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Abstract

Aspect sentiment quad prediction (ASQP) endeavors to analyze four sentiment elements in
sentences. Recent studies utilize generative models to achieve this task, yielding commend-
able outcomes. However, these studies often fall short of fully leveraging the relationships
between sentiment elements and have difficulty effectively handling implicit sentiment ex-
pressions. Furthermore, this task also confronts the obstacle of data scarcity stemming
from the substantial expenses involved in data annotation. To address these limitations,
we propose dual-sequence data augmentation to achieve diverse input and target expres-
sions, while we incorporate contrastive learning to instigate the model to distinctly rep-
resent the presence or absence of these pivotal features pertaining to implicit aspects and
opinion terms. Additionally, we introduce a prediction normalization strategy to refine the
produced results. Empirical findings from experiments on four publicly available datasets
show the superiority of our method, surpassing multiple baseline approaches and achieving
state-of-the-art performance on the benchmark.

Keywords: Aspect sentiment Quad Prediction; Dual-sequence Data Augmentation; Con-
trastive Learning; Prediction Normalization.
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1. Introduction

The primary goal of aspect-based sentiment analysis (ABSA) is to extract the required
sentiment element tuples from a particular sentence. Recently, the aspect sentiment quad
prediction (ASQP) (Zhang et al., 2021) task has been introduced, also known as ACOS
in (Cai et al., 2021). It involves extracting four sentiment elements, comprising aspect
term (at), opinion term (ot), sentiment polarity (sp), and aspect category (ac) (Zhang
et al., 2022). As shown in Figure 1, regarding the sentence “Inexpensive, and the food
is delicious, but I wish the seating space was a little bigger.”, “food” is recognized as
the aspect term, “delicious” functions as the opinion term delineating that aspect term,
“positive” signifies the expressed sentiment polarity, and “food quality” characterizes the
corresponding aspect category. These four elements amalgamate into an explicit quad (food,
food quality, delicious, positive). Furthermore, two additional quads necessitate extraction:
(NULL, restaurant prices, Inexpensive, positive) containing implicit aspect term, (seating
space, ambience general, NULL, negative) incorporating an implicit opinion term.

Existing work highlights generative methods as a promising research direction. A preva-
lent approach entails the generation of sentiment element sequences within a predetermined
framework, with the objective of leveraging tag semantics. To illustrate, Paraphrase (Zhang
et al., 2021) transforms quad extraction into a generation task. Employing predefined
rules, they initially map four elements (ac, at, ot, sp) to semantic values (mac,mat,mot,msp).
These values are then inserted into a predefined template to produce a natural language
target sequence. As depicted in Figure 1, the original sentence is “rewritten” into a target
sequence through paraphrase. Following the fine-tuning of the pre-trained language model
using the sequence-to-sequence learning paradigm, decoding quads from the target sequence
emerges as a straightforward process.

Figure 1: An example sentence is rewritten into a single-order target sequence using a
paraphrased template.

However, as exemplified above, the generation of a sentiment element sequence in a
single-order {mac → msp → mat → mot} ignores the impact of language expression diversity
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Figure 2: F1 scores of Paraphrase with training data ratios of 60%, 70%, 80%, and 90%.

and the interdependence of elements within aspect sentiment tuples on the target sequence.
The aspect sentiment tuple possesses the order-free property, implying that different orders,
such as {mac → msp → mat → mot} and {mat → mot → msp → mac}, are valid, and the
arrangement of the four elements will affect the performance of the generation-based pre-
trained language model (Hu et al., 2022). In addition, the presence of implicit at and/or
ot in sentences consistently worsens model generalization, with more than 30% of sentences
containing implicit language (Cai et al., 2021). These cases, such as “We waited for a long
time.”, are challenging for models due to the absence of explicit at and ot, e.g., “the service”
and “slow”. Concurrently, owing to the scarcity of annotation data, for instance, the Rest15
and Rest16 ASQP datasets (Zhang et al., 2021) only encompass 834 and 1264 training
samples, respectively. We adjust the ASQP-Rest16 data ratio for Paraphrase training and
present the results in Figure 2. This figure illustrates a steady enhancement in performance
with the growth of data, suggesting that the effect is still far from saturation. Training a
robust model with a limited dataset proves challenging, and the conventional method of
augmenting training samples by mere sentence rephrasing restricts the semantic diversity
and quality of the generated data (Wang et al., 2023).

