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ABSTRACT

How the visual imitation learning models can generalize to novel unseen visual
observations is a highly challenging problem. Such a generalization ability is very
crucial for their real-world applications. Since this generalization problem has
many different aspects, we focus on one case called spatial generalization, which
refers to generalization to unseen setup of object (entity) locations in a task, such
as a novel setup of object locations in the robotic manipulation problem. In this
case, previous works observe that the visual imitation learning models will overfit
to the absolute information (e.g., coordinates) rather than the relational information
between objects, which is more important for decision making. As a result, the
models will perform poorly in novel object location setups. Nevertheless, so far,
it remains unclear how we can solve this problem effectively. Our insight into
this problem is to explicitly remove the absolute information from the features
learned by imitation learning models so that the models can use robust, relational
information to make decisions. To this end, we propose a novel, position-invariant
regularizer for generalization. The proposed regularizer will penalize the imitation
learning model when its features contain absolute, positional information of objects.
We carry out experiments on the MAGICAL and ProcGen benchmark, as well as a
real-world robot manipulation problem. We find that our regularizer can effectively
boost the spatial generalization performance of imitation learning models. Through
both qualitative and quantitative analysis, we verify that our method does learn
robust relational representations.

1 INTRODUCTION

Imitation learning is a class of algorithms that enable robots to acquire behaviors from human demon-
strations (Hussein et al., 2017). The recent advance in deep learning has boosted the development of
visual imitation learning and supported its applications like autonomous driving, robotic manipulation,
and human-robot interaction (Hussein et al., 2017).

In spite of its success, visual imitation learning methods still face many practical challenges. One
major challenge is its ability to generalize to novel unseen visual observations, which is very common
when we deploy the trained models (Toyer et al., 2020; Park et al., 2021). In the literature, this
generalization problem is also known as the robustness problem. The problem covers many different
aspects. For example, here we can identify two basic generalization capabilities: observational
generalization and spatial generalization (Figure 1). Observational generalization refers to the
generalization to novel visual textures. The changes in background color, object texture, or ambient
light in the robotic manipulation task are examples of observational generalization. Such kind of
visual change does not affect the physics structure (e.g., the position of object and targets) and only
requires the robot to reason about semantic meanings correctly. In contrast, spatial generalization
refers to the generalization to unseen setup of objects’ (entities) locations in one task, which instead
requires physical common sense about space and object. Consider the task of letting a warehouse
robot move a box to some target region. If we set the initial position of the box to a place that is not
covered by the demonstration dataset, then the imitation learning methods must be able to perform
spatial generalization so as to succeed. In reality, the generalization challenge usually emerges as a
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Figure 1: Left and Middle: Two kinds of visual generalization. The examples are based on the
MAGICAL benchmark provided by Toyer et al. (2020), in which a robot is required to relocate a box
to a target region. The left figure shows an example of observational generalization, in which the only
change during the testing phase is the visual texture of objects. The middle figure shows an example
of spatial generalization. The object setup in the testing phase is unseen. Right: To achieve spatial
generalization, we suggest that absolute information should be removed from the feature while the
relational information should be kept. We propose a novel, position-invariant regularizer for this
purpose.

combination of different generalization capabilities. In this paper, we focus on the study of spatial
generalization.

For better spatial generalization, the visual imitation learning models should be able to obtain
knowledge about objects and their spatial relations with proper inductive biases. Some work finds that
vanilla deep visual imitation learning models strongly overfit to the absolute position of objects (Toyer
et al., 2020), which suggests that they do not extract relational information of objects to make decisions
like humans (Doumas et al., 2022). Since the representation learning methods can usually lead to
good semantic representations (features) and lead to generalization, Chen et al. (2021) investigate
the use of self-supervised representation learning methods in visual imitation learning. However,
they find that these general-purpose representations fail to improve the generalization performance
of vanilla visual imitation learning models effectively. Aside from these works, we also notice that
some works propose variants of vision transformers (Dosovitskiy et al., 2021) to improve spatial
generalization (Yuan et al., 2021), though these methods are not for imitation learning. Moreover,
they make additional assumptions, such as the availability of object information. So far, it remains
unclear how to ensure spatial generalization in visual imitation learning.

