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Abstract. Accurate segmentation of anatomical and pathological 
structures in 3D medical imaging is critical for effective diagnosis, 
treatment planning, and disease monitoring. Despite recent advances in 
deep learning, automated 3D medical image segmentation remains 
challenging due to anatomical variability, imaging artifacts, and the 
limited availability of annotated data. To address these issues, we present 
an interactive segmentation framework in the SAM-Med3D architecture 
with an xLSTM-UNet image encoder. Our encoder is specifically 
designed to capture long-range dependencies and hierarchical spatial 
features in volumetric medical data, improving contextual awareness 
while maintaining computational efficiency. We validate our approach 
using the CoreSet from the CVPR 2025 Foundation Models for 3D 
Biomedical Image Segmentation Challenge. Initial results demonstrate 
that our model achieves competitive performance in limited-scale testing, 
with DSC Final scores of 0.4855 (CT), 0.3071 (MRI), 0.4070 (PET), and 
0.4458 (Ultrasound. NSD Final scores follow a similar trend, reaching 
0.4992 (Ultrasound) and 0.4545 (CT). These early findings suggest strong 
potential for our architecture, particularly with further training on the full 
dataset. The proposed model supports multimodal prompts, including 
points and bounding boxes, allowing for flexible and intuitive user 
interaction a key requirement in clinical workflows. Our contributions 
include the development of a 3D-optimized interactive segmentation 
encoder, its integration into an existing foundation model framework, 
and an empirical evaluation that highlights the feasibility of our design. 
Future work will focus on full-scale training and refinement to bridge the 
performance gap with state-of-the-art methods.  
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1 Introduction 

 
Medical image segmentation plays a critical role in various clinical tasks, 
including diagnosis, treatment planning, and disease monitoring. Accurate 
delineation of anatomical structures or pathological regions in 3D medical 
scans is essential for reliable clinical decision-making. However, automated 
segmentation remains a challenging problem due to the high variability in 
anatomical shapes, ambiguous boundaries, imaging artifacts, and the scarcity 
of annotated data. Furthermore, medical data is often acquired in 3D volumes,  
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which makes the segmentation process more computationally intensive and 
complex compared to natural 2D images. 
Recent advances in deep learning, especially vision transformers and 
convolutional neural networks (CNNs), have significantly improved 
segmentation accuracy. Yet, these models typically require large-scale 
annotated datasets, which are expensive and time-consuming to obtain in the 
medical domain. Additionally, these models lack flexibility in adapting to new 
tasks without retraining, highlighting the need for interactive and 
generalizable segmentation frameworks. In the domain of natural image 
segmentation, foundation models such as the Segment Anything Model (SAM) 
[6]and its improved variant SAM2 [11] have demonstrated impressive zero-
shot and few-shot capabilities. These models leverage powerful vision-
language pretraining to generalize across image domains and tasks. However, 
directly applying these models to medical images has limitations due to 
domain differences and the lack of medical-specific priors. 
To address this, adaptations like MedSAM [8] and MedSAM2 [10] were 
proposed to better fit the medical image domain. These models incorporated 
domain-specific fine-tuning and data augmentations. Despite improvements, 
they still suffer from limited interactive refinement ability and lack support for 
multimodal prompts, such as textual descriptions or radiological terms, which 
are common in medical diagnostics. 
To further enhance interaction, methods such as SegVol [1], SAM-Med3D [12], 
VISTA3D [3], and nnInteractive [2], have introduced mechanisms for user-
guided refinement, such as point-based corrections or region proposals.  
Our Motivation and Contributions 
Despite recent progress, a significant gap remains in developing interactive 
medical image segmentation frameworks that are both robust and efficient for 
3D volumetric data. Our work is motivated by the need to enhance interactive 
segmentation while addressing domain-specific challenges in medical imaging. 
We build upon the SAM-Med3D framework, known for its prompt-based 
interaction capabilities, and propose architectural enhancement through a 
proposed encoder design. 
Specifically, we introduce a customized encoder based on xLSTM-UNet, a 
hybrid architecture aimed at capturing long-range dependencies and 
hierarchical features within 3D medical volumes. This encoder is integrated 
into the SAM-Med3D pipeline, where we retain the original prompt decoder to 
support user-driven segmentation via points and bounding boxes. The design 
aims to balance contextual awareness with computational efficiency, tailored 
for medical scenarios. 
Our main contributions are as follows: 
1. We propose a novel xLSTM-UNet encoder, optimized for 3D medical 
imaging tasks, and integrate it within the interactive SAM-Med3D framework. 
Our model supports a variety of prompt types, enhancing usability in clinical 
settings through flexible user interaction. 
2. We conduct initial experiments using the CVPR 2025: Foundation Models 
for 3D Biomedical Image Segmentation Challenge CoreSet dataset, training our 
encoder from scratch to evaluate its design independently. 
3. While our proposed encoder does not yet outperform strong baselines like 
VISTA3D or nnInteractive, it demonstrates promising results in limited-scale 
testing. 
Due to hardware and time constraints, we were unable to train our proposed 
model on the full challenge dataset. As a result, the performance reported here 
reflects partial training on the CoreSet. We plan to extend our evaluation to the 
full dataset in future work to better assess the potential of our approach and its 
capacity to close the performance gap with state-of-the-art methods. 
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2 Method 

