on this, Cohen & Welling (2016) proposed a framework of permutations equivariant and
permutation invariant structures, which generalizes convolutional neural networks with invariance to
permutations, greatly enhancing the expressive power without increasing parameter count. This in-
dicates equivariant neural networks have many excellent properties, but their approximation abilities
need further investigation. Therefore, we needs to explore the approximation abilities of equivariant
neural networks.

Equivariant neural networks have many different architectures and applications, such as pretraining
on chemical data with faster convergence and lower loss values based on tensor field networks for
end-to-end message passing neural network TSNNetJackson et al. (2021), equivariant neural net-
works built from the Lorentz group based on finite-dimensional representation theory that perform
remarkably on classification tasks in particle physicsBogatskiy et al. (2020), neural network archi-
tectures for rotation and permutation equivariance on 2D point cloud dataBökman et al. (2022), and
SE(3)-Transformer variants with self-attention modules for 3D point clouds and graphsFuchs et al.
(2020), see related work for details. These articles on applications of equivariant neural networks
demonstrate the powerful working ability and generalization ability of equivariant neural networks.
From a theoretical perspective, it can be seen that TSNNet is a SO(3)×SN -equivariant point cloud
neural network; Lorentz group equivariant neural network is a Lorentz group-equivariant neural
network, ZZNet is an equivariant neural network based on general group/semigroup, and SE(3)-
Transformer is an equivariant neural network that is equivariant under 3D rotations and translations.
It can be seen that general groups are important for equivariant neural networks. Therefore, we
mainly focuses on studying the approximation theory of equivariant neural networks on general
groups.

First, we discusses a special case in equivariant neural networks, invariant neural networks. Accord-
ing to the discussion in Zaheer et al. (2017) (which established the DeepSets network architecture),
any SM -invariant neural network can approximate SM -invariant continuous functions. In addi-
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tion, Zaheer et al. (2017) also proposed a permutation invariant continuous function representation,
namely,

f(x1,x2, · · · ,xM ) = ρ

(
M∑
i=1

ϕ(xi)

)
,

Figure 1 is a powerful tool for understanding this conclusion. After Zaheer et al. (2017), Maron et al.
(2019) provided theoretical guarantees for uniform approximation of G-invariant functions using
the Stone-Weierstrass theorem, where G is any subgroup of the permutation group SM . However,
Maron et al. (2019) only proved the necessary conditions for uniform approximation by G-invariant
networks containing first-order tensors.

Figure 1: Illustration of a permutation invariant neural network layer, same color indicates identical
weights.

Secondly, in terms of the development of equivariant neural networks, according to the discussion
in Zaheer et al. (2017), the function σ(θx) is permutation equivariant if and only if the off-diagonal
elements of the matrix θ ∈ RM×M are tied together and the diagonal elements are equal, that is,

θ = λI+ γ
(
11⊤

)
λ, γ ∈ R, 1 = [1, . . . , 1]⊤ ∈ RM ,

Where I ∈ RM×M represents the identity matrix. Figure 2 can help understand this concept. Nev-
ertheless, Zaheer et al. (2017) was unable to provide a corresponding representation form for any
permutation equivariant function F : RM → RM . Fortunately, Zaheer et al. (2017) provided a gen-
eral method to use SM -equivariant neural networks to approximate any SM -equivariant continuous
function F : RM → RM . However, this method does not provide theoretical guarantees for the
approximation and representation of G-equivariant continuous functions.

Figure 2: Illustration of a permutation equivariant neural network layer, same color indicates identi-
cal weights.

After that, Segol & Lipman (2019) extended the basic model DeepSets in Zaheer et al. (2017) to
general groups, and using deep neural networks that are permutation invariant or equivariant to
learn functions on unordered sets has become commonplace. Yarotsky (2022) proved the universal
approximator for continuous SE(2)-equivariant signal transformations by constructing a complete
invariant/equivariant network with intermediate polynomial layers. Lawrence (2022) provided not
only invariant but also effective approximation results by defining an invariant approximation archi-
tecture with novel invariant nonlinearities that capture invariant function smoothness.
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In this paper, we aim to address the aforementioned issues and provide concrete solutions. Specifi-
cally, given any natural numbers M and N and X = R3, consider a SO(3)×G-invariant continuous
function f defined on XM to RN . Our goal is to provide a concrete representation form so that the
function can be accurately characterized. Inspired by previous work Zaheer et al. (2017), especially
for the case when G = SM , we will adopt the approach therein to represent f ,

ϕ(x) =

(
∥x∥lYℓm

(
x

∥x∥

))
m∈{−l,··· ,l}

.

