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ABSTRACT

As a biologically inspired computing paradigm, Spiking Neural Networks (SNNs)
process information through discrete spike sequences, mimicking the brain’s tem-
poral dynamics and energy efficiency. The combination of backpropagation
through time (BPTT) and direct input encoding (i.e., feeding decimal data di-
rectly into the network) has emerged as the mainstream training approach for
SNNs. However, this combination introduces varying temporal dependency re-
quirements across the network’s spatial dimension. These differences are often
neglected in existing studies, which typically apply uniform temporal dependency
configurations throughout the network. Consequently, this could result in missing
key gradients or introducing redundant ones in the temporal dimension, ultimately
affecting the network’s performance. To address this gap, we propose a novel
Spatio-Temporal Dependency-Aware Neuron Optimization (ST-DANO) method
for SNNs, which consists of two key components: neuron design and neuron
search. Specifically, to overcome the limitations of traditional Leaky Integrate-
and-Fire (LIF) neurons in adapting to varying temporal dependencies, we de-
signed two variants, Long-LIF and Short-LIF, which improve the neuron’s ability
to capture long-term and short-term dependencies, respectively, by dynamic mod-
ulation of membrane potential thresholds and time constants. After validating our
neuron designs through ablation studies, we developed a layer-wise neuron search
strategy that automatically selects the optimal neuron type for each layer to en-
sure optimal temporal dependency configurations across the network. Extensive
experiments on static and neuromorphic datasets demonstrate that ST-DANO can
effectively adapt to temporal dependency differences across the spatial dimension
in SNNs under various time-step configurations. The resulting architectures sur-
pass state-of-the-art performance, achieving a remarkable 83.90% accuracy on the
DVS-CIFAR-10 dataset—a more than 5% improvement over the baseline.

1 INTRODUCTION

Spiking Neural Networks (SNNs) diverge from traditional paradigms by processing information
through discrete spikes, enabling them to capture the temporal dynamics while significantly reduc-
ing energy consumption (Ding et al., 2022). While conventional Artificial Neural Networks (ANNs)
merely process static data in a single flow, SNNs handle information through binary spike sequences
and integrate temporal features across multiple time steps. This distinctive processing method en-
dows SNNs with the ability to handle complex temporal patterns; however, it complicates the use of
backpropagation, rendering conventional training methods inapplicable (Neftci et al., 2019).

To address this challenge, Backpropagation Through Time (BPTT) with surrogate gradients was in-
troduced (Wu et al., 2018). BPTT is a spatio-temporal propagation method that unfolds the network
across both spatial and temporal dimensions, with gradients propagating from the output layer to the
input layer but also recursively accumulating along the time axis (Meng et al., 2023). Building on
BPTT, Rueckauer et al., 2017 proposes direct input encoding to feed decimal data directly into the
network. Compared to traditional Poisson (Heeger et al., 2000) and temporal encodings (Mostafa,
2017), direct input encoding significantly reduces the number of time steps required for information
representation, lowering both training and inference costs. This efficiency gain has made the combi-
nation of BPTT and direct input encoding one of the mainstream training methods in recent research
(Deng et al., 2022; Meng et al., 2023; Xiao et al., 2022; Wang et al., 2023a).
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However, this combination introduces varying requirements for temporal dependencies across the
network spatial dimension—an aspect overlooked by existing research. This phenomenon stems
from two key factors. First, BPTT operates by updating network weights only after all time steps
have been processed, keeping the weights constant throughout the entire forward pass (Dampfhoffer
et al., 2023). Second, in direct input encoding, the inputs to the network remain constant at each
time step. These two constant conditions cause shallow1 neurons to receive nearly identical input
across time steps, resulting in diminished temporal dynamics. As the network deepens, the influence
of these constant conditions weakens due to the increasing introduction of continuous-to-discrete
transformations and nonlinear operations. As a result, deeper neurons are tasked with processing
more abstract temporal features, thereby exhibiting much stronger temporal dynamics. This spatial
variation in temporal dynamics indicates that neurons at different layers of the network have varying
requirements for temporal dependencies. However, existing research based on BPTT and direct
input encoding often employs the same type of neuron throughout the entire network, assuming that
temporal dependency needs of neurons at all layers are identical, overlooking these critical varying
requirements. This approach may lead to the loss of key gradients or the introduction of redundant
gradients across the temporal dimension, ultimately constraining network performance.

To address this limitation, we propose a Spatio-Temporal Dependency-Aware Neuron Optimization
(ST-DANO) method for SNNs, which optimally adapts temporal dependencies along the spatial di-
mension. ST-DANO consists of two key modules, neuron design and neuron search. Specifically,
to address the limitations of traditional Leaky Integrate-and-Fire (LIF) neurons in adapting variable
temporal dependencies, we designed two novel neurons: Long-LIF and Short-LIF, which leverage
dynamic modulation of membrane potential thresholds and time constants to adaptively capture and
flexibly model long-term and short-term dependencies, respectively. Through ablation studies, we
validate the effectiveness of designed neuron variants and investigate how their configurations at
different network layers affect overall performance. Next, we propose a layer-wise neuron search
strategy that selects optimal neuron types at different network depths, ensuring that temporal de-
pendencies are effectively adapted along the spatial dimension. Extensive experiments on static
and neuromorphic datasets demonstrate that the architectures with optimized neuron configurations
outperform state-of-the-art models. Remarkably, ST-DANO achieves a top accuracy of 60.24% on
Tiny-ImageNet (Deng et al., 2009), while delivering a significant improvement of more than 5%
over the baseline on DVS-CIFAR-10 (Amir et al., 2017).

2 RELATED WORK

Training method of SNNs. There are two mainstream training methods for SNNs: ANN-to-SNN
(A2S) conversion and direct training. A2S involves training the network using traditional backprop-
agation on an ANN, then converting it to an SNN by applying techniques such as activation function
mapping or scaling factors (Fang et al., 2021a; Li et al., 2021a; Bu et al., 2023). However, since the
training process mirrors that of an ANN, A2S struggles to effectively capture the temporal dynam-
ics inherent in time-series data, limiting its compatibility with neuromorphic datasets (Deng et al.,
2020). Direct training methods can be divided into two subcategories: Spike-timing-dependent plas-
ticity (STDP) and backpropagation-based training. As an unsupervised learning method, STDP does
not rely on large amounts of labeled data for learning, but its performance is significantly lower than
backpropagation-based supervised learning methods (Dong et al., 2023; Zhang et al., 2018). Among
backpropagation methods, BPTT with surrogate gradients (SG) dominates, as numerous studies have
demonstrated its ability to effectively train high-performance SNNs on both static and neuromorphic
datasets (Deng et al., 2022; Wang et al., 2023b). Based on BPTT, various techniques have been pro-
posed to further enhance network performance, such as efficient spatial learning (Meng et al., 2023),
normalization methods (Jiang et al., 2024; Guo et al., 2023b), and extra learnable parameters (Sun
et al., 2023; Fang et al., 2021b).

Temporal dependency of SNNs. Most existing studies on the temporal dependencies of SNNs
treat the network as a whole, emphasizing the overall enhancement of long-term dependencies on
external inputs. For instance, Lotfi Rezaabad & Vishwanath, 2020 integrates LSTM with SNNs and
proposed an error backpropagation method to improve the ability of SNNs to learn long-term de-
pendencies. Stan & Rhodes, 2024 introduces a state space model to SNNs, allowing them to learn

1In this paper, shallow refers to layers closer to the input, while deep refers to those closer to the output.
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from long sequences. Yu et al., 2022, inspired by biological synapses, develops spatio-temporal
synaptic connections to enhance the extraction of spatio-temporal features in SNNs. Gao et al.,
2024 proposes spike spatio-temporal attention to strengthen the network’s ability to capture tempo-
ral information, while Shen et al., 2022 proposes a spatio-temporal adjustment method to enhance
the temporal dependencies of SNNs. However, none of these works analyze the inherent varia-
tion in temporal dependency demands across different layers after unfolding the network along the
spatial dimension. The work most closely related to ours is Kim et al., 2023, which uses Fisher
information matrix analysis to show that the concentration of temporal information in SNNs is un-
evenly distributed across network depths in various tasks. However, this work does not propose a
corresponding layer-wise strategy, resulting in limited performance improvement.

3 PRELIMINARY

3.1 LEAK INTEGRATE-AND-FIRE (LIF) NEURON

This paper employs a widely adopted neuron model, the LIF neuron, which processes temporal
information through mechanisms of membrane potential accumulation, spike firing, and reset (Fang
et al., 2021b). The dynamics of the LIF neuron can be described as follows.

τ
dV [t]

dt
= −V [t] +X[t] (1)

S[t] = Θ(V [t]− Vth) (2)

where V [t], X[t] represent the membrane potential and input current at time step t, respectively, and
τ is the membrane time constant. S[t] in Eq. (2) is the output of a LIF neuron, where Vth is the
membrane potential threshold and Θ is the Heaviside function.