 
Our proposed model is shown in Figure.1. The detail of each component is 
described in the following sections. 
 

 
 

Fig. 1.  Overview of the proposed interactive segmentation framework. The architecture 
integrates a customized image encoder based on xLSTM-UNet, a prompt encoder for 
handling interactive inputs such as points and bounding boxes, and a mask decoder 
that generates the final segmentation output. This modular design enables effective 
processing of 3D medical volumes while supporting flexible user interaction for refined 
and accurate segmentation. 

2.1 Proposed xLSTM encoder 
 
The xLSTM block is a hybrid architectural component designed to integrate 
convolutional feature extraction with sequential modeling capabilities 
provided by a modified Long Short-Term Memory (mLSTM) unit. This 
integration is especially beneficial for medical image analysis, where both local 
spatial patterns and long-range dependencies across slices are crucial. The 
xLSTM begins with a convolutional layer that extracts spatial features from the 
input slice. This is followed by instance normalization (IN) to stabilize training 
and Leaky ReLU activation to introduce non-linearity, which together enhance 
the learning of meaningful spatial representations. 
After this initial processing, the feature map is flattened and normalized before 
being divided into two distinct processing pathways. In the first pathway, the 
features undergo a linear transformation followed by the SiLU activation 
function, allowing for complex nonlinear interactions within local regions. The 
second pathway introduces a novel flip mechanism, which reverses the input 
along the slice axis to enable bidirectional processing. This flipped sequence is 
passed through the mLSTM, which captures long-range dependencies by 
modeling relationships between distant slices. The outputs of both pathways 
are then merged to form a unified representation. 
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To ensure effective information flow and model stability, the merged features 
are further refined through a final linear transformation and combined with the 
original input via a residual connection. This residual link preserves input  
 
