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“Give this animal a fantastical set of armor”

“Turn this image into the Clay_Toy style”

“Turn this photo into an architectural rendering”

“Turn this into image into the Ghibli style”

Figure 1: LoRBA. We present a novel method for analogy-based editing, based on learnable mixing
of low-rank adapters. Given a prompt and an image triplet {a,a′,b} that visually describe a desired
transformation, LoRBA dynamically constructs a single LoRA from a learnable basis of LoRA
modules, and produces an editing result b′ that applies the same analogy for the new image.

ABSTRACT

Visual analogy learning enables image manipulation through demonstration rather
than textual description, allowing users to specify complex transformations that
are difficult to articulate in words. Given a triplet {a, a′, b}, the goal is to gener-
ate b′ such that a : a′ :: b : b′. Recent methods adapt text-to-image models to
the analogy task using a single Low-Rank Adaptation (LoRA) module, but they
face a fundamental limitation: attempting to capture the diverse space of visual
transformations within a fixed adaptation module constrains generalization capa-
bilities. Inspired by recent work showing that LoRAs in constrained domains span
meaningful semantic spaces that can be interpolated, we propose LoRBA, a novel
approach that specializes the model to each analogy task at inference time through
dynamic composition of learned transformation primitives, informally, choosing
a point in a “space of LoRAs”. We introduce two key components: (1) a learnable
basis of LoRA modules, to span the space of different types of visual transfor-
mations, and (2) a lightweight encoder that dynamically selects and weighs these
basis LoRAs based on the specific analogy pair. Through comprehensive eval-
uations, we demonstrate that our approach achieves state-of-the-art performance
and significantly improves generalization to unseen visual transformations. Our
findings suggest that LoRA basis decompositions are a promising direction for
flexible visual manipulation tasks.

1 INTRODUCTION

Text-based image editing models (Black Forest Labs et al., 2025; Brooks et al., 2023; Sheynin et al.,
2024; Xiao et al., 2025; Zhang et al., 2025) have recently emerged as a powerful tool for controllable
image generation and manipulation, enabling users to modify images through textual descriptions.
However, many visual transformations are inherently difficult to articulate precisely through text
alone. For example, consider describing the transformation that converts a photograph into the style
of a specific painting, or conveying an exact target pose through text. Such inherent limitation
motivates alternative paradigms that can capture and apply complex visual transformations.
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Visual analogy learning (Hertzmann et al., 2001) offers a compelling solution to this challenge by
enabling models to understand transformations through examples rather than explicit descriptions.
In this paradigm, given a triplet of images {a,a′,b}, the goal is to generate an image b′ such that
the visual relationship a : a′ :: b : b′ holds. That is, the transformation applied between a and a′

should be analogously applied to b to produce b′. This approach allows users to specify complex
visual changes through demonstration, making it possible to capture nuanced transformations that
would be difficult or impossible to describe textually.

Early learning-based approaches trained stand-alone analogy models directly from analogy data (Bar
et al., 2022; Liu et al., 2024; Reed et al., 2015; Wang et al., 2023a;b; Yang et al., 2023), but this lead
to limited task diversity and image quality, or required extensive compute. More recent work aims to
leverage the rich prior of powerful text-to-image backbones by adapting them to the visual analogy
task, using a single Low-Rank Adaptation (LoRA) module (Gong et al., 2025; Lu et al., 2025; Song
et al., 2024). While effective, these methods face a fundamental limitation: they attempt to capture
the diverse space of possible transformations within a single adaptation module. This constraint may
limit the model’s ability to generalize across the rich variety of relationships that exist in images.

We hypothesize that specializing the model to each specific analogy task at inference time may
improve performance and generalization. While this objective could theoretically be achieved via
hypernetworks that generate task-specific LoRAs (Song et al., 2024), these are notoriously difficult
to train and often suffer from instability (Ortiz et al., 2024). Instead, we draw inspiration from recent
work demonstrating that LoRAs from fine-tuned models (e.g., for personalization tasks) tend to span
a meaningful semantic basis, and that interpolating between these LoRAs can effectively cover new
points in this semantic space (Dravid et al., 2024). Building on this insight, we explore a similar
principle for visual analogy learning and propose LoRBA, a two-component system: (1) a learnable
basis of LoRA modules and (2) a lightweight encoder that dynamically combines LoRAs from this
basis at inference time based on the input analogy pair. These components are jointly trained, en-
abling the model to compose appropriate transformations for novel analogies unseen during training.

Existing methods typically encode analogy images using vision-language models such as
CLIP (Radford et al., 2021) or SigLIP (Zhai et al., 2023) and provide these encodings as context
to the generative model. This can provide the higher-level semantic understanding needed for un-
derstanding the analogy task. However, this might lead to loss of detail in fine-grained visual detail
preservation. Recent advances have demonstrated that diffusion models can extract remarkably ac-
curate visual details through extended attention mechanisms (Black Forest Labs et al., 2025; Cao
et al., 2023). Thus, we leverage this capability by providing the full analogy triplet directly to the
diffusion model through an extended-attention mechanism, while reserving CLIP-based encodings
specifically for LoRA selection. This approach allows LoRBA to strike a balance between the con-
sistency of fine-details and the higher-level semantics required to understand the analogy task.

