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Abstract

We study the unbalanced optimal transport (UOT) problem, where the marginal constraints
are enforced using Maximum Mean Discrepancy (MMD) regularization. Our work is moti-
vated by the observation that the literature on UOT is focused on regularization based on
ϕ-divergence (e.g., KL divergence). Despite the popularity of MMD, its role as a regular-
izer in the context of UOT seems less understood. We begin by deriving a specific dual of
MMD-regularized UOT (MMD-UOT), which helps us prove several useful properties. One
interesting outcome of this duality result is that MMD-UOT induces novel metrics, which
not only lift the ground metric like the Wasserstein but are also sample-wise efficient to es-
timate like the MMD. Further, for real-world applications involving non-discrete measures,
we present an estimator for the transport plan that is supported only on the given (m)
samples. Under certain conditions, we prove that the estimation error with this finitely-
supported transport plan is also O(1/

√
m). As far as we know, such error bounds that

are free from the curse of dimensionality are not known for ϕ-divergence regularized UOT.
Finally, we discuss how the proposed estimator can be computed efficiently using acceler-
ated gradient descent. Our experiments show that MMD-UOT consistently outperforms
popular baselines, including KL-regularized UOT and MMD, in diverse machine learning
applications.

1 Introduction

Optimal transport (OT) is a popular tool for comparing probability measures while incorporating geometry
over their support. OT has witnessed a lot of success in machine learning applications (Peyré & Cuturi, 2019),
where distributions play a central role. The Kantorovich’s formulation for OT aims to find an optimal plan
for the transport of mass between the source and the target distributions that incurs the least expected cost of
transportation. While classical OT strictly enforces the marginals of the transport plan to be the source and
target, one would want to relax this constraint when the measures are noisy (Frogner et al., 2015) or when
the source and target are un-normalized (Chizat, 2017; Liero et al., 2018). Unbalanced optimal transport
(UOT) (Chizat, 2017), a variant of OT, is employed in such cases, which performs a regularization-based
soft-matching of the transport plan’s marginals with the source and the target distributions.

Unbalanced optimal transport with Kullback Leibler (KL) divergence and, in general, with ϕ-
divergence (Csiszar, 1967) based regularization is well-explored in literature (Liero et al., 2016; 2018).
Entropy regularized UOT with KL divergence (Chizat et al., 2017; 2018) has been employed in applica-
tions such as domain adaptation (Fatras et al., 2021), natural language processing (Chen et al., 2020b),
and computer vision (De Plaen et al., 2023). Existing works (Piccoli & Rossi, 2014; 2016; Hanin, 1992;
Georgiou et al., 2009) have also studied total variation (TV)-regularization-based UOT formulations. While
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MMD-based methods have been popularly employed in several machine learning (ML) applications (Gretton
et al., 2012; Li et al., 2017; 2021; Nguyen et al., 2021), the applicability of MMD-based regularization for
UOT is not well-understood. To the best of our knowledge, interesting questions like the following, have not
been answered in prior works:

• Will MMD regularization for UOT also lead to novel metrics over measures, analogous to the ones
obtained with the KL divergence (Liero et al., 2018) or the TV distance (Piccoli & Rossi, 2014)?

• What will be the statistical estimation properties of these?
• How can such MMD regularized UOT metrics be estimated in practice such that they are suitable

for large-scale applications?

In order to bridge this gap, we study MMD-based regularization for matching the marginals of the transport
plan in the UOT formulation (henceforth termed MMD-UOT).

We first derive a specific dual of the MMD-UOT formulation (Theorem 4.1), which helps further analyze its
properties. One interesting consequence of this duality result is that the optimal objective of MMD-UOT
is a valid distance between the source and target measures (Corollary 4.2), whenever the transport cost is
valid (ground) metric over the data points. Popularly, this is known as the phenomenon of lifting metrics to
measures. This result is significant as it shows that MMD-regularization in UOT can parallel the metricity-
preservation that happens with KL-regularization (Liero et al., 2018) and TV-regularization (Piccoli & Rossi,
2014). Furthermore, our duality result shows that this induced metric is a novel metric belonging to the
family of integral probability metrics (IPMs) with a generating set that is the intersection of the generating
sets of MMD and the Kantorovich-Wasserstein metric. Because of this important relation, the proposed
distance is always smaller than the MMD distance, and hence, estimating MMD-UOT from samples is at
least as efficient as that with MMD (Corollary 4.6). This is interesting as minimax estimation rates for MMD
can be completely dimension-free. As far as we know, there are no such results that show that estimation
with KL/TV-regularized UOT can be as efficient sample-wise. Thus, the proposed metrics not only lift the
ground metrics to measures, like the Wasserstein, but also are sample-wise efficient to estimate, like MMD.

However, like any formulation of optimal transport problems, the computation of MMD-UOT involves op-
timization over all possible joint measures. This may be challenging, especially when the measures are
continuous. Hence, we present a convex program-based estimator, which only involves a search over joints
supported at the samples. We prove that the proposed estimator is statistically consistent and converges to
MMD-UOT between the true measures at a rate O

(
m− 1

2

)
, where m is the number of samples. Such efficient

estimators are particularly useful in machine learning applications, where typically only samples from the
underlying measures are available. Such applications include hypothesis testing, domain adaptation, and
model interpolation, to name a few. In contrast, the minimax estimation rate for the Wasserstein distance is
itself O

(
m− 1

d

)
, where d is the dimensionality of the samples (Niles-Weed & Rigollet, 2019). That is, even if

a search over all possible joints is performed, estimating Wasserstein may be challenging. Since MMD-UOT
can approximate Wasserstein arbitrarily closely (as the regularization hyperparameter goes ∞), our result
can also be understood as a way of alleviating the curse of dimensionality problem in Wasserstein. We
summarize the comparison between MMD-UOT and relevant OT variants in Table 1.