3.2 GRADIENTS OF BPTT

To investigate the temporal dynamics of a single spiking neuron, this section unfolds the BPTT pro-
cess and derives the gradient of the neuron’s output with respect to its input, providing a theoretical
foundation for subsequent design. First, by incorporating the membrane potential hard reset method,
Eq. (1) can be recursively written as Eq. (3), where the hard reset process is given in Appendix A.

V [t] = V [t− 1] · exp(−1

τ
) · (1−Θ(V [t− 1]− Vth)) +X[t] (3)

Based on the above equation, assuming that within T time steps, the input and output sequences of
a neuron are X = [X[0], X[1], · · · , X[T ]] and S = [S[0], S[1], · · · , S[T ]], respectively. From this,
we can derive the gradient of the neuron’s output with respect to its input during BPTT as Eq. (4)
(the detailed derivation process is provided in Appendix B), where κh is the derivative of the term
V [x] · (1−Θ(V [x]− Vth)) in the Eq. (3) with respect to V [x].

∇XS =

T∑
t=0

t∑
i=0

∂S[t]

∂V [i]

∂V [i]

∂X[i]
=

T∑
t=0

Θ′(V [t]− Vth) · (1 +
t∑

i=0

exp(− i

τ
) ·

i∏
j=1

κh(V [t− j])) (4)

κh(V [x]) = 1−Θ(V [x]− Vth)− V [x] ·Θ′(V [x]− Vth) (5)

In the Eqs. (4) and (5), Θ′ represents the derivative of the Heaviside function, and we use the
piecewise quadratic function as the surrogate function for it (details are provided in Appendix A).
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4 METHOD

In this section, we present our ST-DANO. The implementation of ST-DANO has two parts: neuron
design and neuron search. Specifically, we design two LIF neuron variants, Long-LIF (LLIF) and
Short-LIF (SLIF), to adaptively enhance neurons’ long-term and short-term dependencies, respec-
tively. We then propose a layer-wise neuron search strategy based on LIF, LLIF, and SLIF neurons,
which selects the most suitable neuron type for each layer in the SNN architecture.

4.1 NEURON DESIGN

To enhance long-term and short-term dependencies in LIF neurons, we approached the design from
the perspective of gradient contributions. Following the BPTT process, gradients are accumulated
after a total of T time steps. For neurons designed to enhance long-term dependencies, the propor-
tion of gradient contributions from early time steps2 must increase relative to the overall gradient.
Conversely, for neurons emphasizing short-term dependencies, the gradient contributions from re-
cent time steps should have a stronger impact. According to the gradient Eq. (4), three key factors
influence the gradient: the membrane potential at each time step, the membrane potential threshold
Vth, and the membrane time constant τ . Since the membrane potential is part of the data flow and not
suitable for direct modification, we focus on adjusting the adaptive Vth and τ to influence gradient
contributions, thereby reinforcing neurons’ short-term and long-term dependencies.

Theoretically, a higher Vth requires the neuron to accumulate more input before firing, meaning the
neuron does not immediately respond to each time step but rather reacts to information accumulated
over a longer period. This enables the neuron to integrate context across multiple time steps, thereby
improving its capacity to capture long-term dependencies. Conversely, a lower Vth increases the neu-
ron’s sensitivity to short-term dependencies. As for the membrane time constant τ , a larger value
causes the membrane potential to decay more slowly over time, allowing the neuron to retain infor-
mation from several past time steps, which also aids in capturing long-term dependencies. On the
other hand, a smaller τ enhances the neuron’s focus on short-term dependencies by limiting the re-
tention of past information. From the perspective of firing rate, we enhance long-term dependencies
by adaptively increasing the membrane potential threshold and strengthen short-term dependencies
by reducing the membrane time constant. Both strategies work to suppress spike firing, which not
only improves network performance but also reduces energy consumption.

Conv, BN

MReLU

LLIF

Conv, BN

SLIF

Spikes Over-excitation Signals

Time steps

t = 0

Temporal Unfolding of SLIF

Inhibitory Signals

LLIFa SLIFb

t = 1 t = 2

…

…

p
VSoft Reset

X

I

X

Figure 1: Workflows of (a) LLIF and (b) SLIF.

Long-LIF (LLIF). Since negative signals in the input often represent inhibitory or reversal trends
within temporal patterns, in the design of LIF neurons with enhanced long-term dependencies
(LLIF), we transform these negative signals at each time step into inhibitory signals, which are then
accumulated into the membrane potential threshold, affecting spike firing in all subsequent time
steps. This mechanism ensures that the neuron becomes more sensitive to global changes and trends
from early time steps, allowing it to accumulate critical information over extended time periods,
thereby improving its ability to capture long-term dependencies.

2In this paper, early refers to time steps closer to t = 0, while recent refers to those closer to t = T .
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MReLU : I = ReLU(X)−X (6)

Vth[t] = Vth[t− 1] + γ · tanh(I[t− 1]) (7)

Specifically, as Fig. (1) (a), we implement this design through a customized Mask-ReLU (MReLU)
layer. Denote the inhibitory signal sequence as I = [I[0], I[1], · · · , I[T ]], and we obtain I from the
input sequence X using Eq. (6). Furthermore, across the temporal dimension, the membrane poten-
tial threshold Vth gradually accumulates the inhibitory signal I as Eq. (7), where tanh represents the
hyperbolic tangent function, and γ is a constant coefficient set to a default value of 0.1.

We analyze why LLIF neurons enhance long-term dependencies from the perspective of gradient
contribution in Appendix C. To achieve stronger long-term dependencies, the contribution from
early time steps must have a higher expected proportion in the total gradient compared to standard
LIF neurons. This can alleviate the inherent gradient decay phenomenon in BPTT caused by Eq.
(4), thereby helping the network more effectively retain and leverage information from distant time
steps during the backpropagation process.

Short-LIF (SLIF). Strengthening short-term dependency requires neurons to enhance their sensi-
tivity to recent time steps. Based on the synaptic potentiation phenomenon (Zucker & Regehr, 2002)
observed in biological neurons—where a neuron temporarily increases its sensitivity to recent sig-
nals when subjected to strong stimulation while moderately reducing the influence of historical acti-
vations—the design in SLIF neurons contrasts with the inhibitory signal design in LLIF. In SLIF, we
treat membrane potentials exceeding the threshold as signals of over-excitation, linking this signal
to the sensitivity of signal reception in future time steps. This implies that in SLIF neurons, the rate
of decay for past accumulated potentials at the current time step is positively correlated with the
intensity of recent stimulation, enabling the neuron to pay more attention to recent inputs. Specifi-
cally, in SLIF, we employ a soft reset method (detailed in Appendix A), where the degree of recent
stimulation is represented by the residual membrane potential, which refers to the neuron’s potential
after a soft reset. The decay rate of the potential is controlled by τ . Thus, the SLIF process, as
depicted in Fig. (1) (b), defines the residual membrane potential Vp by Eq. (8), while the dynamic
between the membrane time constant τ and the residual membrane potential Vp is given by Eq. (9).

Vp[t] = S[t] · (V [t]− Vth) (8)

τ [t] = max[1.05, τ0 − β · tanh(Vp[t− 1])] (9)

For Eq. (9) , τ0 is the membrane time constant at initialization, tanh is the hyperbolic tangent
function, and β is a constant coefficient used to regulate the amplitude, with a default value set to
0.1. Additionally, based on the findings of Fang et al., 2021b and Deng et al., 2022, 1 is considered
the lower bound for τ . Therefore, we set a slightly larger minimum value of τ at 1.05 to ensure
stability and effectiveness in the model’s behavior.

From the perspective of backpropagation, we can conclude that when SLIF adapts the membrane
time constant using Eq. (9), it increases the contribution of recent time steps to the overall gradient
compared to standard LIF (see Appendix D for a detailed derivation).

4.2 ABLATION STUDY: WHY A NEURON SEARCH STRATEGY IS ESSENTIAL?

Although it may seem intuitive to optimize the network by placing SLIF neurons in shallow layers
and LLIF neurons in deep layers based on the dynamics of dependency and neuron design dis-
cussed earlier, the reality is far more complex. Due to the intricate connection structures in modern
network architectures, such as skip connections (He et al., 2016), the temporal dependency varies
non-linearly along the spatial dimension. Moreover, the spiking neuron layers’ requirements for
temporal dependency differ depending on the task type—for example, static datasets versus neuro-
morphic datasets have inherently distinct needs, which is intuitive but challenging to address manu-
ally. In this section, we demonstrate through ablation experiments that manual placement of neurons
is suboptimal, which motivates the development of our neuron search strategy.
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The core idea of this ablation study is to replace the LIF neurons at different depths in a conventional
LIF-based network with our dependency-enhanced neurons. By observing the performance changes
resulting from neuron replacement at various depths, we aim to demonstrate the differing responses
to neuron types across network depths. For this study, we selected two representative datasets and
corresponding networks: the static dataset CIFAR-10 using ResNet-18 and the neuromorphic dataset
DVS-CIFAR-10 using VGG-11. ResNet-18 consists of 8 residual blocks, each containing two spik-
ing neuron layers, while VGG-11 has 5 blocks, with the sequence of spiking neuron layers across
the blocks being 1, 1, 2, 2, and 2 layers, respectively, from the input to the output layer. Based on
these architectures, we define the methods for this ablation experiment as follows:

• LIF / LLIF / SLIF. LIF / LLIF / SLIF neurons for all spiking neuron layers.