We evaluate LoRBA against established baselines and demonstrate it achieves state-of-the-art re-
sults. Our contributions include: (1) a novel architecture that decomposes visual analogy learning
into a basis of LoRAs with dynamic composition, and (2) a comprehensive evaluation showing
improved generalization to unseen transformations compared to existing single-LoRA approaches.

2 RELATED WORK

Visual analogies. Visual analogies, also commonly referred to as “Image Analogies” (Hertzmann
et al., 2001), “Visual Prompting” (Bar et al., 2022) or “Visual Relations” (Gong et al., 2025), is the
task of learning a transformation from a pair of before-and-after exemplars and applying it analo-
gously to new images. Early non-neural methods learned explicit per-pair filters for simpler tasks
such as style transfer (Hertzmann et al., 2001). With the advent of network-based methods, initial
works proposed models conditioned on an image embedding space where analogies can be pre-
sented through simple vector arithmetic (Reed et al., 2015). While these methods showed promise
on datasets of simple, isolated objects, they struggled with the complexity of real-world images.
Newer methods instead phrase the analogy task as one of in-context learning, where the model is
directly conditioned on the exemplar pair and a reference image, and is trained to successfully syn-
thesize the matching target (Bar et al., 2022; Wang et al., 2023a;b; Yang et al., 2023). More recently,
some works build on pre-trained text-to-image foundation models and adapt them to the new task
using a LoRA module (Chen et al., 2025; Gong et al., 2025; Hu et al., 2022). Although these meth-
ods show impressive results, they still struggle with generalization to unseen tasks. Our approach
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aims to tackle this limitation by avoiding the bottleneck of a single LoRA, opting instead to train a
basis of adapters which can be mixed in order to achieve greater flexibility and better generalization.

Diffusion-based image editing. The unprecedented semantic control offered by large scale text-
to-image diffusion models (Black Forest Labs et al., 2025; Ramesh et al., 2022; Rombach et al.,
2022) has inspired extensive work leveraging them as priors for image editing. Early works add
noise to an image and remove it conditioned on a novel prompt (Meng et al., 2022), though such
methods significantly change image structure. To better preserve the original content, more ad-
vanced approaches manipulate internal feature representations (Hertz et al., 2022; Parmar et al.,
2023; Tumanyan et al., 2022) or consider the denoising trajectory of the model (Deutch et al., 2024;
Hertz et al., 2023a; Huberman-Spiegelglas et al., 2023; Kulikov et al., 2024). Recent works go be-
yond text-only control and incorporate different control modalities for enhanced precision, such as
ControlNet (Cao et al., 2023; Zhang et al., 2023), or attention-sharing (Alaluf et al., 2023; Gal et al.,
2024; Hertz et al., 2023b; Tewel et al., 2024b). Additional work explores editing without text to en-
able modifications that cannot be textually described (Haas et al., 2024; Manor & Michaeli, 2024),
though these methods only allow exploration without direct control of the results. With transformer-
based diffusion models, attention-sharing approaches have gained popularity for maintaining subject
consistency in personalization (Gal et al., 2023; Ruiz et al., 2022) and editing (Cai et al., 2025; Tan
et al., 2025; Tewel et al., 2024a). Among these, Flux.1-Kontext (Black Forest Labs et al., 2025)
was specifically trained for text-based image editing, incorporating input images through extended
attention mechanisms. Our work extends this model’s capabilities to visual analogies.

LoRA and weight bases. LoRA (Hu et al., 2022) is a parameter-efficient fine-tuning method that
modifies a model through a series of low-rank matrices learned on top of the existing weights. Its
success has lead to a range of downstream approaches trying to improve on the original formula. Of
these, a line of work explores the combination of multiple LoRa modules, either to combine them
post-tuning (Shah et al., 2024; Zhang & Xiong, 2025), or as a means of turning an existing model
into a mixture of experts (Feng et al., 2024; Mao et al., 2025; Wu et al., 2024). In visual content
generation, a recent work (Dravid et al., 2024) showed that independently trained LoRA weights
can span a semantic basis, and interpolations between them can be meaningful. Similar observations
were made in language processing, where LoRAs were combined for tasks like text simplification
across different scientific domains (Cheng et al., 2025). We propose to further expand on this idea by
learning a joint basis of LoRAs, along with the router to mix and match between them. Thus, we can
learn a base that is more amenable to interpolations, and enable better downstream generalization.

