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ABSTRACT

We introduce a new family of particle evolution samplers suitable for constrained
domains and non-Euclidean geometries. Stein Variational Mirror Descent and
Mirrored Stein Variational Gradient Descent minimize the Kullback-Leibler (KL)
divergence to constrained target distributions by evolving particles in a dual space
defined by a mirror map. Stein Variational Natural Gradient exploits non-Euclidean
geometry to more efficiently minimize the KL divergence to unconstrained targets.
We derive these samplers from a new class of mirrored Stein operators and adaptive
kernels developed in this work. We demonstrate that these new samplers yield
accurate approximations to distributions on the simplex, deliver valid confidence in-
tervals in post-selection inference, and converge more rapidly than prior methods in
large-scale unconstrained posterior inference. Finally, we establish the convergence
of our new procedures under verifiable conditions on the target distribution.

1 INTRODUCTION

Accurately approximating an unnormalized distribution with a discrete sample is a fundamental
challenge in machine learning, probabilistic inference, and Bayesian inference. Particle evolution
methods like Stein variational gradient descent (SVGD, Liu & Wang, 2016) tackle this challenge
by applying deterministic updates to particles using operators based on Stein’s method (Stein, 1972;
Gorham & Mackey, 2015; Oates et al., 2017; Liu et al., 2016; Chwialkowski et al., 2016; Gorham &
Mackey, 2017) and reproducing kernels (Berlinet & Thomas-Agnan, 2011) to sequentially minimize
Kullback-Leibler (KL) divergence. SVGD has found great success in approximating unconstrained
distributions for probabilistic learning (Feng et al., 2017; Haarnoja et al., 2017; Kim et al., 2018) but
breaks down for constrained targets, like distributions on the simplex (Patterson & Teh, 2013) or the
targets of post-selection inference (Taylor & Tibshirani, 2015; Lee et al., 2016; Tian et al., 2016), and
fails to exploit informative non-Euclidean geometry (Amari, 1998).

In this work, we derive a family of particle evolution samplers suitable for target distributions with
constrained domains and non-Euclidean geometries. Our development draws inspiration from mirror
descent (MD) (Nemirovskij & Yudin, 1983), a first-order optimization method that generalizes
gradient descent with non-Euclidean geometry. To sample from a distribution with constrained
support, our method first maps particles to a dual space. There, we update particle locations using
a new class of mirrored Stein operators and adaptive reproducing kernels introduced in this work.
Finally, the dual particles are mapped back to sample points in the original space, ensuring that all
constraints are satisfied. We illustrate this procedure in Fig. 1. In Sec. 3, we develop two algorithms –
Mirrored SVGD (MSVGD) and Stein Variational Mirror Descent (SVMD) – with different updates
in the dual space; when only a single particle is used, MSVGD reduces to gradient ascent on the
log dual space density, and SVMD reduces to mirror ascent on the log target density. In addition,
by exploiting the connection between MD and natural gradient descent (Amari, 1998; Raskutti &
Mukherjee, 2015), we develop a third algorithm – Stein Variational Natural Gradient (SVNG) – that
extends SVMD to unconstrained targets with non-Euclidean geometry.

In Sec. 5, we demonstrate the advantages of our algorithms on benchmark simplex-constrained
problems from the literature, constrained sampling problems in post-selection inference (Taylor &
Tibshirani, 2015; Lee et al., 2016; Tian et al., 2016), and unconstrained large-scale posterior inference
with the Fisher information metric. Finally, we analyze the convergence of our mirrored algorithms
in Sec. 6 and discuss our results in Sec. 7.
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Figure 1: Updating particle approximations in constrained domains Θ. Standard updates like SVGD
(dashed arrow) can push particles outside of the support. Our mirrored Stein updates in Alg. 1 (solid
arrows) preserve the support by updating particles in a dual space and mapping back to Θ.

Related work Our mirrored Stein operators (6) are instances of diffusion Stein operators in the
sense of Gorham & Mackey (2017), but their specific properties have not been studied, nor have
they been used to develop sampling algorithms. There is now a large body of work on transferring
algorithmic ideas from optimization to MCMC (e.g., Welling & Teh, 2011; Simsekli et al., 2016;
Dalalyan, 2017; Durmus et al., 2018; Ma et al., 2019) and SVGD-like sampling methods (e.g., Liu
et al., 2019a;b; Zhu et al., 2020; Zhang et al., 2020a). The closest to our work in this space is the
recent marriage of mirror descent and MCMC. For example, Hsieh et al. (2018) propose to run
Langevin Monte Carlo (LMC, an Euler discretization of the Langevin diffusion) in a mirror space.
Zhang et al. (2020b) analyze the convergence properties of the mirror-Langevin diffusion, Chewi et al.
(2020) demonstrate its advantages over the Langevin diffusion when using a Newton-type metric, and
Ahn & Chewi (2020) study its discretization for MCMC sampling in constrained domains. Relatedly,
Patterson & Teh (2013) proposed stochastic Riemannian LMC for sampling on the simplex.

Several modifications of SVGD have been proposed to incorporate geometric information. Rieman-
nian SVGD (RSVGD, Liu & Zhu, 2018) generalizes SVGD to Riemannian manifolds, but, even with
the same metric tensor, their updates are more complex than ours: notably they require higher-order
kernel derivatives, do not operate in a mirror space, and do not reduce to natural gradient descent
when a single particle is used. They also reportedly do not perform well when with scalable stochastic
estimates of ∇ log p. Stein Variational Newton (SVN, Detommaso et al., 2018; Chen et al., 2019)
introduces second-order information into SVGD. Their algorithm requires an often expensive Hessian
computation and need not lead to descent directions, so inexact approximations are employed in
practice. Our SVNG can be seen as an instance of matrix SVGD (MatSVGD, Wang et al., 2019) with
an adaptive time-dependent kernel discussed in Sec. 4.4, a choice that is not explored in Wang et al.
(2019) and which recovers natural gradient descent when n = 1 unlike the heuristic kernel construc-
tions of Wang et al. (2019). None of the aforementioned works provide convergence guarantees, and
neither SVN nor matrix SVGD deals with constrained domains.

2 BACKGROUND: MIRROR DESCENT AND NON-EUCLIDEAN GEOMETRY

Standard gradient descent can be viewed as optimizing a local quadratic approximation to the target
function f : θt+1 = argminθ∈Θ∇f(θt)

>θ + 1
2εt
‖θ − θt‖22. When Θ ⊆ Rd is constrained, it can be

advantageous to replace ‖ · ‖2 with a function Ψ that reflects the geometry of a problem (Nemirovskij
& Yudin, 1983; Beck & Teboulle, 2003):

θt+1 = argminθ∈Θ∇f(θt)
>θ + 1

εt
Ψ(θ, θt). (1)

We consider the mirror descent algorithm (Nemirovskij & Yudin, 1983; Beck & Teboulle, 2003)
which chooses Ψ to be the Bregman divergence induced by a strongly convex, essentially smooth1

function ψ : Θ → R ∪ {∞}: Ψ(θ, θ′) = ψ(θ) − ψ(θ′) −∇ψ(θ′)>(θ − θ′). When Θ is a (d + 1)-
simplex {θ :

∑d
i=1 θi ≤ 1 and θi ≥ 0 for i ∈ [d]}, a common choice of ψ is the negative entropy

ψ(θ) =
∑d+1
i=1 θi log θi, for θd+1 , 1−∑d

i=1 θd. The solution of (1) is given by

θt+1 = ∇ψ∗(∇ψ(θt)− εt∇f(θt)), (2)

where ψ∗(η) , supθ∈Θ η
>θ − ψ(θ) is the convex conjugate of ψ and ∇ψ is a bijection from Θ to

dom(ψ∗) with inverse map (∇ψ)−1 = ∇ψ∗. We can view the update in (2) as first mapping θt to ηt
by∇ψ, applying the update ηt+1 = ηt − εt∇f(θt), and mapping back through θt+1 = ∇ψ∗(ηt+1).

1ψ is continuously differentiable on the interior of Θ with ‖∇ψ(θt)‖ → ∞ whenever θt → θ ∈ ∂Θ.
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Mirror descent can also be viewed as a discretization of the continuous-time dynamics dηt =
−∇f(θt)dt, θt = ∇ψ∗(ηt), which is equivalent to the Riemannian gradient flow (see App. A):

dθt = −∇2ψ(θt)
−1∇f(θt)dt, or equivalently, dηt = −∇2ψ∗(ηt)

−1∇ηtf(∇ψ∗(ηt))dt, (3)

where ∇2ψ(θ) and ∇2ψ∗(η) are Riemannian metric tensors. In information geometry, the discretiza-
tion of (3) is known as natural gradient descent (Amari, 1998). There is considerable theoretical and
practical evidence (Martens, 2014) showing that natural gradient works efficiently in learning.

3 STEIN’S IDENTITY AND MIRRORED STEIN OPERATORS

Stein’s identity (Stein, 1972) is a tool for characterizing a target distribution P using a so-called Stein
operator. We assume P has a differentiable density p with a closed convex support Θ ⊆ Rd. A Stein
operator Sp takes as input functions g from a Stein set G and outputs mean-zero functions under p:

Eθ∼p[(Spg)(θ)] = 0, for all g ∈ G. (4)

Gorham & Mackey (2015) proposed the Langevin Stein operator given by

(Spg)(θ) = g(θ)>∇ log p(θ) +∇ · g(θ), (5)

where g is a vector-valued function and ∇ · g is its divergence. For an unconstrained domain with
Ep[‖∇ log p(θ)‖2] <∞, Stein’s identity (4) holds for this operator whenever g ∈ C1 is bounded and
Lipschitz by (Gorham et al., 2019, proof of Prop. 3). However, on constrained domains Θ, Stein’s
identity fails to hold for many reasonable inputs g if p is non-vanishing or explosive at the boundary.

Motivated by this deficiency and by a desire to exploit non-Euclidean geometry, we propose an
alternative mirrored Stein operator,

(Mp,ψg)(θ) = g(θ)>∇2ψ(θ)−1∇ log p(θ) +∇ · (∇2ψ(θ)−1g(θ)), (6)

where ψ is a strongly convex, essentially smooth function as in Sec. 2 with (∇2ψ)−1 differentiable
and Lipschitz on Θ. We derive this operator from the (infinitesimal) generator of the mirror-Langevin
diffusion (19) in App. C. The following result, proved in App. I.1, shows that Mp,ψ generates
mean-zero functions under p whenever ∇2ψ−1 suitably cancels the growth of p at the boundary.
Proposition 1. Suppose that ∇2ψ(θ)−1∇ log p(θ) and ∇ · ∇2ψ(θ)−1 are p-integrable. If
limr→∞

∫
∂Θr

p(θ)‖∇2ψ(θ)−1nr(θ)‖2dθ = 0 for Θr , {θ ∈ Θ : ‖θ‖∞ ≤ r} and nr(θ) the
outward unit normal vector2 to ∂Θr at θ, then Ep[(Mp,ψg)(θ)] = 0 if g ∈ C1 is bounded Lipschitz.