Through the above discussion, we reach our first conclusion: SO(3)×G-invariant neural networks
can approximate any SO(3) × G-invariant continuous function. And we provide a compositional
representation of SO(3)×G-invariant continuous functions in terms of component continuous func-
tions and spherical harmonics.

Inspired by Sannai et al. (2019), we connect SM -equivariant continuous functions with StabSM
(k)-

invariant continuous functions. We upgrade SM to a more general group G. Therefore, we can
obtain concrete continuous representations of G-equivariant and SO(3)-invariant continuous func-
tions by composing continuous functions with spherical harmonics; and we generalize the concept
of the neural network form σ (θx) from Zaheer et al. (2017) to more general equivariant functions
F (x). In summary, we can draw the second conclusion: G-equivariant and SO(3)-invariant neural
networks can approximate any G-equivariant and SO(3)-invariant continuous function. And the
above conclusions do not require the invertibility of the activation function σ(x).

1.1 RELATED WORK

Theoretical Guarantees for Neural Networks: A three-layer neural network can be represented
using bounded, continuous, monotone, and differentiable sigmoidal activation functions Funahashi
& Nakamura (1993); Hornik et al. (1989); Leshno et al. (1993); Cybenko (1989). This conclusion
extends to ReLU, Tanh, and other nonlinear activations Funahashi (1989); Hornik (1993); Sonoda
& Murata (2017); DeVore et al. (2021). Barron (1994) proposed an upper bound on the integrated
square error Barron (1994).

Equivariant Neural Networks: The symmetric group SM is explained in detail Dummit & Foote
(2004). Permutation invariance and equivariance are described as actions of SM Zaheer et al. (2017).
Fundamentals are provided in Esteves (2020). Convolutional networks exploiting larger equivalence
groups are discussed in Cohen & Welling (2016). Fourier analysis is covered in Chirikjian (2000).
Advances in deep learning for point clouds are reviewed in Guo et al. (2020). Canonical group
representations are explained in Chirikjian (2000). HamNet with translation and rotation invariant
losses is introduced in Li et al. (2021). PointNet, a permutation-invariant network for point clouds,
is presented in Qi et al. (2017). Optimization for local structure capture is discussed in Qi et al.. Ro-
tationally invariant geometric features are used in Zhang et al. (2019). Equivariant neural networks
for shape analysis are described in Poulenard & Guibas (2021).

Universal Approximation of Invariant and Equivariant Neural Networks: Universal approxi-
mation properties are studied Zaheer et al. (2017); Wagstaff et al. (2019; 2021); Maron et al. (2019);
Yarotsky (2021). Group representations are introduced in Knapp (2001). Dynamical system flow
graphs are studied in Li et al. (2022). A more general point cloud architecture is proposed in
Finkelshtein et al. (2022).

Universal Approximation of Equivariant Neural Networks: Equivariant neural networks are an-
alyzed Keriven & Peyré (2019); Dym & Maron (2020); Sannai et al. (2019); Kumagai & Sannai
(2020).

Spherical Harmonics: Spherical harmonics are introduced in Blanco et al. (1997). They are com-
bined with SM -equivariant neural networks Thomas et al. (2018). SO(3)-invariant functions are
based on spherical harmonics Poulenard et al. (2019). Harmonic networks (H-Nets) are discussed
in Worrall et al. (2017). Spherical convolutional networks are presented in Esteves et al. (2018).
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2 PRELIMINARY

2.1 EQUIVARIANT NEURAL NETWORKS

In this section, we introduce equivariance and the architecture of equivariant neural networks. A
typical deep neural network comprises n layers with neurons alternating between weight operations
Wi and activation functions σi. Formally, each layer Zi transforms input x from Rdi to Rdi+1 :

|Zi(x) = σi(Wi(x) + bi), (1)

where bi ∈ Rdi+1 . The entire network Y (x) is the composition of these layers:

Y (x) = Zn ◦ Zn−1 ◦ . . . ◦ Z1(x). (2)

The activation functions must satisfy nonlinearity and continuity properties, as established in Fu-
nahashi (1989), Cybenko (1989), and Daubechies et al. (2021) for Sigmoid and ReLU activation
functions. Boundedness and continuous differentiability, while common, are not mandatory.