3 METHOD

3.1 PRELIMINARIES

Low-rank adaption. LoRA (Hu et al., 2022) offers a parameter-efficient alternative to conven-
tional fine-tuning of large models by learning low-rank matrices that adapt the pre-trained weights.
Specifically, starting from a frozen pre-trained weight matrix W0 ∈ Rm×n, the update to the weights
is represented as the product of two learned low-rank matrices ∆W = BA, where B ∈ Rm×r and
A ∈ Rr×n, and the rank r is typically r ≪ min(m,n). This formulation drastically reduces the
number of trainable parameters, while typically maintaining model performance. The final weights
of the model are then updated to W = W0 +

α
rBA, where α is a scaling constant.

Flow models. Flow-based generative models (Albergo & Vanden-Eijnden, 2023; Lipman et al.,
2023; Liu et al., 2023) learn a series of transformations to map samples from one probability distri-
bution x1 ∼ p, to samples from another x0 ∼ q. In the generative context, p is typically taken as
the standard normal distribution, while q is the data distribution in a latent space (Rombach et al.,
2022). Then, these models learn a time-dependent velocity field vθ(zt, t) that models the direction
from a noisy sample towards the data manifold. The noisy sample zt is a linearly interpolated latent
between the two data distributions, zt = (1− t)x0 + tx1. The rectified flow-matching training loss
for a conditional models is then given as:

L = Et∼p(t),x0,x1,y,c

[
∥vθ(zt, t,y, c)− (x1 − x0)∥22

]
. (1)

Here, the velocity field is optionally conditioned on a context image y, and a text-prompt c.
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Figure 2: LoRBA Overview. We first encode a and a′, that describe a visual transformation (e.g.
adding a hat to the man), and b, which should be edited analogously (e.g. adding a hat to the woman)
with CLIP (Radford et al., 2021), and a small learned projection module. The similarity between the
encoded vector and a set of learned keys determines the linear coefficients for combining the learned
LoRAs into a single, mixed LoRA. This mixed LoRA is injected into a conditional flow model (e.g.
Flux.1-Kontext (Black Forest Labs et al., 2025)). Next, we build a 2 × 2 composite image from
{a,a′,b}. The conditional flow model gets this composite image as its input, along with a guiding
edit prompt, and produces a composite image with the edited results b′ in the bottom-right quadrant.

3.2 LORBA

Our objective is to perform visual analogy completion (Hertzmann et al., 2001), where the model
infers a proposed edit from a given pair of images and applies it to a new image. Formally, two
reference images, a,a′ ∈ RD, are related by some unknown transformation T : RD → RD such
that a′ = T (a). Given a new image b ∈ RD, the goal is to generate b′ ∈ RD such that b′ ≈ T (b).

Naive solutions and limitations. Using a pre-trained conditional generative model, such as
FLUX.1-Kontext (Black Forest Labs et al., 2025), existing solutions for this task fine-tune the model
using a single LoRA (Ryu, 2023). For example, given {a,a′,b}, one can construct a composite 2×2
image y = [a,a′;b,b], as shown in the bottom-left part of Fig. 2, which serves as the conditioning
input. The goal of the model is to output x0 = [a,a′;b,b′], such that the bottom-right quadrant
was transformed from b to b′, by training over Eq. (1). While these approaches perform well when
the transformation T is constrained to the training set’s analogy types, they struggle to generalize to
new, diverse transformations. We propose that this arises in part because the single adapter strug-
gles to capture the wide range of analogical relationships, from different style transfers to objects
insertion or layout modifications.

A more advanced solution could then be to span the diverse set of possible analogies using multiple
adapters. In a recent work, Dravid et al. (2024) demonstrated that LoRAs trained for model per-
sonalization can span a semantic basis. Inspired by their work, we propose to learn such a basis for
task LoRAs. A naı̈ve adaptation of Dravid et al. (2024) to the analogy tasks would require us to first
optimize a single adapter for each of N analogy types seen during training, such that each LoRA
module i excels at a different subset of visual edits. Once the specialized adapters are trained, they
can be linearly combined to obtain an equivalent single “novel” adapter

A =
∑

eiAi, B =
∑

eiBi, (2)

where the coefficients ei are optimized for each analogy task through the use of Eq. (1) and {a,a′}.
The model using the combined LoRA is then used to transform b to b′.

However, this approach requires training a large number of models, and a test-time tuning phase for
every new analogy. Indeed, Dravid et al. (2024) required 65, 000 LoRAs to capture the constrained
space of faces, and collecting a significant number of different analogy pairs is more difficult.