Based on these observations, our main insight into this problem is to explicitly remove the absolute,
positional information from the learned features in the visual imitation learning models. Note that
this does not mean that the decision-making process is not dependent on absolute information. Rather,
we expect that the model can extract the relational information (e.g., distance, direction) from the
absolute information to make robust decisions. To this end, we propose a novel position-invariant
regularizer called POINT. This regularizer will penalize the imitation learning model when it finds
that the learned feature highly correlates with absolute, positional information. As a result, the
imitation learning model has to discover more robust relational features. To validate our idea, we
test the proposed regularizer on the MAGICAL (Toyer et al., 2020) and ProcGen (Cobbe et al.,
2020) benchmark, as well as a real-world robot manipulation problem. We find that our method can
effectively improve spatial generalization performance. Furthermore, we conduct qualitative and
quantitative analysis and find that the imitation learning models can indeed learn relational features
with our proposed regularizer.

To summarize, our contributions in this paper are as follows.

• We define the spatial generalization problem of visual imitation learning models and propose
a novel position-invariant regularizer called POINT to tackle this problem.

• We test our method on MAGICAL and ProcGen benchmarks, as well as a real-world
robot manipulation problem. We find that our proposed regularizer can improve the spatial
generalization performance of previous imitation learning models effectively.

• Through qualitative and quantitative studies, we verify that our proposed regularizer does
make the visual imitation learning models extract relational information.
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2 RELATED WORK

Imitation Learning Imitation learning (IL) is a classical method to solve sequential decision-
making problems with expert demonstration data. Existing imitation learning methods consist of
two classes of algorithms: behavioral cloning (Bain & Sammut, 1995) and inverse reinforcement
learning (Ng et al., 2000). Behavioral cloning is a supervised learning method that directly fits experts’
actions. Inverse reinforcement learning instead proposes to infer a reward function from experts’
demonstrations and use it to train an RL agent. Both of these methods suffer from the generalization
problem. In this paper, we mainly focus on behavioral cloning since it is simple yet effective in visual
domains, and does not involve dangerous online interactions like IRL (Park et al., 2021).

Generalizable Policy Learning The generalization problem of imitation learning has been a
long-standing problem. Since the problem also exists in reinforcement learning and most of the
solutions can be adapted to the case of imitation, we discuss the works from both fields here. One
existing branch of work is the domain randomization (Tobin et al., 2017). The basic idea of domain
randomization is to collect data from diverse setups, such as different backgrounds and textures.
As a result, the trained model will be able to discover more robust features. Resembling this idea,
another line of work tries to solve this problem with data augmentation (Yarats et al., 2020; Hansen
& Wang, 2021), which augments the input or the learned features according to some heuristics. For
example, MixReg (Wang et al., 2020) proposes a mixture augmentation method and leads to better
out-of-distribution generalization. OREO (Park et al., 2021) proposes to mask out the objects in
the feature map so that the model will not fit a specific object in the observation. CLOP (Bertoin &
Rachelson, 2022) finds it important to shuffle the feature map locally to ensure robustness. Though
not exactly a data augmentation approach, De Haan et al. (2019) propose to randomly mask out
the semantic components in the learned feature and check whether they are correlated with correct
expert actions. Aside from works using diverse data or data augmentation, some works also approach
this problem by incorporating proper inductive biases into the design of policy networks (Dasari
& Gupta, 2020). For instance, SORNet (Yuan et al., 2021) uses a variant of vision-transformer to
solve robotics tasks that require relational reasoning. However, SORNet is not aimed at imitation
learning or reinforcement learning. Zhou et al. (2022) propose to use an attentional architecture to
solve a compositional, object-centric reinforcement learning problem. The idea of these methods
is to leverage the relational inductive bias of the attention operations. Wen et al. (2022) propose
PrimeNet, which introduces a shortcut into the neural network to ensure that the model focus on more
meaningful areas. Representation learning methods are another approach for generalization. Some
works use pretrained representation. For instance, Yen-Chen et al. (2020) use a pretrained model
on MS-COCO dataset (Lin et al., 2014) to provide representation for imitation learning in robotics
manipulation. The pretrained model over large datasets provides more robust object representations
and can generalize the policy to unseen objects. Besides pretrained representation, self-supervised
representation learning (Mandi et al., 2022; Chen et al., 2021) on the demonstration dataset can also
improve the generalization in some cases. However, Chen et al. (2021) suggest that self-supervised
representations do not improve the generalization performance in general.