For subgroup G ≤ SM within the symmetric group, we define the action of SO(3) × G on x =
(x1,x2, . . . ,xM ) ∈ XM as follows: for any α ∈ SO(3) and σ ∈ G,

α ◦ σ(αx1, αx2, · · · , αxM) = (αxσ−1(1), αxσ−1(2), · · · , αxσ−1(M)),

where xi ∈ X ⊂ R3.
Definition 1 (G-invariant function). For any M,N ∈ N, any σ ∈ G, and any element x =
(x1,x2, · · · ,xM ) ∈ XM , X ⊂ R3, if the function f : XM → RN satisfies the following equation:

f(σx) = f(x),

then the function f is called G-invariant.

The invariant functions f : XM → RN examined herein exhibit invariance to the combined action
of subgroup G ≤ SM permutations and SO(3) rotations. Formally, for arbitrary σ ∈ G and
α ∈ SO(3), and any input x ∈ XM with X ⊂ R3, the equivalence F (α ◦ σx) ≡ F (x) holds,
encoding joint invariance of f to the G and SO(3) groups.
Definition 2 (G-equivariant function). For any M ∈ N, any σ ∈ G, and any element x =
(x1,x2, · · · ,xM ) ∈ XM with X ⊂ R3, if the function f : XM → RM satisfies the following
equation:

f(σx) = σf(x),

then the function f is called G-equivariant.

The equivariant mappings F : XM → RM examined herein exhibit G-equivariance and joint
SO(3)-invariance, satisfying F (α ◦ σx) ≡ σF (x),∀σ ∈ G,α ∈ SO(3), with x ∈ XM ,X ⊂ R3.
A justification for imposing G-equivariance and SO(3)-invariance on the mapping f is provided in
Appendix A.2.1. An analysis of full SO(3)-equivariance remains an open question for future work.
Definition 3 (G-invariant neural network). Given a deep neural network as defined in equation 1
with input x = (x1,x2, · · · ,xM ) ∈ XM , the network is said to be G-invariant if and only if its
output satisfies

Y (σx) ≡ Y (x), ∀σ ∈ G

where G is a subgroup of the symmetric group SM . That is, the output is unchanged under permu-
tations of the input elements by any σ ∈ G.

Given the existence of positive integer hyperparameters k,m such that k + 1 ≤ m ≤ n, where n is
the number of layers, if ∀σ ∈ G each layer mapping Zi, 1 ≤ i ≤ n satisfies:

• Zi is G-equivariant, 1 ≤ i ≤ k.
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• Zi is G-invariant, k + 1 ≤ i ≤ m then the overall mapping Y : XM → Rdn+1 defined in
equation 1 constitutes a G-invariant neural network.

Definition 4 (G-equivariant neural network). Given a deep neural network as defined in equation 1
with input x = (x1,x2, · · · ,xM ) ∈ XM , the network is said to be G-equivariant if and only if its
output satisfies:

Y (σx) ≡ σY (x), ∀σ ∈ G

where G is a subgroup of the symmetric group SM .

Furthermore, if every layer mapping Zi, 1 ≤ i ≤ n is G-equivariant, then the overall mapping
Y : XM → Rdn+1 in equation 1 constitutes a G-equivariant neural network.

2.2 APPROXIMATION

The goal of this section is to introduce approximation representations for G-invariant neural net-
works and G-equivariant neural networks. To this end, we provide detailed definitions and explana-
tions of uniform approximation below.
Definition 5 (Uniform approximation). A sequence of mappings {fn} : X → Y is said to uniformly
approximate f : X → Y if and only if for any ϵ > 0 and any x ∈ X , there exists an integer N such
that for all n > N ,

max
x∈X

|fn(x)− f(x)| < ϵ.

Definition 5 formalizes the notion of a sequence of mappings fn : X → Y uniformly approximating
a target mapping f : X → Y . Critically, the choice of N ∈ N satisfying the approximation bound
is dependent only on the sequence fn and the approximation precision ϵ, and is invariant to the
particular input x ∈ X . This uniformity over all inputs x ∈ X motivates the notion of fn providing
a uniform approximation to f over the domain X .