Example 1 (Dirichlet p, Negative entropy ψ). When θ1:d+1 ∼ Dir(α) for α ∈ Rd+1
+ , even

setting g(θ) = 1 in (5) need not cause the identity to hold when some αj ≤ 1. However, when
ψ(θ) =

∑d+1
j=1 θj log θj , we show in App. B that the conditions of Prop. 1 are met for any α.

Remarkably, the mirror-Langevin diffusion for our choice of ψ is the Wright-Fisher diffusion (Ethier,
1976) which Gan et al. (2017) recently used to bound distances to Dirichlet distributions.

4 SAMPLING WITH MIRRORED STEIN OPERATORS

Liu & Wang (2016) pioneered the idea of using Stein operators to approximate a target distribution
with particles. Their popular SVGD algorithm updates each particle in its approximation by applying
the update rule θt+1 = θt + εtgt(θt) for a chosen mapping gt : Rd → Rd. Specifically, SVGD
chooses the mapping g∗t that leads to the largest decrease in KL divergence to p in the limit as εt → 0.
The following theorem summarizes their main findings.
Theorem 2 (Liu & Wang, 2016, Thm. 3.1). Suppose (θt)t≥0 satisfies dθt = gt(θt)dt for bounded
Lipschitz gt ∈ C1 : Rd → Rd and that θt has density qt with Eqt [‖∇ log qt‖2] <∞. If KL(qt‖p) ,
Eqt [log(qt/p)] exists then, for the Langevin Stein operator Sp (5),

d
dtKL(qt‖p) = −Eθt∼qt [(Spgt)(θt)]. (7)

2For a closed convex set whose boundary ∂Θ can be locally represented as F (θ1, . . . , θd) = 0, its unit
normal vector is defined as n(θ) = ± ∇F (θ1,...,θd)

‖∇F (θ1,...,θd)‖2
.
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Algorithm 1 Mirrored Stein Variational Gradient Descent & Stein Variational Mirror Descent

Input: density p on Θ, kernel k, mirror function ψ, particles (θi0)ni=1 ⊂ Θ, step sizes (εt)
T
t=1

Init: ηi0 ← ∇ψ(θi0) for i ∈ [n]
for t = 0 : T do

if SVMD then Kt ← Kψ,t (13) else Kt ← kI (MSVGD)
for i ∈ [n], ηit+1 ← ηit + εt

1
n

∑n
j=1Mp,ψKt(θ

i
t, θ

j
t ) (forMp,ψKt(·, θ) defined in Thm. 3)

for i ∈ [n], θit+1 ← ∇ψ∗(ηit+1)

return {θiT+1}ni=1.

To improve its current particle approximation, SVGD finds the choice of gt that most quickly
decreases KL(qt‖p) at time t, i.e., it minimizes d

dtKL(qt‖p) over a set of candidate directions gt.
SVGD finds gt in a reproducing kernel Hilbert space (RKHS, Berlinet & Thomas-Agnan, 2011) norm
ball BHd = {g : ‖g‖Hd ≤ 1}, where Hd is the product RKHS containing vector-valued functions
with each component in the RKHSH of k. Then the optimal g∗t ∈ BHd that minimizes (7) is

g∗t ∝ g∗qt,k , Eθt∼qt [k(θt, ·)∇ log p(θt) +∇θtk(θt, ·)] = Eθt∼qt [SpKk(·, θt)],
where we let Kk(θ, θ′) = k(θ, θ′)I , and SpKk(·, θ) denotes applying Sp to each row of Kk(·, θ).
SVGD has found great success in approximating unconstrained target distributions p but breaks
down for constrained targets and fails to exploit non-Euclidean geometry. Our goal is to develop new
particle evolution samplers suitable for constrained domains and non-Euclidean geometries.

4.1 MIRRORED DYNAMICS

SVGD encounters two difficulties when faced with a constrained support. First, the SVGD updates can
push the random variable θt outside of its support Θ, rendering all future updates undefined. Second,
Stein’s identity (4) often fails to hold for candidate directions in BHd (cf. Ex. 1). When this occurs,
SVGD need not converge to p as p is not a stationary point of its dynamics (i.e., d

dtKL(qt‖p)|qt=p 6= 0
when qt = p). Inspired by mirror descent (Nemirovskij & Yudin, 1983), we consider the following
mirrored dynamics

θt = ∇ψ∗(ηt) for dηt = gt(θt)dt, or, equivalently, dθt = ∇2ψ(θt)
−1gt(θt)dt, (8)

where gt : Θ → Rd now represents the update direction in η space. The inverse mirror map ∇ψ∗
automatically guarantees that θt belongs to the constrained domain Θ. Since ψ is strongly convex
and ∇2ψ−1 is bounded Lipschitz, from Thm. 2 it follows for any bounded Lipschitz gt that

d
dtKL(qt‖p) = −Eθt∼qt [(Mp,ψgt)(θt)], (9)

whereMp,ψ is the mirrored Stein operator (6). In the following sections, we propose three new
deterministic sampling algorithms by seeking the optimal direction gt that minimizes (9) over different
function classes. Thm. 3 (proved in App. I.2) forms the basis of our analysis.
Theorem 3 (Optimal mirror updates in RKHS). Suppose (θt)t≥0 follows the mirrored dynamics (8).
LetHK denote the RKHS of a matrix-valued kernel K : Θ×Θ→ Sd×d (Micchelli & Pontil, 2005).
Then, the optimal direction of gt that minimizes (9) in the norm ball BHK , {g : ‖g‖HK ≤ 1} is

g∗t ∝ g∗qt,K , Eθt∼qt [Mp,ψK(·, θt)], (10)

whereMp,ψK(·, θ) appliesMp,ψ (6) to each row of the matrix-valued function Kθ = K(·, θ).

4.2 MIRRORED STEIN VARIATIONAL GRADIENT DESCENT

Following the pattern of SVGD, one can choose the K of Thm. 3 to be Kk(θ, θ′) = k(θ, θ′)I , where
k is any scalar-valued kernel. In this case, the resulting update g∗qt,Kk(·) = Eθt∼qt [Mp,ψKk(·, θt)]
is equivalent to running SVGD in the dual η space before mapping back to Θ.
Theorem 4 (Mirrored SVGD updates). In the setting of Thm. 3, let kψ(η, η′) =
k(∇ψ∗(η),∇ψ∗(η′)), pH(η) = p(∇ψ∗(η)) · |det∇2ψ∗(η)| denote the density of η = ∇ψ(θ)
when θ ∼ p, and qt,H denote the distribution of ηt under the mirrored dynamics (8). If Kk = kI ,

g∗qt,Kk(θ′) = Eηt∼qt,H [kψ(ηt, η
′)∇ log pH(ηt) +∇ηtkψ(ηt, η

′)] ∀θ′ ∈ Θ, η′ = ∇ψ(θ′). (11)
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The proof is in App. I.3. By discretizing the dynamics dηt = g∗qt,Kk(θt)dt and initializing with any
particle approximation q0 = 1

n

∑n
i=1 δθi0 , we obtain Mirrored SVGD (MSVGD), our first algorithm

for sampling in constrained domains. The details are summarized in Alg. 1.

When only a single particle is used (n = 1) and the differentiable input kernel satisfies∇k(θ, θ) = 0,
the MSVGD update (11) reduces to gradient descent on − log pH(η). Note however that the modes
of the mirrored density pH(η) need not match those of the target density p(θ) (see the examples in
App. E). Since we are primarily interested in the θ-space density, it is natural to ask whether there
exists a mirrored dynamics that reduces to finding the mode of p(θ) in this limiting case. In the next
section, we give an answer to this question by designing an adaptive reproducing kernel that yields a
mirror descent-like update.

4.3 STEIN VARIATIONAL MIRROR DESCENT

Our second sampling algorithm for constrained problems is called Stein Variational Mirror De-
scent (SVMD). We start by introducing a new matrix-valued kernel that incorporates the metric ∇2ψ
and evolves with the distribution qt.
Definition 1 (Kernels for SVMD). Given a continuous scalar-valued kernel k, consider the Mercer
representation3 k(θ, θ′) =

∑
i≥1 λt,iut,i(θ)ut,i(θ

′) w.r.t. qt, where ut,i is an eigenfunction satisfying

Eθt∼qt [k(θ, θt)ut,i(θt)] = λt,iut,i(θ). (12)

For k1/2
t (θ, θ′) ,

∑
i≥1 λ

1/2
t,i ut,i(θ)ut,i(θ

′), we define the adaptive SVMD kernel at time t,

Kψ,t(θ, θ
′) , Eθt∼qt [k

1/2
t (θ, θt)∇2ψ(θt)k

1/2
t (θt, θ

′)]. (13)

By Thm. 3, the optimal update direction for the SVMD kernel ball is g∗qt,Kψ,t =Eqt [Mp,ψKψ,t(·, θt)].
We obtain the SVMD algorithm (summarized in Alg. 1) by discretizing dηt = g∗qt,Kψ,t(θt)dt and
initializing with q0 = 1

n

∑n
i=1 δθi0 . Because of the discrete representation of qt, Kψ,t takes the form

Kψ,t(θ, θ
′) =

∑n
i=1

∑n
j=1 λ

1/2
t,i λ

1/2
t,j ut,i(θ)ut,j(θ

′)Γt,ij ,

Γt,ij = 1
n

∑n
`=1 ut,i(θ

`
t)ut,j(θ

`
t)∇2ψ(θ`t).

Here both λt,j and ut,j(θit) can be computed by solving a matrix eigenvalue problem involving the
particle set {θit}ni=1: Btvt,j = nλt,jvt,j , where Bt = (k(θit, θ

j
t ))

n
i,j=1 ∈ Rn×n is the Gram matrix of

pairwise kernel evaluations at particle locations, and the i-th element of vt,j is ut,j(θit). To compute
∇θKψ,t(θ, θ

′), we differentiate both sides of (12) to find that∇ut,j(θ) = 1
λt,j

∑n
i=1 vt,j,i∇θk(θ, θit).

