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Abstract

The neural activity in the visual processing is influenced by both external stimuli
and internal brain states. Ideally, a neural predictive model should account for both
of them. Currently, there are no dynamic encoding models that explicitly model
a latent state and the entire neuronal response distribution. We address this gap
by proposing a probabilistic model that predicts the joint distribution of the neu-
ronal responses from video stimuli and stimulus-independent latent factors. After
training and testing our model on mouse V1 neuronal responses, we find that it out-
performs video-only models in terms of log-likelihood and achieves improvements
in likelihood and correlation when conditioned on responses from other neurons.
Furthermore, we find that the learned latent factors strongly correlate with mouse
behavior and that they exhibit patterns related to the neurons’ position on the visual
cortex, although the model was trained without behavior and cortical coordinates.
Our findings demonstrate that unsupervised learning of latent factors from popula-
tion responses can reveal biologically meaningful structure that bridges sensory
processing and behavior, without requiring explicit behavioral annotations during
training. Code: github.com/sinzlab/SchmidtEtAl2025 Dynamic Latent State

1 Introduction

Predicting the activity of sensory neurons is a major goal of computational neuroscience towards
understanding the mechanisms of information encoding in the brain. In particular, accurately
predicting neural responses in the primary visual cortex (V1) in response to a given stimulus could
provide deeper insights into how the brain processes visual information. However, this task remains
challenging because neural activity in the visual cortex exhibits variability not only across different
visual stimuli but also across repeated presentations of the same stimulus [38, 42]. This variability
arises from the influence of numerous unobservable factors that the visual cortex integrates into its
processing. For example, the activity in the visual cortex is influenced by factors such as behavioral
tasks [13, 22], attention [8, 12, 31], and general brain states correlated with behavior [15, 32, 35, 40].
Recording all of these additional variables is not feasible, especially because most of them are
unknown [40]. Thus, understanding the sensory processing of the visual cortex requires models that
capture both stimulus-dependent and shared stimulus-conditioned variability [5]. One way to do
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Figure 1: A. Problem statement: an animal
watches the same video, but different brain states
lead to different neuronal responses. B. Pro-
posed solution: infer the brain state with a
probabilistic latent-variable model that predicts
marginal Zero-Inflated-Gamma (ZIG) distribu-
tions for each neuron.

it is to model internal fluctuations using latent variables that capture a shared state across neurons,
explaining the variability in responses to the same stimulus. To this end, such models require a
probabilistic framework to effectively incorporate and infer these latent variables.

The majority of video encoding models for neuronal activity in visual cortex focuses on models that
predict neural activity conditioned solely on the stimulus [39, 43, 47] or on mapping neural activity
to meaningful low-dimensional latent spaces, independent or only conditioning on the underlying
task or stimulus [20, 24, 36, 41]. To the best of our knowledge, only a few models exist that capture
the correlated variability of large neuronal populations and the visual stimuli as input [5]. None of
them are designed for dynamic video-based stimuli.
In this paper, we address this gap with the following contributions:
• We propose a probabilistic neuronal predictive model that accounts for both dynamic visual stimuli

and latent brain state. The brain state is extracted from a subset of neuronal activity (Fig. 1).
• Our model surpasses comparable models without latent in predicting neuron response distributions

in terms of log-likelihood.
• We show that the model’s latent variables are meaningful, as they are strongly correlated with

mouse behavior (as expected from experimental work [32, 35, 40]) and exhibit topographic patterns
along the cortical surface despite no exposure to behavioral data or cortical position data.

2 Related work

Existing data-driven neural response prediction methods fall into three categories:
1 deterministic models that predict neural activity from visual stimuli but do not account for

response uncertainty and variability [e.g. 3, 23, 39, 43, 46, 47],
2 probabilistic models focused on deriving a latent state from neural responses, sometimes condi-

tioning on the external sensory inputs [20, 36, 41, 55],
3 models, using both sensory input and neuronal activity to predict other neurons’ responses [5, 25].

App. A summarizes related works in terms of inputs, outputs, and presence of latents.

1 Deterministic models for visual cortex Recent advances in deep learning, particularly convolu-
tional neural networks (CNNs) trained on image recognition tasks [10, 11, 33, 52], have significantly
improved predictive models. However, while task-driven models work well for responses from
macaque visual cortex, they do not necessarily work as well for mouse visual cortex [9]. Since
our focus is on recordings from the mouse visual cortex, we focus on data-driven models, trained
end-to-end on neuronal activity in the following. Early work focused on developing specialized
stimulus feature representations [called cores, 2, 16] or readout architectures [27, 29] that map the
output of the core to neuronal representations. Sinz et al. [39] extended the core to video stimuli,
adding a gated recurrent unit, and incorporating behavioral data such as pupil dilation and running
speed. The inclusion of these behavioral variables allows the model to capture aspects of latent
brain state and their interaction with neuron selectivity. For instance, Franke et al. [17] showed that
behavioral activity modulates stimulus selectivity in mouse visual cortex when processing colored
natural scenes. Höfling et al. [23], Vystrčilová et al. [46] further improved core architectures with
factorized 3D convolutions for dynamic stimuli, achieving faster training and better performance
than GRU-based models. In parallel, Wang et al. [47] introduced a foundational model for mouse
visual cortex with a preprocessing module that adjusts for pupil position and integrates recurrent
components into the core. Recently, transformer-based models [3, 28] have shown promising results.

While these models reproduce biological phenomena and achieve state-of-the-art performance, they
all train point estimators, i.e., deterministic networks that predict a single value for each trial. The
lack of a proper probabilistic model prevents them from computing log-likelihoods and limits their
ability to model the stochastic distribution of neuronal activity. Wu et al. [51] proposes a variational
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model for the network weights to model neurons’ distributions, but this model only takes visual
stimuli as input and does not model an independent latent state.

2 Probabilistic models focused on a latent state Previous work has made significant progress
in reducing high-dimensional neuronal recordings to smooth low-dimensional manifolds, often
interpreted as latent states. However, these models do take the animal’s sensory input into account,
which is one strong driving force of neuronal activity, in particular in sensory areas. Yu et al. [54]
introduced Gaussian Process Factor Analysis to map neural activity over time into a low-dimensional
space, assuming a Gaussian distribution for neural activity given the latent variable at each time point.
Jensen et al. [24] scaled this approach using variational inference. Gokcen et al. [20] extended further
by incorporating time delays to model interactions between neural populations, revealing distinct
latent dimensions for shared and region-specific neural dynamics. Building on this, Gokcen et al.
[21] also introduced a shared latent space across sessions. However, these models assume a simple
linear-Gaussian relationship between latent variables and neural activity.

To extend these approaches to nonlinear modeling, other works [36, 41, 56, 57] use variational
autoencoders. The encoder learns the approximate posterior q(z|y, a) for latent variables z based on
neural responses y and auxiliary data a, while the decoder reconstructs neural data from z. Sussillo
et al. [41] uses a generative recurrent network to model temporal dependencies in z for neuronal spikes.
Zhu et al. [57] extended this work for calcium recordings using zero-inflated gamma distribution
as a loss. In contrast, Schneider et al. [36] trains with contrastive loss, integrating behavior or task
information to produce similar embeddings for comparable neural activity. Similarly, Zhou and
Wei [56] models dependencies between task labels u, latents z, and observations x with a two-stage
non-contrastive approach. However, those methods are focused on encoding neuron responses into
meaningful latent embeddings and do not predict neuron responses based on external stimuli inputs
like images or videos.

