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ABSTRACT

While overparameterization is known to benefit generalization, its impact on Out-
Of-Distribution (OOD) detection is less understood. This paper investigates the
influence of model complexity in OOD detection. We propose an expected OOD
risk metric to evaluate classifiers confidence on both training and OOD samples.
Leveraging Random Matrix Theory, we derive bounds for the expected OOD risk
of binary least-squares classifiers applied to Gaussian data. We show that the
OOD risk depicts an infinite peak, when the number of parameters is equal to
the number of samples, which we associate with the double descent phenomenon.
Our experimental study on different OOD detection methods across multiple neu-
ral architectures extends our theoretical insights and highlights a double descent
curve. Our observations suggest that overparameterization does not necessarily
lead to better OOD detection. Using the Neural Collapse framework, we provide
insights to better understand this behavior. To facilitate reproducibility, our code
will be made publicly available upon publication.

1 INTRODUCTION

In recent years, large neural networks have seen increased use in Machine Learning due to their
impressive generalization properties (Brown, 2020; Dubey et al., 2024). While empirical evidence
suggests that rich machine learning systems obtain near-optimal generalization results when trained
to interpolate training data (Zhang et al., 2021), the classical bias-variance trade-off theory (Geman
et al., 1992) suggests that such models overfit and generalize poorly. Indeed, the classical literature
describes the generalization error with respect to the model complexity as a U-shaped curve and sug-
gests finding a model between underfitting and overfitting, i.e., a model rich enough to express un-
derlying structure in the data and simple enough to avoid fitting spurious patterns. To bridge the gap
between the classical theory and the modern practice, Belkin et al. (2019) introduced the concept of
“double descent” within a unified generalization error curve. In this setting, for “small” model com-
plexities, the generalization error curve exhibits the U-shaped curve described by the bias-variance
trade-off. However, when the model complexity is higher than the interpolation threshold, i.e., when
the model is rich enough to fit the training data, increasing the model complexity leads to a second
decrease in the generalization error. A popular intuitive explanation of this phenomenon is that by
considering large model complexities that contain more candidate predictors compatible with the
training data, we are also able to find interpolating functions that are “simpler” and are smoother to
follow a form of Occam’s razor (Belkin et al., 2019).

Although the double descent phenomenon provides valuable insights to understand generalization of
rich models on unseen data, its understanding on Out-Of-Distribution (OOD) detection has received
less attention. OOD detection addresses a distinct challenge in deep neural networks (DNNs): their
tendency to make high-confidence predictions, even for inputs that differ significantly from the
training data. While generalization focuses on the model’s ability to classify data that has shifted,
OOD detection emphasizes the model’s capacity to recognize when a shift is too large and refrain
from confident predictions. In real-world applications, reliable OOD detection is crucial to ensuring
the safety and reliability of AI systems. This includes fields such as healthcare (Schlegl et al., 2017),
industrial inspection (Paul Bergmann & Stege, 2019), and autonomous driving (Kitt et al., 2010).
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Therefore, understanding the influence of the model complexity on OOD detection is crucial for
model selection in critical tasks.

While overparameterization is known to benefit generalization, its effects on OOD detection still
remain limited. In this work, we investigate the role of the model complexity in OOD detection. In
particular, we highlight a double descent phenomenon similar to the one observed for generalization
error. To the best of our knowledge, the double descent phenomenon has never been observed in
OOD detection. The results of our theoretical and empirical analyses are outlined below.

Contributions. We make the following contributions, taking a step towards a better theoretical
and empirical understanding of the influence of model complexity on OOD detection:

1. We propose an expected OOD risk metric to evaluate classifiers confidence on both training
and OOD samples.

2. Using Random Matrix Theory, we derive bounds for both the expected risk and OOD risk
of binary least-squares classifiers applied to Gaussian data with respect to the model com-
plexity. We show that both risks exhibit an infinite peak, when the number of parameters is
equal to the number of samples, which we associate with the double descent phenomenon.

3. We empirically observe a double descent phenomenon curve in various OOD detection
methods and across multiple neural architectures, including transformer-based (ViT, Swin)
and convolutional-based models (ResNet, CNN).

4. We also observe that OOD detection in the overparametrized regime is not guaranteed to be
better than in the underparametrized regime. Using the Neural Collapse framework Papyan
et al. (2020), we propose to better explain this architecture-dependant improvement on
OOD detection with overparametrization.

To facilitate reproducibility, our code will be made publicly available upon publication.

2 RELATED WORK

OOD Detection. The OOD detection research focuses on two primary directions: supervised and
unsupervised approaches. We will focus on latter ones, also called post-hoc methods. These can
be categorized based on the essential feature used for the scoring function. First, the logit- or
confidence-based methods leverage network logits to derive a confidence measure used as an OOD
scoring metric (Hendrycks & Gimpel, 2017; DeVries & Taylor, 2018; Liu et al., 2020; Huang &
Li, 2021b; Hendrycks et al., 2022). A common baseline for this methods is the softmax score
(Hendrycks & Gimpel, 2017), which simply uses the model softmax prediction as the OOD score.
Then, the Energy (Liu et al., 2020) elaborates on it by computing the the LogSumExp on the log-
its, thus offering empirical and theoretical advantages over the Softmax confidence score. Second,
feature-based and hybrid methods (Lee et al., 2018b; Wang et al., 2022; Sun et al., 2022; Ming et al.,
2023; Djurisic et al., 2023; Ammar et al., 2024) exploit the model’s final representation to derive the
scoring function. Mahalanobis (Lee et al., 2018b) estimates density on ID training samples using
a mixture of class-conditional Gaussians based on the feature distributions. NECO (Ammar et al.,
2024), on the contrary, leverages the geometric properties of Neural Collapse to construct a scoring
function based on the relative norm of a sample within the subspace defined by the Simplex Equian-
gular Tight Frame (ETF) formed by the ID data. Hybrid methods are characterized by the fact that
they can be augmented by using the logits as weighting factors on the scoring metrics defined on the
features.

Double Descent. The double descent risk curve was introduced by Belkin et al. (2019) to explain
the good performance observed in practice by overparameterized models (Zhang et al., 2021; Belkin
et al., 2018; Nakkiran et al., 2021) and to bridge the gap between the classical bias-variance trade-
off theory and modern practices. Theoretical investigation into this phenomenon mainly focuses on
various linear models in both regression and classification problems through the Random Matrix
Theory (Louart et al., 2018; Liao et al., 2020; Jacot et al., 2020; Derezinski et al., 2020; Kini &
Thrampoulidis, 2020; Mei & Montanari, 2022; Deng et al., 2022; Bach, 2024; Brellmann et al.,
2024), techniques from statistical mechanics (d’Ascoli et al., 2020; Canatar et al., 2021), the VC
theory (Lee & Cherkassky, 2022; Cherkassky & Lee, 2024), or novel bias-variance decomposition
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in deep neural networks (Yang et al., 2020). The double descent phenomenon has also been observed
in experiments with popular neural network architectures (Belkin et al., 2019; Nakkiran et al., 2021).
In addition to depending on the model complexity, the double descent phenomenon also depends on
other dimensions such as the level of regularization (Liao et al., 2020; Mei & Montanari, 2022),
the number of epochs (Nakkiran et al., 2021; Stephenson & Lee, 2021; Olmin & Lindsten, 2024),
or the data eigen-profile (Liu et al., 2021a). Finally, the theoretical background on double descent
and benign overparametrization developed by Bartlett et al. (2020) inspired subsequent works that
focused on generalization under dataset shifts (Tripuraneni et al., 2021; Hao et al., 2024; Kausik
et al., 2024; Hao & Zhang, 2024). It is important to note that these dataset shifts concern scenarios
where the model can generalize, e.g., the class labels are the same as in the training. This studies do
not address the issue of presenting the model with samples that differ significantly beyond the point
of generalization, i.e., OOD detection.

3 PRELIMINARIES

Notations. For a real vector v, we denote by ∥v∥2 the euclidean norm of v. When the matrix A is
full rank, we denote by A+ the Moore-Penrose inverse of A. We depict by [d] := {1, . . . , d} the set
of the d first natural integers. For a subset T ⊆ [d], we denote by T c := [d] \ T its complement set.
For a subset T ⊆ [d], a d-dimensional vector v ∈ Rd and a n× d matrix A =

[
a(1)| . . . |a(n)

]T ∈
Rn×d, we use vT = [vj : j ∈ T ] to denote its |T |-dimensional subvector of entries from T
and AT =

[
a
(1)
T | . . . |a(n)

T
]T

to denote the n × |T | design matrix with variables from T . We
use λmin(A) and λmax(A) to depict the minimum and maximum eigenvalues of A, respectively.
N (0, Id) denotes the standard multivariate Gaussian distribution of d random variables.

Supervised Learning Problems. In supervised learning, we employ training dataset D :={
(x1, y1), · · · , (xn, yn)

}
of n independent and identically distributed (i.i.d.) samples drawn from

an unknown distribution PX ,Y over X × Y . Using samples from the dataset D, the objective is to
find a predictor f̂ : X → Y among a class of functions F to predict the target y ∈ Y of a new
sample x ∈ X . In particular, given a loss function ℓ : Y × Y → R, the objective is to minimize the
expected risk (or loss) defined, for all f̂ ∈ F , as:

R(f̂) = E(x,y)∼PX ,Y

[
ℓ
(
f̂(x), y

)]
=

∫
X×Y

ℓ
(
f̂(x), y

)
dPX ,Y(x, y). (1)

Typically, we choose the mean-squared loss ℓ(f̂(x), y) =
(
f̂(x) − y

)2
for regression problems or

the zero-one loss ℓ(f̂(x), y) = 1f̂(x)̸=y for classification problems. We denote the optimal predictor
by f∗ := argminf∈F R(f). Since the distribution PX ,Y is unknown in practice, we instead try to
minimize an empirical version of the expected risk based on the dataset D :=

{
(xi, yi)

}n

i=1
and

defined as

Remp(f̂) =
1
n

n∑
i=1

ℓ
(
f̂(xi), yi

)
. (2)

Out-of-Distribution Detection. In machine learning problems, we usually assume that the test
data distribution is similar to the training data distribution (the closed-world assumption). As this is
not the case in real-world applications, the Out-of-Distribution (OOD) detection aims to flag inputs
that significantly deviate from the training data to prevent unreliable predictions. In the following,
we denote by POOD

X ,Y a distribution over X ×Y that differs from the training distribution PX ,Y . OOD
data typically involve a semantic shift and represent concepts or labels not seen during training. A
popular class of OOD detection techniques relies on the definition of a scoring function s(· ; f̂),
which uses the probability predictions of the classifier f̂(·) as scores to flag an instance x as OOD
when the score s(x; f̂) is below a certain threshold λ. A common approach is to use the Maximum
Softmax Probability that returns the higher softmax probabilities of the predictor f̂(·) as a scoring
function to measure the prediction confidence.
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4 DOUBLE DESCENT FOR THE BINARY CLASSIFICATION IN GAUSSIAN
COVARIATE MODEL

In this section, we introduce the expected OOD risk metric and we present our main theoretical
results on binary least-squares classifiers applied to Gaussian data. We assume that X ⊆ Rd and
Y := [0, 1]. Let ϕ : R → Y be a mapping, we denote by Fd :=

{
f : X → Y,x 7→ ϕ(xTw) | w ∈

Rd
}

the class of functions considered in this study.