Finally, our result of MMD-UOT being a metric facilitates its application whenever the metric properties
of OT are desired, for example, while computing the barycenter-based interpolation for single-cell RNA
sequencing (Tong et al., 2020). Accordingly, we also present a finite-dimensional convex-program-based
estimator for the barycenter with MMD-UOT. We prove that this estimator is also consistent with an
efficient sample complexity. We discuss how the formulations for estimating MMD-UOT (and barycenter)
can be solved efficiently using accelerated (projected) gradient descent. This solver helps us scale well
to large datasets. We empirically show the utility of MMD-UOT in several applications including two-
sample hypothesis testing, single-cell RNA sequencing, domain adaptation, and prompt learning for few-
shot classification. In particular, we observe that MMD-UOT outperforms popular baselines such as KL-
regularized UOT and MMD in our experiments.

We summarize our main contributions below:
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Table 1: Summarizing interesting properties of MMD and several OT/UOT approaches. ϵOT (Cuturi, 2013)
and ϵKL-UOT (Chizat, 2017) denote the entropy-regularized scalable variants OT and KL-UOT (Liero
et al., 2018), respectively. MMD and the proposed MMD-UOT are shown with characteristic kernels. By
‘finite-parameterization bounds’ we mean results similar to Theorem 4.10.

Property MMD OT ϵOT TV-UOT KL-UOT ϵKL-UOT MMD-UOT
Metricity
Lifting of ground metric
No curse of dimensionality
Finite-parametrization bounds N/A

• Dual of MMD-UOT and its analysis. We prove that MMD-UOT induces novel metrics that not only
lift ground metrics like the Wasserstein but also are sample-wise efficient to estimate like the MMD.

• Finite-dimensional convex-program-based estimators for MMD-UOT and the corresponding barycen-
ter. We prove that the estimators are both statistically and computationally efficient.

• We illustrate the efficacy of MMD-UOT in several real-world applications. Empirically, we observe
that MMD-UOT consistently outperforms popular baseline approaches.

We present proofs for all our theory results in Appendix B. As a side-remark, we note that most of our
results not only hold for MMD-UOT but also for a UOT formulation where a general IPM replaces MMD.
Proofs in the appendix are hence written for general IPM-based regularization and then specialized to the
case when the IPM is MMD. This generalization to IPMs may itself be of independent interest.

2 Preliminaries

Notations. Let X be a set (domain) that forms a compact Hausdorff space. Let R+(X ),R(X ) denote
the set of all non-negative, signed (finite) Radon measures defined over X ; while the set of all probability
measures is denoted by R+

1 (X ). For a measure on the product space, π ∈ R+(X × X ), let π1, π2 denote
the first and second marginals, respectively (i.e., they are the push-forwards under the canonical projection
maps onto X ). Let L(X ), C(X ) denote the set of all real-valued measurable functions and all real-valued
continuous functions, respectively, over X .

Integral Probability Metric (IPM): Given a set G ⊂ L(X ), the integral probability metric (IPM) (Muller,
1997; Sriperumbudur et al., 2009; Agrawal & Horel, 2020) associated with G, is defined by:

γG(s0, t0) ≡ max
f∈G

∣∣∣∣∫
X
f ds0 −

∫
X
f dt0

∣∣∣∣ ∀ s0, t0 ∈ R+(X ). (1)

G is called the generating set of the IPM, γG .

Maximum Mean Discrepancy (MMD) Let k be a characteristic kernel (Sriperumbudur et al., 2011)
over the domain X , let ∥f∥k denote the norm of f in the canonical reproducing kernel Hilbert space (RKHS),
Hk, corresponding to k. MMDk is the IPM associated with the generating set: Gk ≡ {f ∈ Hk| ∥f∥k ≤ 1}.
Using a characteristic kernel k, MMD metric between s0, t0 ∈ R+(X ) is defined as:

MMDk(s0, t0) ≡ max
f∈Gk

∣∣∫
X f ds0 −

∫
X f dt0

∣∣
= ∥µk (s0)− µk (t0) ∥k,

(2)

where µk (s) ≡
∫
ϕk(x) ds(x), is the kernel mean embedding of s (Muandet et al., 2017), ϕk is the canonical

feature map of k. A kernel k is called a characteristic kernel if the map µk is injective. MMD can be computed
analytically using evaluations of the kernel k. MMDk is a metric when the kernel k is characteristic. A
continuous positive-definite kernel k on X is called c-universal if the RKHS Hk is dense in C(X ) w.r.t. the
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sup-norm, i.e., for every function g ∈ C(X ) and all ϵ > 0, there exists an f ∈ Hk such that ∥f − g∥∞ ≤ ϵ.
Universal kernels are also characteristic. Gaussian kernel (RBF kernel) is an example of a universal kernel
over the continuous domain. Dirac delta kernel is an example of a universal kernel over the discrete domain.

Optimal Transport (OT) Optimal transport provides a tool to compare distributions while incorporating
the underlying geometry of their support points. Given a cost function, c : X ×X 7→ R, and two probability
measures s0 ∈ R+

1 (X ), t0 ∈ R+
1 (X ), the p-Wasserstein Kantorovich OT formulation is given by:

W̄ p
p (s0, t0) ≡ min

π∈R+
1 (X ×X )

∫
cp dπ, s.t. π1 = s0, π2 = t0, (3)

where p ≥ 1. An optimal solution of (3) is called an optimal transport plan. Whenever the cost is a metric,
d, over X ×X (ground metric), W̄p defines a metric over measures, known as the p-Wasserstein metric, over
R+

1 (X )×R+
1 (X ).