To address the above challenges, we introduce dual sequence data augmentation along
with contrast learning. Initially, we integrate multiple template orders for target-side data
augmentation. The inclusion of different template orders facilitates various perspectives of
the quad, fostering diverse target representations by receiving information from multiple
templates. Simultaneously, we propose a quads-to-sentences (Q2S) generation method as
input-side data augmentation to generate augmented data characterized by both robust
diversity and high quality. Additionally, we introduce a supervised contrastive learning
objective designed to enhance the model’s efficacy in representing crucial features, such as
aspect and opinion terms. This is achieved by maximizing the distance between inconsistent
examples and minimizing the distance between consistent examples through a supervised
contrastive loss. Furthermore, we implement a prediction normalization strategy to handle
issues arising from the generated sentiment elements being outside their corresponding label
vocabulary set and the generated quads being one-sided.
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To conclude, the contributions of this study are outlined below:

(1) We introduce a dual-sequence data augmentation that simultaneously augments
the input and output sequences and adopts a prediction normalization strategy to refine
produced results.

(2) We incorporate a task-specific supervised contrastive learning approach, thereby
improving the learning of example representations and yielding downstream benefits.

(3) Our approach exhibits enhanced performance on ASQP and ACOS benchmarks.
Specifically, on the Rest15 and Rest16 datasets of ASQP, F1 scores improved by 0.67% and
0.51%, respectively. Similarly, on the Restaurant and Laptop datasets of ACOS, F1 scores
show enhancements of 0.92% and 0.49%, respectively.

2. Related Work

Early studies on ABSA were mainly directed towards predicting separate sentiment ele-
ments, including at extraction (Ma et al., 2019), ot extraction (Mensah et al., 2021), ac
detection (Brauwers and Frasincar, 2022), and predicting the sp of a given at (Zhang and
Qian, 2020) or ac (Hu et al., 2019). Subsequently, researchers (Zhang et al., 2022) recognized
the interconnected nature of these sentiment elements, prompting a shift towards simulta-
neous recognition. This involved tasks like identifying aspect-sentiment pairs (Cai et al.,
2020) or triples (Mao et al., 2021). Recently, there has been a rising focus on predicting
all four sentiment elements at once, with two main approaches gaining attention: pipeline
methods (Cai et al., 2021) and generation-based methods (Zhang et al., 2021). Due to their
ability to alleviate the accumulation of errors in pipeline processes and make better use of
the rich semantic information contained in labels (Yu et al., 2023), generative methods have
become a prominent research focus. Promising works have devised innovative approaches
based on contrastive learning (Peper and Wang, 2022), tree structures (Mao et al., 2022),
impossibility learning (Hu et al., 2023), and data augmentation (Wang et al., 2023; Gou
et al., 2023).

Data augmentation is a prevalent technique in the language domain aimed at enhancing
model performance. Previous methods for data augmentation fall into three categories. The
first category concentrates on input augmentation, including techniques like text modifica-
tion (Wei and Zou, 2019) and back-translation (Sugiyama and Yoshinaga, 2019) of natural
language. The second category focuses solely on augmenting the output, as demonstrated by
sequence-to-sequence learning with virtual sequences employed as target-side data augmen-
tation (Xie et al., 2021). The third category involves both input and output augmentation,
exemplified by mixup (Zhang et al., 2017), which creates virtual training samples by lin-
early combining feature vectors with their corresponding targets. In this work, we follow
the generative approach and achieve enhanced performance on test data through the in-
corporation of dual-sequential data augmentation and task-specific supervised contrastive
learning objectives.
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Figure 3: Example of an input-target pair.

3. Methodology

3.1. Task Definition

The objective of aspect sentiment quad prediction (ASQP) is to forecast all aspect-level
quads {(at, ot, sp, ac)} within a given sentence x. Following previous work (Zhang et al.,
2021), we define a projection function to correlate quad (at, ot, sp, ac) with semantic values
(mat,mot,msp,mac). For example, we map the “NULL” label of aspect terms to “it”, and
map the sentiment polarity sp ∈ {positive, neutral, negative} to words {great, ok, bad},
respectively. Applying the aforementioned rules, the values are input into the template T
to construct the target sequence. To signify different sentiment elements, distinct markers
“[A]mat, [C]mac, [O]mot, [S]msp” (Hu et al., 2022) are employed. The markers for mat, mac,
mot and mat are denoted as [A], [C], [O] and [S], respectively. Each element is prefixed with
its corresponding marker and concatenated in the specified order oi to construct the target
sequence. In cases where the input sentence contains multiple quads, a special symbol
[SSEP] is employed to link their corresponding templated sequences, resulting in the final
target sequence yoi . To convey the desired ordering of sentiment elements oi, we incorporate
input element order prompts (Gou et al., 2023). The prompt (e.g., “[A][C][O][S]” signifying
prediction in the order {mat → mac → mot → msp}) is appended to the end of each input
sentence, yielding the ultimate input xoi . Therefore, the input-target pairs for training are
obtained, as shown in Figure 3.