4.1 SYSTEM MODEL

Gaussian Covariate Model & Binary Classification. We assume we have a training dataset D :={
(xi,yi)

}n

i=1
of n i.i.d samples drawn from a Gaussian covariate model, i.e., from a distribution

PX ,Y over X ×Y; where xi ∼ N (0, Id) and yi is a noisy response of xi with respect to the function
f∗ : x 7→ ϕ(xTw∗) that is defined as

yi = f∗(xi) + ϵi = ϕ(xT
i w

∗) + ϵi,

with ϵi ∼ N (0, σ2) and σ > 0. The objective is to find a classifier f̂(·) ∈ Fd that fits f∗(·). Without
loss of generality, this problem can be interpreted as a binary classification problem where f∗(·)
returns a probability. Let X = [x1, . . . ,xn]

T ∈ Rn×d be the data matrix containing the n samples
xi ∈ Rd as column vectors and y = [y1, . . . ,yn]

T ∈ Rn be the target vector of probabilities. Given
the loss function ℓ : (ŷ, y) 7→ (ŷ − y)2, in order to find w∗ (and thus f∗(·)), we want to minimize
the empirical risk Remp : Fd → R defined in equation 2 as

Remp(f̂) =
1
n

n∑
i=1

ℓ
(
f̂(xi),yi

)
= 1

n

n∑
i=1

(
ϕ(xT

i w)− yi

)2
= 1

n∥ϕ(Xw)− y∥22. (3)

Least-Squares Binary Classifiers. To analytically solve equation 3, we assume that n ≪ d and
that the data matrix X is full row rank. We consider a particular selection of classifiers F̂d :=

{
f̂T :

x 7→ ϕ(xT ŵ) ∈ Fd | T ⊆ [d]
}

, in which f̂T ∈ F̂d uses a subset T ⊆ [d] of features that fits
coefficients ŵ ∈ Rd as

ŵT = X+
T y and ŵT c = 0. (4)

Out-of-Distribution Risk. To measure the ability of binary classifiers f̂(·) ∈ F̂d to provide pre-
diction confidence on samples drawn from both the training distribution PX ,Y and the OOD distri-
bution POOD

X ,Y , we introduce an OOD risk function similar to the expected risk defined in equation 1.
Let f∗

OOD : X → Y be the mapping chosen from Fd such that f∗
OOD(x) is close to 0.5 when the

sample x is more likely drawn from the POOD
X ,Y and close to f∗(x) when x is more likely drawn from

PX ,Y . We define the noisy response z(x) to a given sample x ∈ X for the mapping f∗
OOD(·) as:

z(x) = 2f∗
OOD(x)− 1 + ϵ′ = 2ϕ(xTw∗

OOD)− 1 + ϵ′, (5)

where ϵ′ ∼ N (0, σ′) and σ′ > 0. To measure whether prediction confidences of a binary classifier
f̂(·) can be used for defining an OOD scoring function, we define the Out-of-Distribution Risk
ROOD : Fd → R as:

ROOD(f̂) = E(x,·)∼PX ,Y

[
(2f̂(x)− 1− z(x))2

]
+ E(x,·)∼POOD

X ,Y

[
(2f̂(x)− 1− z(x))2

]
, (6)

which depicts the expected risk of the predictor 2f̂(·)− 1 on the loss function ℓ : (ŷ, y) 7→ (ŷ− y)2

and distributions PX ,Y and POOD
X ,Y .

Remark 4.1. From equation 5, we have z(x) ≈ ±1+ ϵ′if x ∈ PX ,Y and z(x) ≈ ϵ′if x ∈ POOD
X ,Y . A

low value for ROOD(f̂) indicates thus two aspects: (i) the classifier f̂(·) is confident on predictions
over the training distribution PX ,Y , which corresponds to a low E(x,·)∼PX ,Y

[
(2f̂(x)− 1− z(x))2

]
;

and/or (ii) the classifier f̂(·) is not confident on predictions over the distribution POOD
X ,Y , which is

4
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reflected by a low E(x,·)∼POOD
X ,Y

[
(2f̂(x) − 1 − z(x))2

]
. In particular, ROOD(f̂) is minimized when

logits are maximally confident on ID samples (only one logit is non-zero) and uniformly distributed
on OOD samples.

Remark 4.2. Note that the OOD risk function ROOD(·) defined in equation 6 can be extended to
multi-class classifiers f̂(·) using the softmax function as

ROOD(f̂) = E(x,·)∼PX ,Y

[
(∥f̂(x)∥∞ − z(x))2

]
+ E(x,·)∼POOD

X ,Y

[
(∥f̂(x)∥∞ − z(x))2

]
,

where z(x) ≈ 1 + ϵ′if x ∈ PX ,Y and z(x) ≈ 1
C + ϵ′if x ∈ POOD

X ,Y , C depicts the number of classes,
and ∥·∥∞ denotes the infinity norm.

In order to use the Random Matrix Theory, we make the following assumption on the activation
function ϕ : R → Y .

Assumption 4.1. The activation function Φ(·) is strictly monotonically non-decreasing and its
derivative Lipschitz continous.

Remark 4.3. This assumption holds for many of the activation functions traditionally considered in
neural networks, such as sigmoid functions.

4.2 PREDICTION RISK

Leveraging the Random Matrix Theory and following the same line of arguments of Theorem 1 in
Belkin et al. (2020), we derive bounds for the risk of the subset of classifiers defined in F̂d with
equation 4 (see proof in Appendix A.1).

Theorem 1. Let (p, q) ∈ J1, dK2 such that p+ q = d, T ⊆ [d], be an arbitrary subset of the d first
natural integers, and T c := [d] \ T its complement set. Let ŵ ∈ Rd such that ŵT = X+

T y ∈ Rp

and ŵT c = 0 ∈ Rq . Then the expected risk with respect to the loss function ℓ : (ŷ, y) 7→ (ŷ − y)2

of the predictor f̂T : x 7→ ϕ(xT ŵ) ∈ F̂d satisfies

λmin(Σ)c(n, p, σ) + σ2 ≤ EX

[
R(f̂T )

]
≤ λmax(Σ)c(n, p, σ) + σ2,

where

c(n, p, σ) =


n

n−p−1

(
∥w∗

T c∥22 + σ2
)
+ ∥w∗

T c∥22 if p ≤ n− 2,

+∞ if n− 1 ≤ p ≤ n+ 1,(
1− n

p

)∥∥w∗
T
∥∥2
2
+ n

p−n−1

(
∥w∗

T c∥22 + σ2
)
+ ∥w∗

T c∥22 if p ≥ n+ 2,

(7)

and

Σ = E(x,·)∼PX ,Y

[(
Φ(xT ŵ)−Φ(xTw∗)

xT ŵ−xTw∗

)2

xxT

]
. (8)

Remark 4.4. From Lemma 4.1, the matrix Σ defined in equation 8 is nonsingular and positive-
definite. Note that Theorem 1 in Belkin et al. (2020) constitutes a special case of Theorem 1 for
ϕ : x 7→ x, which corresponds to the case where Σ = Id.

Remark 4.5. From Theorem 1, we have EX

[
R(f̂T )

]
= ∞ around p = n. The expected risk

decreases again as p increases beyond n and highlights a double descent phenomenon. This result
is consistent with the literature of double descent (Mei & Montanari, 2022; Louart et al., 2018; Liao
et al., 2020; Bach, 2024), which identifies the ratio p/n as the model complexity of a linear model
to describe an under-(p/n < 1) and an over-(p/n > 1) parameterized regimes for the expected risk
with a phase transition around p/n = 1 characterized by a peak.

4.3 OUT-OF-DISTRIBUTION RISK

Using a similar approach to that Theorem 1, we obtain the following result on the subset of classifiers
defined in F̂d with equation 4 (see proof in Appendix A.2).
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Theorem 2. Let (p, q) ∈ J1, dK2 such that p+ q = d, T ⊆ [d], be an arbitrary subset of the d first
natural integers, and T c := [d] \ T its complement set. Let ŵ ∈ Rd such that ŵT = X+

T y ∈ Rp

and ŵT c = 0 ∈ Rq . If (x, ·) ∼ POOD
X ,Y , then the expected OOD risk of the predictor f̂T : x 7→

ϕ(xT ŵ) ∈ F̂d satisfies

EX

[
ROOD(f̂)

]
≥

(
λmin(Σ) + λmin(Σ

OOD)
)
c(n, p, σ′) + 2σ′2

and
EX

[
ROOD(f̂)

]
≤

(
λmax(Σ) + λmax(Σ

OOD)
)
c(n, p, σ′) + σ′2,

where c(n, p, σ′) is defined in equation 7, Σ ∈ Rd×d is defined in equation 8, and ΣOOD ∈ Rd×d is
defined as

ΣOOD = E(x,·)∼POOD
X ,Y

[(
Φ(xT ŵ)−Φ(xTw∗)

xT ŵ−xTw∗

)2

xxT

]
.

Remark 4.6. Like the expected risk in Theorem 1, we find EX

[
ROOD(f̂)

]
= ∞ around p = n,

which is characteristic of a double descent phenomenon. This results suggests that OOD scoring
functions based on the prediction confidence of binary classifiers f̂(·) ∈ F̂d exhibit a double descent
phenomenon similar to what has been reported for the expected risk.

5 EXPERIMENTS

In this section, we provide an empirical evaluation of different OOD detection methods with respect
to the model width across multiple neural network architectures.

5.1 SETUP

General Setup. We aim to investigate whether the double descent phenomenon, widely observed
in model generalization setup, also extends to OOD detection. To explore this, we perform exper-
iments on multiple DNN architectures: ResNet-18 (He et al., 2016), ResNet-34 (Appendix D.3), a
4-block convolutional neural network (CNN), Vision Transformers (ViTs) (Dosovitskiy et al., 2020)
and Swin Transformers (Liu et al., 2021b).