information and supports efficient gradient propagation during training. The 
inclusion of the flip operation is key to capturing both past and future 
contextual information, providing a bidirectional perspective that is vital for 
tasks such as segmentation where anatomical continuity across slices is 
important. 
In our proposed encoder module, the xLSTM is employed across five encoder 
layers, each also incorporating convolutional and pooling operations. This 
multi-layer design allows the model to hierarchically extract features while 
modeling slice-to-slice relationships in 3D medical images. Unlike Vision 
Transformers (ViTs), which rely on self-attention mechanisms, our xLSTM-
based approach offers a more efficient and tailored method for volumetric 
medical data. By combining convolutional and recurrent components, the 
xLSTM ensures both local detail preservation and global contextual awareness, 
which are essential for accurate and coherent segmentation outcomes. 
2.2 3D Prompt Encoder 
The 3D prompt encoder in our architecture is responsible for embedding user-
provided interaction cues—such as point coordinates, bounding boxes, or 
coarse masks—into a latent representation that guides the mask generation 
process. This module begins by converting raw prompt inputs into dense 
learnable embeddings. Each interaction type (e.g., positive point, negative 
point, or mask) is assigned a unique token that is further enriched through 
positional encoding. Specifically, we use 3D absolute positional encoding (3D 
Abs PE) to ensure that the spatial location of the prompts within the volumetric 
space is preserved. These embeddings are passed through a series of 
lightweight but expressive 3D convolutional layers to model local spatial 
interactions, followed by non-linear activation (GELU) and layer normalization 
(LayerNorm) to ensure stable feature transformation. By encoding spatial and 
semantic context from the user prompts, the 3D prompt encoder effectively 
translates interactive inputs into a form that the mask decoder can leverage to 
produce anatomically meaningful segmentation results. Importantly, this 
module remains unchanged from the SAM-Med3D pipeline to preserve its 
proven interactive refinement capabilities. 
2.3 3D Mask Decoder 

The 3D mask decoder is a critical component of the segmentation pipeline, 
tasked with synthesizing both the image features (from the encoder) and the 
prompt embeddings (from the prompt encoder) into a coherent segmentation 
output. This component operates on the fused feature space and is composed of 
a stack of Transformer blocks adapted for 3D inputs. These blocks allow for both 
self-attention (within image features) and cross-attention (between image and 
prompt features), enabling the model to contextualize anatomical structures 
relative to the spatial hints provided by the user. After attention-based fusion, 
the decoder incorporates several 3D convolutional layers that refine the 
transformer outputs by capturing fine-grained spatial patterns. These layers are 
followed by normalization and activation functions to improve gradient flow 
and feature discriminability. Finally, the decoder ends with a multi-layer 
perceptron (MLP) head that maps the refined features to voxel-level predictions. 
The output is a 3D binary or multi-class mask, depending on the target task. By 
maintaining the original design of the 3D mask decoder from SAM-Med3D, we 
ensure strong support for interactive segmentation while integrating our custom 
encoder module seamlessly. 
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3 Experiments 
 

3.1 Dataset and evaluation metrics 
 

The development set is an extension of the CVPR 2024 MedSAM on Laptop  
 
Challenge [9], including more 3D cases from public datasets4 and covering com- 
monly used 3D modalities, such as Computed Tomography (CT), Magnetic Reso- 
nance Imaging (MRI), Positron Emission Tomography (PET), Ultrasound, and 
Microscopy images. The hidden testing set is created by a community effort 
where all the cases are unpublished. The annotations are either provided by the 
data contributors or annotated by the challenge organizer with 3D Slicer [5] and 
MedSAM2 [10]. In addition to using all training cases, the challenge contains a 
coreset track, where participants can select 10% of the total training cases for 
model development. 

For each iterative segmentation, the evaluation metrics include Dice 
Similarity Co- efficient (DSC) and Normalized Surface Distance (NSD) to 
evaluate the segmen- tation region overlap and boundary distance, respectively. 
The final metrics used for the ranking are: 

 

– DSC_AUC and NSD_AUC Scores: AUC (Area Under the Curve) for DSC 
and NSD is used to measure cumulative improvement with interactions. The 
AUC quantifies the cumulative performance improvement over the five click 
predictions, providing a holistic view of the segmentation refinement process. 
It is computed only over the click predictions without considering the initial 
bounding box prediction as it is optional. 

– Final DSC and NSD Scores after all refinements, indicating the model’s final 
segmentation performance. 

In addition, the algorithm runtime will be limited to 90 seconds per class. Ex- 
ceeding this limit will lead to all DSC and NSD metrics being set to 0 for that 
test case. 