Kantorovich metric (Kc) Kantorovich metric also belongs to the family of integral probability metrics

associated with the generating set Wc ≡
{
f : X 7→ R | max

x∈X ≠y∈X
|f(x)−f(y)|

c(x,y) ≤ 1
}

, where c is a metric over
X × X . The Kantorovich-Rubinstein duality result shows that the 1-Wasserstein metric is the same as the
Kantorovich metric when restricted to probability measures (refer for e.g. (5.11) in Villani (2009)):

W̄1(s0, t0) ≡ min
π∈R+

1 (X ×X )

∫
cp dπ, = max

f∈G

∣∣∣∣∫
X
f ds0 −

∫
X
f dt0

∣∣∣∣ ≡ Kc(s0, t0),

s.t. π1 = s0, π2 = t0

where s0, t0 ∈ R+
1 (X ).

3 Related Work

Given the source and target measures, s0 ∈ R+(X ) and t0 ∈ R+(X ), respectively, the unbalanced opti-
mal transport (UOT) approach (Liero et al., 2018; Chizat et al., 2018) aims to learn the transport plan
by replacing the mass conservation marginal constraints (enforced strictly in ‘balanced’ OT setting) by a
soft regularization/penalization on the marginals. KL-divergence and, in general, ϕ-divergence (Csiszar,
1967), (Sriperumbudur et al., 2009) based regularizations have been most popularly studied in UOT setting.
The ϕ-divergence regularized UOT formulation may be written as (Frogner et al., 2015), (Chizat, 2017):

min
π∈R+(X ×X )

∫
c dπ + λDϕ(π1, s0) + λDϕ(π2, t0), (4)

where c is the ground cost metric and Dϕ(·, ·) denotes the ϕ-divergence (Csiszar, 1967; Sriperumbudur
et al., 2009) between two measures. Since in UOT settings, the measures s0, t0 may be un-normalized,
following (Chizat, 2017; Liero et al., 2018) the transport plan is also allowed to be un-normalized. UOT
with KL-divergence-based regularization induces the so-called Gaussian Hellinger-Kantorovich metric (Liero
et al., 2018) between the measures whenever 0 < λ ≤ 1 and the ground cost c is the squared-Euclidean
distance. Similar to the balanced OT setup (Cuturi, 2013), an additional entropy regularization in KL-UOT
formulation facilitates Sinkhorn iteration (Knight, 2008) based efficient solver for KL-UOT (Chizat et al.,
2017) and has been popularly employed in several machine learning applications (Fatras et al., 2021; Chen
et al., 2020b; Arase et al., 2023; De Plaen et al., 2023).

Total Variation (TV) distance is another popular metric between measures and is the only common member
of the ϕ-divergence family and the IPM family. UOT formulation with TV regularization (denoted by | · |TV)
has been studied in (Piccoli & Rossi, 2014):

min
π∈R+(X ×X )

∫
c dπ + λ|π1 − s0|TV + λ|π2 − t0|TV. (5)

UOT with TV-divergence-based regularization induces the so-called Generalized Wasserstein metric (Piccoli
& Rossi, 2014) between the measures whenever λ > 0 and the ground cost c is a valid metric. As far as
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we know, none of the existing works study the sample complexity of estimating these metrics from samples.
More importantly, algorithms for solving (5) with empirical measures that computationally scale well to ML
applications seem to be absent in the literature.

Besides the family of ϕ-divergences, the family of integral probability metrics is popularly used for comparing
measures. An important member of the IPM family is the MMD metric, which also incorporates the geometry
over supports through the underlying kernel. Due to its attractive statistical properties (Gretton et al., 2006),
MMD has been successfully applied in a diverse set of applications including hypothesis testing (Gretton
et al., 2012), generative modelling (Li et al., 2017), self-supervised learning (Li et al., 2021), etc.

Recently, (Nath & Jawanpuria, 2020) explored learning the transport plan’s kernel mean embeddings in the
balanced OT setup. They proposed learning the kernel mean embedding of a joint distribution with the least
expected cost and whose marginal embeddings are close to the given-sample-based estimates of the marginal
embeddings. As kernel mean embedding induces MMD distance, MMD-based regularization features in
the balanced OT formulation of (Nath & Jawanpuria, 2020) as a means to control overfitting. To ensure
that valid conditional embeddings are obtained from the learned joint embeddings, (Nath & Jawanpuria,
2020) required additional feasibility constraints that restrict their solvers in scaling well to machine learning
applications. We also note that (Nath & Jawanpuria, 2020) neither analyze the dual of their formulation
nor study its metric-related properties and their sample complexity result of O(m− 1

2 ) does not apply to our
MMD-UOT estimator as their formulation is different from the proposed MMD-UOT formulation (6).

In contrast, we bypass the issues related to the validity of conditional embeddings as our formulation involves
directly learning the transport plan and avoids kernel mean embedding of the transport plan. We perform
a detailed study of MMD regularization for UOT, which includes analyzing its dual and proving metric
properties that are crucial for optimal transport formulations. To the best of our knowledge, the metricity
of MMD-regularized UOT formulations has not been studied previously. The proposed algorithm scales
well to large-scale machine learning applications. While we also obtain O(m− 1

2 ) estimation error rate, we
require a different proof strategy than (Nath & Jawanpuria, 2020). Finally, as discussed in Appendix B,
most of our theoretical results apply to a general IPM-regularized UOT formulation and are not limited to
the MMD-regularized UOT formulation. This generalization does not hold for (Nath & Jawanpuria, 2020).