Model Setup. To replicate double descent, we follow the experimental setup from Nakkiran et al.
(2021), which uses ResNet-18 as the baseline architecture. We apply a similar setup to the 4-block
CNN model, ViTs and Swin. We vary the model capacity by altering the number of filters (denoted
as k) per layer, with values ranging from k = 1 to k = 128. ResNet-18, which uses 64 filters,
operates within the overparameterized regime. The depth of the models is kept constant to isolate the
effects of width (effective model complexity). The convolutional models are trained using the cross-
entropy loss function, with a learning rate of 0.0001 and the Adam optimizer for 4 000 epochs. This
extended training regime ensures that models converge for all explored model widths. Moreover,
each experiment is conducted five times (with different random seeds). Finally, further details on
the experimental setup for the Transformers are given in the Appendix B.2.

Label Noise. To induce the double descent effect, we introduce label noise into the training set by
randomly swapping 20% of the labels. This setup simulates real-world scenarios, where noisy data
is common. The models are trained on this noisy dataset but evaluated on a clean test set. Random
data augmentations, including random cropping and horizontal flipping, are applied during training.
Noiseless experiments and discussions on the imbalanced dataset case are presented in D.5.

5.2 EVALUATION METRICS

We evaluate both generalization and OOD detection using multiple metrics:
• Generalization: We report the test accuracy for in-distribution (ID) classification tasks.
• OOD Detection: We measure OOD detection performance using the area under the re-

ceiver operating characteristic curve (AUC), which is threshold-free and widely adopted in
OOD detection research. A higher AUC indicates better performance.

6
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• Neural Collapse: We report NC metrics, which, as noted in Ammar et al. (2024); Haas
et al. (2023); Zhao & Cao (2023); Zhang et al. (2024), are associated with certain aspects
of OOD detection.

5.3 OOD DATASETS

For OOD detection, we evaluate each model using six well-established OOD benchmark datasets:
Textures (Cimpoi et al., 2014), Places365 (Zhou et al., 2017), iNaturalist (Van Horn et al., 2018),
a 10 000 image subset from (Huang & Li, 2021a), ImageNet-O (Hendrycks et al., 2021) and
SUN (Xiao et al., 2010). For experiments where CIFAR-10 (or CIFAR-100) is the in-distribution
dataset, we also include CIFAR-100 (or CIFAR-10) as an additional OOD benchmark. CIFAR-
10/100 contains 50 000 training images and 10 000 test images.

5.4 OOD DETECTION METHODS

In order to have a discussion that generalises across different OOD Detection methods, we evaluate
several state-of-the-art methods, categorized by the information they rely on:

• Logit-based methods: Maximum Softmax Probability (MSP) (Hendrycks & Gimpel,
2017), Energy scores (Liu et al., 2020), React (Sun et al., 2021), MaxLogit and KL-
Matching (Hendrycks et al., 2022),

• Feature-based methods: Mahalanobis distance (Lee et al., 2018b) and Residual
score (Wang et al., 2022).

• Hybrid methods: ViM (Wang et al., 2022), ASH (Djurisic et al., 2023) and NECO (Ammar
et al., 2024).

Although the double descent effect is observed in all of our experiments, results from only a few
representative methods will be presented in the main paper. Additional results can be found in
Appendix D.

5.5 OOD DETECTION AND DOUBLE DESCENT

Double Descent & OOD Detection. The primary question addressed in this section is whether the
double descent phenomenon extends to OOD detection, as suggested by our theoretical framework.
The results focus on the relative performance across underparameterized and overparameterized
regimes. We conduct experiments using CIFAR-10 and CIFAR-100 as ID datasets, and assess OOD
detection across increasing model widths. Figure 1 presents the evolution of generalization error
and OOD detection performance (AUC) for a challenging covariate shift scenario between CIFAR-
10 and CIFAR-100. Refer to Appendix D for more results on multiple OOD datasets. This figure
illustrates a generalization double descent phenomenon in all models, with logit-based and hybrid
OOD detection methods exhibiting a similar curve. This demonstrates that this phenomenon is not
exclusive to generalization, but it extends to OOD detection as well. Moreover, the figure displays
the average result (from the five runs) as well as the associated variance. These can be seen to be
very narrow, which confirms the prevalence of the phenomena.

Feature-Based Techniques & Interpolation Threshold. In some cases, no double descent curve
is observed for feature-based techniques. This result suggests that the double descent depends either
on the used architecture or the data, as discussed in Appendix E.3. Furthermore, we observe that the
interpolation threshold is not always perfectly consistent across OOD datasets or techniques. Those
observations are consistent with the Nakkiran et al. (2021)’s results on the CIFAR-10 and CIFAR-
100 datasets. Those results suggest that theAmmar et al. (2024); Haas et al. (2023); Zhao & Cao
(2023); Zhang et al. (2024) effective model complexity (EMC) framework (Nakkiran et al., 2021)
defined for the generalization error can be extended to OOD detection.

Smaller Models for OOD Detection. Interestingly, in many cases, smaller models are very good
OOD detectors. This suggests that in applications where model pruning or DNN simplification
is important, using smaller models may offer advantages for detecting OOD samples. Similarly,
resource-constrained environments may benefit from lighter models as a viable option for robust
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OOD detection. The conditions under which this choice becomes optimal will be discussed in
Section 5.6.
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Figure 1: Generalisation (single curve) and OOD detection (multiple curves) evolution plots w.r.t
model’s width (x-axis), in terms of accuracy and AUC respectively. With CIFAR10 as ID and
CIFAR100 as OOD, and for (from top-left to bottom-right) CNN, ResNet-18, ViT and Swin.

Discussion on OOD Methods. It is important to note that effective OOD detection depends on
two main factors: the quality of the learned representations (which shape the feature space) and a
reliable confidence score. Different OOD detection methods emphasize one of these factors over
the other. Logit-based methods rely primarily on the confidence score, which is determined by the
model’s output logits. These logits are typically sensitive to the model size and complexity, making
them closely tied to the double descent phenomenon. As a result, logit-based methods tend to exhibit
smoother double descent curves, with fewer drastic shifts at the interpolation threshold. In contrast,
feature space-based techniques rely more heavily on the model’s ability to learn high-quality repre-
sentations that can effectively separate ID from OOD data. However, there is no guarantee that the
quality of the latent space discriminative power will be impacted by the double descent phenomenon
in the same manner as the output logits.

Discussion on Different Architectures. The learned representation is highly complex, with its
properties and structure determined by the intrinsic biases of the architecture. This complexity goes

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

beyond what can be directly inferred from performance metrics alone. As a result, even though
all architectures display a double descent pattern, their performance variability remains significant.
Notably, some architectures, such as ResNet-18 and Swin, consistently achieve higher performance
in the overparameterized regime for both of our metrics of interest. In contrast, the CNN model
performs comparably in both regimes, while the ViT struggles with generalization when overpa-
rameterized. This performance variability is expected due to the fundamental differences between
architectures. To gain deeper insight into the causes of this variability, we study the model’s learned
representation, which captures its intrinsic biases. In particular, we will use the Neural Collapse
framework in our analysis, examining its influence in the double descent setting, and how it can
inform us on the possible improvement in OOD detection performance across various architectures.

5.6 REPRESENTATION ANALYSIS AND NEURAL COLLAPSE ROLE

From Double Descent to Neural Collapse. One of the primary arguments for the interest in dou-
ble descent in DNNs is that increasing model complexity beyond the interpolation threshold can lead
to improved models, compared to those found in underparameterized local minima. However, this
improvement does not occur uniformly across all architectures. Although the OOD double descent
curve is consistently observed, each architecture exhibits a unique behavior in both generalization
and OOD detection. These differences can be attributed to the complexities of the learned represen-
tations. We analyze the learned representations using the NC framework to understand this behavior.
Previous works (Papyan et al., 2020; Ming et al., 2023; Haas et al., 2023; Ammar et al., 2024) have
empirically shown that NC might positively influences both generalization and OOD detection by
ensuring stability and strong performance as models converge.

Background on Neural Collapse. Neural Collapse (NC) describes the convergence of model rep-
resentations during the late phases of training towards a low-dimensional and highly structured con-
figuration known as the Equiangular-Tight Frame Simplex (ETF). This structure is characterized by
data clustering within each category, with low intra-class covariance, high inter-class separation, and
equiangular and equinorm relationships between class representations. Appendix C provides further
details on the Neural Collapse phenomenom.

NC1-based Metric for Overparameterization Analysis. We will analyze the data clustering and
separation properties by leveraging the NC1 metric on the clean test set. NC1 measures the signal-to-
noise ratio, where lower values indicate more compact intra-class clustering and greater inter-class
separation. The NC1 metric is computed as follows:

NC1 = Tr

[
ΣWΣ+

B

C

]
;

where ΣW is the intra-class covariance matrix of the penultimate layer of the DNN that depicts
noise, ΣB is the inter-class covariance matrix of the penultimate layer of the DNN that represents
the signal, and C is the number of classes. As the NC1 value converges towards a lower value,
the activations of samples collapse toward their respective class means (see Appendix C for more
details). To quantify the influence of overparameterization on the NC1 property, we compute the
following ratio:

NC1u/o =
NC1u
NC1o

,

where NC1u represents the NC1 value at the underparameterized local minimum, and NC1o is the
NC1 value for the most overparameterized model. Values of NC1u/o > 1 indicate improved data
separation with increased model complexity.

Analysis of the Results Table 1 shows that the NC1u/o ratio strongly correlates with improve-
ments in OOD detection. Models that achieve better overparameterized NC1 values tend to improve
as their complexity increases. In contrast, the CNN model either stagnates or performs worse with
overparameterization, as its NC1u/o metric degrades. We also observe that logit-based methods
are well correlated with NC1, with the exception of the MSP method on the ViT model, due to the
degradation in generalization. Since NC1 reflects class variability collapse and improved clustering,
our results suggest that the separation and clustering effects of the latent space, as measured by NC,
can indicate OOD detection performance in the overparameterized regime. The ViT model is an
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exception, as its accuracy suffers due to the lack of pretraining. In Appendix E.1, we will study this
structure through the eigenvalues to gain further insights into the performance variability.

Table 1: Models performance in terms of AUC in the underparametrized local minima (AUCu) and
the overparametrized maximum width (AUCo), w.r.t NC1u/o value. Best is highlighted in green
when AUCo is higher, red when AUCu is higher and blue if both AUC are within standard deviation
range. The highest AUC value per-dataset and per-architecture is highlighted in bold.