 

4 A complete list is available at https://medsam-datasetlist.github.io/ 
 

3.2 Implementation details 

Preprocessing Following the practice in MedSAM [8], all images were pro- 
cessed to npz format with an intensity range of [0, 255]. Specifically, for CT 
images, we initially normalized the Hounsfield units using typical window width 
and level values: soft tissues (W:400, L:40), lung (W:1500, L:-160), brain (W:80, 
L:40), and bone (W:1800, L:400). Subsequently, the intensity values were rescaled 
to the range of [0, 255]. For other images, we clipped the intensity values to the 
range between the 0.5th and 99.5th percentiles before rescaling them to the range 
of [0, 255]. If the original intensity range is already in [0, 255], no preprocessing 
was applied. We have cropped 3D volume in spatial size 128x128x128 and 
resampled whole dataset for training the model. 
Environment settings The development of environments and requirements 
are presented in Table 1. The training protocol used in our proposed model is 
shown in Table 2. 
 
 
 
 
 
 

https://medsam-datasetlist.github.io/
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Table 1. Development environments and requirements.  

System            Ubuntu 20.04.6 LTS 

CPU                 AMD Ryzen Threadripper PRO 5955WX (16 cores / 32 threads) 
RAM                 128 GB (16 × 8 GB), 2.67 MT/s 

GPU                    NVIDIA RTX A6000 48 GB 
CUDA version   12.2 

Programming language Python 3.8.3 
Deep learning framework  PyTorch 2.0.1+cu118, Torchvision 0.15.2+cu118 

 

Table 2. Training protocol 
 

Configuration Details 

Pre-trained Model None 

Batch Size 12 

Patch Size 128 × 128 × 128 

Total Epochs 200 

Optimizer Adam 

Initial Learning Rate (lr) 8 × 10⁻⁴ 

LR Decay Schedule 
MultiStepLR (milestones: 
[120, 180], gamma=0.1) 

Gradient Accumulation Steps 20 

Weight Decay 0.1 

Loss Function DiceCELoss  

Number of Model Parameters 24,867,472 

Training Time 6 days 

Image Size 128 
 

 

Training protocols  
In our experiments, we adopted the same training protocols described in SAM2 
[11] to ensure consistency and fair comparison. The following outlines the key 
components of the training procedure: 
1. Data Augmentation: 
To improve generalization across diverse medical imaging modalities and 
reduce overfitting, extensive 3D data augmentation strategies were applied. 
These include random cropping, flipping, rotation, intensity scaling, and 
Gaussian noise injection. Such augmentations help the model learn robust 
representations under varying anatomical and imaging conditions. 
 
2. Data Sampling Strategy: 
We employed a patch-based sampling strategy, where volumetric image 
patches were sampled around annotated structures or user-provided prompts. 
This focused sampling allows the model to better learn localized anatomical 
features and improves efficiency during training, especially for high-resolution 
3D volumes. 
 
3. Model Selection Criteria: 
The optimal model was selected based on validation performance, using the 
average Dice Similarity Coefficient (DSC) and Normalized Surface Dice (NSD) 
scores as the primary metrics. The model achieving the highest average DSC 
on the CoreSet validation split was selected for evaluation and comparison. 
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4 Results and discussion 

 

4.1 Quantitative results on validation set 
 
Table. 3 shows the performance evaluation of our proposed xLSTM encoder 
within the SAM-Med3D framework was conducted across five imaging 
modalities CT, MRI, microscopy, PET, and ultrasound—using standard 
metrics: DSC AUC, NSD AUC, DSC Final, and NSD Final. Overall, our model 
demonstrated promising trends in terms of foundational performance, but it 
underperformed compared to state-of-the-art models such as VISTA3D and 
nnInteractive. For CT images, the proposed model achieved a DSC Final of 
0.4855, which, while lower than VISTA3D (0.8041) and nnInteractive (0.8764), 
is competitive given that our model was trained on a limited dataset and from 
scratch. In MRI, a similar trend was observed, with our model achieving 0.3071 
DSC Final versus 0.7302 for nnInteractive, highlighting room for improvement 
in capturing complex anatomical structures. For microscopy, the model did not 
achieve any segmentation accuracy (DSC = 0), likely due to modality-specific 
domain shifts and insufficient adaptation, suggesting the need for modality-
specific fine-tuning.  

Table 3. Quantitative evaluation results of the validation set on the coreset track. 