Our appraoch. Instead, we propose LoRBA. Rather than training individual LoRAs and combin-
ing them only at inference time, we propose to simultaneously train a basis of LoRA adapters, jointly
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“Add a halo of flowers around this animal’s head” “Convert this image into pop art style”

“Convert this image into mosiac art style” “Convert this image into pencil drawing art style”

“Convert this image into minimalist art style” “Add a halo of fire”

“Turn this photo into a surrealist
floating sculpture”

“Make this person look like a clown”

“Convert the subject to a robot with white…”

Figure 3: LoRBA visual analogy results. The use of a LoRA Basis allows LoRBA to generalize
to a wide varity of new analogy tasks, from adding objects such as a crown of flowers, transfering
specific styles or makeup, and copying pose changes. Please zoom in for more details.

with an encoder that predicts linear-combination coefficients for each input analogy pair. Specifi-
cally, we maintain a set of N rank-r LoRAs, and associate each Ai,Bi pair where i ∈ {1, . . . , N}
with a learnable key vector ki ∈ Rd, as depicted in the right part of Fig. 2. We additionally define
an encoder network based on a frozen, pre-trained ViT (Zhai et al., 2022), E , such as CLIP (Rad-
ford et al., 2021). The encoder network takes as input the conditioning image triplet, {a,a′,b},
passes them through the pre-trained ViT, concatenates the results and project them through a small
learnable projection module P that outputs the results as a query vector q ∈ Rd:

q(a,a′,b) = P
([

E(a), E(a′), E(b)
])

. (3)

Then, based on the conditioning query, we compute N coefficients with

ei(a,a
′,b) =

[
softmax

(
q(a,a′,b)KT

√
d

)]
i

, (4)

where K ∈ Rd×N contains the key vectors {ki}Ni=1 in its columns. The final LoRA combination
follows Eq. (2). and is marked as “Mixed LoRA” in Fig. 2.

We use the same pre-trained encoder across different network layers, but train individual LoRBA
modules, including LoRAs, keys and projection modules for each targeted weight matrix W0 in the
network. This enables capturing different semantic elements for each weight and layer in the model.

4 EXPERIMENTS

Settings. We evaluate our approach using Flux.1-Kontext (Black Forest Labs et al., 2025) as the
pre-trained conditional flow model and CLIP (Radford et al., 2021) as the image encoder backbone.
For our LoRAs Basis, we match the capacity of prior work (Gong et al., 2025), using N = 32
adapters, each of rank r = 4, with d = 128 as the learned key dimension. We project the CLIP-
encoder’s output to Rd using a single fully-connected layer. To save on compute, we set the training

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

“Make this look like it’s growing moss”

“Turn this person into a steampunk portrait”

“Add bioluminescent glowing elements”

“Give this creature a crown of crystals”

Ours
LoRA

VisualCloze
Aadpter
Relation

Transfer
Edit

Figure 4: Comparisons with baseline methods on unseen tasks. Our approach generalizes across
more diverse tasks, and better maintains the visual details of both the subject and the analogy.

resolution to a maximum of 512 × 512 images, resizing on the long-edge of images if necessary.
Additional implementation details are in App. A. We compare LoRBA to four baselines: A standard
LoRA of similar total parameter capacity (equivalent to LoRBA with N = 1, r = 128), trained on
top of Flux.1-Kontext, as well as three prior visual analogy methods based on Flux.1-Dev (Relation-
Adapter (Gong et al., 2025), VisualCloze (Li et al., 2025) and EditTransfer (Chen et al., 2025)).

Dataset. We train our model using the public Relation252k (Gong et al., 2025) set, which con-
tains 16K analogy image pairs across 208 tasks. Since the test set of Relation252k is not publicly
available, we create a custom validation set to evaluate visual analogies. Specifically, we focus on
analogies which were not found in the training set, which we create in the following manner: First,
we collect over 100 photos from Unsplash1 covering diverse concepts from three categories: ani-
mals, persons, and general objects. Next, we create analogy pairs with a focus on two categories:
transformations which are in-domain for the base text-to-image model, and transformations that are
not. For in-domain transformations, we first use an LLM to summarize the training prompts for each
task in the training-set of Relation252k, yielding 208 representative prompts. Next, we ask the LLM
to generate novel prompts that differ from the training set’s prompts and manually verify that they
match the given concept categories. We filter prompts on which Flux.1-Kontext fails to produce a
meaningful edit, and further randomly select 15 prompts per concept category from the remainder.
We generate three random images per prompt, obtaining a total of 135 analogy pairs. For out-of-
domain analogies, we collect 18 community LoRAs for Flux.1-Kontext from HuggingFace, which
were trained to enable edits that the base model failed with. We use these pre-trained LoRAs, and
repeat the previous random sampling strategy to get 135 analogy pairs. Finally, we randomly select
for the input images b two images from the matching concept category with a similar aspect ratio,
cropping them to the exact size of a and a′. In total, our set contains 540 analogy triplets across 90
tasks and 3 concept categories. Additional details on our validation set can be found in App. A.

1https://unsplash.com/

6

https://unsplash.com/


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.8 5.0 5.2 5.4 5.6 5.8

Edit Accuracy (VLM) −→

5

6

7

8
P

re
se

rv
at

io
n

(V
L

M
)
−→

0.05 0.10 0.15 0.20

CLIP Directional −→

0.3

0.4

0.5

←
−

L
P

IP
S

Ours r = 128 LoRA r = 256 LoRA RelationAdapter EditTransfer VisualCloze

Figure 5: Quantitative comparisons. (left) Accuracy of the applied edit and preservation of b
in b using Gemma-3 (Team et al., 2025). Top right is better. (right) CLIP directional similarity
and LPIPS between b′ and b. Bottom-right is better. Our method pushes the Pareto front of edit
accuracy-preservation, achieving higher edit accuracy while strongly preserving the input image.