Model NC1u/o Method SUN Places365 CIFAR-100
AUCu ↑ AUCo ↑ AUCu ↑ AUCo ↑ AUCu ↑ AUCo ↑

CNN 0.88

Softmax score 76.09±0.96 75.08±0.75 75.95±0.76 74.59±0.45 74.33±0.32 72.68±0.31
MaxLogit 72.98±2.22 60.13±0.35 73.33±2.17 61.25±0.42 73.38±0.39 70.37±0.34
Energy 68.08±3.66 59.73±0.36 69.00±3.56 60.90±0.43 70.78±0.73 70.24±0.35
Energy+ReAct 59.12±4.73 47.49±0.58 60.79±4.53 49.45±0.52 66.00±1.58 63.57±0.51
NECO 70.43±2.53 64.22±1.36 71.20±2.59 63.59±0.98 72.40±0.95 70.17±0.76
ViM 59.94±2.01 59.77±0.66 61.88±1.89 60.93±0.40 69.23±0.78 70.25±0.35
ASH-P 68.60±3.59 60.36±0.37 69.35±3.50 61.48±0.43 71.11±0.53 70.45±0.41

ResNet 1.96

Softmax score 71.18±0.93 75.82±0.89 71.22±0.93 75.52±0.88 71.21±0.48 75.37±0.42
MaxLogit 70.64±1.53 72.51±1.03 70.69±1.29 72.64±0.94 69.76±0.39 73.65±0.38
Energy 69.11±2.49 72.46±1.03 69.19±2.08 72.59±0.94 67.58±0.46 73.61±0.39
Energy+ReAct 69.57±2.35 71.83±0.88 69.63±1.93 71.97±0.78 67.25±0.91 72.63±0.45
NECO 70.39±2.30 75.60±1.56 70.46±1.85 75.20±1.42 69.92±0.36 75.28±0.50
ViM 66.54±1.99 74.44±0.65 65.38±1.99 73.42±0.65 64.61±0.47 71.54±0.44
ASH-P 69.11±2.49 71.73 ±1.09 69.19±2.08 71.85±0.98 67.58±0.46 72.89±0.35

Swin 1.70

Softmax score 58.82±2.98 67.91±0.69 59.01±2.90 67.66±0.59 61.89±1.42 65.44±0.62
MaxLogit 59.91±3.11 70.75±0.45 59.84±3.40 70.46±0.46 61.79±1.73 66.95±0.53
Energy 60.12±3.68 70.79±0.42 58.77±3.98 70.50±0.44 55.52±2.10 66.92±0.51
Energy+ReAct 60.16±3.79 71.15±0.44 58.85±4.03 70.83±0.48 55.53±2.10 67.27±0.52
NECO 64.26±3.20 73.29±0.75 63.88±3.37 72.38±0.66 62.62±2.10 68.13±0.76
ViM 60.68±2.61 71.69±0.19 58.34±2.60 71.39±0.15 55.95±0.77 68.89±0.51
ASH-P 59.49±4.21 70.74±0.44 58.15±4.42 70.42±0.40 55.10±2.28 66.89±0.55

ViT 2.32

Softmax score 66.28±0.19 64.87±0.27 66.26±0.36 64.61±0.26 65.18±0.38 62.96±0.33
MaxLogit 66.09±1.48 70.30±0.46 66.13±1.50 69.79±0.26 64.60±0.35 66.69±0.39
Energy 64.79±2.81 70.50±0.48 64.86±2.65 69.98±0.26 63.08±0.44 66.79±038
Energy+ReAct 64.51±2.93 70.51±0.49 64.65±2.75 69.97±0.26 62.86±0.58 66.78±039
NECO 67.61±1.61 75.89±0.47 67.47±1.68 74.29±0.29 66.28±0.54 67.40±0.27
ViM 63.14±3.54 72.25±0.37 63.30±3.36 71.41±0.15 64.81±0.65 66.34±0.30
ASH-P 64.79±2.81 70.27±0.50 64.86±2.65 69.79±0.25 63.08±0.44 66.61±0.36

6 CONCLUSION

In this work, we conducted a theoretical and empirical study on the double descent phenomenon in
both classification and OOD detection. Our findings indicate that the double descent phenomenon
also occurs in OOD detection, with significant implications for model performance. We introduced
the expected OOD risk to evaluate classifiers’ confidence on both training and OOD samples. Using
Random Matrix Theory, we demonstrated that both the expected risk and OOD risk of least-squares
binary classifiers applied to Gaussian models exhibit an infinite peak, when the number of param-
eters is equal to the number of samples, which we associate with the double descent phenomenon.
Our experimental study on different OOD detection methods revealed a similar double descent phe-
nomenon across multiple neural architectures. However, we observed significant variability in per-
formance among different models, with some showing no advantages from overparameterization.
Using the Neural Collapse (NC) framework, we revealed that OOD detection improves with overpa-
rameterization only when it enhances NC convergence, boosting the performance of OOD detection
methods. This emphasizes the crucial role of learned representations in the performance of overpa-
rameterized models and their significance in model selection.

We hope our insights and extensive experiments will benefit practitioners in OOD detection and
inspire further theoretical research into this aspect of DNNs. Ultimately, although this paper in-
troduces a novel theoretical framework for understanding the double descent phenomenon in OOD
detection, its theoretical scope has some limitations including a focus on binary classification, the
choice of loss function, and specific model architectures. Hence solving these limitations would be
a valuable direction for future work.
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A PROOF OF THEOREMS

A.1 PROOF OF THEOREM 1

This section is dedicated to the proof of Theorem 1 and follows the same line of arguments of
Theorem 1 in Belkin et al. (2020).

Theorem 3. Let (p, q) ∈ J1, dK2 such that p + q = d, T ⊆ [d] an arbitrary subset of the d first
natural integers, and T c := [d] \ T its complement set. Let ŵ ∈ Rd such that ŵT = X+

T y ∈ Rp

and ŵT c = 0 ∈ Rq . Then the expected risk with respect to the loss function ℓ : (ŷ, y) 7→ (ŷ − y)2

of the predictor f̂T : x 7→ ϕ(xT ŵ) ∈ F̂d satisfies

λmin(Σ)c(n, p) + σ2 ≤ EX

[
R(f̂T )

]
≤ λmax(Σ)c(n, p) + σ2,

where

c(n, p) =


n

n−p−1

(
∥w∗

T c∥22 + σ2
)
+ ∥w∗

T c∥22 if p ≤ n− 2,

+∞ if n− 1 ≤ p ≤ n+ 1,(
1− n

p

)∥∥w∗
T
∥∥2
2
+ n

p−n−1

(
∥w∗

T c∥22 + σ2
)
+ ∥w∗

T c∥22 if p ≥ n+ 2,

and

Σ = E(x,·)∼PX ,Y

[(
Φ(xT ŵ)−Φ(xTw∗)

xT ŵ−xTw∗

)2

xxT

]
.

Proof. Let x ∈ X and
∆w = ŵ −w∗.

We have

f̂T (x) = ϕ(xT ŵ) = ϕ(xTw∗) + xT∆wϕ′(c(x, ŵ,w∗)
)
.

From the mean-value theorem, there exists

c(x, ŵ,w∗) ∈
(
min(xTw,xTw∗),max(xT ŵ,xTw∗)

)
,

such that

ϕ
(
xT (w∗ +∆w)

)
= ϕ(xTw∗) + xT∆wϕ′(c(x, ŵ,w∗)

)
.

We have thus

EX

[
R(f̂T )

]
= Ex,X

[(
ϕ(xT ŵ)− y

)2]
= Ex,X

[(
ϕ(xT ŵ)− ϕ(xTw∗)− ϵ

)2]
= Ex,X

[(
xT∆wϕ′(c(x, ŵ,w∗)

))2]
+ σ2

= Ex,X

[
∆T

wxxT∆wϕ′(c(x, ŵ,w∗)
)2]

+ σ2

= Tr
(
Ex,X

[
ϕ′(c(x, ŵ,w∗)

)2
xxT∆w∆T

w

])
+ σ2

= Tr
(
Ex

[
ϕ′(c(x, ŵ,w∗)

)2
xxT

]
EX

[
∆w∆T

w

])
+ σ2

= Tr
(
ΣEX

[
∆w∆T

w

])
+ σ2

= EX

[
∆T

wΣ∆w

]
+ σ2,

where

Σ = Ex

[
ϕ′(c(x, ŵ,w∗)

)2
xxT

]
= Ex

[(
Φ(xT ŵ)−Φ(xTw∗)

xT ŵ−xTw∗

)2

xxT

]
.
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From the min-max theorem, we have

λmin(Σ)EX

[
∆T

w∆w

]
+ σ2 ≤ EX

[
∆T

wΣ∆w

]
+ σ2 ≤ λmax(Σ)EX

[
∆T

w∆w

]
+ σ2.

From Lemma 4.1, we have λmin(Σ) > 0. For EX

[
∆T

w∆w

]
, we have

EX

[
∆T

w∆w

]
= EX

[
∥ŵ −w∗∥22

]
= EX

[
∥ŵT −w∗

T ∥22
]
+ EX

[
∥ŵT c −w∗

T c∥22
]

= EX

[
∥ŵT −w∗

T ∥22
]
+ ∥w∗

T c∥22.

as ŵT c = 0. In the following, we provide a decomposition of EX

[
∥ŵT − w∗

T ∥22
]
. Let η =

y −XT w
∗
T . Since ŵT = X+

T y, we have ŵT = X+
T (η +XT w

∗
T ). Therefore,

EX

[
∥w∗

T − ŵT ∥22
]
= EX

[∥∥(Ip −X+
T XT )w

∗
T −X+

T η
∥∥2
2

]
= EX

[∥∥(Ip −X+
T XT )w

∗
T
∥∥2
2
+

∥∥X+
T η

∥∥2
2
− 2

〈(
Ip −X+

T XT
)
w∗

T ,X
+
T η

〉]
.

Since (X+
T XT )

T = X+
T XT and (X+

T XT )
TX+

T = X+
T , we have〈

(Ip −X+
T XT )w

∗
T ,X

+
T η

〉
2
=

(
(Ip −X+

T XT )w
∗
T
)T

X+
T η

= w∗T
T (Ip −X+

T XT )
TX+

T η

= w∗T
T X+

T η −w∗T
T (X+

T XT )X
+
T η

= w∗T
T X+

T η −w∗T
T X+

T η

= 0.

(Ip −X+
T XT )w

∗
T and X+

T η are thus orthogonal. We deduce that

EX

[∥∥ŵT −w∗
T
∥∥2
2

]
= EX

[∥∥(Ip −X+
T XT

)
w∗

T
∥∥2
2
+

∥∥X+
T η

∥∥2
2

]
= EX

[∥∥(Ip −X+
T XT

)
w∗

T
∥∥2
2

]
+ EX

[∥∥X+
T η

∥∥2
2

]
.

(9)

Leveraging the same arguments used by Belkin et al. (2020) to prove the existence of the double
descent phenomenon in the regression problem, we distinguish two cases depending on n and p to
derive equation 9.