3 Models using sensory and neuronal input to predict other neurons’ activity Recent work
on recurrent state space models (RSSMs) used latent states for neuronal response modeling. For
instance, Glaser et al. [19] uses observed neural activity and exogenous factors to derive a latent
state. However, their model is limited to discrete states. Zoltowski et al. [58] are able to predict both
discrete and continuous random states. However, their model is limited to a decision-making task.
Apart from RSSMs, Kim et al. [25] uses a flow model, taking both task-relevant inputs and some
neurons to predict responses of the other neurons, but focuses on the auditory cortex, where both task
and neuronal inputs are time series. To our knowledge, Bashiri et al. [5] is the only work combining
visual input with a latent state. It extends the core-readout framework by adding flow-modeled,
stimulus-conditioned variability, including noise correlations, to the mean activity predicted by the
core-readout model. However, the model of Bashiri et al. [5] is limited to static stimuli. Since their
approach requires a covariance matrix between the responses of all neurons to an image, it scales
quadratically with the number of neurons. This makes it computationally too expensive for temporal
dependencies, since it would scale quadratically in the number of neurons and timepoints.

3 Proposed latent model

In this work, we modify a well-established deterministic core-readout framework — consisting of a
factorized 3D convolutional core [46] and a Gaussian readout [29]— to a probabilistic latent state
architecture (details in App. C). Specifically, we add an encoder that takes a subset of neurons as input,
reduces their dimensionality, and derives a latent variable. This latent state is then combined with the
transformed visual input to predict the activity of other neurons from the same session. This model
is equivalent to a latent variable model that predicts neuronal activity from two independent factors
i) latent state and ii) the input video. In contrast to Bashiri et al. [5], our model is video-based and
predicts time series of neuronal response and the corresponding marginal distribution for each neuron
and time point. We designed the model to predict a neuron’s activity conditioned on any subset of
neurons from the same experiment. In addition, it can explicitly infer the latent state, allowing us to
analyze its relation to other external factors such as the behavior of the animal.

Model architecture Our model predicts time-varying neuronal responses y ∈ RN×T to a video
stimulus x ∈ RW×H×T , where N is the number of neurons, T the number of time points, and W and
H are the frames’ width and height. The prediction also depends on a dynamic, stimulus-independent
latent factor z ∈ Rk×T with latent dimension k ≪ N (Fig 2). To obtain a probabilistically grounded
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Figure 2: A. A 3D convolutional neural network-
based core extracts features of the video input x.
The read-out learns the spatial position (purple
dot). The deterministic Poisson baseline predicts
the mean response via a per-neuron affine func-
tion from the learned feature vector wc. For the
ZIG baseline, we double the dimension of wc to
w(q,θ) to predict response-distribution parame-
ters q, θ of a ZIG distribution.

B. For the latent model we keep the core-read-out architecture w(q,θ) and additionally add the latent
variable z to predict q, θ. The encoder (approximate posterior) first reduces the dimensionality of
masked neuronal responses y. Afterwards, a GRU computes the posterior q(z |y) ∼ N (µ(y), σI),
from which we sample the latent state when conditioning on neurons. For the marginal distribution
p(y | x) we sample the latents from the prior N (0, I) and integrate out z via Monte-Carlo sampling.
C. Directed graphical model of video, latent, and response variables; the dashed line indicates the
variational approximation.

latent state, we combine ideas from Bashiri et al. [5] and Zhu et al. [57] by modeling neuronal
responses conditioned on stimulus and latent factors using a Zero-Inflated Gamma (ZIG) distribution,
which provides a more realistic assumption for calcium imaging data compared to a widespread
Poisson assumption. In calcium imaging of neurons, the deconvolved fluorescence signals often
contain many zero or near-zero values when neurons are inactive, together with positively skewed
values when activity occurs. The ZIG distribution naturally captures this behavior by combining a
point mass at zero (to model silent periods) with a gamma distribution that represents the continuous,
positive-valued calcium activity during neural firing. ZIG is a mixture of a uniform distribution for
zero responses and a shifted Gamma distribution for nonzero neuronal responses [49]:

pZIG
(
y|x, z;ψ) =

N,T∏
yit≤ρ

((
1− qit(x, z;ψ)

)
· 1
ρ

)
·
∏
yit>ρ

(
qit(x, z;ψ) · fΓ

(
yit; ρ, κi, θit(x, z;ψ)

))
where ρ is simultaneously the width of the uniform part and the shift of the Gamma distribution, κi
the shape parameter per neuron i, qit the nonzero response probability, and θit the scale parameter for
each neuron at time-step t. fΓ(·; ρ, κ, θ) is the probability density function of a Gamma distribution
shifted by ρ. Our latent model predicts the distribution parameters θ and q based on a given
video-stimulus, the encoded latent factors, and the model’s parameters ψ:

qit(x, z, ψ) = sigmoid
(
f
(q)
it (x;ψ) +w

(q)
i ·zt

)
, θit(x, z, ψ) = ELU

(
f
(θ)
it (x;ψ) +w

(θ)
i ·zt

)
+ 1.

(1)

κi is fitted independent of the stimulus once per neuron on the train set via moment matching to avoid
un-identifiability conditions during model training (i.e. mean of the Gamma distribution κ · θ can be
realized by infinitely many combinations of κ and θ). For each neuron and time point, we use the
mean of the predicted ZIG distribution as the response prediction.

We model f (q)it and f (θ)it using a typical core-readout architecture (Fig 2A) where the core extracts
features of the video-input, and the readout maps the relevant features from the core-output to the
individual neurons. While the core has the same architecture as a model without a latent state,
we doubled the feature vectors of the classical Gaussian readout to predict both q and θ. We
additionally tested to decode the latent variables replacing zt with smoothed latent variables g(zt) in
Eq. (1).However, this did not improve the models’ performance (App. D). The stimulus-independent
latent factors are modeled with an isotropic Gaussian prior across time and factors p(z) = N (0, I).
We model an approximate posterior (Fig. 2B) as a Gaussian with the mean as a function of the
responses y, the encoder parameters ϕ, and an independent variance: q(z|y;ϕ) = N (µ(y;ϕ), σ2I).

Training We fit the model by maximizing pZIG(y|x) via its evidence lower bound (ELBO) via
variational inference [7, 26]:

log pZIG(y|x) ≥ ⟨log p(y|z,x)⟩z∼qϕ(z|y) +DKL [qϕ(z|y) : p(z)] , (2)

where ⟨·⟩ represents expected value and DKL the Kullback-Leibler divergence. The likelihood term
⟨log p(y|z,x)⟩z∼qϕ(z|y) of the ELBO is computed via Monte-Carlo sampling by drawing samples
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z from the approximate posterior qϕ(z|y). We found that 150 samples are optimal (App. B). Since
qϕ(z|y), p(z) are Gaussians, we computed the Kullback-Leibler divergence analytically. In all of the
experiments, the latent model was initialized with a pretrained video-only ZIG model, unless stated
otherwise.

Marginalization To compare the latent model with the baselines, which do not take neuronal
activity as input, we sample the latent from the prior and marginalize z via Monte-Carlo sampling to
compute the response likelihoods given only the video p(y|x):

p(y|x) =
∫
p(y|x, z)p(z) dz =

1

L

L∑
l

p(y|x, z(l)). (3)

App. B shows that the log-likelihood stabilizes and plateaus after approximately 1000 samples.

4 Experiments

Dataset We trained and evaluated our models on the data from the five mice of the SENSORIUM
competition [43]. The SENSORIUM IDs of the mice are in App. F. Responses are 2-photon calcium
traces from ∼ 40, 000 excitatory neurons of five mice in layers 2–5 of the primary visual cortex.
They were recorded at 8 Hz while the head-fixed mice viewed naturalistic gray-scale videos at 30 Hz.
The signals were synchronized and upsampled to 30 Hz. During training, we used video input with
shape (W,H, T ) = (64, 36, 80), while for evaluation, we used the whole length T for each video.
Behavioral variables—locomotion speed, pupil dilation, and center position—were also recorded and
resampled to 30 Hz.