0 50 100
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User
Study

Pairwise
VLM
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69.4 30.6

Ours Vs. Edit Transfer
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Win Rate
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60.7 39.3

Ours Vs. RelationAdapter
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69.1 30.9

71.1 28.9

Ours Vs. VisualCloze

0 50 100
Win Rate

57.6 42.4

59.8 40.2

Ours Vs. LoRA r=128

Figure 6: Pairwise image comparisons. We compare LoRBA to 4 baselines on overall edit quality
preference via both a user study and using a VLM. LoRBA produces edits that are favored by both.
Error bars are the 68% Wilson score interval.

4.1 QUALITATIVE EVALUATIONS

Figures 1 and 3 include results of analogy-based editing using LoRBA. Notably, the model general-
izes to new tasks covering style transfer, background replacements, object insertion, object displace-
ment and more. In Fig. 4 we show qualitative comparisons of our method against the baselines.
Notably, existing approaches either struggle with maintaining the content of the original image, or
fail on some of the tasks. Our method meanwhile shows greater adaptability and succeeds in a wider
range of unseen tasks. Additional results appear in App. B.

4.2 QUANTITATIVE EVALUATIONS

Automated evaluation metrics. For quantitative evaluations, we follow prior work (Chen et al.,
2025; Gu et al., 2024; Song et al., 2024) and evaluate performance across standard metrics such as
LPIPS (Zhang et al., 2018) between the source and generated image, and CLIP directional similarity
between both analogy pairs. In addition, we build on recent image editing work (Huang et al.,
2025), which demonstrates that VLMs often better correlate with human preference than CLIP-
based methods, and implement a VLM-based assessment protocol. Specifically, we conduct two
VLM-based experiments: In the first, we provide Gemma-3 (Team et al., 2025) with {a,a′,b,b′},
and ask the VLM to evaluate the quality of results on two criteria: consistency with the source image,
and accuracy of the applied transformation relative to the reference transformation. We name these
metrics as Preservation (VLM) and Edit Accuracy (VLM), respectively. As a second quality metric,
we take a 2-alternative-forced-choice design (2AFC). We show Gemma-3 {a,a′,b}, the b′ result
of our model, and the b′ result generated by one baseline, and ask it to select the image that better
applies the analogy. We report this metrics as Pairwise VLM. The prompts given to the VLM and
further details appear in App. A. The results are shown in Fig. 5 and Fig. 6. When considering
preservation and editing accuracy tradeoffs (Fig. 5), our model pushes the Pareto front, achieving
high edit accuracy while better maintaining the input’s structure and appearance.
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Table 1: Ablation study of LoRBA for different hyperparameter and architecture choices

Model Pres. ↑ Acc. ↑ LPIPS ↓ CLIP Pairwise VLM (%) ↑
(VLM) (VLM) Dir. ↑ LoRA r = 128 ET VC RA

LoRBA (full) 7.88 5.87 0.30 0.21 59.8 69.4 71.1 60.7
+ r = 16 8.17 4.78 0.17 0.10 51.9 60.9 64.4 50.2
+ r = 16, N = 8 7.85 5.36 0.27 0.181 59.8 70.7 69.3 59.3
+ Tanh 7.97 4.41 0.16 0.07 51.9 55.4 55.2 46.7
+ 2× 2 Inp. 7.94 5.65 0.27 0.19 62.6 73.0 71.1 55.6
+ SL2 7.85 5.73 0.30 0.20 58.9 68.9 75.9 56.3
+ SL2, 2× 2 Inp. 7.9 5.63 0.28 0.19 59.8 74.3 72.4 61.1

User study. Beyond automated metrics, we also conduct a two-alternative forced choice user
study. We show each user a reference pair (a,a′), an input image b, and two results (one from
our model and one of a random baseline). Users are asked to select their preferred editing result. In
total, we collected responses from 33 users covering 45 image pairs. The results (Fig. 6) align with
the automated metrics, showing that users favor our approach over all baselines.

All in all, our experiments demonstrate that our approach can meaningfully improve on the existing
state of the art, and better generalize to unseen tasks.

4.3 ABLATIONS

We next study the importance of different components of LoRBA.

Basis of LoRAs advantages. While our approach showed improved performance compared to a
standard LoRA, it introduces additional parameters via projection modules and learned keys. Hence,
we first validate LoRBA’s performance against a LoRA with higher capacity, of r = 256. As shown
in Fig. 5, naı̈ve parameter addition does not strictly correlate with better performance.