Classical Regime (p < n). Breiman & Freedman (1983) studied this regime for the regression
problem. In the classical regime, the Moore-Penrose inverse is equal to:

X+
T = (XT

T XT )
−1XT

T ,

which implies that

EX

[∥∥(Ip −X+
T XT

)
w∗

T
∥∥2
2

]
= EX

[∥∥(Ip − (XT
T XT )

−1XT
T XT

)
w∗

T
∥∥2
2

]
= 0.

From equation 9, we deduce that

EX

[∥∥ŵT −w∗
T
∥∥2
2

]
= EX

[∥∥X+
T η

∥∥2
2

]
= EX

[
ηTX+T

T X+
T η

]
= Tr

(
EX

[
X+T

T X+
T ηηT

])
.

We observe that

η = y −XT w
∗
T

= XT w
∗
T +XT cw∗

T c + ϵ−XT w
∗
T

= XT cw∗
T c + ϵ,

(10)

where ϵ = [ϵ1, . . . , ϵn]
T . Because XT w

∗
T and XT cw∗

T c + ϵ are both uncorrelated, we have

EX

[∥∥ŵT −w∗
T
∥∥2
2

]
= Tr

(
EX

[
X+T

T X+
T
]
EX

[
ηηT

])
. (11)
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We have

EX

[
X+T

T X+
T
]
= EX

[
XT (X

T
T XT )

−2XT
T
]

Let S be the unique positive definite square root of XT
T XT and Ψ = XT S

−1, an n × p matrix
and XT = ΨS. Ψ is an orthonormal such that ΨTΨ = Ip and ΨΨT = In. Following the same
arguments than Breiman & Freedman (1983), we obtain

EX

[
X+T

T X+
T
]
= EX

[
XT (X

T
T XT )

−2XT
T
]

= EX

[
ΨSS−4SΨT

]
= EX

[
ΨS−2ΨT

]
= ΨEX

[
(XT

T XT )
−1

]
ΨT .

XT
T XT ∈ Rp×p follows a Wishart distribution: XT

T XT ∼ Wp(n, Ip), where Wp(n, Ip) denotes
a Wishart distribution with n degrees of freedom and scale matrix Ip. The inverse of a Wishart-
distributed matrix Wp(n, Ip) follows an inverse Wishart distribution: (XT

T XT )
−1 ∼ W−1

p (n, Ip),
where W−1

p (n, Ip) denotes an inverse Wishart distribution with n degrees of freedom and scale
matrix Ip. As a consequence,

EX

[(
XT

T XT
)−1

]
= 1

n−p−1Ip

and thus
EX

[
X+T

T X+
T
]
= 1

n−p−1Ip. (12)
Putting equation 12 into equation 11, we get

EX

[∥∥ŵT −w∗
T
∥∥2
2

]
= 1

n−p−1EX

[
ηTη

]
.

From equation 10, we have

EX

[
ηTη

]
= EX

[(
y −XT w

∗
T
)T (

y −XT w
∗
T
)]

= EX

[(
XT cw∗

T c + ϵ
)T (

XT cw∗
T c + ϵ

)]
= w∗T

T cEX

[
XT

T cXT c

]
w∗

T c + EX

[
ϵT

]︸ ︷︷ ︸
=0

EX

[
XT c

]︸ ︷︷ ︸
=0

w∗
T c +w∗T

T c EX

[
XT

T c

]︸ ︷︷ ︸
=0

EX

[
ϵ
]︸ ︷︷ ︸

=0

+EX

[
ϵT ϵ

]
.

XT
T cXT c follows a Wishart distribution, i.e., XT

T cXT c ∼ Wq(n, Iq), where Wq(n, Iq) denotes the
Wishart distributions with n degrees of freedom and scale matrix Iq , respectively. We obtain thus

EX

[
ηTη

]
= nw∗T

T cw∗
T c + nσ2

= n∥w∗
T c∥22 + nσ2.

(13)

As a consequence, we obtain

EX

[∥∥ŵT −w∗
T
∥∥2
F

]
= n

n−p−1

(
∥w∗

T c∥22 + σ2
)
.

Interpolating Regime (p ≥ n). The interpolating regime has been considered in Belkin et al.
(2020) for the regression problem. We can first observe that:

w∗
T = (Ip −X+

T XT )w
∗
T +X+

T XT w
∗
T

and 〈
(Ip −X+

T XT )w
∗
T ,X

+
T XT w

∗
T
〉
= 0.

Indeed, since X+
T XT = (X+

T XT )(X
+
T XT ), we have〈

(Ip −X+
T XT )w

∗
T ,X

+
T XT w

∗
T
〉
=

(
Ip −X+

T XT )w
∗
T
)T

(X+
T XT w

∗
T )

= w∗T
T

(
X+

T XT − (X+
T XT )(X

+
T XT )

)
w∗

T

= 0.
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We deduce that (Ip−X+
T XT )w

∗
T and X+

T XT w
∗
T are orthogonal. From the Pythagorean theorem,

we have ∥∥w∗
T
∥∥2
2
=

∥∥(Ip −X+
T XT )w

∗
T
∥∥2
2
+

∥∥X+
T XT w

∗
T
∥∥2
2

and thus ∥∥(Ip −X+
T XT )w

∗
T
∥∥2
2
=

∥∥w∗
T
∥∥2
2
−

∥∥X+
T XT w

∗
T
∥∥2
2
.

Putting the equation above into equation 9, we obtain

EX

[∥∥ŵT −w∗
T
∥∥2
2

]
= EX

[∥∥w∗
T
∥∥2
2

]
− EX

[∥∥X+
T XT w

∗
T
∥∥2
2

]
+ EX

[∥∥X+
T η

∥∥2
2

]
. (14)

Note that ΠT = X+
T XT = XT

T (XT X
T
T )

−1XT is the orthogonal projection matrix for the row
space of XT . We can thus write X+

T XT wT = ΠT w
∗
T as a linear combination of rows of XT .

Then, using the fact that the xi in X are i.i.d. and drawn from a standard normal distribution and
by rotational symmetry of the standard normal distribution, it follows that we have

EX

[∥∥X+
T XT w

∗
T
∥∥2
2

]
= n

p

∥∥w∗
T
∥∥2
2

and thus
EX

[∥∥w∗
T
∥∥2
2

]
− EX

[∥∥X+
T XT w

∗
T
∥∥2
2

]
=

∥∥w∗
T
∥∥2
2

(
1− n

p

)
.

For EX

[∥∥X+
T η

∥∥2
2

]
in equation 14, we have

EX

[∥∥X+
T η

∥∥2
2

]
= Tr

(
EX

[
X+T

T X+
T
]
EX

[
ηηT

])
.

As p > n, we have X+
T = XT

T (XT X
T
T )

−1 and thus

EX

[
X+T

T X+
T
]
= EX

[
(XT X

T
T )

−1
]

Similarly, XT X
T
T follows a Wishart distribution: XT X

T
T ∼ Wn(p, In), and (XT X

T
T )

−1 follows
an inverse Wishart distribution: (XT X

T
T )

−1 ∼ W−1
n (p, In). Its expectation is given by:

E[(XT X
T
T )

−1] = In
p−n−1

From equation 13, we deduce that

EX

[∥∥X+
T η

∥∥2
2

]
= Tr

(
EX

[
X+T

T X+
T
]
EX

[
ηηT

])
= n

p−n−1

(
∥w∗

T c∥22 + σ2
)
.

For equation 14, using equations above, we have

EX

[∥∥ŵT −w∗
T
∥∥2
2

]
=

∥∥w∗
T
∥∥2
2

(
1− n

p

)
+ n

p−n−1

(
∥w∗

T c∥22 + σ2
)
.

A.2 PROOF OF THEOREM 2

This section is dedicated to the proof of Theorem 2.
Theorem 4. Let (p, q) ∈ J1, dK2 such that p + q = d, T ⊆ [d] an arbitrary subset of the d first
natural integers, and T c := [d] \ T its complement set. Let ŵ ∈ Rd such that ŵT = X+

T y ∈ Rp

and ŵT c = 0 ∈ Rq . If (x, ·) ∼ POOD
X ,Y , then the expected OOD risk of the predictor f̂T : x 7→

ϕ(xT ŵ) ∈ F̂d satisfies

EX

[
ROOD(f̂)

]
≥

(
λmin(Σ) + λmin(Σ

OOD)
)
c(n, p, σ′) + 2σ′2

and
EX

[
ROOD(f̂)

]
≤

(
λmax(Σ) + λmax(Σ

OOD)
)
c(n, p, σ′) + σ′2,

where c(n, p, σ′) is defined in equation 7, Σ ∈ Rd×d is defined in equation 8, and ΣOOD ∈ Rd×d is
defined as

ΣOOD = E(x,·)∼POOD
X ,Y

[(
Φ(xT ŵ)−Φ(xTw∗)

xT ŵ−xTw∗

)2

xxT

]
.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof. For ease of notation, we denote the weight vector w∗
OOD defined in equation 5 by w∗. The

layout of the proof is similar to the proof of Theorem 1. Let x ∈ X and

∆w = ŵ −w∗.

From the mean-value theorem, there exists

c(x, ŵ,w∗) ∈
(
min(xTw,xTw∗),max(xT ŵ,xTw∗)

)
,

such that

f̂T (x) = ϕ(xT ŵ) = ϕ
(
xT (w∗ +∆w)

)
= ϕ(xTw∗) + xT∆wϕ′(c(x, ŵ,w∗)

)
.

We have

EX

[
ROOD(f̂)

]
= E(x,·)∼PX ,Y ,X

[
(2f̂(x)− 1− z(x))2

]
+ E(x,·)∼POOD

X ,Y ,X

[
(2f̂(x)− 1− z(x))2

]
= E(x,·)∼PX ,Y ,X

[(
2
(
ϕ(xT ŵ)− ϕ(xTw∗)

)
− ϵ′

)2]
+ E(x,·)∼POOD

X ,Y ,X

[((
2
(
ϕ(xT ŵ)− ϕ(xTw∗)

)
− ϵ′

)2]
= E(x,·)∼PX ,Y ,X

[(
2xT∆wϕ′(c(x, ŵ,w∗)

))2]
+ E(x,·)∼POOD

X ,Y ,X

[(
2xT∆wϕ′(c(x, ŵ,w∗)

))2]
+ 2σ′2

= Tr
((

E(x,·)∼PX ,Y

[
ϕ′(c(x, ŵ,w∗)

)2
xxT

]
+ E(x,·)∼POOD

X ,Y

[
ϕ′(c(x, ŵ,w∗)

)2
xxT

])
EX

[
∆w∆T

w

])
+ 2σ′2

= Tr
((

Σ+ΣOOD)EX

[
∆w∆T

w

])
+ 2σ′2

= EX

[
∆T

wΣ∆w +∆T
wΣOOD∆w

]
+ 2σ′2,

where

Σ = E(x,·)∼PX ,Y

[
ϕ′(c(x, ŵ,w∗)

)2
xxT

]
= E(x,·)∼PX ,Y

[(
Φ(xT ŵ)−Φ(xTw∗)

xT ŵ−xTw∗

)2

xxT

]
.

and

ΣOOD = E(x,·)∼POOD
X ,Y

[
ϕ′(c(x, ŵ,w∗)

)2
xxT

]
= E(x,·)∼POOD

X ,Y

[(
Φ(xT ŵ)−Φ(xTw∗)

xT ŵ−xTw∗

)2

xxT

]
.