Wasserstein auto-encoders (WAE) also employ MMD for regularization. However, there are some important
differences. The regularization in WAEs is only performed for one of the marginals, and the other marginal is
matched exactly. This not only breaks the symmetry (and hence the metric properties) but also brings back
the curse of dimensionality in estimation (for the same reasons as with unregularized OT). Further, their
work does not attempt to study any theoretical properties with MMD regularization and merely employs
it as a practical tool for matching marginals. Our goal is to theoretically study the metric and estimation
properties with MMD regularization. We present more details in Appendix B.18.

We end this section by noting key differences between MMD and OT-based approaches (including MMD-
UOT). A distinguishing feature of OT-based approaches is the phenomenon of lifting the ground-metric
geometry to that over distributions. One such result is visualized in Figure 2(b), where the MMD-based-
interpolate of the two unimodal distributions comes out to be bimodal. This is because MMD’s interpolation
is the (literal) average of the source and the target densities, irrespective of the kernel. This has been
well-established in the literature (Bottou et al., 2017). On the other hand, OT-based approaches obtain
a unimodal barycenter. This is a ‘geometric’ interpolation that captures the characteristic aspects of the
source and the target distributions. Another feature of OT-based methods is that we obtain a transport plan
between the source and the target points which can be used for various alignment-based applications, e.g.,
cross-lingual word mapping (Alvarez-Melis & Jaakkola, 2018; Jawanpuria et al., 2020), domain adaptation
(Courty et al., 2017; Courty et al., 2017; Gurumoorthy et al., 2021), etc. On the other hand, it is unclear
how MMD can be used to align the source and target data points.
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4 MMD Regularization for UOT

We propose to study the following UOT formulation, where the marginal constraints are enforced using
MMD regularization.

Uk,c,λ1,λ2 (s0, t0) ≡ min
π∈R+(X ×X )

∫
c dπ + λ1MMDk(π1, s0) + λ2MMDk(π2, t0)

= min
π∈R+(X ×X )

∫
c dπ + λ1∥µk (π1)− µk (s0) ∥k + λ2∥µk (π2)− µk (t0) ∥k,

(6)

where µk(s) is the kernel mean embedding of s (defined in Section 2) induced by the characteristic kernel k
used in the generating set Gk ≡ {f ∈ Hk | ∥f∥k ≤ 1}, and λ1, λ2 > 0 are the regularization hyper-parameters.

We begin by presenting a key duality result.
Theorem 4.1. (Duality) Whenever c, k ∈ C(X × X ) and X is compact, we have that:

Uk,c,λ1,λ2 (s0, t0) = max
f∈Gk(λ1),g∈Gk(λ2)

∫
X f ds0 +

∫
X g dt0,

s.t. f(x) + g(y) ≤ c(x, y) ∀ x, y ∈ X .
(7)

Here, Gk(λ) ≡ {g ∈ Hk | ∥g∥k ≤ λ}.

The duality result helps us to study several properties of the MMD-UOT (6), discussed in the corollaries
below. The proof of Theorem 4.1 is based on an application of Sion’s minimax exchange theorem (Sion,
1958) and is detailed in Appendix B.1.

Applications in machine learning often involve comparing distributions for which the Wasserstein metric is a
popular choice. While prior works have shown metric-preservation happens under KL-regularization (Liero
et al., 2018) and TV-regularization (Piccoli & Rossi, 2016), it is an open question if MMD-regularization in
UOT can also lead to valid metrics. The following result answers this affirmatively.
Corollary 4.2. (Metricity) In addition to assumptions in Theorem (4.1), whenever c is a metric, Uk,c,λ,λ

belongs to the family of integral probability metrics (IPMs). Also, the generating set of this IPM is the
intersection of the generating set of the Kantorovich metric and the generating set of MMD. Finally, Uk,c,λ,λ

is a valid norm-induced metric over measures whenever k is characteristic. Thus, U lifts the ground metric
c to that over measures.

The proof of Corollary 4.2 is detailed in Appendix B.2. This result also reveals interesting relationships be-
tween Uk,c,λ,λ, the Kantorovich metric, Kc, and the MMD metric used for regularization. This is summarized
in the following two results.
Corollary 4.3. (Interpolant) In addition to assumptions in Corollary 4.2, if the kernel is c-universal
(continuous and universal), then ∀ s0, t0 ∈ R+(X ), limλ→∞ Uk,c,λ,λ(s0, t0) = Kc(s0, t0). Fur-
ther, if the cost metric, c, dominates the characteristic kernel, k, induced metric, i.e., c(x, y) ≥√
k(x, x) + k(y, y)− 2k(x, y) ∀ x, y ∈ X , then Uk,c,λ,λ(s0, t0) = λMMDk(s0, t0) whenever 0 < λ ≤ 1.

Finally, when λ ∈ (0, 1), MMD-UOT interpolates between the scaled MMD and the Kantorovich metric. The
nature of this interpolation is already described in terms of generating sets in Corollary 4.2.

We illustrate this interpolation result in Figure 1. Our proof of Corollary 4.3, presented in Appendix B.3,
also shows that the Euclidean distance satisfies such a dominating cost assumption when the kernel employed
is the Gaussian kernel and the inputs lie on a unit-norm ball. The next result presents another relationship
between the metrics in the discussion.
Corollary 4.4. Uk,c,λ,λ(s, t) ≤ min (λMMDk(s, t),Kc(s, t)) .