Capacity effect. Similarly, we compare LoRBA across modified capacities in both basis sizes
N and ranks r. Specifically, we compare our original variation ({N = 32, r = 4}), with
{N = 16, r = 16} and {N = 32, r = 16}. We use the same evaluation setup as the quantita-
tive comparisons. Results are reported in Tab. 1. Reducing the basis size while maintaining the
capacity (r = 16, N = 8) leads to a slight drop in performance. This highlights the importance of a
large basis for generalization. Similarly, a naı̈ve increase in rank can hamper editability, which we
hypothesize to be a consequence of the data, leading to increased overfitting.

Similarity normalizing function. The normalization function choice in Eq. (4) can also affect the
learned basis. For example, the used softmax is bound to [0, 1], hence it cannot result in negative
coefficients for any LoRA. An alternative approach is to use Tanh, which is instead bound to [−1, 1].
In practice, we find it to drastically underperform. We propose that this may be due to Tanh allowing
the model to compose mixed LoRAs with much greater norms, possibly taking the model too far out
of domain. However, we leave further investigation of activations to future work.

Layout of encoder input. In our approach, we elected to separately encode each of the condition-
ing analogy images using CLIP, and concatenate their representations. Our intuition is that CLIP
requires resizing the image to 224 × 224, which can severely constrain the level of detail in each
quadrant of the 2x2 grid that we provide Flux as a context. Moreover, concatenated features could
allow the model to better understand which encoding represents each conditioning image (i.e. a, a′
and b), allowing it to better reason over the analogy. We verify this experimentally by comparing
to a version that provides CLIP with just the context image (the 2 × 2 grid). As seen in Tab. 1, this
diminishes results, mainly decreasing the editing-accuracy metrics.

Alternative image encoders. Although our approach uses CLIP (Radford et al., 2021) as an
encoder backbone, we validate our robustness to alternative, common choices, and specifically
SigLIP2 (Tschannen et al., 2025). The results in Tab. 1 indicate that changing the encoder does
not significantly alter our performances. We leave further tuning of encoders to future work.
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“Give this creature a crown of crystals”

“Turn this person into a vintage poster design”

Ours VisualCloze RelationAadpter Edit Transfer

Figure 7: Effect of different reference analogy pairs. LoRBA directly leverages the analogy pair
to understand the details of the proposed task, applying an edit that is beyond just text-based editing
based on the given prompt. For example, when the prompt is “Give this creature a crown of crystals”,
the analogy context passes information on the amount and color of the crystals.

Importance of prompts and reference images. We follow existing baselines and use prompts
to augment the model’s understanding. Since our goal is analogy based editing, and not simply
text-based modification, we verify that our model is indeed affected by the choice of analogy pair.
Specifically, we examine how the same input image, b, reacts to different reference pairs {a,a′}
under the same editing prompt. As can be seen in Fig. 7, the reference pair dictates the details of the
analogy task, and particularly the visual details that are not captured by the prompts. For example,
it can copy the text of the analogy image, adapt its specific style, or match the design and colors of
the given crown. In comparison, we observe that some of the baselines are insensitive to the analogy
pair, instead relying almost entirely on the prompt. As this experiment demonstrates, our approach
has learned to perform analogy-based editing, and to a greater degree than the existing baselines.

5 DISCUSSION

We introduced LoRBA, a modular framework for visual analogy completion that learns a basis of
LoRA adapters and dynamically composes them using a shared encoder conditioned on the input
analogy. Our approach addresses the limitations of single-adapter fine-tuning or multi-adapters op-
timization at inference time by enabling flexible, layer-specific adaptations to diverse and unseen
transformations. Through structured composition, we showed how LoRBA outperforms and gener-
alizes better than competing naive LoRA-based methods across various visual analogy tasks. How-
ever, this generalization is not without limits. For example, LoRBA may still struggle with tasks
that are significantly different from the training corpus. While our focus in this work is on analogy
completion, the LoRA-basis approach could be broadly applicable, possibly replacing LoRAs in
other tasks where generalization is needed. We hope to explore this direction in future work.
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REPRODUCIBILITY STATEMENT

Our code will be published upon acceptance, including all training and evaluation scripts. We detail
all needed implementation details for reproducing the results and evaluations in App. A.

ETHICS STATEMENT

This work aims to advance the field of image editing and in particular image editing via analogies.
While our method enables flexible visual transformation modeling, we acknowledge the potential for
misuse in generating misleading or deceptive content. We use controlled analogy tasks and do not
deploy our method in an open-ended generative settings and unsafe transformations. Nevertheless,
users might use our methods to edit images of others into misleading context without permission,
which is a common problem with regard to the entire image editing field. We therefore believe
a crucial step in the field is developing reliable methods for automatic detection of AI-generated
content, and specifically wether AI-methods were used in editing of images.
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A EXPERIMENTAL DETAILS

A.1 IMPLEMENTATION DETAILS

In all our experiments, we train for 10K steps on 1 H100 GPU, setting 8-bit AdamW (Loshchilov
& Hutter, 2019) as the optimizer with a learning rate of 10−3, β1 = 0.9, β2 = 0.99, a weight decay
value of 0.05, and bfloat16 mixed-precision training. We enable gradient checkpointing, and use a
batch size of 6 for all experiments, except for when r = 16, N = 32 where the batch size is set to 4.
As for the encoders, the CLIP checkpoint we use is openai/clip-vit-large-patch14. For
the SigLIP2 version in the ablations, we test google/siglip2-base-patch16-224. Both
output a vector in R768.