From the min-max theorem, we have

EX

[
∆T

wΣ∆w +∆T
wΣOOD∆w

]
≥

(
λmin(Σ) + λmin(Σ

OOD)
)
EX

[
∆T

w∆w

]
and

EX

[
∆T

wΣ∆w +∆T
wΣOOD∆w

]
≤

(
λmax(Σ) + λmax(Σ

OOD)
)
EX

[
∆T

w∆w

]
.

From Lemma 4.1, we have λmin(Σ) > 0. For EX

[
∆T

w∆w

]
, we have

EX

[
∆T

w∆w

]
= EX

[
∥ŵ −w∗∥22

]
= EX

[
∥ŵT −w∗

T ∥22
]
+ EX

[
∥ŵT c −w∗

T c∥22
]

= EX

[
∥ŵT −w∗

T ∥22
]
+ ∥w∗

T c∥22.

as ŵT c = 0. The remainder of the proof follows the proof of Theorem 1 with η = y − XT w
∗
T ,

where w∗
OOD = w∗.
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Lemma 4.1. Under Assumption 4.1, the matrix

Σ = E(x,·)∼PX ,Y

[(
Φ(xT ŵ)−Φ(xTw∗)

xT ŵ−xTw∗

)2

xxT

]
is nonsingular.

Proof. From the mean-value theorem, there exists

c(x, ŵ,w∗) ∈
(
min(xTw,xTw∗),max(xT ŵ,xTw∗)

)
,

such that

ϕ′(c(x, ŵ,w∗)
)
= Φ(xT ŵ)−Φ(xTw∗)

xT ŵ−xTw∗ .

Using c(x, ŵ,w∗), we rewrite the matrix Σ as

Σ = E(x,·)∼PX ,Y

[
ϕ′(c(x, ŵ,w∗)

)2
xxT

]
.

The matrix Σ is semi-positive-definite. We want to show that Σ is nonsingular. From the min-max
theorem, the matrix Σ is nonsingular iff for any a ∈ R, we have

aTΣa > 0.

Since the activation function Φ(·) is strictly monotonically non-decreasing, there exists ϵ > 0 such
that, for any a ∈ R, we have Φ′(a) ≥ ϵ. Therefore,

aTΣa = aTE(x,·)∼PX ,Y

[
xxTϕ′c(x, ŵ,w∗)2

]
a ≥ ϵ2aTE(x,·)∼PX ,Y

[
xxT

]
a = ϵ2∥a∥22 > 0.

Lemma 4.2 (Normal Concentration). ((Ledoux, 2001, Corollary 2.6, Propositions 1.3, 1.8) or (Tao,
2012, Theorem 2.1.12)) For d ∈ N, consider µ the canonical Gaussian probability on Rd defined

through its density dµ(w) = (2π)−
d
2 e−

1
2∥w∥2

and f : Rd → R a Lf -Lipschitz function. Then

Pr

({∣∣∣∣f −
∫

fdµ

∣∣∣∣ ≥ t

})
≤ Ce

−c
t2

L2
f , (15)

where C, c > 0 are independent of d and Lf .

B DETAILS ABOUT BASELINES AND ARCHITECTURES IMPLEMENTATION

B.1 BASELINES OOD METHODS

In this section, we present an overview of the baseline methods used in our experiments.We describe
the principles behind these baselines, and the chosen hyperparameters. It is worth noting that exten-
sive hyperparameter search for each method were not performed to maintain stability. Hence, once
the final model is selected, hybrid methods like ViM, ASH and NECO performance may increase if
such task is performed

Softmax Score. This score uses the maximum softmax probability (MSP) of the model as an OOD
scoring function (Hendrycks & Gimpel, 2017).

Energy. Liu et al. (2020) proposes using the energy score for OOD detection, where the energy
function maps the logit outputs to a scalar. To maintain the convention that lower scores correspond
to in-distribution (ID) data, (Liu et al., 2020) uses the negative energy as the OOD score.

ReAct. Sun et al. (2021) propose clipping extreme-valued activations. The original paper found
that clipping activations at the 90th percentile of ID data was optimal. Moreover, as the authors
propose, we employ the ReAct+Energy configuration.
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KL-Matching & MaxLogit. KL-Matching computes the class-wise average probability using the
entire training dataset. Consistent with the approach outlined in (Hendrycks et al., 2022), this cal-
culation is based on the predicted class rather than the ground-truth labels. MaxLogit employs the
maximum logit value of the model as an OOD scoring function.

Mahalanobis. This score leverages the feature vector from the layer preceding the final classifi-
cation layer (Lee et al., 2018a). To estimate the precision matrix and the class-wise mean vector,
we used the entire training dataset. It’s important to note that we incorporated ground-truth labels
during this computation process.

ViM & Residual. Wang et al. (2022) decomposes the latent space into a principal space P and a
null space P⊥. The ViM score is calculated by projecting the features onto the null space to create
a virtual logit, which is then combined with the logits using the norm of this projection. To enhance
performance, they calibrate this norm with a constant which is determined by dividing the sum of
the maximum logits by the sum of the norms of the null space projections, both measured on the
training set. The Residual score is derived by computing the norm of the latent vector’s projection
onto the null space. We followed the author’s suggestions for the null space, by setting it to half the
size of the full feature vector, adapted to each model width.

ASH. Djurisic et al. (2023) employs activation pruning at the penultimate layer, just before the
application of the DNN classifier. This pruning threshold is determined on a per-sample basis,
eliminating the need for pre-computation of ID data statistics. The original paper presents three
different post-hoc scoring functions, with the only distinction among them being the imputation
method applied after pruning. We employ ASH-P in our experiments as it performed the best, in
which the clipped values are replaced with zeros. As specified in the original paper, we fix the
pruning threshold value to 90%.

NECO. Ammar et al. (2024) leverages the geometric properties of Neural Collapse, measuring
the relative norm of a sample within the subspace defined by the ETF to identify OOD samples. NC
typically involves a collapse in the variability of class representations, leading to a more structured
and simplified feature space. It is hypothesized that this collapse also impacts OOD detection,
particularly through the emerging orthogonality between ID and OOD data. NECO utilizes this
orthogonality to effectively distinguish between ID and OOD data by measuring the relative norm
of each data point within the approximated ETF space scaled by the maximum logit value as the
OOD score. We use a dimension d = c to approximate the ETF sub-space for all architectures, with
c being the number of classes.

B.2 EXPERIMENTS SETUP

ViT Experimental Setup. For all experiments, we trained a set of ViT models with widths [4, 8,
12, 16, 20, 24, 28, 32, 36, 40, 60, 80, 100, 120, 160, 200, 240, 280, 320, 360, 400, 480, 520, 600,
680, 760, 800]. The width is used as the last dimension of the output layer after the linear transfor-
mation (the class-token size). The dimension of the FeedForward layer is the width multiplied by
4. The input size is set to 32 and the patch size to 8, no dropout is used and we use 4 heads with
4 Transformer blocks. The ViT models are first randomly initialized and then trained on CIFAR-10
using stochastic gradient descent with CE loss. The weights are fine-tuned for 60 000 steps, with no
warm-up steps, 1 024 batch size, 0.9 momentum, and a learning rate of 0.03.

Swin Experimental Setup. We used a standard 4 block Swin architecture, with a downscaling
factor of (2,2,2,1) for each block respectively. The width ranges from 1 to 100, with a window size
of 4, an input size of 32, and a filter size of 4. The model is randomly initialized and then optimized
using an Adam optimizer with CE loss for a 1 000 epoch using a batch size of 1 024. The initial
learning rate is 0.0001.

CNN Experimental Setup. Similar to Nakkiran et al. (2021), we define a standard family CNN
models formed by 4 convolutional stages of controlled base width [k, 2k, 4k, 8k], for k in the range
of [1, 128], with a fully connected layer as classifier. The MaxPool is set to [2, 2, 2, 4] for the four
blocks respectively. For all the convolution layers, the kernel size is set to 3, stride and padding to 1.
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C DETAILS ABOUT NEURAL COLLAPSE

For overparametrised model trained through the terminal phase of training (TPT), Neural Collapse
(NC) phenomenon emerges, particularly in the penultimate layer and in the linear classifier of DNNs
(Papyan et al., 2020; Ammar et al., 2024). NC is characterized by five main properties:

1. Variability Collapse (NC1): the within-class variation in activations becomes negligible
as each activation collapses toward its respective class mean.

2. Convergence to Simplex ETF (NC2): the class-mean vectors converge to having equal
lengths, as well as having equal-sized angles between any pair of class means. This config-
uration corresponds to a Simplex Equiangular Tight Frame (ETF).

3. Convergence to Self-Duality (NC3): in the limit of an ideal classifier, the class means
and linear classifiers of a neural network converge to each other up to rescaling, implying
that the decision regions become geometrically similar and that the class means lie at the
centers of their respective regions.

4. Simplification to Nearest Class-Center (NC4): The network classifier progressively
tends to select the class with the nearest class mean for a given activation, typically based
on standard Euclidean distance.

5. ID/OOD Orthogonality (NC5): As the training procedure advances, OOD and ID data
tend to become increasingly more orthogonal to each other. In other words, the clusters
of OOD data become more perpendicular to the configuration adopted by ID data (i.e., the
Simplex ETF).

These NC properties provide valuable insights into DNNs learned representation structure and prop-
erties, which allows for a considerable simplification. Additionally, the convergence of NC can be
linked to OOD detection Ammar et al. (2024); Haas et al. (2023); Zhao & Cao (2023); Zhang et al.
(2024). For further details refer to (Papyan et al., 2020; Ammar et al., 2024)

D COMPLEMENTARY RESULTS ON DOUBLE DESCENT AND OOD DETECTION

D.1 CIFAR-10 ADDITIONAL RESULTS

To further show the consistency of double descent for OOD detection, Figures D.1, D.2 D.3, D.4
and D.5 show the OOD detection metrics performance on six more semantic-shift OOD datasets. To
illustrate the performance of other OOD-methods while maintaining visibility, we show two different
methods at each dataset alongside the better-performing and most stable three: MSP, NECO, and
ASH.