• LLIF-X / SLIF-X . (Larger X corresponding to deeper layers)

– In ResNet-18: LLIF / SLIF neurons are applied to the spiking neuron layers from the
(2X − 1)-th to the (2X)-th blocks, while LIF neurons are used for others.

– In VGG-11: LLIF / SLIF neurons are applied to the spiking neuron layers in the X-th
block, while LIF neurons are used for others.

For all methods within each dataset, we
maintained identical experimental envi-
ronments and hyperparameter settings.
Detailed experimental setups are provided
in Appendix F. The comparative results
for each method are summarized in Ta-
ble 1. Additionally, due to the large
number of methods evaluated in this ex-
periment, we selected four representative
methods from both the CIFAR-10 and
DVS-CIFAR-10 datasets—LIF, LLIF-4,
SLIF, and SLIF-4—to visualize test accu-
racy and loss over iterations, as shown in
Fig. 2. The full test accuracy curves for all
methods are available in Appendix G. It’s
important to note that methods with the
same name, such as SLIF-1, have differ-
ent implications when applied to ResNet-
18 and VGG-11.

Table 1: Comparison of LIF variants

Method
Test Accuracy (%)

CIFAR-10 DVS-CIFAR-10
ResNet-18 VGG-11

LIF 93.46 76.20
LLIF 94.78 77.00

LLIF-1 94.36 77.00
LLIF-2 94.71 76.60
LLIF-3 94.70 77.10
LLIF-4 94.83 79.30
LLIF-5 / 77.80
SLIF 83.83 66.80

SLIF-1 94.41 77.50
SLIF-2 93.30 76.20
SLIF-3 92.03 76.10
SLIF-4 90.28 78.00
SLIF-5 / 76.20
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Figure 2: Comparison of four representative methods. Where (a1) and (a2) are the test accuracy and
loss iteration performance of methods based on ResNet-18 on CIFAR-10, respectively. Similarly,
(b1) and (b2) are the corresponding performance of methods based on VGG-11 on DVS-CIFAR-10.

First, focusing on CIFAR-10, as shown in Table 1, it is clear that all methods based on LLIF demon-
strate significant performance improvements compared to standard LIF, with only minor differences
among them. Notably, LLIF-4 achieved the highest test accuracy among these methods. In contrast,
for SLIF-based methods, only SLIF-1 outperforms standard LIF, while SLIF and SLIF-2 through
SLIF-4 show some performance degradation. Particularly, SLIF achieves only 83.83% accuracy. As
illustrated in Fig. 2 (a1) and (a2), both SLIF and SLIF-4 exhibit severe overfitting before epoch
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100, with SLIF showing a more pronounced decline in accuracy. By the end of 300 epochs, SLIF-
4’s performance is nearly equivalent to its untrained state. This is because the closer the network is
to the output layer, the stronger its temporal dynamics become, and the more abstract its temporal
features. As such, near-output neurons need to integrate contextual information through long-term
dependencies. If these neurons are forced to emphasize short-term dependencies, as seen with SLIF-
4, it can severely damage network performance. On the other hand, on the DVS-CIFAR-10 dataset,
LLIF-4 again achieved the highest accuracy, and LLIF-based methods exhibit similar trends as those
observed on CIFAR-10. As shown in Fig. 2 (b1) and (b2), SLIF-based methods do not exhibit over-
fitting; however, except for SLIF, their performance is comparable to that of standard LIF. Notably,
SLIF shows very slow convergence, achieving only 66.80% accuracy.

The ablation experiments above validate our analysis: enhancing short-term dependency in shallow
layers (e.g., SLIF-1) and long-term dependency in deep layers (e.g., LLIF-4) can improve network
performance. However, these experiments also lead to two important conclusions. First, within the
same dataset, the placement of different neuron types has a significant impact on network perfor-
mance. Second, the performance trends resulting from neuron placement along the network’s spatial
dimension vary across different datasets.

Based on these conclusions, while manually replacing shallow neurons with SLIF and deep neurons
with LLIF can improve performance to some extent, this approach is inherently limited in its ability
to fully explore the network’s maximum potential. The reason is that there are numerous possible
combinations of LIF, LLIF, and SLIF neurons along the spatial dimension, and manual placement is
unlikely to yield optimal results. Thus, an adaptive method is required—one that can automatically
search for the optimal neuron placement throughout the entire network architecture. This approach
would release the potential of design neurons, optimizing both model performance and stability.

4.3 NEURON SEARCH

In this section, we introduce the Layer-Wise Neuron
Search (LWNS) strategy, built on the foundation of Dif-
ferentiable Architecture Search (DARTS) (Liu et al.,
2018), to enable the spatial adaptation of temporal de-
pendencies in SNNs. DARTS is a neural architecture
search method that efficiently optimizes network archi-
tectures by transforming the discrete search space into
a continuous one, facilitating gradient-based optimiza-
tion. This approach allows us to dynamically search
for the optimal neuron placement across different lay-
ers, enhancing the network’s ability to adapt to varying
temporal dependencies along the spatial dimension.

Super Neuron

LIF

LLIF

SLIF

Conv BN å

Forward 0

i
a

i Conv j
1

i
a

2

i
a

… …

Figure 3: Forward pass of LWNS-Net.

Unlike traditional DARTS, which perform architecture search based on cell structures, LWNS re-
tains the classic architectures of ResNet or VGG and conducts a layer-wise search across the entire
network. Specifically, in the LWNS network (LWNS-Net), all spiking neurons are replaced with
super neurons, each composed of three types of LIF neurons. This allows LWNS to use gradient
descent to select the most suitable neuron type for each layer, thereby adapting flexibly to the tem-
poral dependency requirements of different layers. This method not only extends the applicability
of DARTS but also allows for more flexible and refined neuron configuration at the layer level.

The construction of the LWNS-Net and the super neurons is depicted in Fig. 3. When data flows
from convolution layer i to convolution layer j (where j = i + 1), it first passes through a normal-
ization layer for preprocessing, followed by activation through the super neuron. Within the super
neuron, the inputs to LIF, LLIF, and SLIF neurons are identical. Their outputs are denoted as Oi

0,
Oi

1, and Oi
2, respectively. The input to convolution layer j is given by Eq. (10), where α represents

the architecture parameters, which are learned using the same approximated gradient methods as de-
scribed in Liu et al., 2018. Additionally, the size of search space of LWNS depends on the number
of spiking neuron layers in the specific network framework. Assuming there are N spiking neuron
layers in the network, the search space size of LWNS would be 3N , which is compact, reducing
search cost and enhancing network performance with minimal additional training resources.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

INj =

2∑
k=0

exp(αi
k)∑2

l=0 exp(α
i
l)

BN(Oi
k) (10)

Table 2: Comparison with SOTA on CIFAR-10, CIFAR-100, Tiny-ImageNet, DVS-CIFAR-10, and
DVS-Gesture datasets.