3.2. Dual-Sequence Data Augmentation

3.2.1. Multiple-Order Data Augmentation.

We propose sequences of sentiment elements in various orders as target-side data augmenta-
tion. We conceptualize different template orders akin to examining a picture from distinct
angles, providing diverse viewpoints. Therefore, combining multiple template orders serves
to counteract potential biases towards surface patterns, fostering a comprehensive under-
standing of the task’s essence.

Template Order Selection. Since the overhead increases linearly with the number of
template orders, employing all 24 sequence permutations significantly amplifies training
time, and performance fluctuates among different template orders. Consequently, judicious
template order selection becomes imperative. After studying prompt ordering (Gou et al.,
2023), we select the order deemed likely to perform better by taking into account the average
entropy of possible permutations on the training set.

The procedure unfolds is below: Initially, we enlist all conceivable order permutations oi
as candidates. Subsequently, for a given input sentence x and its target quad, we formulate
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Figure 4: Overview of dual-sequence data augmentation. The oi represents the i-th order
permutation of the four sentiment elements.

the ordered target pattern yoi corresponding to the oi, as described in §3.1. During this
process, spaces replace the element markers to minimize noise. The entropy p (yoi | x) is then
obtained by conducting a query to the pre-trained language model. Finally, we compute
the average entropy of oi across the training set D:

Soi =

∑
D p (yoi | x)

|D|
. (1)

Consequently, we rank each permutation by Soi and select the top k permutations with
smaller values for training.

Multiple Template Order Training. We employ the selected k ordered permutations
to construct k different input-target pairs for each sentence, training multiple template
sequences simultaneously. For a given input-target pair (x, y), we choose the pre-trained
sequence-to-sequence language model T5 (Raffel et al., 2020) to initialize the parameters θ
and fine-tune it through the minimization of the cross-entropy loss:

LCE = −
n∑

t=1

log pθ (yt | x, y<t) . (2)

Here, t is the span of the target sequence y, and y<t signifies the prior produced token.

3.2.2. Quads-to-Sentences Data Augmentation

As stated above, we purely incorporate target sequences during model training, while the
inclusion of both input and output sequences holds the potential for further performance
enhancements, as shown in Figure 4. Therefore, we propose quads-to-sentences data aug-
mentation as input-side data augmentation to augment the training dataset, with the objec-
tive of creating sentences describing given quads. Specifically, given n quads {q1, q2, . . . , qn},
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Figure 5: Example of generating an augmented sentence.

where qi = (ati, aci, oti, spi), it is imperative to generate a sentence x that includes exclu-
sively the input quads. Figure 5 presents the proposed method.

Quad Diversification. In the initial phase, we aggregate all quads from the training
dataset into a set, referred to Sorigin = {(ati, oti, spi, aci)}. Subsequently, for quads sharing
the same ac, we swap their at and (ot, sp) pairs at random to generate new quads. To
ensure coherence, the ot, and sp from the same original quad are not separated, preventing
the creation of new quads with conflicting elements. For instance, given two quads: (salads,
delicious, positive, food quality) and (sandwiches, dry, negative, food quality), the new
quads obtained are (sandwiches, delicious, positive, food quality) and (salads, dry, negative,
food quality). Ultimately, the quantity of new quads for each ac is balanced to create the set
of quads after swapping labels, denoted as Sexchange . By combining Sorigin and Sexchange , we
derive a diverse set of quads Sdiverse , which is then utilized to train the quads-to-sentences
model.