2.3 SPHERICAL HARMONIC FUNCTIONS

Spherical harmonics are special functions defined on the unit ball S2 in the R3 space, and can be
extended to whole R3 by homogeneity. Specifically, spherical harmonics originates from solving
Laplace’s equation in the spherical domains. That is, the general solution f : R3 → C to Laplace’s
equation ∆f = 0 in a ball centered at the origin is a linear combination of complex spherical
harmonics Y m

l , i.e.,

f(r, θ, φ) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

fm
ℓ rℓY m

ℓ (θ, φ),

where Y m
ℓ (θ, φ) is defined as

Y m
l (θ, φ) = NeimφPm

l (cos θ),

and Pm
l is an associated Legendre polynomial.

From complex spherical harmonics we can define real spherical harmonics Yℓm (l = 0, 1, 2, 3, · · · ,
and m = −l,−l + 1, · · · , l) as

Yℓm =


i√
2

(
Y m
ℓ − (−1)mY −m

ℓ

)
if m < 0

Y 0
ℓ if m = 0
1√
2

(
Y −m
ℓ + (−1)mY m

ℓ

)
if m > 0

.

For a concrete form of spherical harmonics, please refer to Blanco et al. (1997) for details.

We then provide a basic property of real spherical harmonics.
Property 1 (Orthonormal basis of L2(S2)). {Yℓm}l∈N,m∈{−l,··· ,l} is an orthonormal basis of
squared-integrable functions on unit sphere S2, i.e., any f ∈ L2(S2), we have

f(θ, φ) =

∞∑
l=0

l∑
m=−l

fℓmYℓm(θ, φ).
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Property 2 (Spherical Harmonics are normalized polynomials). For any l ∈ N and any m ∈
{−l,−l+1, · · · , l−1, l}, rlYℓm(θ, φ) is a l-degree polynomial with respect to Cartesian coordinates
(x, y, z). Furthermore,

{rl−2kY(l−2k)m}k∈{0,1,··· ,⌊ l
2 ⌋},m∈{2k−l,··· ,l−2k}

forms a basis of l-homogeneous polynomials, and

d⋃
l=0

{rl−2kY(l−2k)m}k∈{0,1,··· ,⌊ l
2 ⌋},m∈{2k−l,··· ,l−2k}

forms a basis of polynomials with degree no larger than d.

Property 3 (Invariant subspace under rotation). For any fixed l, Spanlm=−l(Yℓm(x, y, z)) is an
invariant subspace under any rotation. That is, for any rotation transformation g ∈ SO(3),
Yℓm(g(x, y, z)) ∈ Spanlm=−l(Yℓm(x, y, z)).

The reason is that the spherical harmonic function is invariant under any rotation in Blanco et al.
(1997). we can get a G-invariant neural network can approximate any G-invariant continuous func-
tion by the above representation,

ϕ(θx) = D(θ)ϕ(x).

where D(θ) is associated to θ called the Wigner matrix (of type l) and x ∈ X = R3.

3 UNIFORM APPROXIMATION OF G-INVARIANT NEURAL NETWORKS

This section examines representations for G-invariant functions and approximation guarantees for
G-invariant neural networks. Theorem 1 formally characterizes the G-invariant condition and con-
structs an associated representation in terms of invariant continuous mappings and spherical har-
monics. Moreover, the existence of uniform approximation by G-invariant networks is established
for invariant functions of an arbitrary subgroup G. The non-representable scenario is also analyzed,
wherein the dimensionality of the latent space precludes representation of functions on the ambient
input space, as rigorously codified in Theorem 3. Taken together, these theoretical results provide
foundational insights into processing 3D point cloud data with invariance properties.

3.1 REPRESENTATION OF G-INVARIANT FUNCTIONS

First, we define the G-invariant condition, which has the following specific representation:

Definition 6 (G-invariant condition). Consider an arbitrary permutation σ ∈ G where G is a
subgroup of the symmetric group SM . A set of scalar coefficients {λi}Mi=1 is defined to satisfy the
G-invariant condition if and only if the mapping Φ : XM → R given by

Φ(x) =

M∑
i=1

λiϕ(xi),

satisfies
Φ(σx) = Φ(x), ∀σ ∈ G,

where ϕ : X → R2l+1 denotes the spherical harmonic feature mapping ϕ(x) =(
|x|lYlm

(
x
|x|

))
m∈−l,··· ,l

.