Model Method Architecture Time step Accuracy (%)

C
IF

A
R

-1
0

Offline LTL (Yang et al., 2022) A2S ResNet-20 32 95.28
Joint A-SNN (Guo et al., 2023a) A2S ResNet-18 4 95.45
TET-SSF (Wang et al., 2023a) SG ResNet-18 20 94.90

OTTT (Xiao et al., 2022) SG VGG-11‡ 6 93.73
SLTT (Meng et al., 2023) SG ResNet-18 6 94.59

LT-SNN (Hasssan et al., 2024) SG Spikformer 4 95.19
DTA-TTFS (Wei et al., 2023) SG VGG-16 8 93.05
ESL-SNNs (Shen et al., 2023) SG ResNet-19 4 91.09

SNASNet-Bw (Kim et al., 2022) SG NAS 8 94.37
AutoSNN (Na et al., 2022) SG NAS 8 93.15

ST-DANO (Ours) SG ResNet-18* 8 / 6 / 4 / 2 95.92 / 95.65 / 95.66 / 95.50

C
IF

A
R

-1
00

Offline LTL (Yang et al., 2022) A2S ResNet-20 32 76.12
Joint A-SNN (Guo et al., 2023a) A2S ResNet-18 4 77.39
RecDis-SSF (Wang et al., 2023a) SG ResNet-18 20 75.48

OTTT (Xiao et al., 2022) SG VGG-11‡ 6 71.11
sparse-KD (Xu et al., 2024b) SG ResNet-18 4 73.01

SLTT (Meng et al., 2023) SG ResNet-18 6 74.67
LT-SNN (Hasssan et al., 2024) SG ResNet-19 6 74.82
DTA-TTFS (Wei et al., 2023) SG VGG-16 8 69.66
ESL-SNNs (Shen et al., 2023) SG ResNet-19 4 73.48

SNASNet-Bw (Kim et al., 2022) SG NAS 5 73.40
AutoSNN (Na et al., 2022) SG NAS 8 69.16

ST-DANO (Ours) SG ResNet-18* 8 / 6 / 4 / 2 76.25 / 75.94 / 75.93 / 75.53

Ti
ny

-I
m

ag
eN

et

Offline LTL (Yang et al., 2022) A2S ResNet-20 32 57.73
Joint A-SNN (Guo et al., 2023a) A2S VGG-16 4 55.39
SEW-SSF (Wang et al., 2023a) SG ResNet-34 20 58.81
default-KD (Xu et al., 2024b) SG ResNet-18 4 59.31

SNASNet-Bw (Kim et al., 2022) SG NAS 5 55.08
AutoSNN (Na et al., 2022) SG NAS 8 46.79

ST-DANO (Ours) SG VGG-13* 8 / 6 / 4 / 2 60.24 / 60.14 / 60.08 / 59.10

D
V

S-
C

IF
A

R
-1

0

CE-SSF (Wang et al., 2023a) SG VGG-11 20 78.00
OTTT (Xiao et al., 2022) SG VGG-11‡ 10 77.10
SLTT (Meng et al., 2023) SG ResNet-18 10 77.30

LT-SNN (Hasssan et al., 2024) SG VGG-7 10 80.20
ESL-SNNs (Shen et al., 2023) SG VGG-9 10 78.30

AutoSNN (Na et al., 2022) SG NAS 20 72.50
ST-DANO / ST-DANO† (Ours) SG VGG-11* 10 79.30 / 83.90
ST-DANO / ST-DANO† (Ours) SG VGG-11* 8 77.20 / 81.80

D
V

S-
G

es
tu

re OTTT (Xiao et al., 2022) SG VGG-11‡ 20 96.88
sparse-KD (Xu et al., 2024b) SG 5Conv 1FC 16 96.18

SLTT (Meng et al., 2023) SG VGG-11 20 98.62
AutoSNN (Na et al., 2022) SG NAS 20 96.53

ST-DANO (Ours) SG VGG-11* 20 / 16 / 8 98.61 / 97.22 / 96.88
† Data augmentation (Li et al., 2022), ‡ Scaled weight standardization (Qiao et al., 2019),
* Optimal neuron configuration obtained by ST-DANO.
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5 EXPERIMENTS

5.1 COMPARISON WITH STATE-OF-THE-ART APPROACHES

To demonstrate the effectiveness of ST-DANO in enhancing the performance of SNNs, we conduct
experiments on static datasets CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al.,
2009), and Tiny-ImageNet (Deng et al., 2009), as well as neuromorphic datasets DVS-CIFAR-10
(Li et al., 2017) and DVS-Gesture (Amir et al., 2017). The results are then analyzed and compared
against the state-of-the-art methods. Detailed descriptions and process methods of the datasets are
provided in Appendix E. The training process of ST-DANO across all datasets is divided into two
phases: searching and retraining. In the first phase, the optimal neuron configuration is searched
based on ST-DANO, while in the later one, the network with optimal neuron configuration will
be retrained. The complete and detailed implementation of both phases is provided in Appendix
F. Additionally, to thoroughly evaluate the performance of ST-DANO, we search for the optimal
neuron configurations corresponding to different time-step settings across participated datasets.

Static Datasets. As shown in Table 2, ST-DANO achieves the best performance on the CIFAR-10
and Tiny-ImageNet datasets among the three static datasets, with accuracies of 95.92% and 60.24%,
respectively. Although the Joint A-SNN (Guo et al., 2023a) outperforms in CIFAR-100 with an
accuracy of 77.39%, our method still surpasses other surrogate gradient-based learning methods in
this dataset. An interesting observation is that on CIFAR-10, our method performs slightly better
with a time step setting of 4 compared to that of 6. This suggests that when ST-DANO searches for
the neuron configuration on the CIFAR-10 dataset with a time step setting of 6, it finds a suboptimal
rather than the desired optimal configuration. Despite this, our method still significantly outperforms
other approaches, underscoring its tremendous advantages.

Neuromorphic Datasets. On the DVS-CIFAR-10 dataset, our method achieves the best accuracy
of 79.30% without data augmentation, and further improves to 83.90% with augmentation applied.
On DVS-Gesture, ST-DANO achieves an accuracy of 98.61%, only slightly below that of SLTT
(Meng et al., 2023) (98.62%). Overall, our method demonstrates equally strong performance on
challenging neuromorphic datasets as it does on static datasets.

5.2 OPTIMAL NEURON CONFIGURATIONS

Table 3 provides the optimal neuron configurations obtained by ST-DANO and the search cost, with
the corresponding architecture parameters visualized in Appendix H. Notably, on the CIFAR-10 and
CIFAR-100 datasets, the first and fifth layers of the shallow network tend to use SLIF, while the
deeper layers, especially the last four, prefer LLIF. This observation aligns with our original analy-
sis in designing ST-DANO: shallow layers prefer short-term dependencies, while deep layers prefer
long-term dependencies. Meanwhile, it also confirms that the network’s temporal dependency re-
quirements are not linear. For example, in the optimal neuron configurations of CIFAR-10 and
CIFAR-100, shallow layers 2, 3, and 4 do not favor LLIF but instead use standard LIF. For neuro-
morphic datasets, they predominantly favor long-term dependency neurons. This is because, unlike
static datasets, the input data in neuromorphic datasets is inherently dynamic and discrete time-series
data, requiring the overall network to integrate information over longer time ranges. Interestingly,
the optimal neuron configuration for DVS-CIFAR-10 with a time step of 10 is coincidentally identi-
cal to the LLIF-4 in VGG-11 we manually set in Section 4.2.

From the heatmaps of the architecture parameters provided in Table 3, it can be observed that on
static datasets, as the network deepens, the architecture parameters of SLIF neurons show a down-
ward trend, while those of LLIF neurons increase. However, on neuromorphic datasets such as
DVG-Gesture, LLIF neurons dominate across all layers of the network. These findings are consis-
tent with our previous analysis of temporal dependencies.

Furthermore, in Appendix I, we provide a comparison of the spike firing rates during the infer-
ence phase between the optimal neuron configuration found by our method and the conventional
LIF network across all cases. The results demonstrate that our approach not only improves net-
work performance but also effectively suppresses spike activity, thereby reducing inference energy
consumption, making it more favorable for real-world deployment.
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Table 3: Optimal neuron configurations discovered by ST-DANO across different datasets. The
sequence of numbers in the ’Optimal Neuron Configuration’ represents the types of neurons used
from the input layer to the output layer of the network, where 0 denotes LIF neurons, 1 denotes
LLIF neurons, and 2 denotes SLIF neurons. ’Search Cost’ is measured in GPU days. ’Architecture
Parameter Visualization’ representatively displays heatmaps of the architecture parameters under
time step settings of 6, 6, 6, 10, and 20 on each dataset. Each subfigure consists of three rows and
N columns, where the first, second, and third rows correspond to SLIF, LLIF, and LIF neurons,
respectively, and N represents the number of spiking neuron layers. In the heatmaps, the redder the
color, the larger the architecture parameter, while the closer it is to blue, the smaller the value. Full
edition of architecture parameter visualization is provided in Appendix H.

Arc. Time
Step

Optimal Neuron
Configuration

Search
Cost

Architecture Parameter
Visualization

C
IF

A
R

-
10

R
es

N
et

-1
8 2 20002000000001001 0.13

4 20002000000001001 0.16
6 20000000000001011 0.19
8 20000000000001011 0.22

C
IF

A
R

-
10

0

R
es

N
et

-1
8 2 20002000000010011 0.13

4 20002000000010111 0.16
6 20002000000010111 0.19
8 20002000001010111 0.22

Ti
ny

-
Im

ag
eN

et

V
G

G
-1

3 2 0000020101 0.37
4 0000000101 0.48
6 0000000101 0.59
8 0000020101 0.70

D
V

S-
C

IF
A

R
-

10

V
G

G
-1

1

8
10

00011100
00001100

0.11
0.13

D
V

S-
G

es
tu

re

V
G

G
-1

1 8 11000001 0.10
16 10112111 0.17
20 10111111 0.21

Besides, beyond the commonly used architectures in Table 2, we conduct additional experiments
using ST-DANO. The results of these additional experiments further demonstrate the effectiveness
of our method and reinforce the conclusions above. For detailed information on the training settings,
experimental results, and the optimal neuron configurations discovered during these additional ex-
periments, please refer to Appendix J.