This technique was used in Shi et al. (2018) to estimate gradients of eigenfunctions w.r.t. a continuous
q. Following their recommendations, we truncate the sum at the J-th largest eigenvalues according to
a threshold (τ ≥∑J

j=1 λt,j/
∑n
j=1 λt,j) to ensure numerical stability.

Notably, SVMD differs from MSVGD only in its choice of kernel, but, whenever ∇k(θ, θ) = 0, this
change is sufficient to exactly recover mirror descent when n = 1.
Proposition 5 (Single-particle SVMD is mirror descent). If n = 1, then one step of SVMD becomes

ηt+1 = ηt + εt(k(θt, θt)∇ log p(θt) +∇k(θt, θt)), θt+1 = ∇ψ∗(ηt+1).

4.4 STEIN VARIATIONAL NATURAL GRADIENT

The fact that SVMD recovers mirror descent as a special case is not only of relevance in constrained
problems. We next exploit the connection between MD and natural gradient descent discussed in
Sec. 2 to design a new sampler – Stein Variational Natural Gradient (SVNG) – that more efficiently
approximates unconstrained targets. The idea is to replace the Hessian∇2ψ(·) in the SVMD dynamics
dθt = ∇2ψ(θt)

−1g∗qt,Kψ,t(θt) with a general metric tensor G(·). The result is the Riemannian
gradient flow

dθt = G(θt)
−1g∗qt,KG,t(θt)dt with KG,t(θ, θ

′) , Eθt∼qt [k1/2(θ, θt)G(θt)k
1/2(θt, θ

′)]. (14)

3See App. F for background on Mercer representations in non-compact domains.
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Figure 2: Quality of 50-particle approximations to 20-dimensional distributions on the simplex after
T particle updates. (Left) Sparse Dirichlet posterior of Patterson & Teh (2013). (Right) Quadratic
simplex target of Ahn & Chewi (2020). Details of the target distributions are in App. G.1.

Given any initial particle approximation q0 = 1
n

∑n
i=1 δθi0 , we discretize these dynamics to

obtain the unconstrained SVNG sampler of Alg. 2 in the appendix. SVNG can be seen
as an instance of MatSVGD (Wang et al., 2019) with a new adaptive time-dependent kernel
G−1(θ)KG,t(θ, θ

′)G−1(θ′). However, similar to Prop. 5 and unlike the heuristic kernels of Wang
et al. (2019), SVNG reduces to natural gradient ascent for finding the mode of p(θ) when n = 1.
SVNG is well-suited to Bayesian inference problems where the target is a posterior distribution
p(θ) ∝ π(θ)π(y|θ). There, the metric tensor G(θ) can be set to the Fisher information matrix
Eπ(y|θ)[∇ log π(y|θ)∇ log π(y|θ)>] of the data likelihood π(y|θ). Ample precedent from natu-
ral gradient variational inference (Hoffman et al., 2013; Khan & Nielsen, 2018) and Riemannian
MCMC (Patterson & Teh, 2013) suggests that encoding problem geometry in this manner often leads
to more rapid convergence.

5 EXPERIMENTS

We next conduct a series of simulated and real-data experiments to assess (1) distributional approxi-
mation on the simplex, (2) frequentist confidence interval construction for (constrained) post-selection
inference, and (3) large-scale posterior inference with non-Euclidean geometry. To compare with
standard SVGD on constrained domains and to prevent its particles from exiting the domain Θ, we
introduce a Euclidean projection onto Θ following each SVGD update. For SVMD, we need to solve
an eigenvalue problem, which costs O(n3) time. In practice the number of particles used for particle
evolution algorithms is relatively small, even for SVGD, due to the O(n2) cost of updates. We have
produced a practical SVMD implementation that is computationally competitive with MSVGD and
SVGD for standard particle counts like n = 50 (used in all experiments).

5.1 APPROXIMATION QUALITY ON THE SIMPLEX

We first measure distributional approximation quality using two 20-dimensional simplex-constrained
targets: the sparse Dirchlet posterior of Patterson & Teh (2013) extended to 20 dimensions and the
quadratic simplex target of Ahn & Chewi (2020). The Dirichlet target mimics the multimodal sparse
conditionals that arise in latent Dirichlet allocation (Blei et al., 2003) but induces a log concave
density in η space, while the quadratic is log-concave in θ space. In Fig. 2, we compare the quality of
MSVGD, SVMD, and projected SVGD with 50 particles and inverse multiquadric kernel k (Gorham &
Mackey, 2017) by computing the energy distance (Székely & Rizzo, 2013) to a surrogate ground truth
sample of size 1000 (drawn i.i.d. or, in the quadratic case, from the No-U-Turn Sampler (Hoffman &
Gelman, 2014)). We also compare to MSVGD with k2(θ, θ′) = k(∇ψ(θ),∇ψ(θ′)), a choice which
corresponds to running SVGD in the dual space with kernel k by Thm. 4 and which ensures the
convergence of MSVGD to p by the upcoming Thms. 6 to 8.

In the quadratic case, SVMD is favored over MSVGD as it is able to exploit the log-concavity of p(θ).
In contrast, for the multimodal sparse Dirichlet with p(θ) unbounded near the boundary, MSVGD
converges slightly more rapidly than SVMD by exploiting the log concave structure in η space. This
parallels the observation of Hsieh et al. (2018) that LMC in the mirror space outperforms Riemannian
LMC for sparse Dirichlet distributions. Projected SVGD fails to converge to the target in both cases
and has particular difficulty in approximating the sparse Dirichlet target with unbounded density.
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Figure 3: Coverage of post-selection CIs across (a) 500 / (b) 200 replications of simulation of Sepehri
& Markovic (2017).

MSVGD with k and k2 perform very similarly, but we observe that k yields better approximation
quality upon convergence. Therefore, we employ k in the remaining MSVGD experiments.

5.2 CONFIDENCE INTERVALS FOR POST-SELECTION INFERENCE

We next apply our algorithms to the constrained sampling problems that arise in post-selection
inference (Taylor & Tibshirani, 2015; Lee et al., 2016). Specifically, we consider the task of forming
valid confidence intervals (CIs) for regression parameters selected using the randomized Lasso (Tian
et al., 2016) with data X ∈ Rñ×p and y ∈ Rñ and user-generated randomness w ∈ Rp from a
log-concave distribution with density g. The randomized Lasso returns β̂ ∈ Rp with non-zero
coefficients denoted by β̂E and their signs by sE . It is common practice to report least squares CIs
for βE by running a linear regression on the selected features E. However, since E is chosen based
on the same data, the resulting CIs are often invalid.

Post-selection inference solves this problem by conditioning the inference on the knowledge of E
and sE . To construct valid CIs, it suffices to approximate the selective distribution with support
{β̂E , u−E : sE � β̂E > 0, u−E ∈ [−1, 1]p−|E|} and density

ĝ(β̂E , u−E) ∝ g
(
X>y −

(X>EXE+εI|E|

X>−EXE

)
β̂E + λ

( sE
u−E

))
.

In our experiments, we integrate out u−E analytically, following Tian et al. (2016), and reparameterize
β̂E as sE � |β̂E | to obtain a log-concave density of |β̂E | supported on the nonnegative orthant with
mirror function ψ(θ) =

∑d
j=1(θj log θj − θj). In Fig. 4a we show the example of a 2D selective

distribution using samples drawn by NUTS (Hoffman & Gelman, 2014). We also plot the results by
projected SVGD, SVMD, and MSVGD in this example. Projected SVGD fails to approximate the
target with many samples gathering at the truncation boundary, while the samples by MSVGD and
SVMD closely resemble the truth.

We then compare our methods with the standard norejection MCMC approach of the
selectiveInference R package (Tibshirani et al., 2019) using the example simulation setting
described in Sepehri & Markovic (2017) and a penalty factor 0.7. To generate N total sample
points we run MCMC for N iterations after burn-in or aggregate the particles from N/n independent
runs of MSVGD or SVMD with n = 50 particles. As N ranges from 1000 to 3000 in Fig. 3a,
the MSVGD and SVMD CIs consistently yield higher coverage than the standard 90% CIs. This
increased coverage is of particular value for smaller sample sizes, for which the standard CIs tend
to undercover. For a much larger sample size of N = 5000 in Fig. 3b, the SVMD and standard CIs
closely track one another across confidence levels, while MSVGD consistently yields longer CIs with
high coverage. The higher coverage of MSVGD is only of value for larger confidence levels at which
the other methods begin to undercover.

We next apply our samplers to a post-selection inference task on the HIV-1 drug resistance
dataset (Rhee et al., 2006), where we run randomized Lasso (Tian et al., 2016) to find statisti-
cally significant mutations associated with drug resistance using susceptibility data on virus isolates.
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We take the vitro measurement of log-fold change under the 3TC drug as response and include
mutations that had appeared at least 11 times in the dataset as regressors. In Fig. 4b we plot the
CIs of selected mutations obtained with N = 5000 sample points. We see that the invalid unad-
justed least squares CIs can lead to premature conclusions, e.g., declaring mutation 215Y significant
when there is insufficient support after conditioning on the selection event. In contrast, mutation
184V, which has known association with drug resistance, is declared significant by all methods even
after post-selection adjustment. The MSVGD and SVMD CIs mostly track those of the standard
selectiveInference method, but their conclusions sometimes differ: e.g., 62Y is flagged as
significant by MSVGD and SVMD but not by selectiveInference.

Truth Projected SVGD

SVMD MSVGD

(a)

2.0

2.2

2.4
Unadjusted

Standard

SVMD

MSVGD

P41L
P62V

P65R
P67N

P69i
P70R

P83K
P151M

P181C
P184V

P210W
P215Y

−0.2

0.0

0.2

0.4

(b)

Figure 4: (a) Sampling from a 2D selective density; (b) Unadjusted and post-selection CIs for the
mutations selected by the randomized Lasso as candidates for HIV-1 drug resistance (see Sec. 5.2).

5.3 LARGE-SCALE POSTERIOR INFERENCE WITH NON-EUCLIDEAN GEOMETRY

Finally, we demonstrate the advantages of exploiting non-Euclidean geometry by recreating the
real-data large-scale Bayesian logistic regression experiment of Liu & Wang (2016) with 581,012
datapoints and d = 54 feature dimensions. Here, the target p is the posterior distribution over logistic
regression parameters. We adopt the Fisher information metric tensor G, compare 20-particle SVNG
to SVGD and its prior geometry-aware variants RSVGD (Liu & Zhu, 2018) and MatSVGD with
average and mixture kernels (Wang et al., 2019), and for all methods use stochastic minibatches of
size 256 to scalably approximate each log likelihood query. In Fig. 5, all geometry-aware methods
substantially improve the log predictive probability of SVGD. SVNG also strongly outperforms
RSVGD and converges to its maximum test probability in half as many steps as MatSVGD (Avg) and
more rapidly than MatSVGD (Mixture).