Baseline models To compare with the standard non-probabilistic model, we use the SENSORIUM
[43] baseline model with a Poisson loss. To disentangle the impact of the ZIG loss and the latent
modeling, we use a video-only ZIG-model (without latent) as a second baseline. All models share
the same hyperparameters wherever possible (Tab. 8). Since we aim to use correlations between
latent variables and behavioral variables [5, 40] as external validation for the model (see below), we
excluded behavioral data during training for all models – in contrast to previous work [39, 47].

Evaluation Building upon prior work [39, 43, 50], we use single-trial-correlation averaged across
neurons to measure model performance. For each neuron i, we compute the correlation between the
neuron response predictions ŷjti and the actual responses yjti over all time points t of all videos j in
the evaluation data. We evaluate the model in two scenarios. First, we want to compare the model
with the baselines, which do not have any additional neuronal input. Hence, in the “Non-Conditioned”
scenario, we sample latents z(l) from the prior and use the mean of the response distribution as a
predictor

ŷji =

∫
yi · p(yi|z,xj)p(z)dz = ⟨yi⟩yi∼p(yi|z,xj)p(z)

.

Here, ŷij is the predicted time series of the response of neuron i to video j.

Then we want to check if adding responses as input helps. So, in the second —“Conditioned“—
scenario, we derive the latent state from a subset of the population of neurons ŷji =
⟨yi⟩yi∼p(yi|z,xj)p(z|yI)

where I is an index set. Algorithmically, the only difference between
the scenarios is how we sample z.

As we model full response distributions, we also compute the log-likelihood to evaluate how well
those distributions are predicted. For our latent model, the latent variables z are marginalized out via
Monte-Carlo sampling (Eq. (3); for experiment details see App. E.

Non-Conditioned evaluation: Latent model improves response distribution modeling The
latent model outperforms the video-only ZIG model in terms of log-likelihood (Tab. 1), demonstrating
the improved capability of the latent model for capturing the full response distributions. Since the
neuronal responses are continuous and the Poisson distribution is for discrete values only, evaluating
the log-likelihood of the Poisson model is not meaningful.

Adding a latent to our ZIG model does not hurt predictive performance and yields comparable
correlation. The ZIG and latent models have about one percentage point lower correlation compared
to the Poisson baseline model (Tab. 1). This happens because the ZIG distribution is not an
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exponential family, which leads to a trade-off between modeling full distributions (likelihood) and
conditional means (correlation) [30]. We test this claim by training the means of the predicted ZIG
distribution with Poisson loss (’Poisson loss ZIG’), which leads to a comparable performance with
the Poisson baseline model. Details are in the App. G.

Table 1: Predictive performance of models. Log-likelihood is
computed in Bits per Neuron and Time. Standard error of the
mean (SEM) is reported across three models with different
initializations.

Poisson
Baseline

Poisson Loss
ZIG

Video-only
ZIG

Latent
ZIG

Pearson
Correlation ↑ 0.195 ±0.003 0.194 ±0.003 0.183 ±0.003 0.182 ±0.004

Log-
Likelihood ↑ – – -0.98 ±0.04 -0.30 ±0.05

To test if there is a better distributional
fit than the Gamma distribution for
the positive responses, we replaced
it with a more flexible normalizing-
flow–based distribution while keep-
ing everything else fixed (latent-state
and stimulus dependence). However,
adding flow layers did not improve
the performance of our ZIG model,
suggesting that the ZIG distribution
already provides an adequate fit to
the neuronal response distributions
(App. H). Finally, we tested whether our latent model also improves performance when combined
with a different core—specifically, a Vision Transformer (ViT) core as in [28]. The quantitative trends
are the same: the ZIG model with the ViT core performs slightly worse than the Poisson baseline due
to the optimization trade-off, whereas the latent model improves performance beyond the Poisson
baseline (see App. I for details).

Distributional modeling helps on out-of-distribution stimuli Point-estimate models, like our
Poisson baseline model, empirically struggle on OOD stimulus distributions such as gratings or
moving dots (Tab. 2 ‘Poisson‘1) when response distributions shift with stimuli. Since ZIG and latent
models learn per-neuron distributions, we hypothesized that they might generalize to OOD stimuli.

Table 2: Correlations on half of the neurons for out-of-
distribution (OOD) stimuli, averaged across three OODs
per mouse: (1) Poisson baseline, (2) ZIG model, (3) Latent
ZIG without conditioning, (4) Latent ZIG conditioned on
half of the neurons. SEM is across mice.

Poisson ZIG Non
Conditioned Conditioned

Mouse 1 0.058 0.091 0.091 0.156
Mouse 2 0.097 0.128 0.128 0.174
Mouse 3 0.110 0.134 0.133 0.181
Mouse 4 0.084 0.118 0.115 0.185
Mouse 5 0.064 0.091 0.087 0.153

Average 0.08±0.009 0.11±0.008 0.11±0.007 0.17±0.009

To assess generalization, we eval-
uated our models on the SENSO-
RIUM bonus track, which provides
neural recordings collected in re-
sponses to out-of-distribution (OOD)
video stimuli-such as pink-noise clips,
whose spatiotemporal statistics signif-
icantly diverge from the statistics of
naturalistic videos used during train-
ing. Learning per-neuron distributions
indeed improves OOD performance
(Tab. 2, ‘ZIG‘). The latent model per-
forms similarly when sampling from
the prior (Tab. 2, ‘Non-Conditioned‘).
Conditioning on half the neurons fur-
ther boosts correlations (Tab. 2,‘Con-
ditioned‘), showing that encoding neuron responses also generalizes to OOD.

Increasing the latent dimension improves performance in the ‘Conditioned’ scenario but could
lead to overfitting In the ‘Conditioned’ scenario, the dimensionality k of the latent variable is
the information bottleneck: a bigger latent dimension helps to pass more information from the
neuronal input. However, it requires approximating a higher-dimensional distribution, which might
be vulnerable to overfitting. To explore the optimal latent dimension, we assessed the predictive
correlation of models with (1) different latent dimensions k and (2) varying portions of responses yI
as input. Throughout, we report the correlation on a quarter of the neuron population (n ≈ 2000) per
mouse, which was never used as input, i.e., where not part of the index set I . Given half of the neurons
responses as input in the ‘Conditioned’ scenario (Fig. 3 A), our latent model achieves a performance
of up to 0.27 (±0.003), a boost of 0.09 compared to the video only prediction performance of 0.18.
However, in the ‘Non-Conditioned’ scenario, increasing the latent dimension actually decreases the
correlation from 0.18 of the latent model to 0.16 (Fig. 3 A). Beyond k = 80 we observe no significant
changes. A reason for the decrease in the ‘Non-Conditioned’ scenario could be that increasing

1The Poisson baseline numbers are lower than in [43] as we do not use behavior data
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the latent dimension enhances the latent model’s encoding capabilities, while the video-processing
component remains unchanged. As a result, the model may rely too much on the encoded responses
in the latent variables, which might hurt the correlation when sampling from the prior.

We further explore the effect of conditioning on different portions of the neuron population on the
predictive performance of a latent model with a low latent dimension (k = 5) and a high latent
dimension (k = 100).

For the low-dimensional latent model, the performance levels off when conditioned on 30% of the
neuron population, reaching a correlation of about 0.23 (±0.004). In contrast, the high-dimensional
latent model keeps improving with more neurons given to the encoder, finally reaching a correlation
of 0.28 (±0.004) when 75% of neuron responses are given (Fig. 3 B).

In App. J, we further tested whether our baseline models achieve comparable performance if we
include behavioral variables as a replacement for the latent state. However, the respective models do
not exceed a correlation of 0.20. This indicates that our latent state encodes a high-dimensional brain
state that is not captured by few behavioral dimensions, in line with previous work [40].