6 CONCLUSION

The BPTT method has streamlined the training of SNNs, while direct input encoding dramatically
cuts down the number of time steps needed. Together, these two approaches have drastically en-
hanced training efficiency and effectiveness, establishing themselves as the dominant framework in
SNN research. However, the variation in neurons’ temporal dependency requirements across the
spatial dimension, introduced by this combination, poses a significant barrier to unlocking the full
performance potential of SNNs. To address this issue, we propose a Spatio-Temporal Dependency-
Aware Neuron Optimization (ST-DANO) method to find the optimal dependency configuration for
the network architecture. Specifically, we first design two variants of LIF neurons: LLIF and SLIF,
which are capable of enhancing neurons’ ability to capture long-term and short-term dependencies,
respectively. Building on this, we design a layer-wise neuron search strategy based on DARTS,
which utilizes a differentiable search process to find the optimal temporal dependency configuration
for each spiking neuron layer, enabling adaptive temporal dependency along the spatial dimension
in SNNs. Finally, extensive experiments on static and neuromorphic datasets demonstrate the supe-
riority of our method.
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APPENDIX
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A RESET METHODS AND SURROGATE GRADIENT

In LIF neurons, the membrane potential undergoes a reset following the generation of an action
potential (spike). There are generally two forms of resetting: hard reset (Deng et al., 2022; Zhu
et al., 2024) and soft reset (Han et al., 2020; Park et al., 2024). At time step t, the two reset processes
can be described as follows.

V [t]←−
{
(1− S[t]]) · V [t] Hard Reset
V [t]− S[t] · Vth Soft Reset

(11)

For all types of spiking neurons, we use the piecewise quadratic function (triangle function) as the
surrogate gradient (Fang et al., 2023; Neftci et al., 2019), which is defined as:

g′(x) =

{
0, |x| > 1

α

−α2|x|+ α, |x| ≤ 1
α

(12)

The primitive function is defined as:

g(x) =


0, x < − 1

α

− 1
2α

2|x|x+ αx+ 1
2 , |x| ≤

1
α

1, x > 1
α

(13)

where constant α is set to 1 for all cases.

B GRADIENT OF LIF-BASED BPTT

In this section, we infer the gradient over the temporal dimension for LIF neurons during the BPTT
process.

The following is the dynamic equation of LIF neurons in hard reset mode:

V [t] = V [t− 1] · exp(−1

τ
) · (1−Θ(V [t− 1]− Vth)) +X[t] (14)

The core of BPTT is to perform backpropagation after all time steps have been completed, and
accumulate the gradients over all time steps. Assuming the total number of time steps is T , for
any time step t ∈ [0, 1, . . . , T ], the neuron output S[t] at this time step is related to the inputs at all

15
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previous time steps X[0], X[1], . . . , X[t]. Therefore, the gradient at time step t,∇X[0:t]S[t], follows
the relationship:

∇X[0:t]S[t] =

t∑
i=0

∂S[t]

∂X[i]
=

∂S[t]

∂X[0]
+

∂S[t]

∂X[1]
+ · · ·+ ∂S[t]

∂X[t]
(15)

where X[0 : t] = [X[0], X[1], · · · , X[t]], and therefore:

∇XS =

T∑
i=0

∇X[0:i]S[i] =

T∑
t=0

t∑
i=0

∂S[t]

∂X[i]
(16)

For the term
∑t

i=0
∂S[t]
∂X[i] , it can be expanded as

∑t
i=0

∂S[t]
∂V [i]

∂V [i]
∂X[i] . Using Eq. (14), we have ∂V [i]

∂X[i] =

1. Therefore, Eq. (16) can be rewritten as:

∇XS =

T∑
t=0

t∑
i=0

∂S[t]

∂V [i]
(17)

Thus, we will now rewrite Eq. (15) as Eq. (18) and expand each term on the right-hand side in
detail:

∇X[0:t]S[t] =

t∑
i=0

∂S[t]

∂V [i]
=

∂S[t]

∂V [0]
+

∂S[t]

∂V [1]
+ · · ·+ ∂S[t]

∂V [t]
(18)

where:
∂S[t]

∂V [t]
= Θ′(V [t]− Vth) (19)

∂S[t]

∂V [t− 1]
=

∂S[t]

∂V [t]

∂V [t]

∂V [t− 1]

= Θ′(V [t]− Vth) · exp(−
1

τ
) · (1−Θ(v[t− 1]− Vth)− V [t− 1] ·Θ′(V [t− 1]− Vth))

(20)

∂S[t]

∂V [t− 2]
=

∂S[t]

∂V [t]

∂V [t]

∂V [t− 1]

∂V [t− 1]

∂V [t− 2]

= Θ′(V [t]− Vth) · exp(−
2

τ
) ·

2∏
i=1

(1−Θ(v[t− i]− Vth)− V [t− i] ·Θ′(V [t− i]− Vth))

(21)

By partially expanding Eq. (18) through Eqs. (19)-(21), we can summarize the gradient at time step
t as:

∇X[0:t]S[t] = Θ′(V [t]− Vth) · (1 + exp(−1

τ
) · κh(V [t− 1]) + exp(−2

τ
) · κh(V [t− 1]) · κh(V [t− 2]) + · · · )

= Θ′(V [t]− Vth) · (1 +
t∑

i=1

exp(− i

τ
) ·

i∏
j=1

κh(V [t− j]))

(22)

where
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κh(V [x]) = 1−Θ(V [x]− Vth)− V [x] ·Θ′(V [x]− Vth) (23)

Since the dynamics of the soft reset follow Eq. (24), if the neuron uses soft reset, the gradient
calculation only requires replacing κh in Eq. (22) with κs from Eq. (25).

V [t] = (V [t− 1]−Θ(V [t− 1]− Vth) · Vth) · exp(−
1

τ
) +X[t] (24)

κs(V [x]) = 1− Vth ·Θ′(V [x]− Vth) (25)

In summary, we can derive the gradient of the neuron during a single backpropagation in BPTT
(with a total of T time steps) as Eq. (C), where the term Θ′(V [t]−Vth) can be replaced by Eq. (12).

∇XS =

T∑
t=0

Θ′(V [t]− Vth) · (1 +
t∑

i=0

exp(− i

τ
) ·

i∏
j=1

κh(V [t− j])) (26)

C ANALYSIS OF IMPACT OF Vth IN LLIF’S GRADIENT

In this section, we analyze the impact of Vth variation on the contribution of gradient components
at different time steps to the total gradient. According to Equation , the terms related to Vth include
θ′(V [t]−Vth), the θ(V [t]−Vth) term in κh, and V [x]·θ′(V [t]−Vth). For the first term θ′(V [t]−Vth),
due to the properties of the Θ function being invariant across time steps, this term does not affect the
contribution of gradient components at different time steps to the total gradient from an expectation
perspective. Based on this analysis, we construct a contribution function G(Vth) with T terms, as
shown in Eq. (27), to facilitate our analysis. Notably, the first term in Eq. (27), denoted as GT ,
represents the expected contribution of the T -th time step to the total gradient. Correspondingly,
the last term, denoted as G1, represents the expected contribution of the first time step to the total
gradient.

G(Vth) = exp (−1

τ
) · κh(V [T ])︸ ︷︷ ︸
GT

+[exp (−1

τ
) · κh(V [T ]) + exp (−2

τ
) · κh(V [T ]) · κh(V [T − 1])︸ ︷︷ ︸

GT−1

]

+ · · ·+ [exp (−1

τ
) · κh(V [T ]) + exp (−2

τ
) · κh(V [T ]) · κh(V [T − 1]) + · · ·︸ ︷︷ ︸

G1

]

=

T∑
t=0

t∑
i=0

exp (− i

τ
) ·

i∏
j=1

κh(V [t− j])

(27)

Based on G(Vth), we construct a proportional distribution sequence P, as shown in Eq. (28), to rep-
resent the expected contribution proportion of each time step to the total gradient. In this sequence,
each term expresses the proportion of the total gradient attributed to the corresponding time step.

P = [
GT

G(Vth)
,
GT−1

G(Vth)
, · · · , G1

G(Vth)
] (28)

If Vth changes, we denote the updated threshold value as V ′
th. We can then construct another pro-

portional distribution sequence P′ as shown in Eq. (29), which represents the proportion of each
gradient component in the total amount within G(V ′

th).