6 CONVERGENCE GUARANTEES

We next turn our attention to the convergence properties of our proposed methods. For Kt and εt
as in Alg. 1, let (q∞t , q

∞
t,H) represent the distributions of the mirrored Stein updates (θt, ηt) when

θ0 ∼ q∞0 and ηt+1 = ηt + εtg
∗
qt,Kt

(θt) for t ≥ 0. Our first result, proved in App. I.5, shows that if
the Alg. 1 initialization qn0,H = 1

n

∑n
i=1 δηi0 converges in Wasserstein distance to a distribution q∞0,H

as n→∞, then, on each round t > 0, the output of Alg. 1, qnt = 1
n

∑n
i=1 δθit , converges to q∞t .

Theorem 6 (Convergence of mirrored updates as n → ∞). Suppose Alg. 1 is initialized with
qn0,H = 1

n

∑n
i=1 δηi0 satisfying W1(qn0,H , q

∞
0,H)→ 0 for W1 the L1 Wasserstein distance. Define the

η-induced kernel K∇ψ∗,t(η, η′) , Kt(∇ψ∗(η),∇ψ∗(η′)). If, for some c1, c2 > 0,

‖∇(K∇ψ∗,t(·, η)∇ log pH(η) +∇ ·K∇ψ∗,t(·, η))‖op ≤ c1(1 + ‖η‖2),

‖∇(K∇ψ∗,t(η
′, ·)∇ log pH(·) +∇ ·K∇ψ∗,t(η′, ·))‖op ≤ c2(1 + ‖η′‖2),

then, W1(qnt,H , q
∞
t,H)→ 0 and qnt ⇒ q∞t for each round t.
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Figure 5: Value of non-Euclidean geometry in large-scale Bayesian logistic regression.

Remark The pre-conditions hold, for example, whenever ∇ log pH is Lipschitz, ψ is strongly
convex, and Kt = kI for k bounded with bounded derivatives.

Given a mirrored Stein operator (6), an arbitrary Stein set G, and an arbitrary matrix-valued kernel K
we define the mirrored Stein discrepancy and mirrored kernel Stein discrepancy

MSD(q, p,G) , supg∈G Eq[(Mp,ψg)(θ)] and MKSDK(q, p) , MSD(q, p,BHK ). (15)
The former is an example of a diffusion Stein discrepancy (Gorham et al., 2019) and the latter an
example of a diffusion kernel Stein discrepancy (Barp et al., 2019). Since the MKSD optimiza-
tion problem (15) matches that in Thm. 3, we have that MKSDK(q, p) = ‖g∗q,K‖HK . Our next
result, proved in App. I.6, shows that the infinite-particle mirrored Stein updates reduce the KL
divergence to p whenever the step size is sufficiently small and drive MKSD to 0 if, for example,
εt = Ω(MKSDKt(q

∞
t , p)

α) for any α > 0. We also provide two conditions in App. H that generalize
the Stein Log-Sobolev and Stein Poincaré inequalities in Duncan et al. (2019); Korba et al. (2020)
and which imply exponential convergence rates of our algorithms in continuous time.
Theorem 7 (Infinite-particle mirrored Stein updates decrease KL and MKSD). Assume κ1 ,
supθ‖Kt(θ, θ)‖op <∞, κ2 ,

∑d
i=1 supθ ‖∇2

i,d+iKt(θ, θ)‖op <∞, ∇ log pH is L-Lipschitz, and
ψ is α-strongly convex. If εt < 1/(2 supθ ‖∇2ψ(θ)−1∇g∗q∞t ,Kt(θ) +∇g∗q∞t ,Kt(θ)

>∇2ψ(θ)−1‖op),

KL(q∞t+1‖p)− KL(q∞t ‖p) ≤ −
(
εt −

(
Lκ1

2 + 2κ2

α2

)
ε2t
)
MKSDKt(q

∞
t , p)

2.

Our last result, proved in App. I.7, shows that q∞t ⇒ p if MKSDKk(q∞t , p)→ 0. Hence, by Thms. 6
and 7, n-particle MSVGD converges weakly to p if εt decays at a suitable rate.
Theorem 8 (MKSDKk determines weak convergence). Assume pH is distantly dissipative (Eberle,
2016) with ∇ log pH Lipschitz, ψ is strongly convex with continuous ∇ψ∗, and k(θ, θ′) =
κ(∇ψ(θ),∇ψ(θ′)) for κ(x, y) = (c2 + ‖x− y‖22)β with β ∈ (−1, 0). Then, q∞t ⇒ p if
MKSDKk(q∞t , p)→ 0.

Remark The pre-conditions hold, for example, for any Dirichlet target with negative entropy ψ.

7 DISCUSSION

This paper introduced the mirrored Stein operator along with three new particle evolution algorithms
for sampling with constrained domains and non-Euclidean geometries. The first algorithm MSVGD
performs SVGD updates in a mirrored space before mapping to the target domain. The other two
algorithms are different discretizations of the same continuous dynamics for exploiting non-Euclidean
geometry. SVMD is a multi-particle generalization of mirror descent for constrained domains, while
SVNG is designed for unconstrained problems with informative metric tensors.

We highlight three limitations. First, like SVGD, our MSVGD require O(n2) time per update.
Second, SVMD and SVNG are more costly than MSVGD due to the adaptive kernel construction.
Low-rank kernel approximation may be needed to reduce their complexity. Third, we leave open
the question of convergence when stochastic gradient estimates are employed, but we suspect
the results of Gorham et al. (2020, Thm. 7) can be extended to our setting. In the future, we
hope to deploy our mirrored Stein operators for other inferential tasks on constrained domains
including sample quality measurement (Gorham & Mackey, 2015; Huggins & Mackey, 2018),
goodness-of-fit testing (Chwialkowski et al., 2016; Liu et al., 2016; Jitkrittum et al., 2017), graphical
model inference (Zhuo et al., 2018; Wang et al., 2018), parameter estimation (Barp et al., 2019),
thinning (Riabiz et al., 2020), and de novo sampling (Chen et al., 2018; Futami et al., 2019).
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REPRODUCIBILITY STATEMENT

See App. G for experimental details and

https://github.com/thjashin/mirror-stein-samplers

for Python and R code replicating all experiments.
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Algorithm 2 Stein Variational Natural Gradient (SVNG)

Input: density p(θ) on Rd, kernel k, metric tensor G(θ), particles (θi0)ni=1, step sizes (εt)
T
t=1

for t = 0 : T do
for i ∈ [n], θit+1 ← θit + εtG(θit)

−1g∗G,t(θ
i
t), where

g∗G,t(θ) = 1
n

∑n
j=1[KG,t(θ, θ

j
t )G(θjt )

−1∇ log p(θjt )+∇θjt ·(KG,t(θ, θ
j
t )G(θjt )

−1)] (see (14))

return {θiT+1}ni=1.

A MIRROR DESCENT, RIEMANNIAN GRADIENT FLOW, AND NATURAL
GRADIENT

The equivalence between the mirror flow dηt = −∇f(θt)dt, θt = ∇ψ∗(ηt)dt and the Riemannian
gradient flow in (3) is a direct result of the chain rule:

dθt
dt

= −∇ηtθt
dηt
dt

= −(∇θtηt)−1 dηt
dt

= −∇2ψ(θt)
−1∇f(θt), (16)

dηt
dt

= −∇f(θt) = −∇θtηt∇ηtf(∇ψ∗(ηt)) = −∇2ψ∗(ηt)
−1∇ηtf(∇ψ∗(ηt)). (17)

Depending on discretizing (16) or (17), there are two natural gradient descent (NGD) updates that
can arise from the same gradient flow:

NGD (a): θt+1 = θt − εt∇2ψ(θt)
−1∇f(θt),

NGD (b): ηt+1 = ηt − εt∇2ψ∗(ηt)
−1∇ηtf(∇ψ∗(ηt)).

With finite step sizes εt, their updates need not be the same and can lead to different optimization
paths. Since∇f(θt) = ∇2ψ∗(ηt)

−1∇ηtf(∇ψ∗(ηt)), NGD (b) is equivalent to the dual-space update
by mirror descent. This relationship was pointed out in Raskutti & Mukherjee (2015) and has been
used for developing natural gradient variational inference algorithms (Khan & Nielsen, 2018). We
emphasize, however, our SVNG algorithm developed in Sec. 4.4 corresponds to the discretization
in the primal space as in NGD (a). Therefore, it does not require an explicit dual space, and allows
replacing∇2ψ with more general information metric tensors.

B DETAILS OF EXAMPLE 1

For the entropic mirror map ψ(θ) =
∑d+1
j=1 θj log θj , we have ∇2ψ(θ)−1 = diag(θ) − θθ>. Note

here θ denotes a d-dimensional vector and does not include θd+1 = 1 −∑d
j=1 θd. Since Θ is a

(d+ 1)-simplex, ∂Θ is composed of d+ 1 faces with θ in the j-th face satisfies θj = 0. The outward
unit normal vector n(θ) for the first d faces are−ej for 1 ≤ j ≤ d, where ej denotes the j-th standard
basis of Rd. The outward unit normal vector for the (d + 1)-st face is a vector with 1/

√
d in all

coordinates. Therefore, we have∫
∂Θ

p(θ)g(θ)>∇2ψ(θ)−1n(θ)dθ =

∫
∂Θ

p(θ)g(θ)>(diag(θ)− θθ>)n(θ)dθ

=

∫
∂Θ

p(θ)(θ � g(θ)− θθ>g(θ))>n(θ)dθ

=

d∑
j=1

∫
θj=0

p(θ)(θ>g(θ)− gj(θ))θjdθ−j

+
1√
d

∫
θd+1=0

p(θ)θ>g(θ)θd+1dθ

=0,

where in the second to last identity we used θ>1 = 1− θd+1. Finally, we can verify the condition in
Prop. 1 as

lim
r→∞

∫
∂Θr

p(θ)‖∇2ψ(θ)−1nr(θ)‖2dθ = sup
‖g‖∞≤1

∫
∂Θ

p(θ)g(θ)>∇2ψ(θ)−1n(θ)dθ = 0.
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C DERIVATION OF THE MIRRORED STEIN OPERATOR

We first review the (overdamped) Langevin diffusion – a Markov process that underlies many recent
advances in Stein’s method – along with its recent mirrored generalization. The Langevin diffusion
with equilibrium density p on Rd is a Markov process (θt)t≥0 ⊂ Rd satisfying the stochastic
differential equation (SDE)

dθt = ∇ log p(θt)dt+
√

2dBt (18)
with (Bt)t≥0 a standard Brownian motion (Bhattacharya & Waymire, 2009, Sec. 4.5).