This theorem establishes that for arbitrary G ≤ SM and continuous f : XM → R exhibiting joint
SO(3) and G invariance on the compact domain X ⊂ R3, there exists a set of coefficients {λi}Mi=1
satisfying the G-invariant condition such that f admits a continuous representation in terms of scalar
mapping ρ : R2l+1 → R and spherical harmonic basis functions ϕ : X → R2l+1 with 2l+1 > 3M .

Theorem 1. Consider G = {σ1, σ2, . . . , σn} as an arbitrary subgroup of SM , X is a compact set
with X ⊂ R3. If f : XM → R is a SO(3) × G-invariant continuous function. Then there exists
{λi}Mi=1 ∈ R such that f : XM → R has a continuous representation:

6



Under review as a conference paper at ICLR 2024

f(x1,x2, · · · ,xM ) = ρ

(
M∑
i=1

λiϕ(xi)

)
,

where ρ : R2l+1 → R is a continuous function, 2l + 1 > 3M , {λi}Mi=1 satisfies the G-invariant

condition, and ϕ(x) =
(
∥x∥lYlm

(
x

∥x∥

))
m∈{−l,··· ,l}

.

This theorem establishes that continuous mappings f : XM → R exhibiting joint invariance to the
SO(3) and G groups admit a representation as a linear combination of spherical harmonic basis
functions ϕ : X → R2l+1 weighted by coefficients {λi}Mi=1 satisfying the G-invariant condition,
and modulated by a continuous function ρ : R2l+1 → R, where G ≤ SM is an arbitrary sub-
group. The complete proof is provided in Appendix A.2.2, with the key ideas outlined in Appendix
A.1.1. Moreover, the theorem indicates the coefficient set {λi}Mi=1 representing a G-invariant func-
tion varies with the choice of G, as exemplified by:

Example: Consider the subgroup G1 ≤ S4 defined as G1 = {e, (1 2), (3 4), (1 2)(3 4)} and
subgroup G2 ≤ S3 defined as G2 = {e, (1 3)}, where e denotes the identity element.

1. If the continuous function f(x1,x2,x3,x4) is a G1-invariant function, then there exist
λ1, λ2 ∈ R such that the continuous function f(x1,x2,x3,x4) has the following repre-
sentation:

f(x1,x2,x3,x4) = ρ(λ1(ϕ(x1) + ϕ(x2)) + λ2(ϕ(x3) + ϕ(x4))).

2. If the continuous function f(x1,x2,x3,x4) is G2-invariant, then there exist λ1, λ2, λ3 ∈
R such that the continuous function f(x1,x2,x3,x4) has the following representation:

f(x1,x2,x3,x4) = ρ(λ1(ϕ(x1) + ϕ(x3)) + λ2ϕ(x2) + λ3ϕ(x4)).

We synthesizes the representation proposed in Zaheer et al. (2017) with spherical harmonic func-
tions Blanco et al. (1997), and drawing inspiration from the tensor field neural network architecture
in Thomas et al. (2018), derives a novel representation from SO(3) × SM -invariant continuous
functions to SO(3) × G-invariant continuous functions. To our knowledge, this is the most gen-
eral representation of SO(3) × G-invariant continuous functions. Our results demonstrate that the
SO(3) × G-invariant continuous function for arbitrary 3D point cloud inputs can be decomposed
into the composite form of a continuous function ρ and spherical harmonic functions.

3.2 APPROXIMATION OF G-INVARIANT NEURAL NETWORKS

Theorem 2. Consider any subgroup SO(3) × G of SO(3) × SM , where X is a compact set with
X ⊂ R3. For any continuous function F : XM → RN that is invariant under SO(3) × G, there
exists an SO(3) × G-invariant neural network Un : XM → RN that can uniformly approximate
f(x), i.e., for any ϵ > 0, there exists N ∈ R, such that for any n > N ,

|Un(x)− F (x)| ≤ ϵ.