P′ = [
G′

T

G(V ′
th)

,
G′

T−1

G(V ′
th)

, · · · , G′
1

G(V ′
th)

] (29)
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At this point, we compute the difference between P′ and P, resulting in the change sequence ∆P,
as shown in Eq. (30). ∆P represents the change in the contribution proportion of each time step to
the gradient after the adaptive adjustment of Vth. Both P and P′ are based on the function G(Vth),
which is expectationally an increasing sequence, thus, to demonstrate that the gradient contribution
proportion of recent time steps increases while that of early time steps decreases, we only need
to prove that the ∆P sequence is an increasing sequence. This would confirm that adaptive Vth

strengthens the neuron’s long-term dependency.

∆P = P′ −P = [
G′

T

G(V ′
th)
− GT

G(Vth)︸ ︷︷ ︸
∆PT

,
G′

T−1

G(V ′
th)
− GT−1

G(Vth)︸ ︷︷ ︸
∆PT−1

, · · · , G′
1

G(V ′
th)
− G1

G(Vth)︸ ︷︷ ︸
∆P1

] (30)

To prove that the sequence ∆P is an increasing sequence, we only need to show that for any terms
∆Pi and ∆Pi−1 within ∆P, the relation ∆Pi−∆Pi−1 < 0 holds. Subtracting these two terms, we
derive the following relationship:

∆Pi −∆Pi−1 =
G′

i

G(V ′
th)
− Gi

G(Vth)
− (

G′
i−1

G(V ′
th)
− Gi−1

G(Vth)
)

=
G′

i −G′
i−1

G(V ′
th)

− Gi −Gi−1

G(Vth)

(31)

Therefore, we construct a function as shown in Eq. (32) and proceed to discuss its monotonicity.

F (x) =
Gi(x)−Gi−1(x)

x
(32)

Based on Eq. (27), we can derive the relationship among the different contributing components as
follows:

Gi(x)−Gi−1(x) = exp (−T + 2− i

τ
) ·

T∏
m=i−1

κh(V [m], x) (33)

where
κh(V [m], x) = 1−Θ(V [m]− x)− V [m] ·Θ′(V [m]− x) (34)

Here, in the subsequent analysis, we replace Θ′ in Eq. (34) using surrogate gradients, as shown in
Eq. (12).

Substituting Eq. (33) into Eq. (32), we transform it into the following relationship:

F (x) =
N(x)

G(x)
=

exp (−T+2−i
τ ) ·

∏T
m=i−1 κ

′
h(V [m], x)

G(x)
(35)

To ensure that Eq. (31) holds when V ′
th > Vth, we need to prove that the expectation of F (x) is

monotonically decreasing when x > 0.

First, for the κh function in F (x), we conduct a case-by-case analysis. Based on the value of
V [m]−x, we can decompose and separately define κh(V [m]−x) in piecewise fashion. g′(V [m]−x)
can be divided into two cases depending on the value of |V [m]− x|:

g′(V [m]− x) =

{
0, |V [m]− x| > 1

α

−α2|V [m]− x|+ α, |V [m]− x| ≤ 1
α

(36)

Based on the above equation, we can provide a piecewise definition for κh(V [m]− x) as follows:
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κh(V [m]− x) =


1, V [m]− x ≤ − 1

α

1− α2(V [m]− x) + α, − 1
α < V [m]− x ≤ 0

α2(V [m]− x) + α, 0 < V [m]− x ≤ 1
α

0, V [m]− x > 1
α

(37)

Taking the derivative of F (x), we obtain:

d

dx
F (x) =

d

dx

(
N(x)

G(x)

)
=

N ′(x)G(x)−N(x)G′(x)

[G(x)]2
= F (x) ·

(
N ′(x)

N(x)
− G′(x)

G(x)

)
(38)

Next, we separately analyze the functions N(x) and G(x). First, taking the logarithm of N(x), we
obtain:

lnN(x) = −T + 2− i

τ
+

T∑
m=i−1

lnκh(V [m], x) (39)

Taking the derivative of the above expression with respect to x, we obtain:

N ′(x)

N(x)
=

T∑
m=i−1

∂ lnκh(V [m], x)

∂x
=

T∑
m=i−1

κ′
h(V [m], x)

κh(V [m], x)
(40)

In the next step, we differentiate G(x) and obtain:

G′(x) =

T∑
t=0

t∑
i=0

e−
i
τ

 i∏
j=1

κh(V [t− j], x) ·
i∑

k=1

κ′
h(V [t− k], x)

κh(V [t− k], x)

 (41)

To compute G′(x)
G(x) , we can treat each term in G(x) as the product of weights wt,i and then calculate

the weighted average:

G′(x)

G(x)
=

∑T
t=0

∑t
i=0 wt,i · st,i
G(x)

(42)

where

wt,i = e−
i
τ

i∏
j=1

κh(V [t− j], x) (43)

st,i =

i∑
k=1

κ′
h(V [t− k], x)

κh(V [t− k], x)
(44)

Therefore,

G′(x)

G(x)
=

∑T
t=0

∑t
i=0 wt,i · st,i∑T

t=0

∑t
i=0 wt,i

(45)

Next, we perform a piecewise analysis of κ′
h

κh
based on different intervals. First, according to Eq.

(37), we have the following relationship:
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κ′
h(V [m]− x) =

{
−V [m]α2, − 1

α ≤ V [m]− x ≤ 1
α

0, else
(46)

Therefore, within the interval− 1
α ≤ V [m]−x ≤ 1

α , when V [m] > 0, κ′
h(V [m],x)

κh(V [m],x) =
−V [m]α2

κh(V [m],x) < 0.

Conversely, when V [m] < 0, κ′
h(V [m],x)

κh(V [m],x) < 0. Since the membrane potential follows a normal
distribution with a mean of 0 (Guo et al., 2022b), when x > 0, we can assume that

N ′(x)

N(x)
=

T∑
m=i−1

κ′
h(V [m], x)

κh(V [m], x)
< 0 (47)

Moreover, due to the decreasing absolute values from GT to G1, the logarithmic derivative of N(x)

is the sum of κ′
h(V [m],x)

κh(V [m],x) from i− 1 to T , while G(x) represents the weighted average of κ′
h(V [m],x)

κh(V [m],x)

over the range from 1 to T . Therefore, we can consider that

∣∣∣∣N ′(x)

N(x)

∣∣∣∣ > ∣∣∣∣G′(x)

G(x)

∣∣∣∣ (48)

Furthermore, since N(x) is considered a subset of G(x), they share the same sign from an expecta-
tion perspective. Therefore, we can assume that F (x) = N(x)

G(x) > 0. Combining Eqs. (47) and (48),
we can draw the following conclusion:

N ′(x)

N(x)
− G′(x)

G(x)
< 0 (49)

Therefore,

F ′(x) = F (x) ·
(
N ′(x)

N(x)
− G′(x)

G(x)

)
< 0 (50)

This proves that ∆Pi − ∆Pi−1 < 0 holds true, meaning that ∆P is an increasing function. This
demonstrates that LLIF neurons are capable of enhancing the contribution of gradients from ear-
lier time steps to the overall gradient, thereby improving the neurons’ ability to capture long-term
dependencies.

D ANALYSIS OF IMPACT OF τ IN SLIF’S GRADIENT

According to the gradient Eq. (51) for SLIF neurons, we can observe that the term affected by τ is
exp

(
− i

τ

)
·
∏i

j=1 κs(V [t− j]).

∇XS =

T∑
t=0

Θ′(V [t]− Vth) · (1 +
t∑

i=0

exp(− i

τ
) ·

i∏
j=1

κs(V [t− j])) (51)

Based on this, in the case of a total of T time steps, we can construct a function G(τ) with T terms
to analyze how τ influences the contribution of each term to the overall value of G(τ). The function
G(τ) is defined as shown in Eq. (52), here, the notation of the terms in the equation follows the
same rules as in Eq.(27).
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G(τ) = exp(−1

τ
)︸ ︷︷ ︸

GT

+ [exp(−1

τ
) + exp(−2

τ
)]︸ ︷︷ ︸

GT−1

+ · · ·+ [exp(−1

τ
) + exp(−2

τ
) + · · ·+ exp(−T

τ
)]︸ ︷︷ ︸

G1

=

T∑
i=1

(T + 1− i) · exp(− i

x
)

(52)

Similar to Eq. 28, we construct a proportional distribution sequence P, as shown in Eq. (53), for
G(τ).

P = [
GT

G(τ)
,
GT−1

G(τ)
, · · · , G1

G(τ)
] (53)

When we adaptively adjust τ in the SLIF model using Eq. (9), and the resulting membrane time
constant becomes τ ′, we can derive a new proportional distribution sequence P′ based on τ ′. This
sequence reflects the updated expected contribution of each time step to the total gradient.