Quads-to-Sentences Model. ASQP endeavors to predict quads from a given sentence
and Q2S can be perceived as the converse of ASQP. To handle the Q2S challenge, aligned
with the previously detailed work on ASQP text generation described previously, we leverage
pre-trained sequence-to-sequence models. Each time we randomly select 1 or 2 quads from
Sdiverse and input them into the Q2S model to perform data augmentation. In our approach,
the primary emphasis is on the model’s input and output design. For the input sequence,
similar to §3.1, we convert the given quad into a templated sequence. Notably, special index



Li Lin Wu Zhou Yang

markers are inserted at the beginning and end of each sequence to differentiate multiple
quads. Specifically, the i-th quad (ati, oti, spi, aci) is converted into a templated sequence:
[i][A]ati[C]oti[O]spi[S]aci[i]. In cases where the input contains multiple quads, a special
symbol [SSEP] is employed to connect their corresponding templated sequences. Concerning
the output sequence, the Q2S model utilizes unique markers to annotate the aspect and
opinion term ranges during sequence generation. Additionally, annotations encapsulate
information regarding the association between at and ot. This enables the gathering of
(at, ot) pairs from the output sequence, facilitating subsequent verification of the coherence
between the detected pairs and the input quad. Then instances of incongruent at and ot
are filtered out. Specifically, special markers “[A]”, “[i /A]”, “[O]” and “[i/O]” are used
to annotate the at and ot of the i-th quad in the sentence. The special markers [A] and
[O] signify the start of at and ot, while [i/A] and [i/O] indicate the terminus. In scenarios
where multiple at in a sentence are described by the same ot, or vice versa, a list of numbers
separated by commas within square brackets is employed to group them together. For
example, [1, 2 A] indicates that the 1st and 2nd perspectives refer to the same at.

3.3. Contrastive Learning

3.3.1. Supervised Contrastive Loss

We incorporated a supervised contrastive learning objective into the fine-tuning process of
downstream generation tasks for ASQP quad extraction. This addition aims to enhance
the discriminative representation of crucial input features by the encoder-decoder model.
Specifically, our objective is to facilitate the learning of representations for example-level at
and ot, as illustrated by the labels in Figure 6.

Figure 6: Overview of contrastive learning on ABSA. The trained model distinctly captures
two key features: (1) at type and (2) ot term type.

In our approach, we produce representations of training examples xi in training mini-
batch X, similar to Peper and Wang (2022), by initially summing and pooling the output
of the encoder as Mean (Encode (xi)), which is next input to the dedicated fully-connected
layer FCf , where the feature f ∈ {at, ot}. Consequently, this process yields the represen-
tation rfi. In our experimental setup, the fully connected layer has both input and output
dimensions set at 768. Subsequently, by employing a dropout probability of p = 0.1, we
introduce perturbations to each example representation rfi without altering the original
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labels. This process generates modified views to expand X, resulting in X ′. We follow
Khosla et al. (2020), where the supervised contrastive loss is defined as:

Lf
i =

−1

|P (i)|
∑

p∈P (i)

log
esim(rfi,rfp)/τ∑

b∈B(i) e
sim(rfi,rfb)/τ

, (3)

where B(i) ≡ X ′/xi denotes the collection of all other examples in the extended small
batch X ′ except for the example xi. P (i) ≡ {p ∈ B(i) : yfp = yfi} symbolizes the set in B(i)
with the same label as in the example xi. Additionally, τ signifies the temperature scaling
parameter. The function sim(.) represents any similarity metric, such as cosine similarity
or inner product.

3.3.2. Joint Training Objectives

The ultimate training goal is to incorporate our two feature-specific losses into the existing
decoder cross-entropy loss LCE . The weights α and β are used for adjustments:

L = LCE + αLat
i + βLot

i . (4)

3.4. Prediction Normalization

3.4.1. Element Correction

Figure 7: Example of element correction.

Ideally, a predicted element e for sentiment type t should exclusively pertain to its
designated vocabulary set Vt. For example, the expected aspect and opinion terms should
be explicitly present in the input sentences s. However, this may not always align with
reality, given that each e is produced using a vocabulary set that includes all tokens instead
of its specific vocabulary set. To tackle this issue, we introduce a corrective strategy using
the most similar method. We initially construct its corresponding vocabulary set Vt. Then,
if the e does not belong to the Vt, we find the most similar token replacement e from
Vt via Levenshtein distance (Levenshtein et al., 1966). It should be noted that when the



Li Lin Wu Zhou Yang

token length of the predicted aspect or opinion term exceeds 1, each token in e is traversed
for correction. Subsequently, a new predicted element e′ is obtained. If e′ does not yet
constitute a subsequence of the s, a secondary correction process is initiated to find the
most similar subsequence in the s to replace e. An example of the element correction is
shown in Figure 7.