The proof of Corollary 4.4 is straightforward and is presented in Appendix B.5. This result enables us to show
properties like weak metrization and sample efficiency with MMD-UOT. For a sequence sn ∈ R+

1 (X ), n ≥ 1,
we say that sn weakly converges to s ∈ R+

1 (X ) (denoted as sn ⇀ s), if and only if EX∼sn [f(X)] →
EX∼s[f(X)] for all bounded continuous functions over X . It is natural to ask when is the convergence in
metric over measures equivalent to weak convergence on measures. The metric is then said to metrize the
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0 < 𝜆 ≤ 1 ; Kernel-based cost. 𝜆 ∈ (1,∞)𝜆 → ∞

  
(a) MMD                                 (b) Kantorovich                    (c) New UOT metrics

Figure 1: For illustration, the generating set of Kantorovich-Wasserstein is depicted as a triangle, and the
scaled generating set of MMD is depicted as a disc. The intersection represents the generating set of the
IPM metric induced by MMD-UOT. (a) shows the special case when our MMD-UOT metric recovers back
the sample-efficient MMD metric, (b) shows the special case when our MMD-UOT metric reduces to the
Kantorovich-Wasserstein metric that lifts the ground metric to measures, and (c) shows the resulting family
of new UOT metrics which are both sample-efficient and can lift ground metrics to measures.

weak convergence of measures or is equivalently said to weakly metrize measures. The weak metrization
properties of the Wasserstein metric and MMD are well-understood (e.g., refer to Theorem 6.9 in (Villani,
2009) and Theorem 7 in (Simon-Gabriel et al., 2020)). The weak metrization property of Uk,c,λ,λ follows
from the above Corollary 4.4.
Corollary 4.5. (Weak Metrization) Uk,c,λ,λ metrizes the weak convergence of normalized measures.

The proof is presented in Appendix B.6. We now show that the metric induced by MMD-UOT inherits
the attractive statistical efficiency of the MMD metric. In typical machine learning applications, only
finite samples are given from the measures. Hence, it is important to study statistically efficient metrics
that alleviate the curse of dimensionality problem prevalent in OT (Niles-Weed & Rigollet, 2019). Sample
complexity result with the metric induced by MMD-UOT is presented as follows.
Corollary 4.6. (Sample Complexity) Let us denote Uk,c,λ,λ, defined in (6), by Ū . Let ŝm, t̂m denote the
empirical estimates of s0, t0 ∈ R+(X ) respectively with m samples. Then, Ū(ŝm, t̂m) → Ū(s0, t0) at a rate
(apart from constants) same as that of MMDk(ŝm, s0)→ 0.

Since the sample complexity of MMD with a normalized characteristic kernel is O(m− 1
2 ) (Smola et al.,

2007), the same will be the complexity bound for the corresponding MMD-UOT. The proof of Corollary 4.6 is
presented in Appendix B.7. This is interesting because, though MMD-UOT can arbitrarily well approximate
Wasserstein (as λ → ∞), its estimation can be far more efficient than O

(
m− 1

d

)
, which is the minimax

estimation rate for the Wasserstein (Niles-Weed & Rigollet, 2019). Here, d is the dimensionality of the
samples. Further, in Lemma B4, we show that even when MMDq

k (q ≥ 2 ∈ N) is used for regularization, the
sample complexity again comes out to be O

(
m− 1

2

)
. We conclude this section with a couple of remarks.

Remark 4.7. As a side result, we prove the following theorem (Appendix B.8) that relates our MMD-UOT to
the MMD-regularized Kantorovich metric. We believe this connection is interesting as it generalizes the pop-
ular Kantorovich-Rubinstein duality result on relating (unregularized) OT to the (unregularized) Kantorovich
metric.
Theorem 4.8. In addition to the assumptions in Theorem 4.1, if c is a valid metric, then

Uk,c,λ1,λ2 (s0, t0) = min
s,t∈R(X )

Kc(s, t) + λ1MMDk(s, s0) + λ2MMDk(t, t0). (8)

Remark 4.9. It is noteworthy that most of our theoretical results presented in this section not only hold
with the MMD-UOT formulation (9) but also with a general IPM-regularized UOT formulation, which we
discuss in Appendix B. This generalization may be of independent interest for future work.

Finally, minor results on robustness and connections with spectral normalized GAN (Miyato et al., 2018)
are discussed in Appendix B.16 and Appendix B.17, respectively.
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4.1 Finite-Sample-based Estimation

As noted in Corollary 4.6, MMD-UOT can be efficiently estimated from samples of source and target.
However, one needs to solve an optimization problem over all possible joint (un-normalized) measures. This
can be computationally expensive1 (for example, optimization over the set of all joint density functions).
Hence, in this section, we propose a simple estimator where the optimization is only over the joint measures
supported at sample-based points. We show that our estimator is statistically consistent and that the
estimation is free from the curse of dimensionality.

Let m samples be given from the source, target, s0, t0 ∈ R+(X ) respectively2. We denote Di =
{xi1, · · ·xim}, i = 1, 2 as the set of samples given from s0, t0 respectively. Let ŝm, t̂m denote the empiri-
cal measures using samples D1,D2. Let us denote the Gram-matrix of Di by Gii. Let C12 be the m ×m
cost matrix with entries as evaluations of the cost function over D1 × D2. Following the common practice
in OT literature (Chizat et al., 2017; Cuturi, 2013; Damodaran et al., 2018; Fatras et al., 2021; Le et al.,
2021; Balaji et al., 2020; Nath & Jawanpuria, 2020; Peyré & Cuturi, 2019), we restrict the transport plan
to be supported on the finite samples from each of the measures in order to avoid the computational issues
in optimizing over all possible joint densities. More specifically, let α be the m ×m (parameter/variable)
matrix with entries as αij ≡ π(x1i, x2j) where i, j ∈ {1, · · · ,m}. With these notations and the mentioned
restricted feasibility set, Problem (6) simplifies to the following, denoted by Ûm(ŝm, t̂m):

min
α≥0∈Rm×m

Tr
(
αC⊤

12
)

+ λ1

∥∥∥α1− σ1

m
1
∥∥∥

G11
+ λ2

∥∥∥α⊤1− σ2

m
1
∥∥∥

G22
, (9)

where Tr(M) denotes the trace of matrix M , ∥x∥M ≡
√
x⊤Mx, and σ1, σ2 are the masses of the source,

target measures, s0, t0, respectively. Since this is a Convex Program over a finite-dimensional variable, it
can be solved in a computationally efficient manner (refer Section 4.2).