P′ = [
G′

T

G(τ ′)
,
G′

T−1

G(τ ′)
, · · · , G′

1

G(τ ′)
] (54)

At this point, we compute the difference between P′ and P, resulting in the change sequence ∆P, as
shown in Eq. (55). ∆P represents the change in the contribution proportion of each time step to the
gradient after the adaptive adjustment of τ . Since both P and P′ are based on the function G(τ), it is
evident that they form increasing sequences, and all elements of both sequences are positive. Thus,
to demonstrate that the gradient contribution proportion of recent time steps increases while that of
early time steps decreases, we only need to prove that the ∆P sequence is a decreasing sequence.
This would confirm that adaptive τ strengthens the neuron’s short-term dependency.

∆P = P′ −P = [
G′

T

G(τ ′)
− GT

G(τ)︸ ︷︷ ︸
∆PT

,
G′

T−1

G(τ ′)
− GT−1

G(τ)︸ ︷︷ ︸
∆PT−1

, · · · , G′
1

G(τ ′)
− G1

G(τ)︸ ︷︷ ︸
∆P1

] (55)

In ∆P, following the labeling rule from G(τ) in Eq. (52), the first term G′
T

G(τ ′) −
GT

G(τ) is labeled
as ∆PT . To prove that ∆P is a decreasing sequence, we need to show that for any i ∈ [2, T ],
∆Pi −∆Pi−1 > 0. Taking the difference between them gives:

∆Pi −∆Pi−1 =
G′

i

G(τ ′)
− Gi

G(τ)
− (

G′
i−1

G(τ ′)
− Gi−1

G(τ)
)

=
G′

i −G′
i−1

G(τ ′)
− Gi −Gi−1

G(τ)

=
− exp(−T+2−i

τ ′ )

G(τ ′)
−
− exp(−T+2−i

τ )

G(τ)

(56)

Based on the equation above, we construct the function as follows.

F (x) =
− exp(−T+2−i

x )

G(x)
(57)
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By taking the derivative of F (x), we obtain:

dF (x)

dx
=

∑T
i=1(T + 1− i) · i

x2 · exp(−T+2−i
x ) · exp(− i

x )

(G(x))2

−
∑T

i=1(T + 1− i) · T+2−i
x2 · exp(−T+2−i

x ) · exp(− i
x )

(G(x))2

=
exp(−T+2

x )

x2 · (G(x))2
·

T∑
i=1

(T + 1− i) · (2i− T − 2)

=
exp(−T+2

x )

x2 · (G(x))2
· (−T (T + 1)(T + 2)

6
) < 0

(58)

Obviously, F (x) is a monotonically decreasing function over the interval x ∈ [0,+∞). Thus, when
applying adaptive membrane time constant, we have τ ′ < τ , which leads to ∆Pi − ∆Pi−1 > 0.
This shows that ∆P forms a monotonically decreasing sequence, indicating that when adaptive τ
is applied, the contribution of recent time steps to the gradient increases, while the contribution of
early time steps decreases. Therefore, SLIF enhances the neuron’s short-term dependency.

E DATASETS

CIFAR-10. The CIFAR-10 dataset (Krizhevsky et al., 2009) consists of 60,000 color images, each
of size 32×32 pixels, divided into 10 different classes, such as airplanes, cars, birds, cats, and
dogs. Each class has 6,000 images, with 50,000 images used for training and 10,000 for testing.
Normalization, random horizontal flipping, random cropping with 4 padding, and CutOut (DeVries
& Taylor, 2017) are applied for data augmentation.

CIFAR-100. The CIFAR-100 dataset (Krizhevsky et al., 2009) consists of 60,000 color images, each
of size 32×32 pixels, categorized into 100 different classes. Each class contains 600 images, with
500 used for training and 100 for testing. The same processing methods as for dataset CIFAR-10
are applied to dataset CIFAR-100.

Tiny-ImageNet. The Tiny-ImageNet dataset is a scaled-down version of the ImageNet dataset
(Deng et al., 2009). It contains 200 different classes, with 500 training images and 50 testing images
per class, resulting in a total of 100,000 training images and 10,000 testing images. Each image is
resized to 64×64 pixels. Normalization, random horizontal flipping, and random cropping with 4
padding are applied for data augmentation for the Tiny-ImageNet dataset.

DVS-CIFAR-10. The DVS-CIFAR-10 dataset (Li et al., 2017) is a neuromorphic version of the
traditional CIFAR-10 dataset. DVS-CIFAR-10 captures the visual information using a Dynamic
Vision Sensor (DVS), which records changes in the scene as a series of asynchronous events rather
than as a sequence of frames. The dataset consists of recordings of 10 object classes, corresponding
to the original CIFAR-10 categories, with each object presented in front of a DVS camera under
various conditions. The dataset contains 10,000 128×128 images, of which 9,000 are used as the
training set and the remaining 1,000 as the test set.

DVS-Gesture. The DVS-Gesture dataset (Amir et al., 2017) is a neuromorphic dataset, consisting
of 11 different hand gesture classes, such as hand clapping, arm rolling, and air guitar, performed by
29 subjects under various lighting conditions. Each gesture is represented by a sequence of events
rather than frames. The dataset contains 1,176 training samples and 288 testing samples.

F SEARCHING AND RETRAINING SETTINGS

The code for this work is implemented using PyTorch (Paszke et al., 2019) and SpikingJelly frame-
work (Fang et al., 2023).

The ST-DANO process is divided into two phases: searching and retraining. All experiments are
conducted using a NVIDIA RTX 3090 GPU. The hyperparameters used in each phase are detailed
in Table 4 and Table 5, respectively. Specifically, in the searching phase, for all datasets, half of the
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training set is used as training data (to update weights), while the other half is used as validation data
(to update architecture parameters). We ensure that the retraining hyperparameters involved during
searching phase are set exactly the same as those used in the actual retraining phase.

Table 4: Hyperparameter settings for searching phase. a-lr and a-wd denote the learning rate and
weight decay factor for architecture parameters, respectively, and bs is the batch size.

Dataset optimizer a-lr a-wd epoch bs
CIFAR-10 Adam 3e-4 1e-4 100 128
CIFAR-100 Adam 3e-4 1e-4 100 128

Tiny-ImageNet Adam 3e-4 1e-4 100 128
DVS-CIFAR-10 Adam 1e-3 5e-4 100 128

DVS-Gesture Adam 1e-3 5e-4 100 8

Table 5: Hyperparameter settings for retraining phase. lr and wd denote the learning rate and weight
decay factor, respectively, bs is the batch size, and dr is the dropout rate.

Dataset optimizer lr wd epoch bs dr
CIFAR-10 SGD 0.1 5e-5 300 128 0

CIFAR-100 SGD 0.1 5e-4 300 128 0
Tiny-ImageNet SGD 0.1 5e-4 300 128 0
DVS-CIFAR-10 SGD 0.05 5e-4 300 128 0.3

DVS-Gesture SGD 0.05 5e-4 300 8 0.4

Additionally, we adopt temporal efficient training (TET) loss function (Deng et al., 2022) for re-
training phase:

L =
1

T

T∑
t=1

(1− λ)LCE(O[t],y) + λLMSE(O[t], Vth) (59)

where LCE and LMSE refer to the cross-entropy function and mean squared error function, respec-
tively. The proportion of the regular term is controlled by a hyperparameter λ, which is set to 0.05
for all cases in our experiments.

G EXTENSION OF ABLATION STUDY

This section provides the full version of the curves from the ablation experiments presented in Sec-
tion 4.2. Due to the large number of methods involved in the ablation experiments, the overlapping
of curves made visualization challenging. To address this, we present each curve in a separate plot
with bold colors for clarity, while lighter-colored curves represent other methods within the same
plot for comparison. The ablation experiments on the CIFAR-10 dataset are shown in Fig. 4, and
those on the DVS-CIFAR-10 dataset are displayed in Fig. 5. In the ablation experiments on CIFAR-
10, we set the number of epochs to 500 instead of 300 to better illustrate the differences between the
methods. As for the other hyperparameter settings in this ablation experiments, we adhered to the
configurations used in the retraining phase, which are given in Appendix F.

H VISUALIZATION FOR OPTIMAL NEURON CONFIGURATIONS

In this section, we present the visualization (Heatmaps of architecture parameters) for optimal neu-
ron configurations found by ST-DANO (Figs. 6, 7, 8, and 9). As can be seen, for the same dataset,
the optimal neuron configurations identified by ST-DANO under different time step settings exhibit
only minor differences in a few network layers, while overall they remain quite similar. This indi-
cates that the ST-DANO search process is relatively stable and effectively explores the search space.
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Figure 4: Test accuracy curves of ablation study on CIFAR-10. Where the X-axis of all plots is
epoch, identically ranging from 0 to 500, and the Y-axis of all plots is the test accuracy (%), where
the (b)-(f) plots have the same range in Y-axis as (a), and the (h)-(k) plots go with the same range
in Y-axis as (g).