To identify Stein operators that satisfy (4) for broad classes of targets p, Gorham & Mackey (2015)
proposed to build upon the generator method of Barbour (1988): First, identify a Markov process
(θt)t≥0 that has p as the equilibrium density; they chose the Langevin diffusion of (18). Next, build a
Stein operator based on the (infinitesimal) generator A of the process (Øksendal, 2003, Def. 7.3.1):

(Af)(θ) = limt→0
1
t (Ef(θt)− Ef(θ0)) for f : Rd → R,

as the generator satisfies Eθ∼p[(Af)(θ)] = 0 under relatively mild conditions. We use the following
theorem to derive the generator of the processes described by SDEs like (18):
Theorem 9 (Generator of Itô diffusion; Øksendal, 2003, Thm 7.3.3). Let (xt)t≥0 be the Itô diffusion
in X ⊆ Rd satisfying dxt = b(xt)dt+ σ(xt)dBt. For any f ∈ C2

c (X ), the (infinitesimal) generator
A of (xt)t≥0 is

(Af)(x) = b(x)>∇f(x) + 1
2 Tr(σ(x)σ(x)>∇2f(x)).

For the Langevin diffusion (18), substituting ∇ log p(·) for b(·) and
√

2I for σ(·) in Thm. 9, we
obtain Af = (∇ log p)>∇f + ∇ · ∇f . Replacing ∇f with a vector-valued function g gives the
Langevin Stein operator in (5).

To derive a Stein operator that works well for constrained domains, we consider the Riemannian
Langevin diffusion (Patterson & Teh, 2013; Xifara et al., 2014; Ma et al., 2015) that extends the
Langevin diffusion to non-Euclidean geometries encoded in a positive definite metric tensor G(θ):

dθt = (G(θt)
−1∇ log p(θt) +∇ ·G(θt)

−1)dt+
√

2G(θt)
−1/2dBt.

4

We show in App. D that the choice G = ∇2ψ yields the recent mirror-Langevin diffusion (Zhang
et al., 2020b; Chewi et al., 2020)

θt = ∇ψ∗(ηt), dηt = ∇ log p(θt)dt+
√

2∇2ψ(θt)
1/2dBt. (19)

According to Thm. 9, the generator of the mirror-Langevin diffusion described by (20) is

(Ap,ψf)(θ) = (∇2ψ(θ)−1∇ log p(θ) +∇ · ∇2ψ(θ)−1)>∇f(θ) + Tr(∇2ψ(θ)−1∇2f(θ))

= ∇f(θ)>∇2ψ(θ)−1∇ log p(θ) +∇ · (∇2ψ(θ)−1∇f(θ)).

Now substituting g(θ) for ∇f(θ), we obtain the associated mirrored Stein operator:

(Mp,ψg)(θ) = g(θ)>∇2ψ(θ)−1∇ log p(θ) +∇ · (∇2ψ(θ)−1g(θ)).

D RIEMANNIAN LANGEVIN DIFFUSIONS AND MIRROR-LANGEVIN
DIFFUSIONS

Zhang et al. (2020b) pointed out (19) is a particular case of the Riemannian LD. However, they did
not give an explicit derivation. The Riemannian LD (Patterson & Teh, 2013; Xifara et al., 2014; Ma
et al., 2015) with ∇2ψ(·) as the metric tensor is

dθt = (∇2ψ(θt)
−1∇ log p(θt) +∇ · ∇2ψ(θt)

−1)dt+
√

2∇2ψ(θt)
−1/2dBt. (20)

To see the connection with mirror-Langevin diffusion, we would like to obtain the SDE that describes
the evolution of ηt = ∇ψ(θt) under the diffusion. This requires the following theorem that provides
the analog of the “chain rule” in SDEs.

4A matrix divergence∇ ·G(θ) is the vector obtained by computing the divergence of each row of G(θ).
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Theorem 10 (Itô formula; Øksendal, 2003, Thm 4.2.1). Let (xt)t≥0 be an Itô process in X ⊂ Rd

satisfying dxt = b(xt)dt+ σ(xt)dBt. Let f(x) ∈ C2 : Rd → Rd′ . Then yt = f(xt) is again an Itô
process, and its i-th dimension satisfies

dyt,i = (∇fi(xt)>b(xt) +
1

2
Tr(∇2fi(xt)σ(xt)σ(xt)

>)dt+∇fi(xt)>σ(xt)dBt.

Substituting∇ψ for f in Thm. 10, we have the SDE of ηt = ∇ψ(θt) as

dηt = (∇ log p(θt) +∇2ψ(θt)∇ · ∇2ψ(θt)
−1 + h(θt))dt+

√
2∇2ψ(θt)

1/2dBt,

where h(θt)i = Tr(∇2
θt

(∇θt,iψ(θt))∇2ψ(θt)
−1). Moreover, we have

[∇2ψ(θt)∇ · ∇2ψ(θt)
−1]i + Tr(∇2

θt(∇θt,iψ(θt))∇2ψ(θt)
−1)

=

d∑
`=1

d∑
j=1

∇2ψ(θt)ij∇θt,` [∇2ψ(θt)
−1]j` +

d∑
`=1

d∑
j=1

∇θt,`∇2ψ(θt)ij [∇2ψ(θt)
−1]j`

=

d∑
`=1

∇θt,`

 d∑
j=1

∇2ψ(θt)ij [∇2ψ(θt)
−1]j`

 =

d∑
`=1

∇θt,`Ii` = 0.

Therefore, the ηt diffusion is described by the SDE:

dηt = ∇ log p(θt)dt+
√

2∇2ψ(θt)
1/2dBt, θt = ∇ψ∗(ηt).

E MODE MISMATCH UNDER TRANSFORMATIONS
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Figure 6: The density functions of the same distribution in θ (left) and η (right) space under
the transformation η = ∇ψ(θ). Each θ follows a Beta distributions on [0, 1]. We choose the
negative entropy ψ(θ) = θ log θ + (1− θ) log(1− θ). Then, the transformation is the logit function
η = log(θ/(1−θ)) and its reverse is the sigmoid function θ = 1/(1+e−η). Top: θ ∼ Beta(0.5, 0.5).
Dashed lines mark the mode of the transformed density pH(η) and the corresponding θ, which gives
the lowest value of p(θ); Bottom: θ ∼ Beta(1.1, 10). Dashed lines mark the mode of the target
density p(θ) and the corresponding η, which clearly does not match the mode of pH(η).
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F BACKGROUND ON REPRODUCING KERNEL HILBERT SPACES

Let H be a Hilbert space of functions defined on X and taking their values in R. We say k is a
reproducing kernel (or kernel) ofH if ∀x ∈ X , k(x, ·) ∈ H and ∀f ∈ H, 〈f, k(x, ·)〉H = f(x). H is
called a reproducing kernel Hilbert space (RKHS) if it has a kernel. Kernels are positive definite (p.d.)
functions, which means that matrices with the form (k(xi, xj))ij are positive semidefinite. For any
p.d. function k, there is a unique RKHS with k as the reproducing kernel, which can be constructed
by the completion of {∑n

i=1 aik(xi, ·), xi ∈ X , ai ∈ R, i ∈ N}.
Now we assume X is a metric space, k is a bounded continuous kernel with the RKHSH, and ν is a
positive measure on X . L2(ν) denote the space of all square-integrable functions w.r.t. ν. Then the
kernel integral operator Tk : L2(ν)→ L2(ν) defined by

Tkg =

∫
X
g(x)k(x, ·)dν

is compact and self-adjoint. Therefore, according to the spectral theorem, there exists an at most
countable set of positive eigenvalues {λj}j∈J ⊂ R with λ1 ≥ λ2 ≥ . . . converging to zero and
orthonormal eigenfunctions {uj}j∈J such that

Tkuj = λjuj ,

and k has the representation k(x, x′) =
∑
j∈J λjuj(x)uj(x

′) (Mercer’s theorem on non-compact
domains), where the convergence of the sum is absolute and uniform on compact subsets of X ×
X (Ferreira & Menegatto, 2009).

G SUPPLEMENTARY EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

In this section, we report supplementary details and additional results from the experiments of Sec. 5.
In Secs. 5.1 and 5.2, we use the inverse multiquadric input kernel k(θ, θ′) = (1 + ‖θ − θ′‖22/`2)−1/2

due to its convergence control properties (Gorham & Mackey, 2017). In the unconstrained experiments
of Sec. 5.3, we use the Gaussian kernel k(θ, θ′) = exp(−‖θ − θ′‖22/`2) for consistency with past
work. The bandwidth ` is determined by the median heuristic (Garreau et al., 2017). We select τ
from {0.98, 0.99} for all SVMD experiments. For unconstrained targets, we report, for each method,
results from the best fixed step size ε ∈ {0.01, 0.05, 0.1, 0.5, 1} selected on a separate validation
set. For constrained targets, we select step sizes adaptively to accommodate rapid density growth
near the boundary; specifically, we use RMSProp (Hinton et al., 2012), an extension of the AdaGrad
algorithm (Duchi et al., 2011) used in Liu & Wang (2016), and report performance with the best
learning rate. Results were recorded on an Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz and an
NVIDIA Tesla P100 PCIe 16GB.

G.1 APPROXIMATION QUALITY ON THE SIMPLEX

The sparse Dirichlet posterior of Patterson & Teh (2013) extended to 20 dimensions features a sparse,
symmetric Dir(α) prior with αk = 0.1 for k ∈ {1, . . . , 20} and sparse count data n1 = 90, n2 =
n3 = 5, nj = 0 (j > 3), modeled via a multinomial likelihood. The quadratic target satisfies
log p(θ) = − 1

2σ2 θ
>Aθ+ const, where we slightly modify the target density of Ahn & Chewi (2020)

to make it less flat by introducing a scale parameter σ = 0.01. A ∈ R19×19 is a positive definite
matrix generated by normalizing products of random matrices with i.i.d. elements drawn from
Unif[−1, 1].