D.2 CIFAR-100 RESULTS

In this section, we present results for the CIFAR-100 dataset as ID for a ResNet-18 model. Fig-
ure D.6 illustrates the OOD detection metrics performance, Figure D.7 shows the accuracy and
eigenvalues distribution (see section E.1 for discussion about eigenvalues). We can observe similar
behaviors between the ResNet-18 trained on CIFAR-10, and this current configuration on a harder
dataset (CIFAR-100).

Table 2 illustrates the evolution of AUC between the underparametrized and overparametrized
regime and its correlation with the NC1u/o for the remaining OOD datasets. As the CNN’s
NC1u/o < 1, its performance stagnates or deteriorates with overparametrization, while the other
models improve. Additionally, we can see how the hybrid-based methods improve considerably and
become competitive with logit-methods when NC1u/o > 1.

D.3 RESNET-34 RESULTS

In this section, we present the results for the ResNet-34 architecture, a deeper version of the ResNet
family. Results include both CIFAR-10 and CIFAR-100 datasets as ID. Figure D.9 shows the accu-
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Figure D.1: OOD detection evolution curve w.r.t model’s width (x-axis) in terms AUC. With CI-
FAR10 as ID and ImageNet-O as OOD, for (from top-left to bottom-right) CNN, ResNet-18, ViT,
and Swin.
racy curve and Figure D.8 illustrates the OOD detection metrics performance, We observe a similar
curve to that of ResNet-18 for both datasets and for all OOD methods, with slightly higher per-
formances. We highlight that the interpolation threshold occurs at a smaller width for ResNet-34
(k=8), compared to ResNet-18 (k=10) for the cifar 10 case. This is simply due to the increased
complexity of ResNet-34 at similar width values, due to its increased width, further highlighting the
dependence of the interpolation threshold on model capacity. This higher complexity contributes to
its lower NC1 values in Figure E.2.

D.4 OUT-OF-DISTRIBUTION RISQUE EXPERIMENTS

In Section 4.1, we introduced ROOD(f̂) as a way to assess the expected OOD detection performance.
Here, we present the evolution curve for this risk, which closely mirrors the double descent behavior
across all OOD datasets. Figures D.10, D.11, D.12, D.13, and D.14 illustrate these results for each
model.

D.5 EXPERIMENTS WITHOUT LABEL-NOISE RESULTS

Usually, double descent is most pronounced when there is a mismatch between model complexity
and data quality (Nakkiran et al., 2021). Introducing label noise accentuates this effect by increas-
ing the effective complexity needed for the model to fit the training data, particularly in the over-
parameterized regime. However, it is also valuable to examine results in noiseless settings. Figure
D.15 illustrates the model’s accuracy in a noiseless setup. Instead of the characteristic peak in gen-
eralization error, a plateau or stagnation appears near the interpolation threshold. Similarly, Figure
D.16 presents the OOD detection performance under this setup, comparing a semantic shift case
(CIFAR-10 vs. SUN) and a covariate shift case (CIFAR-10 vs. CIFAR-100). The curves exhibit
a pattern similar to the model accuracy. Moreover, we highlight that removing label noise makes

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

20 40 60 80 100 120
Widths 

20

30

40

50

60

70

80

AU
RO

C 
(%

)

Under-
parametrized

regime

Over-
parametrized

 regime

Average  CNN AUROC vs Widths with Amplified Uncertainty

NECO
MSP
ASH-P
Energy
Energy+React

20 40 60 80 100 120
Widths 

20

30

40

50

60

70

80

AU
RO

C 
(%

)

Under-
parametrized

regime

Over-
parametrized

 regime

Average  ResNet 18 AUROC vs Widths with Amplified Uncertainty

100 200 300 400 500 600 700 800
Widths 

20

30

40

50

60

70

80

90

AU
RO

C 
(%

)

Under-
parametrized

regime

Over-
parametrized

 regime

Average  ViT  AUROC vs Widths with Amplified Uncertainty

20 40 60 80 100
Widths 

20

30

40

50

60

70

AU
RO

C 
(%

)

Under-
parametrized

regime

Over-
parametrized

 regime

Average  Swin  AUROC vs Widths with Amplified Uncertainty

Figure D.2: OOD detection evolution curve w.r.t model’s width (x-axis) in terms AUC. With CI-
FAR10 as ID and Textures as OOD, for (from top-left to bottom-right) CNN, ResNet-18, ViT and
Swin.
the learning task easier, as all models’ performance metrics have increased, such as ResNet-18 max
accuracy rising from 83.40% to 94.48%, with a similar rise in AUC.

E MODEL REPRESENTATIONS AND NEURAL COLLAPSE ANALYSIS

E.1 STRUCTURE OF THE MODEL REPRESENTATION

Convergence towards Neural Collapse is an indicator of improved model representation, as defined
by the ETF structure. As such, the model eigenvalues distribution describes how much the model
representation aligns with this structured manifold. The properties of the ETF implies that the top c
eigenvalues are equally prominent, while the remaining eigenvalues are less influential. Figure E.1
shows the distribution of each model eigenvalues at the overparametrized regime. It is worth noting
that all overparametrized model widths show similar curves per-architecture. ResNet-18 and Swin
models follow the expected NC pattern, with a steep drop in importance at the cth eigenvalue indi-
cating the limit of the ETF. However, ViT and CNN show a slowly decaying curve, which indicates
a lack of clear separation in the model representation between highly important ID information and
noisy features. This lack of a global structure in their representation, results in both models failing
to reliably outperform their underpametrized minima.

This highlights the importance of the ETF structure and NC convergence in enhancing representation
stability, which can be useful for improving ID classification and OOD detection tasks.

E.2 EVOLUTION OF NC1

In this section, we further analyse the evolution of NC1 and the model’s learned representation
with overparametrization, to further show their correlation. Our analysis will focus primarily on
the ResNet and CNN models, due to their similarities. We will not address the transformer-based
models whose performance, especially for generalization, were lower than those of ResNet or CNN.
This is because transformers typically require extensive pre-training, particularly for small datasets,
and this was not the case for our experiments.
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Figure D.3: OOD detection evolution curve w.r.t model’s width (x-axis) in terms AUC. With
CIFAR10 as ID and iNaturalist as OOD, for (from top-left to bottom-right) CNN, ResNet-18, ViT
and Swin.

In order to visualize the variability collapse predicted by NC1, Figure E.2 shows the last-layer activa-
tions for both models at their optimal underparameterized and overparameterized widths. In ResNet,
transitioning to overparameterized models leads to significant improvements in the compactness and
separation of ID clusters, as well as enhanced orthogonality with OOD points. In contrast, the CNN
model does not show clear improvements in ID compactness or OOD separation, making it difficult
to determine which representation is better.

The same phenomenon is shown in Figure E.2, where the NC1 metric is shown against the model
widths for both ResNet and CNN. While both models exhibit a double descent pattern, CNN barely
matches its underparameterized metric value, whereas ResNet continuously improves with added
complexity. This discrepancy in NC convergence with overparametrization explains why only
ResNet benefits from increased complexity, suggesting that without improvement in NC, increasing
model complexity provides no benefits for the learned representations.

E.3 MAHALANOBIS AND RESIDUAL JOINT PERFORMANCE

We noticed that for all architectures, and on all OOD datasets, Mahalanobis and Residual follow the
same evolution curve, with usually slightly higher AUC in favor of Mahalanobis. This behaviour is
intriguing, due to the fact that each method relies on different types of information. While Maha-
lanobis models the ID distribution, i.e., the principal space, Residual relies on computing the null
space norm, which is orthogonal to the principal space.

We associate this behavior with the noise isolation in each architecture, which is specific to the
double descent training paradigm. Indeed, in order for models to be able to perfectly interpolate all
the training data and achieve (almost) zero training error, noisy samples must be represented closer
to their assigned (noisy) label, rather than to their true label. This will cause the train class clusters
(using the true labels) to be less compact and separable, making their high-likelihood region to span
almost the entire principal space, in which the ID data is represented. Hence, to separate ID from
OOD, learning the Mahalanobis GMM (fitted on the train data) becomes equivalent to separating
the principal and null space, which is the same reasoning behind the Residual score.
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Figure D.4: OOD detection evolution curve w.r.t model’s width (x-axis) in terms AUC. With CI-
FAR10 as ID and SUN as OOD, for (from top-left to bottom-right) CNN, ResNet-18, ViT, and
Swin.
This overfitting occurs at the interpolation threshold, which causes the learned distributions by Ma-
halanobis to be sparse and not robust to OOD data, impeding its improvement as we transition
towards overparametrization. It is important to note also that both of these methods are usually be-
low, or struggle to surpass the random choice threshold of 0.5 AUC in the overparametrized regime
(with the exception of texture dataset on ResNet-18 case).

Interestingly, both of these methods suffer much less from this behaviour under the Transformer
based architecture, and even exhibit a double descent curve on most datasets. This can be explained
by the fact that even the most overparametrized Transformer variant have an error higher than 4%,
considerably higher than the training error lower than 0.01% that convolutional models consistently
achieve. Hence, Transformers suffer less from this effect because they have not interpolated the
noise in the training data perfectly. It is worth noting that interpolating the noise is desirable, as it
is necessary for generalisation in this setup (Bartlett et al., 2020). Transformer-based architectures
require extensive pre-training to generalise well, especially for small scale dataset, which was not
performed in our experiments. This inability of transformers to perfectly interpolate the training data
contributes to their lower performance in terms of generalisation in the overparametrized regime,
especially in the ViT case.
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Figure D.5: OOD detection evolution curve w.r.t model’s width (x-axis) in terms AUC. With
CIFAR10 as ID and places365 as OOD, for (from top-left to bottom-right) CNN, ResNet-18, ViT
and Swin.
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Figure D.6: OOD detection evolution curve w.r.t model’s width (x-axis) in termsAUC. For a ResNet-
18 model with CIFAR-100 as ID and (from top-left to bottom-right) CIFAR-10, ImageNet-O, Tex-
ture, iNaturalist, SUN and places365 as OOD.
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Figure D.7: Generalisation evolution curve (left) w.r.t model’s width (x-axis), for a ResNet-18
model with CIFAR-100 as ID. Eigenvalues explained variance distribution (right) in the over-
parametrized regime for ResNet-18 (width 64), with CIFAR-100 as ID. Black line represents the
100th eigenvalue.
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Table 2: Models performance in terms of AUC in the underparametrized local minima (AUCu) and
the overparametrized maximum width (AUCo), w.r.t NC1u/o value. Best is highlighted in green
when AUCu is higher, red when AUCu is higher and blue if both AUC are within standard deviation
range. The highest AUC value per-dataset and per-architecture is highlighted in bold.