However, as the transport plan is now supported on the given samples alone, Corollary 4.6 does not apply.
The following result shows that our estimator (9) is consistent, and the estimation error decays at a favourable
rate.
Theorem 4.10. (Consistency of the proposed estimator) Let us denote Uk,c,λ1,λ2 , defined in (6),
by Ū . Assume the domain X is compact, ground cost is continuous, c ∈ C(X × X ), and the kernel k is
c-universal, normalized. Let the source measure (s0), the target measure (t0), as well as the corresponding
MMD-UOT transport plan be absolutely continuous. Also assume s0(x), t0(x) > 0 ∀ x ∈ X . Then, we
have w.h.p. and any (arbitrarily small) ϵ > 0 that

∣∣∣Ûm(ŝm, t̂m)− Ū(s0, t0)
∣∣∣ ≤ O (λ1+λ2√

m
+ g(ϵ)

m + ϵσ
)

. Here,
g(ϵ) ≡ minv∈Hk⊗Hk

∥v∥k s.t. ∥v − c∥∞ ≤ ϵ, and σ is the mass of the optimal MMD-UOT transport plan.
Further, if c belongs to Hk ⊗Hk, then w.h.p.

∣∣∣Ûm(ŝm, t̂m)− Ū(s0, t0)
∣∣∣ ≤ O (λ1+λ2√

m

)
.

We discuss the proof of the above theorem in Appendix B.9. Because k is universal, g(ϵ) < ∞ ∀ ϵ > 0.
The consistency of our estimator as m → ∞ can be realized, if, for example, one employs the scheme
λ1 = λ2 = O(m1/4) and ϵ→ 0 at a slow enough rate such that g(ϵ)

m → 0. In Appendix B.9.1, we show that
even if ϵ decays as fast as O

( 1
m2/3

)
, then g(ϵ) blows-up atmost as O

(
m1/3). Hence, overall, the estimation

error still decays as O
( 1

m1/4

)
. To the best of our knowledge, such consistency results have not been studied

in the context of KL-regularized UOT.

4.2 Computational Aspects

Problem (9) is an instance of a convex program and can be solved using the mirror descent algorithm detailed
in Appendix B.10. In the following, we propose to solve an equivalent optimization problem which helps us
leverage faster solvers for MMD-UOT:

min
α≥0∈Rm×m

Tr
(
αC⊤

12
)

+ λ1

∥∥∥α1− σ1

m
1
∥∥∥2

G11
+ λ2

∥∥∥α⊤1− σ2

m
1
∥∥∥2

G22
. (10)

1Note that this challenge is inherent to OT (and all its variants). It is not a consequence of our choice of MMD regularization.
2The no. of samples from source and target need not be the same, in general.
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Algorithm 1 Accelerated Projected Gradient Descent for solving Problem (10).
Require: Lipschitz constant L, initial α0 ≥ 0 ∈ Rm×m.
f(α) = Tr

(
αC⊤

12
)

+ λ1
∥∥α1− σ1

m 1
∥∥2

G11
+ λ2

∥∥α⊤1− σ2
m 1
∥∥2

G22
.

γ1 = 1.
y1 = α0.
i = 0.
while not converged do

αi = Project≥0
(
yi − 1

L∇f(yi)
)
.

γi+1 = 1+
√

1+4γ2
i

2 .
yi+1 = αi + γi−1

γi+1
(αi − αi−1).

i = i+ 1.
end while

return αi.

The equivalence between (9) and (10) follows from standard arguments and is detailed in Appendix B.11.
Our next result shows that the objective in (10) is L-smooth (proof provided in Appendix B.12).

Lemma 4.11. The objective in Problem (10) is L-smooth with L =
2
√

(λ1m)2∥G11∥2
F + (λ2m)2∥G22∥2

F + 2λ1λ2(1⊤
mG111m + 1⊤

mG221m).

The above result enables us to use the accelerated projected gradient descent (APGD) algorithm (Nesterov,
2003; Beck & Teboulle, 2009) with fixed step-size τ = 1/L for solving (10). The detailed steps are pre-
sented in Algorithm 1. The overall computation cost for solving MMD-UOT (10) is O( m2

√
ϵ
), where ϵ is the

optimality gap. In Section 5, we empirically observe that the APGD-based solver for MMD-UOT is indeed
computationally efficient.

4.3 Barycenter

A related problem is that of barycenter interpolation of measures (Agueh & Carlier, 2011), which has
interesting applications (Solomon et al., 2014; 2015; Gramfort et al., 2015). Given measures s1, . . . , sn with
total masses σ1, . . . , σn respectively, and interpolation weights ρ1, . . . , ρn, the barycenter s ∈ R+(X ) is
defined as the solution of B̄(s1, · · · , sn) ≡ mins∈R+(X )

∑n
i=1 ρiUk,c,λ1,λ2(si, s).