3.4.2. Quad Correction

The model is capable of generating multiple quads through different template orders. Cer-
tain template orders result in the same correct quad, while others are less efficient and,
consequently, may be incorrect. However, the likelihood of these less efficient orders caus-
ing the same error is low. In essence, when different template orders give the same quad,
it is more likely to be correct. Building on this rationale, we propose a majority strat-
egy that amalgamates information from multiple orders to rectify errors in a single order.
Specifically, for the input sentence, when instructing the training model to generate from k
selected order permutations, each predicting one or more quads, we begin by aggregating
the outcomes of all order permutations. Subsequently, we determine the quads that appear
in the majority of order permutations, i.e., those with a count greater than or equal to k

2 ,
as the final prediction. Our final predictions gain enhanced reliability with the support of
multiple orders. An example of the quad correction is shown in Figure 8.

Figure 8: Example of quad correction.

4. Experiments

4.1. Dataset

We assess the performance of our approach using two ASQP datasets: Rest15 and Rest16
(Zhang et al., 2021), as well as two ACOS datasets: Laptop and Restaurant (Cai et al.,
2021). Unlike ASQP, the ACOS dataset focuses on implicit aspects and opinion terms,
providing a more thorough assessment of our method. To maintain consistency, we adopt
the same data split as employed in prior studies. Table 1 shows the dataset statistics.
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Table 1: Dataset statistics. E: explicit, I: implicit, A: aspect, O: opinion. E.g., EA&IO
represents “explicit aspect, implicit opinion”.

Rest15 Rest16 Restaurant Laptop

Sentences 1580 2124 2286 4076
(Train/Dev/Test) (834/209/537) (1264/316/544) (1531/170/585) (2934/326/816)

EA&EO Quads 1389(55.66%) 2566(77.88%) 2429(66.40%) 3269(56.77%)
IA&EO Quads 1107(44.34%) 729(22.12%) 530(14.49%) 910(15.80%)
EA&IO Quads - - 350(9.57%) 1237(21.48%)
IA&IO Quads - - 349(9.54%) 342(5.94%)

4.2. Compared Methods

For extensive evaluation, we have selected multiple robust baseline methods, which can be
divided into two types: BERT-based (Devlin et al., 2018) methods and T5-based methods.
BERT-based methods include JET (Cai et al., 2021), TAS-BERT (Cai et al., 2021), TASO-
BERT (Zhang et al., 2021) and Extract-Classify (Cai et al., 2021). T5-based methods
encompass Paraphrase (Zhang et al., 2021), Seq2Path (Mao et al., 2022), DLO (Hu et al.,
2022), MVP (Gou et al., 2023) and UAUL (Hu et al., 2023).

4.3. Implement Details

The T5-base model (Raffel et al., 2020) is utilized as our pre-trained model. Basic Training
Hyperparameters: epochs = 20, batch size = 16, learning rate = 1e-4. Greedy search is
employed for decoding during inference. For dual-sequence data augmentation, we configure
the number of templates k to 15, and the Q2S augmented data is twice the volume of the
training data. The hyper-parameters in the joint objective are established as α = β = 0.1,
while in supervised contrastive learning τ = 0.07. All experiments were performed using
Nvidia RTX 3090 GPU.

5. Results

A Sentiment quad prediction is deemed correct only if every prediction element precisely
matches the ground truth labels. Precision rate, recall rate, and F1 score served as the eval-
uation metrics, with the F1 score being the primary index. The reported results represent
averages from five runs with diverse random seed initializations.

5.1. Overall Results

Tables 2 and 3 present the overall performance of the ASQP and ACOS tasks, respectively.
Our method outperforms other methods across all four datasets. In particular, compared
with the best results achieved by strong baselines, our method demonstrates enhancements
of 0.67% and 0.51% on Rest15 and Rest16, respectively, within the ASQP dataset; on the
ACOS dataset, our method showcases improvements of 0.92% and 0.49% for Laptop and
Restaurant, respectively.
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Table 2: Main comparative experimental results on the ASQP dataset. The superior score
is in bold, while the next-best is underlined.

Method
Rest15 Rest16

P R F1 P R F1

TASO-BERT 44.24 28.66 34.78 49.73 40.70 44.77
Extract-Classify 35.64 37.25 36.42 38.40 50.93 43.77
GAS 45.31 46.70 45.98 54.54 57.62 56.04
Paraphrase 46.16 47.72 46.93 56.63 59.30 57.93
DLO 47.08 49.33 48.18 57.92 61.80 59.79
MVP - - 51.04 - - 60.39
UAUL 49.12 50.39 49.75 59.02 62.05 60.50

Ours 51.23 52.20 51.71 59.98 62.08 61.01

Table 3: Main comparative experimental results on the ACOS dataset. The superior score
is in bold, while the next-best is underlined.