Increasing latent dimension improves log-likelihood in ‘Non-Conditioned’ scenario Because
the correlation decreases with the latent dimensionality in the ‘Non-Conditioned’ scenario, one might
expect a decline in log-likelihood performance as well, while it is actually growing with a higher
latent dimension (Fig. 3 C). To analyze this apparent discrepancy, we checked how the variance of the
latent factors affects the log-likelihood. Since the average norm of the latent feature vectors w(q,θ)

i
increases with the latent dimension, the variance of distribution wi · zt ∼ N (0, ∥wi∥22) increases as
well (Fig. 3 C).

Eq. (1) show that if wi · zt has an increased variance, we sample the distribution parameters q, θ from
a broader range. Hence, a high-dimensional model is more likely to put probability mass on more
extreme response values and does not concentrate all the probability mass around the mean. Examples
can be seen in App. K. This improves the log-likelihood log p(y|x) ≈ log

(∑
l p(y|x, z(l))

)
−log(L),

since its more likely to sample a probability density function p(·|x, z(l)) with a positive value at y
even for extreme response values y. Thus, a high-dimensional model predicts more realistic response
distributions by better accounting for potential outliers.

A B C

Figure 3: A Average prediction–response correlation across models with varying latent dimensions.
B Average conditioned correlation for low- vs. high-dimensional latent models, if different portions
of the neuron population are given. C Log-likelihood vs. average norm of latent feature vectors
w

(q)
i ,w

(θ)
i across latent dimensions. Error bars: SEM over 3 seeds; some points omitted to save

training cost.

Latents primarily reflect a stimulus-independent brain-state If we sample from the prior, the
latent is independent from the video input a priori. However, if we condition the latents on neuron
responses, i.e., sampling the latents from the approximate posterior q(z|y), q(z|y) can still carry
stimulus information due to the collider structure x→y←z in the graphical model (Figure 2C).

To test whether latents sampled from q(z|y) reflect stimulus-independent brain states rather than
residual stimulus content, we ran two control experiments. In the first experiment, we want to ensure
that we cannot predict the latent state from the video statistics, therefore, we compute the local
contrast cit for each time point t and each neuron i measured via the pixel variance in the receptive
field of the neuron for the given video frame.
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The receptive field is determined by the maximal receptive field of the convolutional core—as
determined by the kernel sizes—at the readout location of the neuron.

We performed a linear regression argminW,b
∑
t ||Wct + b− zt||2 and computed the R2 values of

the actual latents zt and the predicted values Ŵct + b̂ on the test set. We performed a 5-fold cross-
validation on the validation data to compute the average R2 values. For 4 of the 5 mice, the video
contrast does not explain the variance of the latents. However, for one mouse we get values up to 0.27
(±0.01) indicating that the latents sometimes do encode residual stimulus information (Tab. 3 Col. 1).

Table 3: (1) Contrast R2; (2) Conditioned cor-
relation; (3) Correlation for mixed repeats; (4)
Correlation int the Non-Conditioned scenario.
SEM averaged over neurons and videos.

Contrast
(R2) ↓

Corr.
same rep. ↑

Corr.
mixed rep. ↓

Corr. Non-
Conditioned ↑

Mouse 1 0.05±0.03 0.17±0.02 0.12±0.01 0.12±0.02
Mouse 2 −0.19±0.20 0.19±0.02 0.16±0.02 0.15±0.01
Mouse 3 0.27±0.01 0.20±0.02 0.17±0.02 0.16±0.01
Mouse 4 −0.03±0.04 0.24±0.03 0.21±0.02 0.18±0.01
Mouse 5 0.01±0.04 0.21±0.02 0.15±0.02 0.14±0.01

Average 0.02±0.07 0.20±0.01 0.16±0.01 0.15±0.009

In the second experiment, we use repeated
stimuli to validate that the model encodes
brain state-related and not visual-input-related
information. We split the neuronal popula-
tion into two halves y = (yone half,yother half),
shuffled the matching of the halves across
trials that presented the same stimulus, and
used the shuffled pairs to predict yone half via
p(y

(i)
one half | x,y

π(i)
other half), where i and π(i) de-

note the index of the original and shuffled trial.
This approach ensures that yother half corresponds
to the same video but a different brain state. If z
primarily captures video responses, the performance should not decline significantly. Conversely, if
z mostly reflects brain state, performance should drop to the level without conditioning—or worse.
Tab. 3 Col. 2,3 shows that correlation drops for all mice when conditioning on mixed repeats versus
same-repeat responses, indicating that the latents encode a stimulus-independent brain state.

Figure 4: Canonical correlation of behavior and
latent for each mouse. The CCA analysis was
done with 5-fold cross-validation in an 80/20
split. The error bars indicate the standard error
of the mean of cross-validation.

Table 4: Average canonical correlation across
all mice for our latent model (ZIG latent) and a
CEBRA model trained on the same data. SEM
is computed over the different validation correla-
tions in the cross-validation.

CEBRA ZIG latent

Pupil dilation ↑ 0.66 (0.004) 0.60 (0.01)
Treadmill speed ↑ 0.27 (0.006) 0.42 (0.02)

Sanity check: Latent variables strongly corre-
late with behavior It is widely known that
latent brain state is strongly correlated with be-
haviour [5, 32, 40], therefore, we use behaviour
to test whether the latent variables sampled from
our approximate posterior capture relevant inter-
nal states of the brain. Specifically, we computed
a canonical correlation analysis (CCA), which
finds the linear combination of the latent variables
z(1), . . . , z(k) with maximal correlation to a cho-
sen behavioral variable like pupil dilation or tread-
mill speed.
Although our model has not seen any behavioral
data during training, the learned latents show
strong correlations with behavioral data (Fig. 4),
suggesting that our latents indeed encode mean-
ingful brain-state related information. Analysis
details are in App. L.
To assess how meaningful these correlations are,
we compare against a CEBRA baseline [36]
trained on the same data, with hyperparameters
tuned to maximize behavioral correlation and with-
out visual-stimulus input or held-out neurons (de-
tails in App. L). While the CEBRA model attains
slightly higher correlation with pupil dilation, our
latent model achieves much higher and more sta-
ble correlation with treadmill speed, yielding over-
all comparable performance (Table 4).

Feature vectors of a latent model exhibit topographic organization Bashiri et al. [5] analyzed
the relation between latent state and position in the visual space or cortex. This inspired us to explore
whether our latent space relates to the cortical positions of neurons as well. The latent space model
has learned two feature matrices, w(θ) and w(q), where the columns w(θ)

i ,w
(q)
i are the feature vectors
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for each neuron i. These vectors serve as neuron-specific weights that project the shared latent state
onto that neuron’s response-distribution parameters (see Eq. (1)).

First, we visualized these vectors and noticed a spatial organization on the cortical surface. Specif-
ically, we computed the most relevant direction in the weight spaces by a singular value de-
composition (SVD) on the feature matrices, extracting the singular vectors u1, u2, · · · ∈ Rk
that explain most of the variance in the weight vectors. Subsequently, we project each weight
vector onto the first three SVs via uj · w(q)

i and uj · w(θ)
i for j = 1, 2, 3 and each neuron i.
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Figure 5: Color gradient maps of the latent feature vec-
tors w(q)

i along the first three Singular Dimensions for
mouse 9. All recorded neurons are located within a
600µm× 600µm square in the cortex. Their depth dif-
fers at most 200 µm. The first three columns display
the color maps for a model with freely learned feature
vectors, trained without any knowledge of cortical po-
sitions. Columns 1-2 use only neurons from a specific
depth for both SVD and visualization; Column 3 in-
cludes all neurons for both. Column 4 shows a model
predicting latent features from cortical positions. Rows
show the top three singular dimensions in descending
order.