We refer readers to (Kirk et al., 2021) for comprehensive knowledge of this field. Our work differ-
entiates from all these existing works by explicitly defining the spatial generalization problem and
proposing to remove the nonrobust positional information from the representation.

3 PRELIMINARIES

Notations We model the sequential decision making problem as a Markov Decision Process
M = (S,A,R, T ). S is the state space. A is the action space. R is the reward function. T is the
transition dynamics. The agent’s state at timestep t is st ∈ S . The agent takes action at and receives
reward rt = R(st, at). Its state at timestep t+1 is then st+1 ∼ T (st, at). The objective of the agent
is to maximize the return

∑T
t=0 γ

trt, where γ ∈ (0, 1] is a discount factor.

For the imitation learning problem studied here, the agent has no access to R and T , but it is provided
with a fixed expert demonstration dataset D = {τi}. Here, each τi = (sE0 , a

E
0 , s

E
1 , a

E
1 , ...s

E
T , a

E
T ) is

an expert trajectory that can achieve high performance (return) in M. Therefore, the agent should
learn the behavior by leveraging the given demonstration dataset.
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Figure 2: Overview of our method. The blue branch above is the common imitation learning (BC)
pipeline. Our proposed regularizer is shown in the light pink box at the bottom. The regularizer first
uses the GradCAM++ algorithm to find out the important areas based on which the latest BC model
makes decisions. Then it samples the coordinates from the discovered important areas and trains a
discriminator network D to calculate whether these sampled coordinates are paired with the feature
fi. The BC model (encoder fθ) is then trained to fool the discriminator D. When the encoder fθ is
able to fool D, the absolute positional information is removed from the feature as desired.

Behavioral Cloning One classical imitation learning algorithm is the Behavioral Cloning (BC). BC
turns the imitation learning problem into a supervised learning problem. It fits the expert’s action ai
given the observation si. For the visual imitation learning problem, the BC model can be divided into
two consecutive parts: a vision encoder fθ (which is usually a convolutional neural network), and a
policy head π. The fθ first encodes si to the feature fi = fθ(si), and the π then uses it to predict the
expert’s action. The BC algorithm minimizes the following negative log-likelihood objective:

LBC = E(si,ai)∈D [− log π(ai|fθ(si))] . (1)

Due to its simplicity, BC is widely used in visual imitation learning. Therefore, we study the spatial
generalization of BC in this paper.

GradCAM Gradient-weighted Class Activation Mapping (GradCAM) (Selvaraju et al., 2017;
Chattopadhay et al., 2018) is a class of algorithms that can interpret the deep vision models by
visualizing the important region for decision making. Its basic idea is to calculate the gradient at each
feature map and aggregate them into an importance map. In this paper, we leverage GradCAM as a
rough object detector in the proposed regularizer. We refer readers to the original paper for more
technical details.

4 METHOD

In this section, we present our position-invariant regularizer for spatial generalization. As is discussed
before, our basic idea is to remove the absolute positional information from the features of the BC
model. In the following parts, we first present a formalized description of the idea and its practical
challenges in Section 4.1. Then, we discuss how to handle these challenges with GradCAM and
adversarial training in Section 4.2 and 4.3. Finally, we provide a summary of the overall algorithm in
Section 4.4. We illustrate our method in Figure 2 and provide the pseudo code in Algorithm 1.