A.2 INFERENCE DATASET

All images from Unsplash are free to use under the Unsplash license2. To simulate in-domain
prompts, we use GPT-4o (OpenAI, 2024) and Claude Sonnet 4 (Anthropic, 2025) to summarize the
training prompts of Relation252k (Gong et al., 2025) as described in Sec. 4, and generate novel
prompts. The 15 randomly selected prompts per concept category (animals, objects, and persons)
appear in Tab. 2. The 18 pre-trained LoRA adapters are sourced from HuggingFace3, and cover a
range of transformation types such as style transfer, object modification, and artistic reinterpretation.
Specifically, we use the following community LoRAs, with their provided trigger prompt:

• day-dream/MechAnything-Kontext-Dev-Lora

• drbaph/Fluffy-kontext-LoRA

• fal/3D-Game-Assets-Kontext-Dev-LoRA

• fal/Cubist-Art-Kontext-Dev-LoRA

• fal/Gouache-Art-Kontext-Dev-LoRA

• fal/Minimalist-Art-Kontext-Dev-LoRA

• fal/Mosaic-Art-Kontext-Dev-LoRA

• fal/Pencil-Drawing-Kontext-Dev-LoRA

• fal/Plushie-Kontext-Dev-LoRA

• fal/Pop-Art-Kontext-Dev-LoRA

• fal/Watercolor-Art-Kontext-Dev-LoRA

• gokaygokay/Bronze-Sculpture-Kontext-Dev-LoRA

• gokaygokay/Low-Poly-Kontext-Dev-LoRA

• gokaygokay/Marble-Sculpture-Kontext-Dev-LoRA

• gokaygokay/Oil-Paint-Kontext-Dev-LoRA

• Kontext-Style/Clay Toy lora

• Kontext-Style/Ghibli lora

• Kontext-Style/Paper Cutting lora .

To match between a,a′ and b images of different sizes, we only choose b images with an original
aspect ratio distanced 0.15 from the aspect ratio of a and a′, and crop b to a’s aspect ratio. The
images are resized to the same size with a maximum long edge of 512 before entering Flux.1-
Kontext.

2https://unsplash.com/license
3https://https://huggingface.co/
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Table 2: List of prompts generated for the inference sets

Category Prompt
Animals Add a collar with a bell
Animals Add a mountainous background
Animals Give this animal clockwork mechanical parts
Animals Add a flowing mane
Animals Add camouflage patterns
Animals Give this animal ethereal ghost-like transparency
Animals Add a flowing river background
Animals Add metallic golden fur highlights
Animals Give this animal translucent fairy wings
Animals Add a halo of fire
Animals Give this animal a fantastical set of armor
Animals Give this creature a crown of crystals
Animals Add a halo of flowers around this animal’s head
Animals Give this animal bioluminescent markings
Animals Make this creature look sleepy
Objects Add a swirling galaxy background
Objects Render the object entirely as if it’s made from hand-knitted or hand-crocheted yarn
Objects Add bioluminescent glowing elements
Objects Turn this into a candy or confectionery version
Objects Add flowing fabric or silk textures
Objects Turn this into a steampunk mechanical design
Objects Add intricate filigree patterns
Objects Turn this into a vintage advertisement poster
Objects Give this object a coat of rust
Objects Turn this photo into a cross-section diagram
Objects Make this look ancient and archaeological
Objects Turn this photo into a surrealist floating sculpture
Objects Make this look like it’s growing moss
Objects Turn this photo into an architectural rendering
Objects Make this look like it’s made of clouds
Persons Add a cape or cloak
Persons Add elaborate hairstyling with ornaments
Persons Make this person look heroic
Persons Add a serene, forested background
Persons Add golden hour lighting to this portrait
Persons Make this person look like a clown
Persons Add a swirling vortex background
Persons Add natural outdoor lighting to this portrait
Persons Make this person look like royalty
Persons Add body paint or decorative patterns
Persons Add temporary tattoos
Persons Turn this person into a holographic projection
Persons Add elaborate eye makeup
Persons Make this person look ethereal
Persons Turn this person into a steampunk portrait