In typical applications, only sample sets, Di, from si are available instead of si themselves. Let us denote
the corresponding empirical measures by ŝ1, . . . , ŝn. One way to estimate the barycenter is to consider
B̄(ŝ1, · · · , ŝn). However, this may be computationally challenging to optimize, especially when the measures
involved are continuous. So we propose estimating the barycenter with the restriction that the transport
plan πi corresponding to Uk,c,λ1,λ2(ŝi, s) is supported on Di ×∪n

i=1Di. And, let αi ≥ 0 ∈ Rmi×m denote the
corresponding probabilities. Following (Cuturi & Doucet, 2014), we also assume that the barycenter, s, is
supported on ∪n

i=1Di. Let us denote the barycenter problem with this support restriction on the transport
plans and the Barycenter as B̂m(ŝ1, · · · , ŝn). Let G be the Gram-matrix of ∪n

i=1Di and Ci be the mi ×m
matrix with entries as evaluations of the cost function.

Lemma 4.12. The barycenter problem B̂m(ŝ1, · · · , ŝn) can be equivalently written as:

minα1,··· ,αn≥0
∑n

i=1 ρi

(
Tr
(
αiC⊤

i

)
+ λ1∥αi1− σi

mi
1∥2

Gii
+ λ2∥α⊤

i 1−
∑n

j=1 ρjα
⊤
j 1∥2

G

)
. (11)

We present the proof in Appendix B.14.1. Similar to Problem (10), the objective in Problem (11) is a smooth
quadratic program in each αi and is jointly convex in αi’s. In Appendix B.14.2, we also present the details
for solving Problem (11) using APGD as well as its statistical consistency in Appendix B.14.3.

9



Published in Transactions on Machine Learning Research (01/2024)

ϵKL-UOT plan                  MMD-UOT plan    Barycenter
             (a)           (b)         (c)

𝜖

Figure 2: (a) Optimal Transport plans of ϵKL-UOT and MMD-UOT; (b) Barycenter interpolating between
Gaussian measures. For the chosen hyperparameter, the barycenters of ϵKL-UOT and MMD-UOT overlap
and can be looked as smooth approximations of the OT barycenter; (c) Objective vs Time plot comparing
ϵKL-UOT solved using the popular Sinkhorn algorithm (Chizat et al., 2017; Pham et al., 2020) and MMD-
UOT (10) solved using APGD. A plot showing ϵKL-UOT’s progress at the initial phase is given in Figure 4.

5 Experiments

In Section 4, we examined the theoretical properties of the proposed MMD-UOT formulation. In this section,
we show that MMD-UOT is a good practical alternative to the popular entropy-regularized ϵKL-UOT. We
emphasize that our purpose is not to benchmark state-of-the-art performance. Our codes are publicly
available at https://github.com/Piyushi-0/MMD-reg-OT.

5.1 Synthetic Experiments

We present some synthetic experiments to visualize the quality of our solution. Please refer to Appendix C.1
for more details.

Transport Plan and Barycenter We perform synthetic experiments with the source and target as
Gaussian measures. We compare the OT plan of ϵKL-UOT and MMD-UOT in Figure 2(a). We observe
that the MMD-UOT plan is sparser compared to the ϵKL-UOT plan. In Figure 2(b), we visualize the
barycenter interpolating between the source and target, obtained with MMD, ϵKL-UOT and MMD-UOT.
While MMD barycenter is an empirical average of the measures and hence has two modes, the geometry
of measures is considered in both ϵKL-UOT and MMD-UOT formulations. Barycenters obtained by these
methods have the same number of modes (one) as in the source and the target. Moreover, they appear to
smoothly approximate the barycenter obtained with OT (solved using a linear program).

Visualizing the Level Sets Applications like generative modeling deal with optimization over the pa-
rameter (θ) of the source distribution to match the target distribution. In such cases, it is desirable that
the level sets of the distance function over the measures show a lesser number of stationary points that are
not global optima (Bottou et al., 2017). Similar to (Bottou et al., 2017), we consider a model family for
source distributions as F = {Pθ = 1

2 (δθ + δ−θ) : θ ∈ [−1, 1] x [−1, 1]} and a fixed target distribution Q
as P(2,2) /∈ F . We compute the distances between Pθ and Q according to various divergences. Figure 3
presents level sets showing the set of distances {d(Pθ, Q) : θ ∈ [−1, 1] x [−1, 1]} where the distance d(., .) is
measured using MMD, Kantorovich metric, ϵKL-UOT, and MMD-UOT (9), respectively. While all methods
correctly identify global minima (green arrow), level sets with MMD-UOT and ϵKL-UOT show no local
minima (encircled in red for MMD) and have a lesser number of non-optimal stationary points (marked with
black arrows) compared to the Kantorovich metric in Figure 3(b).

Computation Time In Figure 2(c), we present the objective versus time plot. The source and target
measures are chosen to be the same, in which case the optimal objective is 0. MMD-UOT (10) solved using

10
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(a)                                                  (b)                                                  (c)         (d)   

Figure 3: Level sets of distance function between a family of source distributions and a fixed target distri-
bution with the task of finding the source distribution closest to the target distribution using (a) MMD, (b)
W̄2, (c) ϵKL-UOT, and (d) MMD-UOT. While all methods correctly identify global minima (green arrows),
level sets with MMD-UOT and ϵKL-UOT show no local minima (encircled in red for MMD) and have a
lesser number of non-optimal stationary points (marked with black arrows) compared to (b).

Table 2: Average Test Power (between 0 and 1; higher is better) on MNIST. MMD-UOT obtains the highest
average test power at all timesteps.

N MMD ϵKL-UOT MMD-UOT
100 0.137 0.099 0.154
200 0.258 0.197 0.333
300 0.467 0.242 0.588
400 0.656 0.324 0.762
500 0.792 0.357 0.873
1000 0.909 0.506 0.909

APGD (described in Section 4.2) gives a much faster rate of decrease in objective compared to the Sinkhorn
algorithm used for solving KL-UOT.