4.1 FORMULATION AND CHALLENGES

For the tasks that involve spatial generalization, there usually exist multiple objects in the observed
states, such as the agent, the target object, and the goal. For the state si, we denote each of these objects
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in si as oji , and their positions as (xj
i , y

j
i ). Then, our idea can be formulated as the minimization

problem of each I((xj ,yj), f), where I is the mutual information. Note that we use the notation
xj ,yj , f to indicate the corresponding random variables of xj

i , y
j
i , fi. However, this formulation

leads to many practical challenges. First, since each (xj
i , y

j
i ) is not provided directly by si and should

be inferred, we have to either train some object key-point detectors to detect the underlying objects
in the training set, or annotate the objects by ourselves. However, both of these approaches can be
difficult and tedious in practice. Second, even if we have ideal key-point detectors, we have to deal
with a hard optimization problem in the summation form

∑
j I((x

j ,yj), f). This can be intractable
when there are many objects in the observed state.

Fortunately, we find that the previous works on the interpretation of deep learning models like
GradCAM provide useful tools to handle these challenges. It can reduce the problem to a much
simpler form. We discuss our observations as follows.

4.2 PROBLEM REDUCTION WITH GRADCAM

GradCAM is an interpretation method that can tell which part of the image is crucial in the decision
process of a deep learning model. Given a BC model (fθ, π) and input s, GradCAM outputs an
importance heatmap of the same resolution as the input s. The heatmap indicates the importance of
each pixel when we use this BC model for prediction. One nice property of this generated heatmap is
that it is smooth and usually coincides with the meaningful objects in the input s. Therefore, we can
consider the GradCAM as a rough object detector here.

We propose to sample pi = (xi, yi) from the generated heatmap, and then minimize the I(p, f). We
find that this new objective can act as a proxy for the original objective in practice. Concretely, if pi
is always far from a specific object like ok, then we know that ok is irrelevant to the decision process
of the current model. In this case, we conjecture that I((xk,yk), f) should be low enough to meet
our requirement. On the contrary, if pi always coincides with a certain object like ol, then we actually
minimize I(p, f) ≈ I((xl,yl), f) as we want.

4.3 LOSS FUNCTIONS

Now, our remaining work is to reduce the mutual information I(p, f). However, we find that jointly
estimating and minimizing the mutual information in our vision-based tasks is hard in practice. Since
our ultimate goal is to minimize the information of p in f , we instead propose an adversarial training
framework to achieve this goal.

Specifically, we introduce a discriminator network D to play a two-player min-max game with the
BC model as follows.

min
fθ

max
D

E(si,ai)∼D,(sj ,aj)∼D [logD(pi, fi) + log(1−D(pj , fi))] . (2)

In this min-max game, the discriminator D tries to tell the joint distribution of p and f , denoted as
Pp,f , from the product of their marginal distributions Pp⊗f . Meanwhile, the BC model is trying to
fool the discriminator by removing the information of p from f . Applying the convergence theory
of the generative adversarial network (GAN) (Goodfellow et al., 2020), we know that when fθ is
a global minimizer of Equation 2, Pp,f = Pp⊗f , which implies that I(p, f) = 0. Therefore this
min-max game fulfills our requirement.

In practice, we train D to minimize the following binary classification loss function:

LD = −E(si,ai)∼D,(sj ,aj)∼D [logD(pi, fi) + log(1−D(pj , fi))] . (3)

However, for the encoder fθ, we find that using −LD as the loss function for training will result in
instabilities. We assume this is because the fi term is present in both of the two terms in Equation 2,
which is different from that in the original GAN objective. Therefore, we propose to use the following
loss function for optimization, which we find works well empirically:

Lreg = E(si,ai)∼D [logD(pi, fi)] . (4)

Combining the BC loss, the loss function to train the fθ and π is then

L = LBC + λLreg = E(si,ai)∼D [− log π(ai|fθ(si)) + λ logD(pi, fi)] . (5)
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Figure 3: The MAGICAL tasks used in our experiments. The grey robot is required to move the
target objects (we mark them with red dots) to the target region. The red curve shows a possible plan
to solve the task (the interaction details like releasing box are omitted). The long horizontal nature of
this task brings additional challenges aside from the spatial generalization problem.