A.3 VLM BASED EVALUATION

Part of our automated evaluation metrics include the use of Gemma-3 (Team et al., 2025) as a VLM
to evaluate our results. We use two VLM-based experiments. In the first, we ask the VLM to
evaluate our results on two criteria: consistency with the source image b and accuracy of the applied
transformation relative to the reference transformation described by {a,a′}. For this, we provide
Gemma-3 with {a,a′,b,b′}, and the following prompt:
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You are given 4 images: A (original image), A’ (edited version
of A), B (another original image), and B’ (an output of an editing
method). A, A’ and B are reference images that are given to some
editing method in order to generate B’. The method tries to infer
the transformation that A underwent to produce A’, and then tries
(maybe unsuccessfully) to apply the exact same transformation to B
- in order to generate B’. Your task is to evaluate the resulting
B’: Was the same transformation applied well?
Specifically, assess B’ under two metrics, editing accuracy, and
consistency with the original image B, 1-10 integers only:
1) editing accuracy: Evaluate how closely B’ applies the
transformation seen from A to A’. Are there missing elements, are
there redundant elements? Quantify the precision of the editing.
2) consistency: Asses how well the edited image B’ maintains the
context of the original image B. Does it preserve the identity,
objects, and layout in B that did not require a change, based on
the infered transformation from A to A’?
Consider in your evaluations other visual factors such as the
localization of the edits, existence of redundant elements,
style/strength/magnitude/colors of changes. First, describe in
detail what the transformation from A to A’. Then describe what
elements of it are present or missing in B’, detailing precisely
what’s wrong regarding each metric.
Then, return a strict JSON with this scheme:
{"metrics":{"accuracy":<1-10>,"consistency":<1-10>},
"explanation":"the reasoning you described above"}.
The JSON is parsed automatically, and we report the numeric values as Preservation (VLM) and
Edit Accuracy (VLM).

In the second quality metric, we take a 2-alternative-forced-choice design (2AFC). We show
Gemma-3 five images: {a,a′,b}, the b′ result of our model, and the b′ result generated by one
baseline, and ask it to select the image that better applies the analogy via the following prompt:

You are given 5 images: A (original image), A’ (edited version
of A), B (another original image), and 2 B’ images (outputs of
2 editing methods). A, A’ and B are reference images that are
given to some editing method in order to generate B’. The methods
try to infer the transformation that A underwent to produce A’,
and then tries (maybe unsuccessfully) to apply the exact same
transformation to B - in order to generate B’.
Your task is to evaluate the resulting B’s: In which of the two
methods was the same transformation applied well?
Specifically, assess B’ under two metrics, editing accuracy, and
consistency with the original image B, 1-10 integers only:
1) editing accuracy: Evaluate how closely B’ applies the
transformation seen from A to A’. Are there missing elements, are
there redundant elements? Quantify the precision of the editing.
2) consistency: Asses how well the edited image B’ maintains the
context of the original image B. Does it preserve the identity,
objects, and layout in B that did not require a change, based on
the infered transformation from A to A’?
Consider in your evaluations other visual factors such as he
localization of the edits, existence of redundant elements,
style/strength/magnitude/colors of changes.
First, describe in detail what the transformation from A to A’.
Then describe what elements of it are present or missing in B’1
and B’2, detailing precisly what’s wrong regarding each metric.
Then, return a strict JSON with this scheme: {"better":<1 or
2>,"explanation":"the reasoning you described above"}
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The JSON is parsed and we report the resulting winrates as pairwise VLM.

B ADDITIONAL RESULTS

We provide additional qualitative results of our method in Fig. 8, as well as more comparisons of
our method to the 4 baselines from Sec. 4 in Fig. 9.

“Turn this into a steampunk mechanical design”

“Turn this image into the Clay_Toy style”

“Convert this image into watercolor art style”

“Convert this image into watercolor art style”

“Convert this image into watercolor art style”

“Convert this image into pencil drawing art style”

“Add a swirling galaxy background”

“Add a serene, forested background”

“Convert this image into bronze version”

“Convert this image into watercolor art style”

“Turn this person into a steampunk portrait”

“Turn this into image into the Ghibli style”

Figure 8: LoRBA visual analoy results. The use of a LoRA Basis allows LoRBA to generalize to
a wide varity of new analogy tasks, from changing given images to certain styles such as clay toys
or bronze sculptures, changing the backgrounds, or changing the cloths of the person. Please zoom
in for more details.

C LLM USAGE STATEMENT

LLMs such as GPT-4o (OpenAI, 2024), Claude (Anthropic, 2025) and CoPilot (Microsoft, 2025)
assisted during the writing of this paper to refine the clarity and fluency of the text. In addition, as
described in App. A, GPT-4o and Claude assisted in summarizing the prompts of Relation252K, as
well as for generating novel prompts for evaluation. The Gemma-3 (Team et al., 2025) VLM was
also used in our work, for evaluating the results, as described in Sec. 4 and App. A.
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“Give this animal a fantastical set of armor”

“Turn this photo into a surrealist floating sculpture”

“Turn this image into the Clay_Toy style”

“Convert this image into minimalist art style”

“Convert this image into watercolor art style”

Ours
LoRA

VisualCloze
Aadpter
Relation

Transfer
Edit

Figure 9: Comparisons with baseline methods on unseen tasks. Our approach generalizes more
across diverse tasks, and better maintains the visual details of both the subject and the analogy.
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