We initialize all methods with i.i.d samples from Dirichlet(5) to prevent any of the initial particles
being too close to the boundary. For each method and each learning rate we apply 500 particle updates.
For SVMD we set τ = 0.98. We search the base learning rates of RMSProp in {0.1, 0.01, 0.001} for
SVMD and MSVGD. Since projected SVGD applies updates in the θ space, the appropriate learning
rate range is smaller than those of SVMD and MSVGD. There we search the base learning rate of
RMSProp in {0.01, 0.001, 0.0001}. For all methods the results under each base learning rate are
plotted in Fig. 7.
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Figure 7: Sampling from a Dirichlet target on a 20-simplex. We plot the energy distance to a ground
truth sample of size 1000.
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Figure 8: Sampling from a quadratic target on a 20-simplex. We plot the energy distance to a ground
truth sample of size 1000 drawn by NUTS (Hoffman & Gelman, 2014).

G.2 CONFIDENCE INTERVALS FOR POST-SELECTION INFERENCE

Given a dataset X ∈ Rñ×p, y ∈ Rñ, the randomized Lasso (Tian et al., 2016) solves the following
problem:

argminβ∈Rp
1
2‖y −Xβ‖

2
2 + λ‖β‖1 − w>β + ε

2‖β‖
2
2, w ∼ G.

where G is a user-specified log-concave distribution with density g. We choose G to be zero-
mean independent Gaussian distributions while leaving its scale and the ridge parameter ε to be
automatically determined by the randomizedLasso function of the selectiveInference
package. We initialize the particles of our SVMD and MSVGD in the following way: First, we map
the solution β̂E to the dual space by ∇ψ. Next, we add i.i.d. standard Gaussian noise to n copies of
the image in the dual space. Finally, we map the n particles back to the primal space by∇ψ∗ and use
them as the initial locations. Below we discuss the remaining settings and additional results of the
simulation and the HIV-1 drug resistance experiment separately.

Simulation In our simulation we mostly follow the settings of Sepehri & Markovic (2017) except
using a different penalty level λ recommended in the selectiveInference R package. We
set ñ = 100 and p = 40. The design matrix X is generated from an equi-correlated model, i.e.,
each datapoint xi ∈ Rp is generated i.i.d. from N (0,Σ) with Σii = 1,Σij = 0.3 (i 6= j) and then
normalized to have almost unit length. The normalization is done by first centering each dimension
by subtracting the mean and dividing the standard deviation of that column of X , then additionally
multiplying 1/ñ1/2. y is generated from a standard Gaussian which is independent of X , i.e., we
assume the global null setting where the true value of β is zero. We set λ to be the value returned
by theoretical.lambda of the selectiveInference R package multiplied a coefficient
0.7ñ, where the 0.7 adjustment is introduced in the test examples of the R package to reduce the
regularization effect so that we have a reasonably large set of selected features when p = 40. The
base learning rates for SVMD and MSVGD are set to 0.01 and we run them for T = 1000 particle
updates. τ is set to 0.98 for SVMD.

Our 2D example in Fig. 4a is grabbed from one run of the simulation where there happen to be
only 2 features selected by the randomized Lasso. The selective distribution in this case has log-
density log p(θ) = −8.07193((2.39859θ1 + 1.90816θ2 + 2.39751)2 + (1.18099θ2 − 1.46104)2) +
const, θ1,2 ≥ 0.
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The error bars for actual coverage levels in Fig. 3a and Fig. 3b are 95% Wilson intervals (Wilson,
1927), which is known to be more accurate than ±2 standard deviation intervals for binomial
proportions like the coverage. In Fig. 9a and Fig. 9b we additionally plot the average length of the
confidence intervals w.r.t. different sample size N and nominal coverage levels. For all three methods
the CI widths are very close, although MSVGD consistently has wider intervals than SVMD and
selectiveInference. This indicates that SVMD can be preferred over MSVGD when both
methods produce coverage above the nominal level.

HIV-1 drug resistance We take the vitro measurement of log-fold change under the 3TC drug
as response and include mutations that had appeared 11 times in the dataset as regressors. This
results in ñ = 663 datapoints with p = 91 features. We choose λ to be the value returned by
theoretical.lambda of the selectiveInference R package multiplied by ñ. The base
learning rates for SVMD and MSVGD are set to 0.01 and we run them for T = 2000 particle updates.
τ is set to 0.99 for SVMD.
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Figure 9: Width of post-selection CIs across (a) 500 / (b) 200 replications of simulation of Sepehri &
Markovic (2017).

G.3 LARGE-SCALE POSTERIOR INFERENCE WITH NON-EUCLIDEAN GEOMETRY

The Bayesian logistic regression model we consider is
∏ñ
i=1 p(yi|xi, w)p(w), where p(w) =

N (w|0, I), p(yi|xi, w) = Bernoulli(σ(w>xi)). The bias parameter is absorbed into into w by
adding an additional feature 1 to each xi. The gradient of the log density of the posterior distribution
of w is ∇w log p(w|{yi, xi}Ni=1) =

∑N
i=1 xi(yi − σ(w>xi)) − w. We choose the metric tensor

∇2ψ(w) to be the Fisher information matrix (FIM) of the likelihood:

F =
1

ñ

ñ∑
i=1

Ep(yi|w,xi)[∇w log p(yi|xi, w)∇w log p(yi|xi, w)>]

=
1

ñ

ñ∑
i=1

σ(w>xi)(1− σ(w>xi))xix
>
i .

Following Wang et al. (2019), for each iteration r (r ≥ 1), we estimate the sum with a stochastic
minibatch Br of size 256: F̂Br = ñ

|Br|
∑
i∈Br σ(w>xi)(1 − σ(w>xi))xix

>
i and approximate the

FIM with a moving average across iterations:

F̂r = ρrF̂r−1 + (1− ρr)F̂Br , where ρr = min(1− 1/r, 0.95).

To ensure the positive definiteness of the FIM, a damping term 0.01I is added before taking the
inverse. For RSVGD and SVNG, the gradient of the inverse of FIM is estimated with ∇wjF−1 ≈
−F̂−1

r (∇̂rwjF )F̂−1
r , where ∇̂rwjF = ρr∇̂r−1

wj F + (1− ρr)∇wj F̂Br .
We run each method for T = 3000 particle updates with learning rates in {0.01, 0.05, 0.1, 0.5, 1}
and average the results for 5 random trials. τ is set to 0.98 for SVNG. For each run, we randomly
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keep 20% of the dataset as test data, 20% of the remaining points as the validation set, and all the rest
as the training set. The results of each method on validation sets with all choices of learning rates are
plotted in Fig. 10. We see that the SVNG updates are very robust to the change in learning rates and
is able to accommodate very large learning rates (up to 1) without a significant loss in performance.
The results in Fig. 5 are reported with the learning rate that performs best on the validation set.
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Figure 10: Logistic regression results on validation sets with learning rates in {0.01, 0.05, 0.1, 0.5,
1}. Running RSVGD with learning rates 0.5 and 1 produces numerical errors. Therefore, we did not
include them in the plot.

H EXPONENTIAL CONVERGENCE OF CONTINUOUS-TIME ALGORITHMS

We derive a time-inhomogeneous generalization of the Stein Log-Sobolev inequality of Duncan et al.
(2019) and Korba et al. (2020) which ensures the exponential convergence of our continuous-time
algorithms and time-inhomogeneous generalization of the Stein Poincaré inequality of Duncan et al.
(2019) which guarantees exponential convergence near equilibrium (i.e., when qt is sufficiently close
to p). As the results hold for a generic sequence of kernels (Kt)t≥0, the implications apply to both
MSVGD and SVMD.
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Definition 2 (Mirror Stein Log-Sobolev inequality). We define the Mirror Stein Log-Sobolev inequal-
ity (cf., Korba et al., 2020, Def. 2) as

KL(qt‖p) ≤
1

2λ
MKSD2

Kt(qt, p) =
1

2λ
Eqt [(∇2ψ−1∇ log

qt
p

)>PKt,qt∇2ψ−1∇ log
qt
p

],

where MKSDKt is defined in Eq. (15); PKt,qt : L2(qt) → L2(qt) is the kernel integral operator:
(PKt,qtϕ)(·) , Eqt(θ)[Kt(·, θ)ϕ(θ)] for a general kernel Kt and vector-valued function ϕ on Θ, and
the stated equality holds whenever integration-by-parts is applicable.
Proposition 11. Suppose (θt)t≥0 follows the mirrored dynamics (8) with gt chosen to be g∗qt,Kt as
in (10). Then, the dissipation of KL(qt‖p) is

d

dt
KL(qt‖p) = −MKSDKt(qt, p)

2.

Proof The proof directly follows from Thm. 3 since the optimization problem there matches the
definition of MKSD in (15).

Therefore, when the Mirror Stein Log-Sobolev inequality holds, we have
d

dt
KL(qt‖p) ≤ −2λKL(qt‖p),

and the exponential convergence KL(qt‖p) ≤ KL(q0‖p)e−2λt follows by Gronwall’s lemma (Gron-
wall, 1919).
Definition 3 (Mirror Stein Poincaré inequality). We say that the distribution p satisfies the Mirror
Stein Poincaré inequality (cf., Duncan et al. 2019, Eq. (57)) with strongly convex ψ and constant λ if

Varp[φ] ≤ 1

λ
Ep[∇φ>PKt,p∇2ψ−1∇φ]

for all φ ∈ L2(p) ∩ C∞(Θ) that is locally Lipschitz, where PKt,p is the kernel integral operator
under p defined similarly as in Definition 2.

This inequality can also be viewed as a kernelized generalization of the mirror Poincaré inequality
introduced in Chewi et al. (2020, Def. 1) for proving exponential convergence of mirror-Langevin
diffusion. In a manner analogous to Thm. 1 of Chewi et al. (2020), the following proposition relates
the Mirror Stein Poincaré inequality to chi-squared divergence.
Proposition 12. Suppose (θt)t≥0 follows the mirrored dynamics (8) with gt chosen to be g∗qt,Kt as
in (10). Then, the dissipation of chi-square divergence χ2(qt‖p) is

d

dt
χ2(qt‖p) = −2Eqt

[
∇qt
p

>
PKt,p∇2ψ−1∇qt

p

]
whenever integration-by-parts is applicable.

Proof We first note that by applying integration-by-parts, g∗qt,Kt as in (10) can be equivalently
written as

g∗qt,Kt = −PKt,qt∇2ψ−1∇ log
qt
p
.

Then using the Fokker-Planck equation of qt under the dynamics, we have

d

dt
χ2(qt‖p) =

d

dt

∫ (
qt
p

)2

dp = 2

∫
qt
p
· dqt
dt

= −2Eqt
[
g∗t,Kt

>∇qt
p

]
= −2Eqt

[(
PKt,qt∇2ψ−1∇ log

qt
p

)>
∇qt
p

]
= −2Eqt

[
∇qt
p

>
PKt,p∇2ψ−1∇qt

p

]
.