4.4 SUMMARY OF THE ALGORITHM

Algorithm 1: POINT
Initialize parameters of the BC model: fθ,
π, and the discriminator D. Initialize
target model f̃θ, π̃ with fθ, π.

while not converged do
Sample a batch {(si, ai)} from D.
Calculate each importance heatmap
by Hi = GradCAM(f̃θ, π̃, si).

Sample each pi from Hi.
Optimize the BC model by Eqn. 5.
Optimize the discriminator by Eqn. 3.
Periodically update f̃θ, π̃ with fθ, π.

Finally, we put everything together and summa-
rize our algorithm in Algorithm 1. We use Grad-
CAM++ (Chattopadhay et al., 2018), an improved
version of GradCAM, to calculate the heatmap. We
find that it can deal with multi-object observation
better than GradCAM. Similar to the target network
in the deep reinforcement learning, we propose to
use a target model in the GradCAM calculation.
This target model periodically copies the weights
of the latest BC model. This ensures that the pi
terms in Equation 2 will change slowly throughout
the training so that the optimization of the min-max
game between D and fθ becomes stable. Our python
implementation of this algorithm is in the supple-
mentary material and Appendix A.1.

5 EXPERIMENTS

In the experiments, we first test the performance of our method on two benchmarks that require
spatial generalization: MAGICAL and ProcGen. We study the generalization according to the IID
protocol (Kirk et al., 2021). This means that the training and testing task distributions are the same,
though the test instance will be unseen. Then, we provide an analysis of our algorithm through both
qualitative and quantitive studies. Finally, we extend our method to a real robot manipulation problem.

5.1 TASK SETUP

MAGICAL The MAGICAL benchmark simulates a 2D robotic manipulation problem in a ware-
house room. The tasks provided by the MAGICAL involve complex interactions between the agent
and multiple objects, which require effective spatial generalization..

In the experiments, we use a variant of its MatchRegion task. In this task, a robot is required to go
across a square room to move some objects to a target region specified by a dashed rectangle. We set
up several task instances of the MatchRegion task: MatchRegion-Target-1, MatchRegion-Target-2,
MatchRegion-Target-2-Distract, MatchRegion-Target-3, MatchRegion-Target-3-Distract. We provide
an illustration of these tasks in Figure 3. For each MatchRegion-Target-X task (MR-TX), there is
no distractor object in the room, so the robot only needs to move all the X objects into the target
location. However, for the MatchRegion-Target-X-Distract task (MR-TXD), there is an additional
distractor object in the room. This object is also randomly placed in the room during testing. The
existence of this distractor object not only increases the risk of learning spurious features but also
adds to the difficulty of learning secure motions. As we will discuss later, even the existence of one
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Table 1: Evaluation result on the MAGICAL and ProcGen benchmark. We show the average score
on three random seeds. Our method can achieve state-of-the-art results compared with the baselines.