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)
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Figure 5: Test accuracy curves of ablation study on DVS-CIFAR-10. Where the X-axis of all plots
is epoch, identically ranging from 0 to 300, and the Y-axis of all plots is the test accuracy (%), where
the (b)-(g) plots have the same range in Y-axis as (a), and the (i)-(n) plots go with the same range in
Y-axis as (h).

I FIRE RATE EVALUATION

Although both LLIF and SLIF introduce additional computations compared to LIF during inference,
these computations consist only of a small number of extra additions and T constant-matrix multi-
plications during the forward propagation process (T is the number of time steps). The extra energy
burden from these operations is nearly negligible. Furthermore, from the perspective of spike firing
rates, which are given in Fig. 10, the architectures identified by ST-DANO exhibit lower average
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Figure 6: Architecture parameters visualization across multiple time step settings on CIFAR-10
(ResNet-18).

firing rates across all datasets compared to those based on LIF. This is because both LLIF and SLIF
neurons are designed to suppress excessive neuron excitation and limit spike firings. In summary,
combining the above analysis and experiments, ST-DANO-optimized architectures are able to im-
prove algorithmic performance while conserving energy consumption.

J ADDITIONAL EXPERIMENTS

In this section, we present the performance of ST-DANO across various base network architectures,
comparing these results with other methods using the same architectures (Appendix J.1). Addition-
ally, we provide details on the experimental setup used for these additional experiments (Appendix
J.2), along with the optimal frameworks identified through our search (Appendix J.3).

J.1 PERFORMANCE OF EXTENDED CASES

In Table 6, we present the experimental results of ST-DANO obtained after searching across different
base network architectures. Compared to the experiments in the main body, the additional exper-
iments include: VGG-16 on CIFAR-10, VGG-16 on CIFAR-100, ResNet-18 on Tiny-ImageNet,
ResNet-18 on DVS-CIFAR-10, and ResNet-18 on DVS-Gesture.

From these additional experiments, we can conclude that ST-DANO consistently achieves competi-
tive performance across various base architectures, demonstrating its generalizability.
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Figure 7: Architecture parameters visualization across multiple time step settings on CIFAR-100
(ResNet-18).

J.2 SEARCHING AND RETRAINING SETTINGS FOR ADDITIONAL EXPERIMENTS

We conduct the additional experiments using the same hardware configuration as in the main exper-
iments. Due to GPU memory limitations, we proportionally reduced the batch size and learning rate
for some cases during the search phase of the additional experiments. The hyperparameters for the
search phase in additional experiments are detailed in Table 7, while the retraining phase followed
the exact hyperparameters listed in Table 5.

J.3 OPTIMAL NEURON CONFIGURATIONS OF EXTENDED CASES

This section presents the optimal neuron configurations obtained by ST-DANO across various
datasets and under different time step settings in the additional experiments (Table 8).

K REPRODUCIBILITY STATEMENT

The complete code with fixed random seed utilized in this work is provided in the supplementary ma-
terials and will be made publicly available after this paper is published. All datasets employed in this
research, including CIFAR-10, CIFAR-100, Tiny-ImageNet, DVS-CIFAR-10, and DVS-Gesture,
are publicly accessible. Details regarding the hardware, coding environment, and hyperparameter
settings used in our experiments are also included in the Appendix. We dedicate to enable future
researchers to replicate the results presented in this paper using similar computational setups.
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Figure 8: Architecture parameters visualization across multiple time step settings on Tiny-ImageNet
(VGG-13).
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Figure 9: Architecture parameters visualization across multiple time step settings on DVS-CIFAR-
10 and DVS-Gesture (VGG-11).
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Figure 10: Fire rate evaluation. The black numbers on the x-axis indicate that the ST-DANO archi-
tecture uses LIF in that network layer, blue denotes LLIF, and red represents SLIF, consistent with
the optimal neuron configurations shown in Table 3.
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Table 6: Comparison using the same architecture with SOTA on CIFAR-10, CIFAR-100, Tiny-
ImageNet, DVS-CIFAR-10, and DVS-Gesture datasets.

Model Architecture Timestep Accuracy (%)
C

IF
A

R
-1

0

Joint A-SNN (Guo et al., 2023a)

ResNet-18

4 95.45
TET-SSF (Wang et al., 2023a) 20 94.90

SLTT (Meng et al., 2023) 6 94.59
ST-DANO (Ours) 8 / 6 / 4 / 2 95.92 / 95.65 / 95.66 / 95.50

Te. Pr. (Chowdhury et al., 2022)

VGG-16

5 93.90
DIET (Rathi & Roy, 2021) 10 93.44

Offline LTL (Yang et al., 2022) 16 93.23
ST-DANO (Ours) 8 / 6 / 4 / 2 93.87 / 93.06 / 92.65 / 91.98

C
IF

A
R

-1
00

Joint A-SNN (Guo et al., 2023a)

ResNet-18

4 77.39
RecDis-SSF (Wang et al., 2023a) 20 75.48

sparse-KD (Xu et al., 2024b) 4 73.01
SLTT (Meng et al., 2023) 6 74.67

ST-DANO (Ours) 8 / 6 / 4 / 2 76.25 / 75.94 / 75.93 / 75.53

Te. Pr. (Chowdhury et al., 2022)

VGG-16

5 71.58
DIET (Rathi & Roy, 2021) 10 69.67

Offline LTL (Yang et al., 2022) 16 74.19
ST-DANO (Ours) 8 / 6 / 4 / 2 74.33 / 74.21 / 73.78 / 72.99

Ti
ny

-I
m

ag
eN

et

default-KD (Xu et al., 2024b)
ResNet-18

4 59.31
STC (Xu et al., 2024a) 8 59.99

ST-DANO (Ours) 8 / 6 / 4 / 2 60.21 / 60.16 / 59.68 / 59.23

DCT (Garg et al., 2020)

VGG-13

125 56.90
ASGL (Wang et al., 2023b) 8 56.81

Offline LTL (Yang et al., 2022) 32 55.85
ST-DANO (Ours) 8 / 6 / 4 / 2 60.24 / 60.14 / 60.08 / 59.10

D
V

S-
C

IF
A

R
-1

0

SLTT (Meng et al., 2023)

ResNet-18

10 77.30
InfLoR (Guo et al., 2022a) 10 75.50
DiffSpike (Li et al., 2021b) 10 75.40

ST-DANO / ST-DANO† (Ours) 10 76.90 / 79.90
CE-SSF (Wang et al., 2023a)

VGG-11

20 78.00
OTTT (Xiao et al., 2022) 10 77.10

ST-DANO / ST-DANO† (Ours) 10 79.30 / 83.90
ST-DANO / ST-DANO† (Ours) 8 77.20 / 81.80

D
V

S-
G

es
tu

re

tdBN (Zheng et al., 2021)
ResNet-18

40 96.87
SLTT (Meng et al., 2023) 20 98.26

ST-DANO (Ours) 20 97.22

OTTT (Xiao et al., 2022)
VGG-11

20 96.88
SLTT (Meng et al., 2023) 20 98.62

ST-DANO (Ours) 20 / 16 / 8 98.61 / 97.22 / 96.88
† Data augmentation (Li et al., 2022).

Table 7: Hyperparameter settings for searching phase in additional experiments. a-lr and a-wd
denote the learning rate and weight decay factor for architecture parameters, respectively, and bs is
the batch size.

Dataset optimizer a-lr a-wd epoch bs
CIFAR-10 Adam 3e-4 1e-4 100 128
CIFAR-100 Adam 3e-4 1e-4 100 128

Tiny-ImageNet Adam 1.5e-4 1e-4 100 64
DVS-CIFAR-10 Adam 2.5e-4 5e-4 100 32

DVS-Gesture Adam 5e-4 5e-4 100 4
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Table 8: Optimal neuron configurations discovered by ST-DANO across different datasets in addi-
tional experiments. The sequence of numbers in the ’Optimal Neuron Configuration’ represents
the types of neurons used from the input layer to the output layer of the network, where 0 denotes
LIF neurons, 1 denotes LLIF neurons, and 2 denotes SLIF neurons.’Search Cost’ is measured in
GPU days.

Dataset Architecture Time Step Optimal Neuron
Configuration Search Cost

CIFAR-10 VGG-16

2 2002000111110 0.09
4 2000000000110 0.11
6 2201000001110 0.13
8 2002000011110 0.15

CIFAR-100 VGG-16

2 2011000000000 0.09
4 0011000000020 0.11
6 0011000000020 0.13
8 0011000000000 0.15

Tiny-ImageNet ResNet-18

2 22002001100112111 0.74
4 22002000100100111 0.91
6 22002001100110011 1.20
8 22202000100100001 1.43

DVS-CIFAR-10 ResNet-18 10 10121010002101111 0.74
DVS-Gesture ResNet-18 20 11011100111001111 0.36
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