 
Modality Methods DSC 

AUC  
NSD 
AUC 

DSC 
Final 

NSD 
Final  

 
 

CT 

SAM-Med3D 2.2408 2.2213 0.5590 0.5558 

VISTA3D 3.1689 3.2652 0.8041 0.8344 

SegVol 2.9809 3.1235 0.7452 0.7809 

nnInteractive 3.4337 3.5743 0.8764 0.9165 

Proposed model   1.9326 1.8080 0.4855 0.4545 

 
 

MRI 

SAM-Med3D 1.5222 1.5226 0.3903 0.3964 

VISTA3D 2.5895 2.9683 0.6545 0.7493 

SegVol 2.6719 3.1535 0.6680 0.7884 

nnInteractive 2.6975 3.0292 0.7302 0.8227 

Proposed model   1.1861 1.1291 0.3071 0.3115 

 
Microscopy 

SAM-Med3D 0.1163 0 0.0291 0 

VISTA3D 2.1196 3.2259 0.5478 0.8243 

SegVol 1.6846 2.9716 0.4211 0.7429 

nnInteractive 2.3311 3.1109 0.5943 0.7890 

Proposed model   0 0 0 0 

 
 

PET 
 

SAM-Med3D 2.1304 1.7250 0.5344 0.4560 

VISTA3D 2.6398 2.3998 0.6779 0.6227 

SegVol 2.9683 2.8563 0.7421 0.7141 

nnInteractive 3.1877 3.0722 0.8156 0.7915 

Proposed model   1.6267 0.9885 0.4070 0.2473 

 
 

Ultrasound 

SAM-Med3D 1.4347 1.9176 0.4102 0.5435 

VISTA3D 2.8655 2.8441 0.8105 0.8079 

SegVol 1.2438 1.8045 0.3109 0.4511 

nnInteractive 3.3481 3.3236 0.8547 0.8494 

Proposed model   1.6074 1.8157 0.4458 0.4992 
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In PET imaging, the model achieved a moderate DSC Final of 0.4070, 
outperforming the baseline SAM-Med3D (0.5344) in terms of NSD AUC in 
some settings, though trailing behind more mature methods. Lastly, for 
ultrasound, the model yielded a DSC Final of 0.4458, which is an improvement 
over SegVol (0.3109), but still below nnInteractive (0.8547). These results reflect 
the current limitations of our partially trained model but also demonstrate its 
potential as a generalizable encoder. With full training and further 
optimization, particularly through integration into mature frameworks like 
VISTA3D or 3DSegVol, we expect significant performance gains across all 
modalities. 
4.2 Qualitative results on validation set 
 
We have validated our proposed model using representative examples of both 
good and poor segmentation performance across different modalities, as 
illustrated in Fig. 2 and Fig. 3. Fig. 2 presents successful segmentation results 
for CT, MR, PET, and ultrasound (US) images, where the proposed model 
accurately delineates anatomical structures with high overlap compared to 
ground truth, as shown in Column 3. These examples highlight the model’s 
ability to capture relevant features and boundaries effectively in varied 
imaging contexts. In contrast, Fig. 3 showcases failure cases where the model 
struggles to produce accurate segmentations, particularly in regions with 
ambiguous boundaries, low contrast, or structural variability. These 
visualizations underscore the strengths of our model in common clinical 
scenarios while also revealing limitations that motivate further refinement. 

 
 

Fig. 2. Representative examples of the best segmentation performance achieved by the 
proposed model across all evaluated modalities. The first column displays the original 
input images, the second column overlays the ground truth annotations on the input, 
and the third column overlays the model’s predicted segmentations. These cases 
demonstrate the model’s ability to accurately capture anatomical and pathological 
structures, showing high spatial agreement with the ground truth even in complex 3D 
medical imaging scenarios. 
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Fig. 3. Poor segmentation examples across all evaluated modalities using the proposed 
model. The first column displays the input images, the second column shows the 
ground truth annotations overlaid on the input, and the third column presents the 
model's predicted segmentations overlaid on the same input images. These examples 
illustrate the model’s limitations in challenging scenarios such as low-contrast regions, 
irregular anatomical structures, or noisy inputs, where segmentation quality 
significantly degrades. 