Method Vanilla Dropout Crop Cutout MixReg OREO CLOP Ours

MR-T1 0.09
±0.02

0.28
±0.04

0.42
±0.03

0.19
±0.03

0.26
±0.02

0.21
±0.03

0.16
±0.06

0.63
±0.05

MR-T1D 0.19
±0.06

0.32
±0.11

0.44
±0.03

0.27
±0.03

0.41
±0.10

0.27
±0.06

0.21
±0.02

0.60
±0.08

MR-T2 0.25
±0.03

0.48
±0.03

0.46
±0.04

0.43
±0.05

0.44
±0.05

0.37
±0.05

0.32
±0.07

0.75
±0.07

MR-T2D 0.27
±0.06

0.35
±0.03

0.38
±0.04

0.32
±0.03

0.33
±0.03

0.27
±0.03

0.23
±0.04

0.70
±0.04

MR-T3 0.23
±0.02

0.51
±0.03

0.47
±0.05

0.32
±0.04

0.48
±0.05

0.42
±0.04

0.35
±0.07

0.66
±0.03

Coinrun 0.75
±0.05

0.81
±0.03

0.80
±0.02

0.76
±0.03

0.79
±0.03

0.69
±0.03

0.82
±0.05

0.87
±0.02

Jumper 0.63
±0.07

0.61
±0.06

0.64
±0.03

0.66
±0.04

0.67
±0.03

0.63
±0.05

0.68
±0.02

0.72
±0.04

Ninja 0.65
±0.06

0.69
±0.02

0.71
±0.02

0.72
±0.02

0.68
±0.02

0.67
±0.01

0.67
±0.02

0.79
±0.02

Leaper 0.48
±0.07

0.52
±0.04

0.52
±0.02

0.47
±0.03

0.46
±0.01

0.48
±0.04

0.51
±0.07

0.59
±0.05

Miner 0.16
±0.07

0.28
±0.05

0.25
±0.02

0.21
±0.07

0.23
±0.03

0.22
±0.02

0.19
±0.04

0.35
±0.04

Starpilot 0.33
±0.05

0.53
±0.14

0.61
±0.08

0.39
±0.06

0.55
±0.10

0.35
±0.03

0.42
±0.04

0.71
±0.12

Fruitbot 0.01
±0.04

0.17
±0.11

0.48
±0.04

0.00
±0.06

0.21
±0.07

0.09
±0.05

0.36
±0.06

0.56
±0.02

Bigfish 0.05
±0.04

0.08
±0.04

0.16
±0.03

0.10
±0.05

0.09
±0.01

0.09
±0.02

0.12
±0.02

0.16
±0.04

distractor object can lead to a significant increase of generalization difficulty. The study of more
distractors is carried out in the analysis part.

For each of the tasks above, we collect its human demonstration dataset by ourselves. For each
demonstration trajectory, we randomly set up the initial position of the objects, target region, and the
robot. Note that the demonstration dataset provided by the original MAGICAL benchmark uses a
fixed initial position setup. However, we find that this setup is too strict for spatial generalization if
no other dataset or pretraining tasks are available to provide prior knowledge. For MR-T1, we collect
50 trajectories. For each of the other tasks, we collect 100 trajectories. The collection of all these
trajectories takes 2 hours. We also study the outcome of using a different number of trajectories in
the later analysis part.

ProcGen The ProcGen benchmark is an arcade-game-based benchmark. These arcade games
involve interactions between many semantic objects, including the player, monsters (or traps),
bonuses, and tools. Though it is designed to test the generalization ability of RL agents, we use
it to test the spatial generalization of imitation learning here. We use 8 environments: Coinrun,
Jumper, Ninja, Leaper, Miner, Starpilot, Fruitbot, and Bigfish. We follow the ‘easy’ generalization
evaluation protocol used in previous works. We first train a PPO agent (Schulman et al., 2017) to
collect demonstrations in the first 200 levels of ProcGen and use these demonstrations to train the
imitation learning model. We use 64 expert trajectories in the experiment. Then for the evaluation,
we test the imitation learning models at all levels. We remove the background of the game throughout
training and testing since this requires observational generalization.

5.2 BASELINES

For the vanilla BC policy, we train an IMPALA (Espeholt et al., 2018) policy, whose encoder is a
residual convolutional neural network. We also try vision-transformer (Dosovitskiy et al., 2021) and
relational network (Santoro et al., 2017) that have relational biases, but we find that they perform
worse than IMPALA and do not report their results here. Then, we implement the following baselines
for comparison. (1) Dropout. Dropout (Srivastava et al., 2014) is a widely-used regularization
method in deep learning. Many works also find it useful for improving the performance of imitation
learning. (2) Crop Crop is a popular data augmentation method used in the state-of-the-art visual RL
algorithms like DrQ (Yarats et al., 2020) and RAD (Laskin et al., 2020), it encourages translation
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Figure 4: Left: The GradCAM++ importance heatmap of the dropout model and our model on the
MR-T1D task. The red region indicates the most important region, while the dark blue indicates the
least important region. The results suggest that the dropout model attends to the red distractor and is
not robust. In contrast, our model is able to attend to correct objects. Right: MI between feature and
object’s position. Our model contains less bits about absolute position information.

invariance to the perspective. (3). Cutout Cutout (DeVries & Taylor, 2017) is a data augmentation
method. During training, it randomly erases part of the input image. (4). MixReg MixReg (Wang
et al., 2020) is a data augmentation method. It generates interpolated, synthetic training data based
on the original training dataset. (5). OREO OREO (Park et al., 2021) is an object-aware data
augmentation method. It randomly drops the features of certain objects. (6) CLOP (Bertoin &
Rachelson, 2022) CLOP is a locality-aware data augmentation method. It randomly shuffles the
feature map of the policy network in a small, local region.