Then we plotted the neurons using their
cortical xy positions and using the SV val-
ues as colors (Fig. 5 Columns 1,2). The
visualization for w(q) is in Fig. 5, simi-
lar visualizations for w(θ) are provided in
App. M.

Although our model was not explicitly pro-
vided with cortical position data during
training, it still learned patterns that suggest
a spatial organization by cortical position
(Fig. 5, Col. 1-3). These patterns appear
independent of the neurons’ depth in the
cortex (Fig. 5, Col. 1 and 2). Thus, a neu-
ron’s position seems to contain relevant in-
formation for predicting its responses. Be-
yond the third singular dimension, we did
not find more spatially organized patterns
(App. M).

Sharing parameters via cortical coordi-
nates reduces model size with minimal
accuracy loss. The previous experiment
suggests that cortical positions are impor-
tant for latents, hence, we could use them
to learn the latent feature vectors and de-
crease the model size.

Table 5: Comparison of log-likelihood (in bits per Neu-
ron and Time) and conditioned correlation of models
with differently learned latent feature vectors w(θ),w(q).
The feature vectors are learned as independent model
parameters per neuron (freely learned), predicted from
cortical positions via an MLP (position-based), or the
same vector is shared across neurons, but can differ in
scale (same). All models use a latent dimension k = 12.
Standard error of the mean (SEM) is reported across
three models with different initializations.

Freely
learned

Position
based

Same

Log-Likelihood ↑ -0.34±0.05 -0.69 ±0.04 -0.88 ±0.04

Conditioned
Correlation ↑ 0.24 ±0.003 0.22 ±0.005 0.18 ±0.003

Instead of storing a separate pair of feature
vectors w(q,θ)

i for every neuron, we let two
small 2-layer MLPs map the neuron’s cor-
tical position (px, py, pz) to w

(q,θ)
i . This

substitution removes thousands of free pa-
rameters, as we remove the big feature ma-
trices, each of size k×N (latent dimension
× number of neurons), as model parameters
for each of the five mice. The decrease in
log-likelihood and conditioned correlation
is only marginal (Tab. 5). This confirms
that neighboring neurons naturally have
similar latent feature vectors. The topo-
graphic maps of coordinate-based W(q,θ)

(Fig. 5, column 4) closely match those from
the response-based (freely learned) latent
model, indicating that these structures are
strongly present in the data. As a control, we trained a model where all neurons shared the same
feature vector, differing only by a per-neuron scale. Its worse performance shows that neurons differ
not just in response strength, but also in which latent dimensions they emphasize across the cortex.
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Cortical-based latent mapping can extrapolate to unseen neurons To test if the
cortical-based mapping from the previous experiment generalizes to unseen neurons, we re-
moved N = 500 neurons per mouse during the first phase of training the latent model.

Table 6: Correlation for 500 held-out neurons per
mouse, conditioned on half of the training neurons
(‘Neurons’). We compare a model trained on all
neurons (‘Original’) with a model that must extrap-
olate the mapping for the latents to those neurons
(‘Extrapolation’). SEM is across mice.

Neurons Original Extrapolation

Mouse 6 3932 0.185 0.185
Mouse 7 3954 0.255 0.245
Mouse 8 3970 0.205 0.205
Mouse 9 4101 0.215 0.210
Mouse 10 4061 0.205 0.205

Average 4003 0.213±0.005 0.210±0.004

In the second phase, we only finetune the
weights and spatial position of f (q)it and f

(θ)
it

of the video-encoding part (Eq. (1)), and the la-
tent feature vectors w(θ)

i and w(q)
i are computed

by the previously trained MLP. We compare the
performance of the fine-tuned model on those
N = 500 neurons against a model which was
trained end-to-end on all neurons (Tab. 6 ‘Orig-
inal‘). We find that the position-based latent
model can extrapolate the mapping of latents to
unseen neurons using only their cortical position
with almost no drop in predictive performance,
demonstrating that the learned cortical-based
mapping can extrapolate to new neurons using
cortical coordinates alone.

5 Discussion

Cortical neuron activity variability arises primarily from two sources: stimulus-driven variability
and internally driven variability from unobserved processes, such as behavioral tasks or brain states,
which induce correlated activity across neurons. In this work, we showed that adding latent factors to
a video encoding model enables the prediction of a joint dynamic response distribution and captures
biological variables by implicitly learning correlations between latent factors and behavior. We also
showed that the influence of the latent variables on the neuronal response is topographically organized
in a robust way and that the latent variables are not primarily driven by the visual input.

Limitations and possible extensions Although it remains difficult to isolate how much variance is
explained by visual input alone [34], our control analyses suggest that the latent variables largely
encode stimulus-independent factors; a residual stimulus-driven component, however, cannot be
fully excluded. The model also uses more parameters per neuron than the video-only baseline. For
simplicity, we implemented our latent method on a competition baseline [43]; future work should
assess its performance when paired with state-of-the-art core representations.

Future extensions could relax distributional assumptions toward non-isotropic or non-Gaussian priors,
replace the ZIG loss with a flow-based objective, or embed the method in new state-of-the-art
transformer models [45]. Our method should integrate with most of the modern models that predict
neuronal responses. It has to be further investigated whether the robust topographic organization of
the latents reflects a biologically meaningful length scale, spatially organized brain waves [53], or
simply residual retinotopic influences not captured by the video model.
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A Related Works Overview

An overview of related work, which either predicts neuron responses for given natural stimuli, uses
latent representations for encoding neuron responses or takes behavior of the animal into account, is
summarized in App. A.

Table 7: Summary of Reviewed Literature: Neural activity categorizes if the recorded neural
activities are dynamic or static, and their role as input/output of the model. Stimulus details the type
of stimulus components. Learned Latent indicates if the used model has a latent space and if a
distribution is computable for the latent (probabilistic). Behavior describes the involvement and role
of behavioral data. Datasets lists the datasets, including subject types, data collection methods, tasks
performed during recordings, and neuron sample sizes.

References Neural
activity

Stimulus Learned
latent

Behavior Datasets

Schneider et al. [36] Dynamic
Input

No Yes,
probabilistic

Input Rats, Mice, Monkey
2p and electro-
physiology
10-1000 Neurons

Wang et al. [47]

Turishcheva et al. [43]
Sinz et al. [39]

Dynamic
Output

Video No Input Mice, 2p, passive
∼ 140,000 Neurons
∼ 40,000 Neurons

Kim et al. [25] Dynamic
In/Output

Audio Yes,
probabilistic

No Synthetic and Rats,
audio decision-making
67 Neurons

Antoniades et al. [3]

Azabou et al. [4]

Dynamic
Output

Video

No

Yes, not
probabilistic

Output Mice, 2p, passive
386 Neurons
Monkey
27,373 Neurons

Gokcen et al. [20]

Sussillo et al. [41]

Dynamic
Input

No Yes,
probabilistic

No Macaque V1-3
120 Neurons
Synthetic
30 Neurons

Zhou and Wei [56]

Wang et al. [48]

Bjerke et al. [6]

Jensen et al. [24]

Dynamic
In/Output

No Yes,
probabilistic

Task
Input

No

No

Monkey, reaching-task
Rat, running
192,120 Neurons
Monkey, Rat task
200 x 200 Neurons
Mouse,Rats
26 and 149 Neurons
Macaque, reaching-task
200 Neurons

Geenjaar et al. [18] Dynamic
In/Output

No Yes not,
probabilistic

No fMRI

Seeliger et al. [37] Dynamic
Output

Video No No fMRI

Bashiri et al. [5] Static
Output

Image Yes,
probabilistic

Output Mouse V1/LM,
2p,passive
∼ 4,000 Neurons
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B Monte-Carlo Approximations