Note that the right hand side of the equation differs from the Mirror Stein Poincaré inequality
only in the base measure of the expectation. Duncan et al. (2019) proposes to replace qt with p
to study the convergence near equilibrium (See their Sec. 6, where Eq. (46) is replaced with Eq.
(51)). If we do the same and combine this identity with the Mirror Stein Poincaré inequality, we
obtain d

dtχ
2(qt‖p) ≤ −2λVarp[

qt
p ] = −2λχ2(qt‖p), which implies exponential convergence in KL

KL(qt‖p) ≤ χ2(qt‖p) ≤ χ2(q0‖p)e−2λt by Gronwall’s lemma (Gronwall, 1919).
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I PROOFS

I.1 PROOF OF PROP. 1

Proof Fix any g ∈ Gψ . Since g and∇g are bounded and∇2ψ(θ)−1∇ log p(θ) and∇ · ∇2ψ(θ)−1

are p-integrable, the expectation Eθ∼p[(Mp,ψg)(θ)] exists. Because Θ is convex, Θr is bounded and
convex with Lipschitz boundary. Since p∇2ψ−1g ∈ C1, we have
|Ep[(Mp,ψg)(θ)]| = |Ep[g(θ)>∇2ψ(θ)−1∇ log p(θ) +∇ · (∇2ψ(θ)−1g(θ))]|

=

∣∣∣∣∫
Θ

∇p(θ)>∇2ψ(θ)−1g(θ) + p(θ)∇ · (∇2ψ(θ)−1g(θ))dθ

∣∣∣∣
=

∣∣∣∣∫
Θ

∇ · (p(θ)∇2ψ(θ)−1g(θ))dθ

∣∣∣∣
=

∣∣∣∣ lim
r→∞

∫
Θr

∇ · (p(θ)∇2ψ(θ)−1g(θ))dθ

∣∣∣∣ (by dominated convergence)

=

∣∣∣∣ lim
r→∞

∫
∂Θr

(p(θ)∇2ψ(θ)−1g(θ))>nr(θ)dθ

∣∣∣∣ (by the divergence theorem)

≤ lim
r→∞

∫
∂Θr

p(θ)‖g(θ)‖2
∥∥∇2ψ(θ)−1nr(θ)

∥∥
2
dθ (by Cauchy-Schwarz)

≤ ‖g‖∞ lim
r→∞

∫
∂Θr

p(θ)
∥∥∇2ψ(θ)−1nr(θ)

∥∥
2
dθ = 0 (by assumption).

I.2 PROOF OF THM. 3: OPTIMAL MIRROR UPDATES IN RKHS

Proof Let ei denote the standard basis vector of Rd with the i-th element being 1 and others being
zeros. Since m ∈ HK , we have

m(θ)>∇2ψ(θ)−1∇ log p(θ) = 〈m,K(·, θ)∇2ψ(θ)−1∇ log p(θ)〉HK

∇ · (∇2ψ(θ)−1m(θ)) =

d∑
i=1

∇θi(m(θ)>∇2ψ(θ)−1ei)

=

d∑
i=1

〈m,∇θi(K(·, θ)∇2ψ(θ)−1ei)〉HK

= 〈m,∇θ · (K(·, θ)∇2ψ(θ)−1)〉HK ,
where we define the divergence of a matrix as a vector whose elements are the divergences of each
row of the matrix. Then, we write (9) as

− Eqt [m(θ)>∇2ψ(θ)−1∇ log p(θ) +∇ · (∇2ψ(θ)−1m(θ))]

= −Eqt [〈m,K(·, θ)∇2ψ(θ)−1∇ log p(θ) +∇θ · (K(·, θ)∇2ψ(θ)−1)〉HK ]

= −〈m,Eqt [K(·, θ)∇2ψ(θ)−1∇ log p(θ) +∇θ · (K(·, θ)∇2ψ(θ)−1)]〉HK
= −〈m,Eqt [Mp,ψK(·, θ)]〉HK .

Therefore, the optimal direction in theHK norm ball BHK = {g : ‖g‖HK ≤ 1} that minimizes (9)
is g∗t ∝ g∗qt,K = Eqt [Mp,ψK(·, θ)].

I.3 PROOF OF THM. 4: MIRRORED SVGD UPDATES

Proof A p.d. kernel k composed with any map φ is still a p.d. kernel. To prove this, let
{x1, . . . , xp} = {φ(η1), . . . , φ(ηn)}, p ≤ n. Then∑

i,j

αiαjk(φ(ηi), φ(ηj)) =
∑
`,m

β`βmk(x`, xm) ≥ 0,
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where β` =
∑
i∈S` αi, S` = {i : φ(ηi) = x`}. Therefore, kψ(η, η′) = k(∇ψ∗(η),∇ψ∗(η′)) is a

p.d. kernel. Plugging K = kI into Lem. 13, for any θ′ ∈ Θ and η′ = ∇ψ(θ′), we have

g∗qt,Kk(θ′) = Eηt∼qt,H [K∇ψ∗(∇ψ(θ′), ηt)∇ log pH(ηt) +∇ηt ·K∇ψ∗(∇ψ(θ′), ηt)]

= Eηt∼qt,H [k(∇ψ∗(η′),∇ψ∗(ηt))∇ log pH(ηt) +

d∑
j=1

∇ηt,jk(∇ψ∗(η′),∇ψ∗(ηt))ej ]

= Eηt∼qt,H [kψ(η′, ηt)∇ log pH(ηt) +∇ηtkψ(η′, ηt)].

I.4 PROOF OF PROP. 5: SINGLE-PARTICLE SVMD IS MIRROR DESCENT

Proof When n = 1, λ1 = k(θt, θt), u1 = 1, and thus Kψ,t(θt, θt) = k(θt, θt)∇2ψ(θt).

I.5 PROOF OF THM. 6: CONVERGENCE OF MIRRORED UPDATES AS n→∞

Proof The idea is to reinterpret our mirrored updates as one step of a matrix SVGD in η space based
on Lem. 13 and then follow the path of Gorham et al. (2020, Thm. 7). Assume that qnt,H and q∞t,H have
integrable means. Let ηn, η∞ be an optimal Wasserstein-1 coupling of qnt,H and q∞t,H . Let Φqt,Kt
denote the transform through one step of mirrored update: θt = ∇ψ?(ηt), ηt+1 = ηt + εtg

∗
qt,Kt

(θt).
Then, with Lem. 13, we have

‖Φqt,Kt(η)− Φqt,Kt(η
′)‖2

= ‖η + εtg
∗
qnt ,Kt

(θ)− η′ − εtg∗q∞t ,Kt(θ
′)‖2

≤ ‖η − η′‖2 + εt‖g∗qnt ,Kt(θ)− g
∗
q∞t ,Kt

(θ′)‖2
≤ ‖η − η′‖2
+ εt‖Eηn [K∇ψ∗,t(η, η

n)∇ log pH(ηn) +∇ηn ·K∇ψ∗,t(η, ηn)

− (K∇ψ∗,t(η
′, ηn)∇ log pH(ηn) +∇ηn ·K∇ψ∗,t(η′, ηn))]‖2

+ εt‖Eηn,η∞ [K∇ψ∗,t(η
′, ηn)∇ log pH(ηn) +∇ηn ·K∇ψ∗,t(η, ηn)

− (K∇ψ∗,t(η
′, η∞)∇ log pH(η∞) +∇η∞ ·K∇ψ∗,t(η′, η∞))]‖2

≤ ‖η − η′‖2 + εtc1(1 + E[‖ηn‖2)]‖η − η′‖2 + εtc2(1 + ‖η′‖2)Eηn,η∞ [‖ηn − η∞‖2]

= ‖η − η′‖2 + εtc1(1 + Eqnt,H [‖·‖2])‖η − η′‖2 + εtc2(1 + ‖η′‖2)W1(qnt,H , q
∞
t,H).

Since Φqt,Kt(η
n) ∼ qnt+1,H , Φqt,K(η∞) ∼ q∞t+1,H , we conclude

W1(qnt+1,H , q
∞
t+1,H)

≤ E[‖Φqt,K(ηn)− Φqt,K(η∞)‖2]

≤ (1 + εtc1(1 + Eqnt,H [‖·‖2]))E[‖ηn − η∞‖2] + εtc2(1 + ‖η′‖2)W1(qnt,H , q
∞
t,H)]

≤ (1 + εtc1(1 + Eqnt,H [‖·‖2]) + εtc2(1 + Eq∞t,H [‖·‖2]))W1(qnt,H , q
∞
t,H).

The final claim qnt ⇒ q∞t now follows by the continuous mapping theorem as∇ψ∗ is continuous.

I.6 PROOF OF THM. 7: INFINITE-PARTICLE MIRRORED STEIN UPDATES DECREASE KL AND
MKSD

Proof Let Tq∞t ,Kt denote transform of the density function through one step of mirrored update:
θt = ∇ψ?(ηt), ηt+1 = ηt + εtg

∗
q∞t ,Kt

(θt). Then

KL(q∞t+1‖p)− KL(q∞t ‖p)
= KL(q∞t ‖T−1

q∞t ,Kt
p)− KL(q∞t ‖p)

= Eηt∼q∞t,H [log pH(ηt)− log pH(ηt + εtg
∗
q∞t ,Kt

(θt))− log |det(I + εt∇ηtg∗q∞t ,Kt(θt))|],
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where we have used the invariance of KL divergence under reparameterization: KL(qt‖p) =
KL(qt,H‖pH) . Following Liu (2017), we bound the difference of the first two terms as

log pH(ηt)− log pH(ηt + εtg
∗
q∞t ,Kt

(θt))

= −
∫ 1

0

∇s log pH(ηt(s)) ds, where ηt(s) , ηt + sεtg
∗
q∞t ,Kt

(θt)

= −
∫ 1

0

∇ log pH(ηt(s))
>(εtg

∗
q∞t ,Kt

(θt)) ds

= −εt∇ log pH(ηt)
>g∗q∞t ,Kt(θt) +

∫ 1

0

(∇ log pH(ηt)−∇ log pH(ηt(s)))
>(εtg

∗
q∞t ,Kt

(θt)) ds

≤ −εt∇ log pH(ηt)
>g∗q∞t ,Kt(θt) + εt

∫ 1

0

‖∇ log pH(η)−∇ log pH(ηt(s))‖2 · ‖g∗q∞t ,Kt(θt)‖2 ds

≤ −εt∇ log pH(ηt)
>g∗q∞t ,Kt(θt) +

Lε2t
2
‖g∗q∞t ,Kt(θt)‖

2
2,

and bound the log determinant term using Lem. 15:

− log |det(I + εt∇ηtg∗q∞t ,Kt(θt)) ≤ −εt Tr(∇ηtg∗q∞t ,Kt(θt)) + 2ε2t‖∇ηtg∗q∞t ,Kt(θt)‖
2
F .