5.3 RESULTS

MAGICAL The result on MAGICAL is shown in Table 1. The performance is defined by the
success rate of the trained policy, which is the number of target objects that are successfully transferred
to the target region, divided by the total number of target objects. We observe that our method is
able to achieve state-of-the-art results and outperform the baselines by a large margin. Concretely, it
improves the success rate by about 30%. Besides, we find that most of the previous regularization
methods do increase the success rate of the vanilla version and their results are similar to each other.
This shows that they may solve some common issues in the generalization problem. However, their
performance gap from our method suggests that we tackle a different issue here, which is overfitting
to absolute positions.

ProcGen The result on ProcGen is shown in Table 1. The performance is calculated as the
normalized agent’s reward in the test environment (with respect to the random agent’s and expert’s
performance). Though we observe some improvement, the performance gain is smaller in this case
compared to that of MAGICAL. We hypothesize that this is because the decision-making process of
ProcGen is highly dependent on the local image patches, as suggested by CLOP. In this case, the BC
model does not need to perform long-range reasoning across objects frequently, and suffers less from
the risk of overfitting to absolute positional information. Our result here also suggests that we need
task-specific inductive biases so as to achieve good generalization performance.

5.4 ANALYSIS

Qualitative Results To understand whether our method is robust, we use GradCAM++ to visu-
alize the importance heatmap of the learned models. For simplicity, we show the result on the
MatchReigion-Target-1-Distract task. We compare the result of our model to the model trained with
dropout here (Figure 4). We notice that the dropout model tends to focus on the red distractor object
rather than the correct target object. In contrast, our model is able to focus on the correct objects.
Even when the distance between the agent and the object is large, it can attend to the agent and the
object simultaneously. The visualization results suggest that our regularizer indeed leads to relational
features even when the vision network IMPALA does not have an explicit relational inductive bias.
To understand this, we further use MINE estimator (Belghazi et al., 2018) to measure the MI between
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Figure 7: The setup of real-
world robot manipulation exper-
iments.

the learned representation and the position of different objects. Our representation indeed contains
much fewer bits about the absolute position compared with dropout as expected.

Unseen Number of Distractors A robust model should base its decision on robust relational
information. As a result, for the MAGICAL tasks, it should be able to ignore the distractor and
generalize to an unseen number of distractors. Therefore, we test whether our model trained on
MR-T1D (where only one distractor presents) can generalize to MR-T1D with the unseen number of
distractors (e.g., 0, 2, 3). We also compare the results with the previous models. The result is shown
in Figure 5. We find that our model is able to generalize to the case of 0, 2, 3, though the performance
is lower than the case of 1 (training scenario). In contrast, the prior model, such as the dropout model,
fails in these unseen cases totally. This echoes our qualitative analysis results.

Number of Demonstrations We also study whether the proposed method works when the amount
of expert demonstrations is limited. For this purpose, we test our method on the MAGICAL with
25%, 50%, 75% of expert demonstrations. We show the averaged performance in Figure 6. We find
that our method can achieve consistent improvement, though the performance decreases as the dataset
becomes smaller. This result suggests that we still require a certain amount of diverse data to achieve
spatial generalization.

5.5 REAL-WORLD EXPERIMENTS

Table 2: The success rate of
the real-world experiments. Our
method is also effective here.
Each test consists of 20 trials.