Method
Laptop Restaurant

P R F1 P R F1

JET 44.52 16.25 23.81 59.81 28.94 39.01
TAS-BERT 47.15 19.22 27.31 26.29 46.29 33.53
Extract-Classify 45.56 29.48 35.80 38.54 52.96 44.61
Seq2Path - - 42.97 - - 58.41
MVP - - 43.92 - - 61.54
UAUL 44.91 44.01 44.45 61.03 60.55 60.78

Ours 46.04 44.72 45.37 63.13 60.96 62.03

5.2. Ablation Study

To verify the effectiveness of each module, a systematic ablation study was performed. Table
4 shows the results.

Effect of dual-sequence data augmentation: We initially carried out a validation
by employing a single template order as the output sequence while maintaining the original
dataset as the input sequence, instead of using dual-sequence data. As indicated in Table
4, the advantages introduced by dual-sequence data augmentation are noteworthy. By
integrating multiple template orders and expanding the diversity of inputs, dual-sequence
data augmentation proves to be advantageous in enhancing the comprehension of the nature
of ASQP tasks.

Effect of contrastive learning: We secondly confirmed the impact by eliminating all
supervised contrastive losses and exclusively utilizing the cross-entropy loss of the decoder
as the training target. The efficacy of the loss highlighting implicit linguistic phenomena
emphasizes the benefits of integrating aspect and opinion terms into supervised contrastive
learning objectives for modeling challenging examples.
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Effect of prediction normalization strategy: We perform a final assessment to
evaluate the impact of the prediction normalization strategy on the model. The assessment
compared the performance of a generated model using element correction and quad cor-
rection against a model that directly takes the predicted elements and randomly selects a
quad from multiple template orders. Experimental results substantiate that the prediction
normalization strategy can refine the results.

Table 4: Results of ablation experiments for each component. F1 scores are reported

Method Rest15 Rest16 Laptop Restaurant

ours
w/o Dual sequence data augmentation 48.17 59.96 44.32 58.26
w/o Contrastive learning 50.44 60.31 43.42 60.83
w/o Prediction normalization 49.39 59.99 44.96 61.19

ours 51.71 61.01 45.37 62.03

Effect of the value of k: We further explore by varying the value of k, as detailed in
Table 5. Initially, as k increases, the F1 score shows an upward trend. However, intriguingly,
the F1 score slightly decreases after reaching a certain value. We believe that lower-ranked
order permutations might be less effective. When k is too large, it can introduce noise or
irrelevant information, which may interfere with the model’s learning and lead to decreased
performance. Therefore, selecting the appropriate k value is crucial.

Table 5: Effect of the number of views. F1 scores are reported

k
Dataset

1 3 8 15 19 24

ASQP-Rest15 48.20 48.85 51.32 51.71 51.47 51.13
ASQP-Rest16 59.02 59.61 60.97 61.01 60.75 60.58

5.3. Case Study

We further investigated some error cases, exemplified by two situations in Figure 9. As
illustrated in Case 1, sentences containing connectives pose a challenge because some labels
require splitting while others do not, leading to potential segmentation errors. This issue
arises because the model may struggle to differentiate when a connective indicates a split
versus when it does not, causing inaccuracies in segmentation.

In Case 2, detecting the exact span of an opinion term becomes challenging, particularly
when the term is presented as a lengthy text span. This difficulty is due to the model’s
limitations in handling extended spans and distinguishing between relevant and irrelevant
portions of the text, which can result in incorrect boundaries for opinion terms.

For future work, one potential solution could involve enhancing the model’s performance
in recognizing and appropriately handling different types of connectives through additional
training data or refined algorithms specifically targeting these linguistic features. Addi-
tionally, developing more sophisticated span detection techniques, such as incorporating
context-aware mechanisms or leveraging more advanced natural language processing mod-
els, could help in better understanding and processing lengthy text spans.
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Figure 9: Two error cases predicted.

6. Conclusion

In this study, we initiate by introducing dual-sequence data augmentation to diversify in-
put and target expressions, thereby fostering an elevated comprehension of the task by the
model. Additionally, we further incorporate an innovative supervised contrastive learning
approach developed for specific tasks to refine example representations to realize down-
stream benefits. Finally, we propose to optimize the generated output through a predictive
normalization strategy. A sequence of experiments conducted on four datasets illustrates
the better performance of our method in comparison to various baseline approaches, high-
lighting the effectiveness of each component within our methodology.
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