Model NC1u/o Method ImageNet-O Textures iNaturalist
AUCu ↑ AUCo ↑ AUCu ↑ AUCo ↑ AUCu ↑ AUCo ↑

CNN 0.88

Softmax score 71.60+0.37 71.78±0.57 70.76±0.99 74.80±0.78 66.19±1.27 72.07±1.56
MaxLogit 68.91±0.96 65.94±0.51 62.01±3.75 45.56±1.06 63.38±1.89 61.58±2.07
Energy 65.06±1.57 65.76 ±0.51 53.62±5.87 45.07±1.04 60.11±2.32 61.32±2.05
Energy+ReAct 59.06±2.60 58.08±0.80 42.80±7.54 32.67±0.86 51.17±2.82 49.41±2.47
NECO 67.45±1.14 68.89±0.35 56.54±3.83 55.75±3.63 59.79±1.96 68.52±3.60
ViM 67.13±1.61 65.76±0.51 49.84±3.59 45.09±0.79 51.58±2.82 61.37±1.96
ASH-P 66.20±1.48 66.26±0.57 56.07±5.94 46.23±1.07 60.73±2.83 61.52±2.11

ResNet 1.96

Softmax score 70.90±0.52 75.91±0.49 68.03±0.75 72.78 ±1.14 65.79±2.16 74.85±1.39
MaxLogit 69.45±0.88 72.50±0.88 65.06±1.80 64.43±2.04 63.88±3.47 72.82±2.32
Energy 67.36±1.26 72.44±0.89 62.28±2.55 64.35±1.84 61.73±4.97 72.77±2.33
Energy+ReAct 68.02±1.41 72.00±0.81 64.15±2.68 66.13±1.20 61.68±6.83 71.85±2.60
NECO 70.42±0.83 76.11±1.42 67.56±1.84 73.18±3.20 64.50±3.51 75.12±2.21
ViM 70.94±1.54 75.03±0.62 77.88±1.66 81.02±1.42 62.56±4.91 67.12±2.44
ASH-P 67.36±1.26 71.57±0.94 62.28±2.55 62.96±2.11 61.73±4.97 71.72±2.28

Swin 1.70

Softmax score 56.62±3.15 64.78±1.48 49.71±3.38 63.51±0.33 49.10±6.81 60.26±2.08
MaxLogit 55.86±3.95 64.70±2.07 49.47±4.18 60.29±0.38 49.22±5.07 58.91±1.81
Energy 49.58±5.48 64.56±2.05 49.49±6.73 59.96±0.46 51.61±7.96 58.73±1.75
Energy+ReAct 49.81±5.51 65.43±2.09 50.66±6.07 62.38±0.24 51.87±7.51 59.39±1.83
NECO 57.63±4.14 68.19±2.71 56.50±3.64 68.06±0.66 49.09±5.14 62.58±2.21
ViM 65.18±1.83 73.45±2.25 84.47±1.46 78.67±1.65 67.86±2.44 63.83±2.63
ASH-P 49.46±5.66 64.48±2.11 48.96±7.85 59.90±0.48 51.33±10.79 58.69±1.99

ViT 2.32

Softmax score 64.17±0.64 63.64±0.80 67.73±1.82 70.27±0.36 52.79±0.77 58.23±0.51
MaxLogit 63.15±0.88 68.87±0.52 67.22±2.25 79.25±0.38 51.90±1.95 61.28±0.94
Energy 61.24±1.08 69.10±0.50 65.59±2.78 79.68±0.38 51.11±3.04 61.40±0.97
Energy+ReAct 61.30±1.21 69.09±0.49 65.64±2.86 79.68±0.38 51.63±4.61 61.39±0.98
NECO 65.83±1.35 69.95±0.37 69.41±2.16 77.32±0.49 52.50±2.05 62.96±0.89
ViM 68.76±1.52 67.82±0.55 65.58±2.69 74.13±0.38 56.41±3.81 60.42±0.90
ASH-P 61.24±1.08 68.96±0.48 65.59±2.78 79.39±0.42 51.11±3.04 61.28±0.99

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

20 40 60 80 100 120
Widths 

40

50

60

70

80

AU
RO

C 
(%

)

Under-
parametrized

regime

Over-
parametrized

 regime

Average  CIFAR 10 AUROC vs Widths with Amplified Uncertainty

NECO
MSP
ViM
Mahalanobis
KL-Matching
Residual

20 40 60 80 100 120
Widths 

40

45

50

55

60

65

70

75

AU
RO

C 
(%

)

Under-
parametrized

regime

Over-
parametrized

 regime

Average  CIFAR 10 AUROC vs Widths with Amplified Uncertainty

NECO
MSP
ViM
Mahalanobis
KL-Matching
Residual

20 40 60 80 100 120
Widths 

40

50

60

70

80

90

AU
RO

C 
(%

)

Under-
parametrized

regime

Over-
parametrized

 regime

Average  ImageNet O AUROC vs Widths with Amplified Uncertainty

NECO
MSP
ASH-P
Mahalanobis
KL-Matching
ViM

20 40 60 80 100 120
Widths 

40

45

50

55

60

65

70

75

80

AU
RO

C 
(%

)

Under-
parametrized

regime

Over-
parametrized

 regime

Average  ImageNet O AUROC vs Widths with Amplified Uncertainty

NECO
MSP
ASH-P
Mahalanobis
KL-Matching
ViM

20 40 60 80 100 120
Widths 

40

50

60

70

80

AU
RO

C 
(%

)

Under-
parametrized

regime

Over-
parametrized

 regime

Average  inaturalist AUROC vs Widths with Amplified Uncertainty

NECO
MSP
ASH-P
Energy
MaxLogit

20 40 60 80 100 120
Widths 

40

45

50

55

60

65

70

75

AU
RO

C 
(%

)

Under-
parametrized

regime

Over-
parametrized

 regime

Average  inaturalist AUROC vs Widths with Amplified Uncertainty

NECO
MSP
ASH-P
Energy
MaxLogit

20 40 60 80 100 120
Widths 

40

50

60

70

80

90

AU
RO

C 
(%

)

Under-
parametrized

regime

Over-
parametrized

 regime

Average  Places365 AUROC vs Widths with Amplified Uncertainty

NECO
MSP
ASH-P
ViM
Mahalanobis
Residual
Energy+React

20 40 60 80 100 120
Widths 

40

45

50

55

60

65

70

AU
RO

C 
(%

)

Under-
parametrized

regime

Over-
parametrized

 regime

Average  Places365 AUROC vs Widths with Amplified Uncertainty

NECO
MSP
ASH-P
ViM
Mahalanobis
Residual
Energy+React

20 40 60 80 100 120
Widths 

40

50

60

70

80

90

AU
RO

C 
(%

)

Under-
parametrized

regime

Over-
parametrized

 regime

Average  SUN AUROC vs Widths with Amplified Uncertainty

NECO
MSP
ASH-P
ViM
KL-Matching

20 40 60 80 100 120
Widths 

40

45

50

55

60

65

70

AU
RO

C 
(%

)

Under-
parametrized

regime

Over-
parametrized

 regime

Average  SUN AUROC vs Widths with Amplified Uncertainty

NECO
MSP
ASH-P
ViM
KL-Matching

20 40 60 80 100 120
Widths 

40

50

60

70

80

90

AU
RO

C 
(%

)

Under-
parametrized

regime

Over-
parametrized

 regime

Average  Textures AUROC vs Widths with Amplified Uncertainty

NECO
MSP
ASH-P
Energy
Energy+React

20 40 60 80 100 120
Widths 

40

45

50

55

60

65

70

75

AU
RO

C 
(%

)

Under-
parametrized

regime

Over-
parametrized

 regime

Average  Textures AUROC vs Widths with Amplified Uncertainty

NECO
MSP
ASH-P
Energy
Energy+React

Figure D.8: OOD detection evolution curve w.r.t model’s width (x-axis) in termsAUC. For a ResNet-
34 model with CIFAR-10 as ID (left) and CIFAR-100 as ID (right). OOD datasets are CIFAR-10,
ImageNet-O, iNaturalist, SUN, places365 and Textures.
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Figure D.9: Generalization evolution curve w.r.t model’s width (x-axis), for a ResNet-34 model with
CIFAR-10 as ID (left) and CIFAR-100 as ID (right).
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Figure D.10: OOD risk evolution curve w.r.t model’s width (x-axis). For a ResNet-18 model with
CIFAR-10 as ID and CIFAR-100 as OOD (left) and ImageNet-O as OOD (right).
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Figure D.11: OOD risk evolution curve w.r.t model’s width (x-axis). For a CNN model with CIFAR-
10 as ID and iNaturalist as OOD (left) and Textures as OOD (right).
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Figure D.12: OOD risk evolution curve w.r.t model’s width (x-axis). For a ResNet-34 model with
CIFAR-10 as ID and iNaturalist as OOD (left) and ImageNet-O as OOD (right).
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Figure D.13: OOD risk evolution curve w.r.t model’s width (x-axis). For a ViT model with Imagenet-
o as ID and Places365 as OOD (left) and ImageNet-O as OOD (right).
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Figure D.14: OOD risk evolution curve w.r.t model’s width (x-axis). For a Swin model with
ImageNet-O as ID and SUN as OOD (left) and ImageNet-O as OOD (right).
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Figure D.15: Generalization evolution curve w.r.t model’s width (x-axis), for a ResNet-34 model
with CIFAR-10 as ID (left) and CIFAR-100 as ID (right).
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Figure D.16: OOD detection evolution curve w.r.t model’s width (x-axis) in termsAUC, on the noise-
less training case. with CIFAR-10 as ID and CIFAR-100 as OOD (left) and ImageNet-O as OOD
(right). Used models are, from top to bottom, CNN, ResNet-18, Vit, Swin.
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Figure E.1: Eigenvalues explained variance distribution in the overparametrized region for ((from
top-left to bottom-right)) CNN (width 64), ResNet-18 (width 64), ViT (width 400) and Swin
(width 50) from left to right respectively, all with CIFAR-10 as ID. Black line represents the 10th

eigenvalue.

Figure E.2: Visualization of the last-layer activations on the test set for ResNet and CNN in the
underparametrized local minima and the overparametrized width 128 model, with cifar10 as ID and
cifar100 as OOD dataset. ID point are shown in colors and OOD in black. ResNet underparam-
terized (left), ResNet overparametrized (middle left), CNN underparametrized (middle right) CNN
overparametrized (right).
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Figure E.3: NC1 metric evolution (Log scale), w.r.t model width increase. ResNet-18 is shown in
blue, ResNet-34 in green CNN in red. Dashed lines represent the interpolation threshold for each
model with matching color.
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