Method Dropout Ours

0 Dis. Obj 35% 55%
1 Dis. Obj 35% 60%
2 Dis. Obj 20% 50%
3 Dis. Obj 10% 45%

Finally, we test whether our method scales to the real-world pick-
and-place manipulation problem. We extend the MR-T1D to a
UR10 robot arm with a Robotiq parallel-jaw gripper (Figure 7).
As suggested by Hsu et al. (2022), we use a gripper camera
and a workspace camera to provide observation. For the BC
model, we use two separate IMPALA encoders to process each
camera image, concatenate their output features along with the
z-coordinate of gripper, and feed them into an MLP. We use the
proposed regularizer to regularize the workspace branch. We
collect 75 human demonstrations for training. We compare our
method to dropout with different numbers of distract objects. The
result is shown in Table 2. Our method also achieves a large
improvement in this problem. We provide detailed setup and
qualitative results in the Appendix A.4 and A.3.

6 CONCLUSION

In this paper, we studied the spatial generalization problem of imitation learning. To solve this
problem, we proposed a novel position-invariant regularizer to remove the absolute positional
information from the features. Through experiments on the MAGICAL and ProcGen benchmarks, as
well as a robot manipulation system, we confirmed that previous methods do overfit to the absolute
position and showed that our proposed approach can effectively solve this problem. We hope that the
proposed method can inspire future generalization research.
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7 REPRODUCIBILITY STATEMENT

We provide the python source code of the main algorithm and the full model in the supplementary
material. We will make our project publicly available.
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A APPENDIX

A.1 IMPLEMENTATION OF THE ALGORITHM

We provide the core training code of our project in the supplementary material, which comes from
our whole project. The code shows all the training details and the model implementation. It is divided
into three files.

• bc.py This python file provides the main training routine. The main class is the
BehaviorCloning. The training routine is its train method.

• model.py This python file provides the implementation of BC policy model (Model) and
the discriminator (DiscrimModel).

• network.py This python file provides the implementation of the IMPALA en-
coder (ResNetBase) used by the BC policy model.

Note that these files are for illustration purpose. The whole runnable project will be made publicly
available.

A.2 HYPERPARAMETERS

The size of image observation is (64, 64) in all the experiments. We use the Adam optimizer (Kingma
& Ba, 2015) for the optimization of both the discriminator and the BC model. The learning rate
of the optimizers is 0.0003. We also add a weight decay of 0.0001 to the BC model. We use a
batchsize of 128 throughout the experiments (batch size). We will sample 4 points for each
batch (sample n). We repeat the training of discriminator for 4 steps (repeat). For the discrim-
inator (DiscrimModel), its embedding size is set to 64 (e dim). For the choice of λ, we use
λ = 1.0 for the MAGICAL, and 0.1 otherwise. All the other details and hyperparameters can be
found in the source code in the supplementary material.

A.3 QUALITATIVE RESULTS OF THE MANIPULATION PROBLEM

In this section, we provide some qualitative results of the real-world manipulation problem. Recall
that in this task, the robot is required to move a red cube to a target location specified by a green area.
We show the importance heatmap of the dropout model (Figure 8) and our model (Figure 9). As is
shown in the figures, we find that dropout model tends to attend more to the round distractor object
compared with our model. However, due to the visual complexity, we find that our model sometimes
may attend the shadow in the background.

A.4 SETUP OF REAL ROBOT

The observation of the robot include two resized 64 × 64 RGB images coming from the gripper
camera and the workspace camera, and the z coordinate of the gripper. We use a discretized action
space, so it will become easier for human to collect the demonstration via the keyboard. There are 8
actions in total, [x, y, z] move [backward/forward] by 2cm, and gripper [open/close] by 1cm. We only
consider to regularize the workspace camera. This is because the gripper-camera can only observe a
very limited area on the workspace in our case and the gripper is always at the center. As a result,
the spatial generalization issue is minor for the gripper-camera and we find it do not help much to
regularize it.
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Figure 8: The GradCAM++ importance heatmap of dropout model in the real-world manipulation
problem. The dropout model tends to attend the round distractor object.

Figure 9: The GradCAM++ importance heatmap of our model in the real-world manipulation problem.
Our model attends less to the round distractor object. However, due to the visual complexity, we find
that our model sometimes may attend the shadow in the background.
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