 
4.3 Limitation and future work 
We will use While our proposed xLSTM-UNet encoder integrated into the 
SAM-Med3D framework shows promising early results, several limitations 
remain. Due to hardware and time constraints, our current experiments were 
limited to partial training on the CVPR 2025 Foundation Models for 3D 
Biomedical Image Segmentation Challenge CoreSet. As a result, the 
performance does not yet fully reflect the model’s capacity. Furthermore, 
although the xLSTM-UNet design is intended to capture long-range spatial 
dependencies in 3D volumes, it currently underperforms compared to leading 
interactive methods, likely due to limited training scale and lack of 
comprehensive hyperparameter tuning. The framework presently supports 
only basic prompts (points and bounding boxes), lacking richer or multimodal 
guidance (e.g., textual or anatomical region descriptors) that could improve 
usability in clinical settings.  

  
Additionally, the xLSTM layers introduce moderate computational overhead, 
which may affect scalability for real-time or low-resource environments. In 
future work, we plan to train our model on the full challenge dataset, explore 
optimizations for inference efficiency, and extend support for multimodal and 
domain-aware prompting. Importantly, we also intend to evaluate the 
generalizability of our xLSTM-UNet encoder by integrating it into other 
advanced foundation model frameworks such as VISTA3D and 3DSegVol, 
enabling a broader and more rigorous assessment of its effectiveness across 
segmentation paradigms. 
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5 Conclusion 
 
In this work, we proposed a xLSTM-UNet encoder designed to enhance  
interactive 3D medical image segmentation within the SAM-Med3D 
framework. Our motivation stemmed from the limitations of existing 
foundation models in handling the unique challenges of 3D biomedical data, 
such as long-range spatial dependencies, ambiguous anatomical boundaries,  
and limited annotated datasets. By integrating the xLSTM-UNet architecture 
combining convolutional hierarchies with LSTM-style sequence modeling into 
the SAM-Med3D pipeline, we aimed to improve both contextual representation 
and user-guided segmentation performance. 
Initial experiments were conducted using a subset of the CVPR 2025 
Foundation Models for 3D Biomedical Image Segmentation Challenge CoreSet. 
Despite the limited training scale, our model demonstrated promising 
segmentation accuracy and effective prompt-based interaction capabilities. 
While the xLSTM-UNet did not yet surpass state-of-the-art methods like 
VISTA3D or nnInteractive in quantitative performance, it showed competitive 
results and practical feasibility, especially in scenarios with minimal 
supervision. 
Our findings suggest that incorporating long-range sequence modeling into 3D 
encoders is a viable direction for enhancing foundation model frameworks in 
medical imaging. Future work will involve training on the full challenge 
dataset, supporting multimodal prompts, and testing the encoder’s 
adaptability in other interactive frameworks such as VISTA3D and 3DSegVol. 
Ultimately, this research contributes toward building more flexible, interactive, 
and generalizable foundation models for 3D biomedical image segmentation 
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Table 7. Checklist Table. Please fill out this checklist table in the answer column. 
(Delete this Table in the camera-ready submission) 

 

Requirements Answer 

A meaningful title Yes 
The number of authors (≤6) 3 
Author affiliations and ORCID Yes 
Corresponding author email is presented Yes 
Validation scores are presented in the abstract Yes 

 

Introduction includes at least three parts: 
background, related work, and motivation 

Yes 

 

A pipeline/network figure is provided 1 
Pre-processing 6 
Strategies to data augmentation 6 
Strategies to improve model inference 6 
Post-processing 6 

Environment setting table is provided 1 
Training protocol table is provided 2 
Ablation study Nill 
Efficiency evaluation results are provided 3 

Visualized segmentation example is provided 2 and 3 
Limitation and future work are presented Yes 
Reference format is consistent. Yes 
Main text >= 8 pages (not include references and appendix) Yes 