The next thing to notice is that Eηt∼q∞t,H [∇ log pH(ηt)
>g∗q∞t ,Kt(θt) + Tr(∇ηtg∗q∞t ,Kt(θt))] is the

square of the MKSD in (15). We can show this equivalence using the identity proved in Lem. 14:

Eηt∼q∞t,H [g∗q∞t ,Kt(θt)
>∇ log pH(ηt) + Tr(∇ηtg∗q∞t ,Kt(θt))]

= Eθt∼q∞t [g∗q∞t ,Kt(θt)
>∇2ψ(θt)

−1∇θt(log p(θt)− log det∇2ψ(θt))

+ Tr(∇2ψ(θt)
−1∇g∗q∞t ,Kt(θt))]

= Eθt∼q∞t [g∗q∞t ,Kt(θt)
>∇2ψ(θt)

−1∇ log p(θt) +∇ · (∇2ψ(θt)
−1g∗q∞t ,Kt(θt))] (Lem. 14)

= Eθt∼q∞t [(Mp,ψg
∗
q∞t ,Kt

)(θt)]

= MKSDKt(q
∞
t , p)

2.

Finally, we are going to bound ‖g∗q∞t ,Kt(θt)‖
2
2 and ‖∇ηtg∗q∞t ,Kt(θt)‖

2
F . From the assumptions we

have ψ is α-strongly convex and thus ψ∗ is 1
α -strongly smooth (Kakade et al., 2009), therefore

‖∇2ψ∗(·)‖2 ≤ 1
α . By Lem. 16, we know

‖g∗q∞t ,Kt(θt)‖
2
2 ≤ ‖g∗q∞t ,Kt‖

2
HKt
‖K(θt, θt)‖op = MKSDKt(q

∞
t , p)

2‖Kt(θt, θt)‖op,

‖∇ηtg∗q∞t ,Kt(θt)‖
2
F = ‖∇2ψ∗(ηt)∇g∗q∞t ,Kt(θt)‖

2
F

≤ ‖∇2ψ∗(ηt)‖22‖∇g∗q∞t ,Kt(θt)‖
2
F

≤ 1

α2
‖g∗q∞t ,Kt‖

2
HKt

d∑
i=1

‖∇2
i,d+iKt(θt, θt)‖op

=
1

α2
MKSDKt(q

∞
t , p)

2
d∑
i=1

‖∇2
i,d+iKt(θt, θt)‖op,

where ∇2
i,d+iK(θ, θ) denotes∇2

θi,θ′i
K(θ, θ′)|θ′=θ. Combining all of the above, we have

KL(q∞t+1‖p)− KL(q∞t ‖p)

≤ −
(
εt −

Lε2t
2

sup
θ
‖Kt(θ, θ)‖op −

2ε2t
α2

d∑
i=1

sup
θ
‖∇2

i,d+iKt(θ, θ)‖op

)
MKSDKt(q

∞
t , p)

2.

Plugging in the definition of κ1 and κ2 finishes the proof.
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I.7 PROOF OF THM. 8: MKSDKk DETERMINES WEAK CONVERGENCE

Proof According to Thm. 4,

g∗q,Kk = EqH [k(·,∇ψ∗(η))∇ log pH(η) +∇ηk(∇ψ∗(η), ·)],
where qH(η) denotes the density of η = ∇ψ(θ) under the distribution θ ∼ q. From the assumptions
we have k(θ, θ′) = κ(∇ψ(θ),∇ψ(θ′)). With this specific choice of k, the squared MKSD is

MKSDKk(q, p)2 = ‖g∗q,Kk‖2HKk
= Eη,η′∼qH

[
1

pH(η)pH(η′)
∇η∇η′(pH(η)k(∇ψ∗(η),∇ψ∗(η′))pH(η′))

]
= Eη,η′∼qH

[
1

pH(η)pH(η′)
∇η∇η′(pH(η)κ(η, η′)pH(η′))

]
. (21)

The final expression in (21) is the squared kernel Stein discrepancy (KSD) (Liu et al., 2016;
Chwialkowski et al., 2016; Gorham & Mackey, 2017) between qH and pH with the kernel κ:
KSDκ(qH , pH)2. Recall that it is proved in Gorham & Mackey (2017, Theorem 8) that, for
κ(x, y) = (c2 + ‖x − y‖22)β with β ∈ (−1, 0) and distantly dissipative pH with Lipschitz score
functions, qH ⇒ pH if KSDκ(qH , pH)→ 0. The advertised result (q ⇒ p if MKSDKk(q, p)→ 0)
now follows by the continuous mapping theorem as∇ψ∗ is continuous.

J LEMMAS

Lemma 13. Let K∇ψ∗(η, η′) , K(∇ψ∗(η),∇ψ∗(η′)). The mirrored updates g∗qt,K in (10) can be
equivalently expressed as

g∗qt,K = Eqt,H [K∇ψ∗(∇ψ(·), η)∇ log pH(η) +∇η ·K∇ψ∗(∇ψ(·), η)].

Proof We will use the identity proved in Lem. 14.

g∗qt,K = Eqt [Mp,ψK(·, θ)]
= Eqt [K(·, θ)∇2ψ(θ)−1∇ log p(θ) +∇θ · (K(·, θ)∇2ψ(θ)−1)]

= Eqt [K(·, θ)∇2ψ(θ)−1∇θ(log pH(∇ψ(θ)) + log det∇2ψ(θ)) +∇θ · (K(·, θ)∇2ψ(θ)−1)]
(by change-of-variable formula)

= Eqt [K(·, θ)∇2ψ(θ)−1∇θ log pH(∇ψ(θ)) +

d∑
i,j=1

[∇2ψ(θ)−1]ij∇θiK(·, θ):,j ]

(by applying Lem. 14 to each row of K(·, θ))

= Eqt [K(·, θ)∇2ψ(θ)−1∇θ log pH(∇ψ(θ)) +

d∑
j=1

∇ηjK(·, θ):,j ]

= Eqt,H [K(·,∇ψ∗(η))∇ log pH(η) +

d∑
j=1

∇ηjK(·,∇ψ∗(η)):,j ]

= Eqt,H [K∇ψ∗(∇ψ(·), η)∇ log pH(η) +∇η ·K∇ψ∗(∇ψ(·), η)],

where A:,j denotes the j-th column of a matrix A.

Lemma 14. For a strictly convex function ψ ∈ C2 : Rd → R and any vector-valued g ∈ C1 : Rd →
Rd, the following relation holds:

∇ · (∇2ψ(θ)−1g(θ)) = Tr(∇2ψ(θ)−1∇g(θ))− g(θ)>∇2ψ(θ)−1∇θ log det∇2ψ(θ).

Proof By the product rule of differentiation:

∇ · (∇2ψ(θ)−1g(θ)) = Tr(∇2ψ(θ)−1∇g(θ)) + g(θ)>∇ · (∇2ψ(θ)−1). (22)
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This already gives us the first term on the right side. Next, we have
[∇2ψ(θ)−1∇ log det∇2ψ(θ)]i

=

d∑
j=1

[∇2ψ(θ)−1]ij Tr(∇2ψ(θ)−1∇θj∇2ψ(θ))

=

d∑
j=1

[∇2ψ(θ)−1]ij

d∑
`,m=1

[∇2ψ(θ)−1]`m[∇θj∇2ψ(θ)]m`

=

d∑
j,`,m=1

[∇2ψ(θ)−1]ij [∇2ψ(θ)−1]`m∇θj∇2ψ(θ)m`

=

d∑
j,`,m=1

[∇2ψ(θ)−1]ij∇θm∇2ψ(θ)j`[∇2ψ(θ)−1]`m

= −
d∑

m=1

∇θm(∇2ψ(θ)−1)im

= −[∇ · ∇2ψ(θ)−1]i.

Plugging the above relation into (22) proves the claimed result.

Lemma 15 (Liu, 2017, Lemma A.1). Let A be a square matrix, and 0 < ε < 1
2‖A+A>‖op . Then,

log |det(I + εA)| ≥ εTr(A)− 2ε2‖A‖2F ,
where ‖ · ‖F denotes the Frobenius norm of a matrix.
Lemma 16. Let K be a matrix-valued kernel andHK be the corresponding RKHS. Then, for any
f ∈ HK (f is vector-valued), we have

‖f(x)‖2 ≤ ‖f‖HK‖K(x, x)‖1/2op , ‖∇f(x)‖2F ≤ ‖f‖
2
HK

d∑
i=1

‖∇2
xi,x′i

K(x, x′)|x′=x‖op,

where ‖ · ‖op denotes the operator norm of a matrix induced by the vector 2-norm.

Proof We first bound the ‖f(x)‖2 as
‖f(x)‖2 = sup

‖y‖2=1

f(x)>y = sup
‖y‖2=1

〈f,K(·, x)y〉HK ≤ ‖f‖HK sup
‖y‖2=1

‖K(·, x)y‖HK

= ‖f‖HK sup
‖y‖2=1

(y>K(x, x)y)1/2 ≤ ‖f‖HK sup
‖y‖2=1

sup
‖u‖2=1

(u>K(x, x)y)1/2

= ‖f‖HK sup
‖y‖2=1

‖K(x, x)y‖1/22 = ‖f‖HK‖K(x, x)‖1/2op .

The second result follows similarly,

‖∇f(x)‖2F =

d∑
i=1

‖∇xif(x)‖22 =

d∑
i=1

sup
‖y‖2=1

(∇xif(x)>y)2 =
∑
i=1

sup
‖y‖2=1

(〈f,∇xiK(·, x)y〉HK )2

≤ ‖f‖2HK
d∑
i=1

sup
‖y‖2=1

‖∇xiK(·, x)y‖2HK = ‖f‖2HK
d∑
i=1

sup
‖y‖2=1

(y>∇2
xi,x′i

K(x, x′)|x=x′y)

≤ ‖f‖2HK
d∑
i=1

sup
‖y‖2=1

sup
‖u‖2=1

(u>∇2
xi,x′i

K(x, x′)|x=x′y)

= ‖f‖2HK
d∑
i=1

‖∇2
xi,x′i

K(x, x′)|x′=x‖op.
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