We have to approximate expectation values via Monte-Carlo sampling two times in our model
setup. First, during training we have to calculate the likelihood ⟨log p(y|z,x)⟩z∼qϕ(z|y) in the ELBO
via Monte-Carlo sampling (Eq. (3)). Second, during evaluation, we draw samples from the prior
distribution N (0, Ik), where k is the latent dimension, for calculating the log-likelihood log p(y|x)
as described in Eq. (2).
The ELBO was approximated with up to 150 samples. More samples yield memory issues during
training on a single A100 GPU. We observed the log-likelihood performance during inference
to increase with the sample size during training as the ELBO is approximated more accurately
(Fig. 6). For the Monte-Carlo approximation of the marginalized log-likelihood during inference,
we tested different sample sizes ranging up to 5000. It was not possible to test more than 5000
samples, because at that point we ran into memory issue on a single A100 GPU. However, Fig. 7
indicates that the log-likelihood stabilizes and approaches a plateau after approximately 1000 samples.
We thus resorted to drawing 1000 samples to approximate the marginalized log-likelihood. The
correlation performance of the latent model was not strongly influenced by the sample sizes.

Figure 6: Log-likelihood (measured in bits
per neuron and time) of models trained with
different sample sizes to approximate the
ELBO during training. The error bar indi-
cates the standard error of the mean of the log-
likelihood for models initialized and trained
on 3 different seeds. Due to the computa-
tional cost of training a model, the standard
error was calculated only at a single point.

Figure 7: Log-likelihood (measured in bits
per neuron and time) for different sample
sizes L of the prior during evaluation. Error
bars indicate the standard error of the mean
for sampling from different seeds.

Table 8: Hyperparameter Configuration

General

Learning rate 0.005

Core

Number Layers 3
Temporal Kernel Size
first Layer

11

Spatial Kernel Size
first Layer

(11,11)

Spatial Kernel Size
other Layer

(5,5)

Spatial Kernel Size
other Layer

(5,5)

Channels per Layer (32,64,128)

Encoder GRU

Number Layers 1
Dropout probability 50%
Output Dim Linear Layer 42

Output Dim GRU 12

C Model Architecture
and Hyperparmeters Setting

All experiments and training of models were done on
a single A100 GPU with 80GB of memory.
The video processing part consists of a factorized 3D-
CNN block followed by a Gaussian readout ([23]).
Each convolutional layer consists of a factorized 3D
convolution across spatial and temporal dimensions
followed by a batch normalization layer and an ELU
activation function. We use a variational autoen-
coding approach for the latent representations. A
dropout layer is applied to the neuron responses be-
fore they are fed into the encoder. This prevents
the model from learning correlations between spe-
cific neurons, thereby encouraging the learning of
global latent representations. The encoder applies a
linear layer reducing the dimensionality of neuron
responsesN ≈ 8, 000 (N ranging from 7800 to 8200
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Table 10: An overview of the details of each experiment conducted in the main text. In the row for
Table 1 we only refer to the latent model.

Positional
Data

Pre-trained
Video-Part

Latent
Dimension k

Evaluation Neurons
(per mouse)

Used Mice
ID’S in 12

Table 1 True True 12 Half 6-10
Table 2 False True 12 Half 1-5
Table 3 True True 12 Half 1-5
Table 4 True True 12 Half 6-10
Table 5 False False 12 500 6-10
Figure 3 True True 1-200 Quarter 6-10
Figure 4 True True 1-200 Quarter 6-10
Figure 5 True True 12 All 9

depending on the mouse as part of the SENSORIUM dataset [44]) to n≪ N . For each time step, the
same linear layer is applied independently. The linear layer is followed by a layer normalization and
an ELU activation function. An individual linear layer was trained for each mouse. The output is
processed by a one-layer recurrent neural network with gated recurrent units producing the means
µ(y;ϕ) of the approximate posterior q(z|y;ϕ) = N (µ(y;ψ), σ2I). σ is a learnable model parameter
of the encoder. z is combined with the outputs from the video encoding part computing the parameters
for the probability log p(y|z,x) as in Eq. (1). For a graphical illustration, see Fig. 2. We searched
over various hyperparameters (Table 8) using Optuna [1].

D Optimizing Encoder Architecture

To ensure optimal encoding of the neuron responses, we tested a 3D factorized CNN and a GRU
architecture. We further tested different layer sizes ranging from 1-5. We found that a one-layer GRU
encoder performs best in terms of correlation and log-likelihood.
Further, we tried to add a “smoother” g to further smooth the latents in time. Compared to the
model reported above, zt is replaced by g(zt) in Eq. (1). We tested how a model with a CNN-
smoother or GRU-smoother model performed compared to a model without a smoother. As Tab. 9
indicates, replacing the GRU with a CNN does not make a significant difference. However, the model
without smoother had the best performance in log-likelihood and conditioned correlation (Tab. 9).

Table 9: The columns present the performance
of models with a 12-dimensional latent space,
each trained using either a GRU smoother, a CNN
smoother, or no smoother.

GRU
Smoother

CNN
Smoother

No
Smoother

Log-Likelihood ↑ -0.74 -0.77 -0.30
Conditioned
Correlation ↑ 0.23 0.22 0.24

E Experiment Details

Depending on the analysis setup, we adjusted
the model architecture and training configuration
as needed. For experiments examining cortical
patterns revealed by the latent model, we ensured
that no positional data was provided. Although
the Gaussian readout allows neuron positions to
be used for spatial predictions in the video feature
map, we disabled this option for these experiments (Tab. 10, ’Positional Data’ column). Additionally,
we found that initializing the video-processing weights of our latent model with those from a
pre-trained video-only ZIG model improved predictive performance (Tab. 11). Therefore, we
applied pretrained weights for the video component whenever the experiment setup allowed (Tab. 10,
’Pretrained Video-Part’ column). Since we tested different latent dimensions, we specify the latent
dimensions used for each experiment (Tab. 10, ’Latent Dimension’ column). Lastly, we report the
number of neurons used during evaluation (Tab. 10, ’Evaluation Neurons’ column). If the same
number of neurons was used for evaluation across experiments, the selected neurons remained
consistent. For instance, if one-quarter of the neurons were evaluated, the same subset was used in all
experiments. For an exact number of neurons per mouse, see Tab. 12.
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Table 11: Comparison of a latent model with latent
dimension k = 12, initialized using weights from a
pre-trained video-only ZIG model, against a latent
model trained from scratch. We evaluate performance
based on log-likelihood and correlation, considering
both Conditioned Correlation (conditioning on half of
the neurons) and Prior Correlation (sampling from the
prior). Evaluation is conducted on half of the neuron
population.

Pre-trained Scratch

Log-Likelihood ↑ -0.30 -0.36

Conditioned
Correlation ↑ 0.24 0.23

Non-Conditioned
Correlation ↑ 0.18 0.10

F Mice IDs

For reproducibility, we list the Sensorium ID’s of the mice, which were used for training and
evaluation in our experiments, in Tab. 12. In the main part, they were referred to as mice 1-10.
Further, Tab. 12 shows the exact number of recorded neurons per mouse.

Table 12: Mice 1-10 of the main text with corresponding SENSORIUM IDs (’IDs’). The total
numbers of recorded neurons per mouse are tracked (’Neurons’).