This theorem establishes that for any continuous function F : XM → RN exhibiting invariance
under the group action of SO(3)G, there exists an SO(3)G-invariant neural network approximation
Un that can uniformly approximate F to arbitrary precision. Here, SO(3) denotes the rotation
group, SM is a sphere, G is a subgroup of SM , X is a compact subset of R3, M is a positive integer,
and N is an arbitrary positive integer. As n → ∞, the outputs of the neural network Un provably
converge uniformly to the function F .

The complete proof is provided in Appendix A.2.7, with a proof sketch in Appendix A.1.3. Prior
work by Zaheer et al. (2017) had established approximation guarantees for SM -invariant networks.
Subsequently, Maron et al. (2019) showed that arbitrary G-invariant networks can approximate G-
invariant continuous functions. By synthesizing Blanco et al. (1997) and Thomas et al. (2018), we
can demonstrate that SO(3)G-invariant networks possess the capacity to approximate SO(3)G-
invariant continuous functions, generalizing first-order tensors to third-order.
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3.3 THE CASE WITHOUT REPRESENTATION

Moreover, as argued in Wagstaff et al. (2019), this work exploits spherical harmonics to represent
arbitrarily complex set functions by collapsing the latent dimensionality. However, the findings
herein reveal certain theoretical barriers for this representational scheme. Specifically, in Theorem
1, we uncover the intriguing assumption that 2l + 1 > 3M . We delve into the implications of
Theorem 1. This motivates the open question: How do SO(3)SM -invariant continuous functions
f : XM → R behave when 2l + 1 < 3M?
Theorem 3. If the condition 2l + 1 < 3M is satisfied, then there exists an SO(3)× SM -invariant
continuous function f : XM → R, where X is a compact set with X ⊂ R3, such that for any ϵ > 0
and any continuous function ρ : R2l+1 → R, there is at least one point (x1,x2, · · · ,xM ) ∈ XM

satisfying:

|f(x1,x2, · · · ,xM )− ρ

(
M∑
i=1

ϕ(xi)

)
| ≥ ϵ,

where ϕ(x) =
(
|x|lYℓm

(
x
|x|

))
m∈−ℓ,··· ,ℓ

.

Theorem 3 establishes that for a function f that is continuous on the compact set XM and invariant
under the action of SO(3)× SM , there exists at least one point (x1,x2, · · · ,xM ) ∈ XM such that
the absolute difference between f(x1,x2, · · · ,xM) and ρ

(∑M
i=1 ϕ(xi)

)
is greater than or equal

to ϵ, for any given ϵ > 0 and any continuous function ρ. Here, ϕ(x) is a vector comprising products
of spherical harmonics.

A short proof sketch is provided in Appendix A.1.3 and a complete proof is provided in Appendix
A.2.5. Fundamentally, Theorem 3 demonstrates that when the dimensionality of the latent space is
less than that of the input space, a corresponding representation may not exist. This perspective was
first put forth by Wagstaff et al. (2019) and more recently Wagstaff et al. (2021). Our work extends
Theorem 4.1 to 3rd-order tensors, arriving at a more general conclusion. Hence, our proof differs
markedly from these preceding studies.

4 UNIFORM APPROXIMATION OF G-INVARIANT NEURAL NETWORKS

This section examines representations for G-equivariant functions and approximation guarantees for
G-equivariant neural networks, with the joint invariance to SO(3) transformations being implicit.
First, the G-equivariant condition is formally defined in terms of the equivariant matrix Λ. Theorem
4 then establishes that G-equivariant continuous mappings admit continuous representations through
appropriate choices of Λ satisfying said condition, thereby constructing an explicit representation.
Subsequently, Theorem 5 proves that continuous G-invariant functions can be uniformly approxi-
mated by G-invariant neural networks. The key developments in the literature on equivariant neural
network approximation are also briefly surveyed. Together, these theoretical results provide a rig-
orous foundation for developing equivariant networks for learning on permutation-based structured
data.

4.1 REPRESENTATION OF G-INVARIANT FUNCTIONS

Definition 7 (G-equivariant condition). Given permutation group G ≤ SM , a matrix Λ ∈ RM×M

is said to satisfy the G-equivariant condition if and only if the equivalence
Λϕ(σx) ≡ σΛϕ(x), ∀σ ∈ G

holds, where ϕ : XM → RM(2l+1) denotes the concatenated feature mapping
ϕ(x) = (ϕ(x1), ϕ(x2), . . . , ϕ(xM ))

with ϕ : R3 → R2l+1 representing spherical harmonics. This encodes the equivariance of Λ under
actions of the group G.