Neurons ID

Mouse 1 7440 29156-11-10
Mouse 2 7928 29228-2-10
Mouse 3 8285 29234-6-9
Mouse 4 7671 29513-3-5
Mouse 5 7495 29514-2-9
Mouse 6 7863 29515-10-12
Mouse 7 7908 29623-4-9
Mouse 8 7939 29712-5-9
Mouse 9 8202 29647-19-8
Mouse 10 8122 29755-2-8

G Trade-off between Modeling distribution and Modeling conditional Mean

As the ZIG distribution is not an exponential family with the data mean as a sufficient statistic, better
modeling of the full response distribution (i.e., higher log-likelihood) does not necessarily translate
into more accurate conditional-mean predictions (i.e., higher correlation).
To check this, we trained a ZIG model using a Poisson loss during training. For this, we insert the
means of the predicted ZIG distributions into the Poisson loss. For each neuron i and timepoint t, our
ZIG model predicts the ZIG-parameters qit(x;ψ) and θit(x;ψ) (as in Fig. 2 A) based on the video
input x and its parameters ψ. With these we analytically compute the mean of the ZIG distribution
r̂it(qit(x;ψ), θit(x;ψ), κi, ρ). During training, we then use Poisson Loss between those predicted
responses r̂it and the observed neural responses rit as objective:

min
ψ

∑
it

r̂it

(
qit(x;ψ), θit(x;ψ), κi, ρ

)
− rit · log

(
r̂it(qit(x;ψ), θit(x;ψ), κi, ρ)

)

Consistent with our hypothesis above, as shown in Tab. 13, training our video-only ZIG model with a
Poisson loss raises its correlation from 0.183 to 0.195, comparable to the Poisson baseline model.

We observe a similar pattern with our latent model: swapping its training objective from ZIG to
Poisson loss yields a notable boost in correlation (especially when conditioning on half of the neuronal
population) (Tab. 13).
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Table 13: Predictive performance of the Poisson Baseline model, a video-only ZIG model trained
with Poisson loss, and a video-only ZIG model trained with ZIG loss. Further, the predictive
performance of a Latent ZIG model trained on Poisson-loss and ZIG-loss is reported with and without
conditioning on half of the neurons’ responses. Log-likelihood is measured in bits per neuron and
time. Performance is evaluated only on half of the neurons that are not used for conditioning. Within
each scenario—“Non-Conditioned” and “Conditioned”—the best result is set in boldface.

Poisson
Baseline

ZIG
Poisson-loss

ZIG
ZIG-loss Non-Conditioned Conditioned

Latent
Poisson-loss

Latent
ZIG-loss

Latent
Poisson-loss

Latent
ZIG-loss

Pearson
Correlation ↑ 0.195 0.195 0.183 0.184 0.183 0.266 0.230

H Flow Model

[5] successfully introduced a flow to enhance predictive capabilities of their model for neural data
[14]. Hence, we tested, how adding a flow T applied on our neural responses y impacts our model.

We used a Gaussian distribution as base distribution which is independent across time and neurons. A
Gaussian distribution has the advantage, that we do not have to restrict the transformed responses
T (y) to be positive. To capture the peak at zero, the responses below the threshold ρ are modeled by
a uniform distribution, while the flow is used to capture responses above the threshold. We model
the base distribution independently over time. Thus, for a given latent space zt and video x, the
likelihood of the transformed neuron responses T (yt) at time point t is given by:

p(T (yt)|zt,x) =
∏

{i:yit<ρ}

(
1− qit(x, zt)

ρ

)
·

∏
{i:yit≥ρ}

(
qit(x, zt) · N

(
µi(x, zt), I)

)
The flow model consists of two parts. (1) A flow model T , with learnable parameters, that transforms
the neural responses yt for each time point in the same way. The flow acts independently across
the N neurons: T (yt) = [T1(y1t), T2(y2t), . . . , TN (yNt)] (2) A latent space model, as described in
Sec. 3, which predicts the response distribution of the transformed responses rt := T (yt). Thus, the
expected value µi(x, zt) and response likelihood qit(zt,x) are predicted by our latent space model.
To determine the actual response likelihood p(yt|zt,x), we use the change of variable formula:

p(y|z,x) = p(T (y)|z,x)·
∣∣det∇yT (y)∣∣

As we choose to apply the flow on each neuron and time dimension separately, this results in a
diagonal Jacobian:

det∇yT (y) =
∏
it

∂Ti(yit)

∂yit

To predict a response for neuron i at time point t, we compute the mean of the random variable
yit = T−1

i (rit) via Monte-Carlo sampling:

E[T−1
i (rit)] =

∫
T−1
i (rit) p(rit|x, zt) drit ≈

1

M

∑
m

T−1
i (r

(m)
it )

For the experiments, we used a simple flow consisting of two functions:

T = affine ◦ softplus−1

The affine layer has a learnable scale parameter ai and bias parameter bi for each neuron. It computes
affine(yi) = ayi + bi. The inverse softplus layer is used to make sure that response values T−1(ŷ)
are positive for a sample ŷ from the base distribution.
We tested different flows consisting of more functions, where a affine function and a non-linear
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function alternated. We tested log, tanh, exp, ELU as non-linear functions. For example, we
experimented with the flow used in [5]:

T = affine ◦ exp ◦affine ◦ ELU ◦ affine ◦ ELU ◦ affine ◦ log ◦affine
However, all those models either collapsed or could not improve the performance of the first tested
simple flow.
Tab. 14 shows, that a model with a simple flow indeed improved the average log-likelihood compared
to a base model, which was trained without a flow (T = identity) using a Gaussian base distribution
p(y|x, z) = N (y;µ(z, x), I) for non-zero responses. However, the default latent space, which
models ZIG distributions, has still the highest log-likelihood of -0.74 bits per time and neuron. When
the encoder sees half of the neurons, the ZIG model slightly outperformed the Gaussian model with
and without a flow in terms of correlation (Tab. 14).

Table 14: Comparison between a default latent ZIG model, a Gaussian latent model and a gaussian
latent model with a flow

ZIG Model Gaussian Model Flow Gaussian
Model

Log-likelihood in Bits
per Neuron and Time

-0.88 -2.1 -1.2

Conditioning on
half of neurons

0.229 0.219 0.211

I Comparison with a Vision Transformer Core

Table 15: Performance comparison using a Vision
Transformer (ViT) core.

Poisson
Baseline

Video-only
ZIG

Latent
ZIG

Correlation ↑ 0.17 (0.007) 0.155 (0.009) 0.153 (0.007)
Log-

Likelihood ↑ – -1.2 (0.09) -0.45 (0.06)

To test the transferability of our latent method,
we repeated the main comparison using a Vision
Transformer (ViT) core following Li et al. [28].
The trends are qualitatively the same as with the
3D CNN core: the ZIG model with the ViT core
performs slightly worse than the Poisson base-
line, consistent with the optimization trade-off
between modeling full distributions and condi-
tional means discussed in the main text. In con-
trast, the latent model improves the performance
beyond the Poisson baseline, demonstrating that
our approach generalizes across different core architectures.

Table 16: Predictive performance of a Poisson
Baseline model, a video-only ZIG-model with be-
havior and a latent model without behavior.

Poisson
Baseline

Video-only
ZIG Latent

Conditioned
Correlation ↑ 0.20 0.19 0.27

Log-
Likelihood ↑ – –0.94 0.18

While we did not obtain state-of-the-art perfor-
mance with ViT—likely due to limited hyper-
parameter tuning—the results indicate that the
latent method we propose is readily transferable
to other cores.

Additionally, conditioning on half of the neurons
further boosts the correlation up to 0.194 (0.006),
showing that encoding neuron responses also
works effectively with the ViT core.

J Models with Behavior

To assess whether measured behavior could substitute for our inferred latent state, we augmented
both the Poisson baseline and the video-only ZIG model with the two measured behavioral variables:
treadmill speed and pupil dilation. These behavioral variables were concatenated as additional
input channels into each model’s core as in [43, 47]. As reported in Tab. 16, the latent state model
(with latent dimension k = 150, and conditioned on half of the neurons held out from evaluation)
surpasses both behavior-augmented models in terms of correlation and log-likelihood. Behavior was
not included for the latent model.
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K Heat Maps of Response Distributions

As reported in the main paper, a high-dimensional latent state yields a higher log-likelihood. We
explained this effect by a better “coverage” of the response space with probability mass. Here, we
visualize this effect. One can see that a high-dimensional latent model is more likely to put some
probability mass on a broader range of response values and does not concentrate all the probability
mass around the mean (Fig. 8). Thus, extreme response values, as in column 3 of Fig. 8, are covered
with a non-zero probability. A low-dimensional model predicts them with almost zero probability
(parts of the response traces are in the gray areas of the heatmap).
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Figure 8: Neuron response traces and model predictions for one video recording. The black line
represents the actual response of each neuron over time, while the cyan line represents the model’s
predicted response, which is the mean of the predicted ZIG distribution. For each time point, the
predicted response ZIG-distribution is visualized as a heat map along the y-axis. The top row displays
predictions from a model with a latent dimension of k = 100, while the bottom row shows predictions
from a model with a latent dimension of k = 10.

L Behavior Analysis

For the pupil dilation and the treadmill speed of each mouse, we performed one CCA analysis each.
The CCA analysis was done with 5-fold cross-validation. We split the recording time with an 80/20
ratio and fit the CCA weights on the train split. The correlations were computed between the CCA
combination

∑
i w

(cca)
i z(i) and the behavioural variable (pupil dilation or treadmill speed) on the test

split. w(cca)
i are the CCA weights and z(1), . . . , z(k) ∈ RT are the latent variables. For each mouse,

we computed the average correlation across the cross-validation. For two selected videos and mice, we
plotted their normalized pupil dilation and treadmill speed against the corresponding normalized CCA
combination of the latent over the whole video time, which corresponds to ∼ 300 time points (Fig. 9).

Table 17: CEBRA hyperparameter search (Optuna) and se-
lected setting used for all mice.

Hyperparameter Search range Selected value

Time offset 5–20 (integer) 6
Batch size {32, 64, 128, 256, 512, 1024} 64
Learning rate [10−4, 10−2] (log-uniform) 0.003
Latent dimension 2–32 (integer) 24

CEBRA baseline explained. To com-
pare how good our models is we used
CEBRA [36] as a baseline. CEBRA
performs dimensionality reduction on
neural activity using InfoNCE con-
trastive learning, where positive and
negative pairs are defined by auxil-
iary variables such as time or behavior.
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When the auxiliary variable is discrete, for example a left or right wheel turn, it selects positives
uniformly from all samples with the same label. When the variable is continuous, such as running
speed or pupil direction, it chooses a random point within a time window around the sample and
then find the closest match in the dataset using either Euclidean or cosine distance; this sample
becomes the positive pair, which adds diversity and prevents repeatedly selecting the same example.
Negative pairs are sampled randomly. For decoding, CEBRA encode neural responses, find the
nearest latent vectors for responses in the training set, and returns their associated behavioral variables
as predictions.

CEBRA hyperparameters tuning. For each mouse, we fitted one CEBRA model independently and
computed latent–behavior correlations using the same CCA protocol and the same train/validation
split as for our latents. We tuned CEBRA’s hyperparameters with Bayesian optimization (Optuna),
exploring batch size, latent dimensionality, learning rate, and time offset, and selected the setting that
maximized the average validation behavior correlation. The search ranges and the selected values
(used for all mice) are summarized in Tab. 17.

Figure 9: Normalized behavior and CCA combination of latent factors during two selected videos

M Additional Brain Maps

In Fig. 5, we showed only the first three singular dimensions of the latent feature matrix w(q). In
rows 1 and 2 of Fig. 10, we compare those same three dimensions for both w(θ) and w(q). They
exhibit largely the same spatial patterns, aside from sign flips in columns 1 and 3. Beyond the first
three dimensions, we did not observe any notable structure: Row 2-4 of Fig. 10 displays singular
dimensions one through nine for w(θ). Beyond the fourth singular dimension, they do not appear to
align with cortical neuron positions and seem randomly distributed across the xy-plane.

N Latent model performance on out-of-distribution data

For the training of the latent model, we usually initialize the weights of the core, which encodes the
video input, with the weights of a pretrained video-only ZIG model, which doesn’t have a latent
state. If we train the latent model from scratch, the model seems to over-rely on the information of
the latent state, which encodes responses of half of the neurons’ population during training. When
this information is marginalized out (‘Non-Conditioned’), the model performs poorly in terms of
correlation Tab. 18. However, this can be prevented by loading a pretrained core ensuring that
the latent state mostly encodes additional information, which is not contained in the output of the
core Tab. 19. When conditioning on half of the neurons’ responses, both training procedures yield
comparable results (Tab. 19,Tab. 18 ‘Conditioned’).
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Figure 10: Row 2-4: Color
gradient maps of the latent
feature vectors w(q)

i along
the first nine Singular
Dimensions (SD) for mouse
4. Row 1: The color
gradient maps of the first
three singular dimensions of
the latent feature vectors
w(θ)
i are plotted. All

recorded neurons are
located within a
600µm× 600µm square in
the cortex. Their depth
differs at most 200 µm. The
model was trained without
any knowledge of cortical
positions and freely
learnable feature vectors.

Table 18: Latent model without ZIG pretraining,
k = 200

Non-Conditioned Conditioned

Mouse 6 0.016 0.170
Mouse 7 0.029 0.196
Mouse 8 0.022 0.211
Mouse 9 0.026 0.209
Mouse 10 0.015 0.184

Table 19: Latent model with ZIG pretraining,
k = 150

Non-Conditioned Conditioned

Mouse 6 0.086 0.172
Mouse 7 0.121 0.192
Mouse 8 0.125 0.206
Mouse 9 0.107 0.207
Mouse 10 0.082 0.179

O Broader impact

Accurate models of neural variability deepen our insight into how brains transform sensory informa-
tion and may shed light on the disruptions underlying neurological disorders. Specifically, a more
precise model that integrates internal brain states, stimulus-driven activity, and anatomical structures
such as retinotopy or memberships to certain brain areas could uncover deeper insights into the
cortex’s computational principles. Although training our models still depends on animal data, we rely
on existing, broadly applicable datasets to maximize the scientific yield of each experiment. Moreover,
approaches like the model presented here can help to reduce the number of animal experiments by
enabling researchers to explore functional principles of brain processes with faithful models in silico.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract mentions all core contributions, and in the introduction, our core
contributions are listed in more detail.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the Discussion section, we provided a paragraph to discuss the limitations
of our work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We do not make any theoretical claims that require a formal proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our model’s complete architecture is specified in Section 3, and all training
and optimization hyperparameters are exhaustively listed in Appendix C. The SENSORIUM
dataset we evaluate on is public [43].
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The Sensorium data is publicly available. Our code is added in the supplemen-
tary material and will be made public upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All relevant hyperparameter choices are listed in C. Further, for each experi-
ment, we listed all necessary details for reproducibility to the best of our knowledge.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Wherever possible, we reported error bars to make sure that our results are
statistically significant.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments can be run on a single A100 GPU with 80GB memory as
stated in C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We carefully checked that our research in the paper is conform with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We addressed the potential social impacts in our Broader impact section
(App. O).

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: To the best of our knowledge, our model and the SENSORIUM dataset do not
present significant misuse risks, so no additional release safeguards are required.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All creators and owners of original assets are properly cited and mentioned in
the paper. Further, we made sure that we don’t hurt any licenses in our paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: There are no new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Neither Crowdsourcing nor research with human subjects were done in our
paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM’s were not included in the core method development of our research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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