This definition outlines a matrix Λ that fulfills the commutativity requirements for any provided
transformation σ within the group G. In this context,

−−→
ϕ(x) denotes the vector representation of

spherical harmonics. This relational property is known as the G-equivariance condition.
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Theorem 4. Let G be any subgroup of SM . Consider X as a compact subset of R3. If there exists a
G-equivariant and SO(3)-invariant continuous function F : XM → RM , then this function has a
continuous representation if and only if there exists a Λ ∈ RM×M that satisfies the G-equivariance
condition:

F (x1,x2, · · · ,xM ) = ρ
(
Λ
−−−→
ϕ(X)

)
,

where
−−→
ϕ(x) = (ϕ(x1), ϕ(x2), . . . , ϕ(xM )), and both ρ : R2l+1 → R are continuous func-

tions. Additionally, they must satisfy the condition 2l + 1 > 3M . In this context, ϕ(x) =(
∥x∥lYℓm

(
x

∥x∥

))
m∈{−l,··· ,l}

.

Theorem 4 delineates a characterization of a G-equivariant and SO(3)-invariant continuous function
F defined on a compact set X , where G designates an arbitrary subgroup of the permutation group
SM for any positive integer M . The theorem establishes that F (x1,x2, · · · ,xM ) can be expressed
in the form ρ

(
Λ
−−−→
ϕ(X)

)
, where

−−→
ϕ(x) = (ϕ(x1), ϕ(x2), . . . , ϕ(xM )), and ϕ(x) denotes the vector

of spherical harmonics
(
∥x∥lYℓm (x/∥x∥)

)
m∈{−l,··· ,l}. Moreover, ρ : R2l+1 → R signifies a

continuous function satisfying 2l + 1 > 3M , and Λ ∈ RM×M complies with the G-equivariance
condition.

The complete demonstration and proof of Theorem 4 are provided in Appendix A.3.3 and it’s proof
sketch in Appndix A.1.4, in that order. Theorem 4 furnishes a continuous characterization of G-
equivariant continuous functions. In congruence with Theorem 1, the matrix Λ can assume discrete
values contingent on the particular group G under consideration.

4.2 APPROXIMATION OF G-EQUIVARIANT NEURAL NETWORKS

Theorem 5. Let X ⊂ R3 designate an arbitrary compact set and G signify a subgroup of the
permutation group SM . Suppose F : XM → RM defines a function that is G-equivariant, SO(3)-
invariant, and continuous. Then there exists a neural network Un : XM → RM satisfying G-
equivariance and SO(3)-invariance such that given any input x ∈ XM , Un(x) can uniformly
approximate F (x) to an arbitrary degree of accuracy.

This theorem delineates the universal approximation property of equivariant neural networks,
namely, their capacity to approximate continuous functions F that obey certain symmetry (encoded
by G-equivariance) and rotational invariance (SO(3)-invariance) attributes. The conclusion states
that given any compact set X ⊂ R3 and subgroup G of the permutation group SM , there exists a
neural network model Un satisfying the same symmetries and invariance as F, which can uniformly
approximate F(x) for any input x in the domain. This theoretical result demonstrates that equivariant
networks are capable of approximating functions defined on datasets exhibiting diverse symmetric
and rotationally invariant traits. The implications of this theorem are far-reaching for learning tasks
involving data with such characteristics.

The complete verification and succinct delineation of Theorem 5 are presented in Appendix A.3.4
and it’s proof sketch Appendix A.1.5, respectively. The proof exploits Theorem 4 as a pivotal result.
To the best of our knowledge, extant works on equivariant neural network approximation principally
concentrate on the permutation group SM . In Keriven & Peyré (2019) and Dym & Maron (2020), the
authors harness an extension of the seminal Stone-Weierstrass theorem to demonstrate the universal
approximation capability of a specific class of neural networks with linear hidden layers obeying SM

equivariance. Sannai et al. (2019) primarily establishes approximation by SM equivariant networks,
and asserts extensibility to approximation by G equivariant networks sans detailed proof. Finally,
Kumagai & Sannai (2020) employs convolutional networks to prove universal approximation of
equivariant continuous mappings, with further generalization to infinite dimensional spaces.
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