5.2 Two-Sample Hypothesis Test

Given two sets of samples {x1, . . . , xm} ∼ s0 and {y1, . . . , ym} ∼ t0, the two-sample test aims to determine
whether the two sets of samples are drawn from the same distributions, viz., to predict if s0 = t0. The
performance evaluation in the two-sample test relies on two types of errors. Type-I error occurs when
s0 = t0, but the algorithm predicts otherwise. Type-II error occurs when the algorithm incorrectly predicts
s0 = t0. The probability of Type-I error is called the significance level. The significance level can be
controlled using permutation test-based setups (Ernst, 2004; Liu et al., 2020). Algorithms are typically
compared based on the empirical estimate of their test power (higher is better), defined as the probability
of not making a Type-II error and the average Type-I error (lower is better).

Dataset and experimental setup. Following (Liu et al., 2020), we consider the two sets of samples, one
from the true MNIST (LeCun & Cortes, 2010) and another from fake MNIST generated by the DCGAN (Bian
et al., 2019). The data lies in 1024 dimensions. We take an increasing number of samples (N) and compute
the average test power over 100 pairs of sets for each value of N . We repeat the experiment 10 times and
report the average test power in Table 2 for the significance level α = 0.05. By the design of the test, the
average Type-I error was upper-bounded, and we noted the Type-II error in our experiment. We detail
the procedure for choosing the hyperparameters and the list of chosen hyperparameters for each method in
Appendix C.2.

Results. In Table 2, we observe that MMD-UOT obtains the highest test power for all values of N . The
average test power of MMD-UOT is 1.5−2.4 times better than that of ϵKL-UOT across N . MMD-UOT also
outperforms EMD and 2-Wasserstein, which suffer from the curse of dimensionality, for all values of N . Our
results match the sample efficient MMD metric’s result on increasing N to 1000, but for lesser sample-size,
MMD-UOT is always better than MMD.
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Table 3: MMD distance (lower is better) between computed barycenter and the ground truth distribution.
A sigma-heuristics based RBF kernel is used to compute the MMD distance. We observe that MMD-UOT’s
results are closer to the ground truth than the baselines’ results at all timesteps.

Timestep MMD ϵKL-UOT MMD-UOT
t1 0.375 0.391 0.334
t2 0.190 0.184 0.179
t3 0.125 0.138 0.116
Avg. 0.230 0.238 0.210

5.3 Single-Cell RNA Sequencing

We empirically evaluate the quality of our barycenter in the Single-cell RNA sequencing experiment. Single-
cell RNA sequencing technique (scRNA-seq) helps us understand how the expression profile of the cells
changes (Schiebinger et al., 2019). Barycenter estimation in the OT framework offers a principled approach to
estimate the trajectory of a measure at an intermediate timestep t (ti < t < tj) when we have measurements
available only at ti (source) and tj (target) time steps.

Dataset and experimental setup. We perform experiments on the Embryoid Body (EB) single-cell
dataset (Moon et al., 2019). The dataset has samples available at five timesteps (tj with j = 0, . . . , 4), which
were collected during a 25-day period of development of the human embryo. Following (Tong et al., 2020),
we project the data onto two-dimensional space and associate uniform measures to the source and the target
samples given at different timesteps. We consider the samples at timestep ti and ti+2 as the samples from
the source and target measures where 0 ≤ i ≤ 2 and aim at estimating the measure at ti timestep as their
barycenter with equal interpolation weights ρ1 = ρ2 = 0.5.

We compute the barycenters using MMD-UOT (11) and the ϵKL-UOT (Chizat et al., 2018; Liero et al.,
2018) approaches. For both, a simplex constraint is used to cater to the case of uniform measures. We also
compare against the empirical average of the source and target measures, which is the barycenter obtained
with the MMD metric. The computed barycenter is evaluated against the measure corresponding to the
ground truth samples available at the corresponding timestep. We compute the distance between the two
using the MMD metric with RBF kernel (Gretton et al., 2012). The hyperparameters are chosen based on
the leave-one-out validation protocol. More details and some additional results are in Appendix C.3.

Results. Table 3 shows that MMD-UOT achieves the lowest distance from the ground truth for all the
timesteps, illustrating its superior interpolation quality.

5.4 Domain Adaptation in JUMBOT framework

OT has been widely employed in domain adaptation problems (Courty et al., 2017; Courty et al., 2017; Seguy
et al., 2018; Damodaran et al., 2018). JUMBOT (Fatras et al., 2021) is a popular domain adaptation method
based on ϵKL-UOT that outperforms OT-based baselines. JUMBOT’s loss function involves a cross-entropy
term and ϵKL-UOT discrepancy term between the source and target distributions. We showcase the utility
of MMD-UOT (10) in the JUMBOT (Fatras et al., 2021) framework.

Dataset and experimental setup: We perform the domain adaptation experiment with and Digits
datasets comprising of MNIST (LeCun & Cortes, 2010), M-MNIST (Ganin et al., 2016), SVHN (Netzer
et al., 2011), USPS (Hull, 1994) datasets. We replace the ϵKL-UOT based loss with the MMD-UOT loss
(10), keeping the other experimental set-up the same as JUMBOT. We obtain JUMBOT’s result with
ϵKL-UOT with the best-reported hyperparameters (Fatras et al., 2021). Following JUMBOT, we tune
hyperparameters of MMD-UOT for the Digits experiment on USPS to MNIST (U7→M) domain adaptation
task and use the same hyperparameters for the rest of the domain adaptation tasks on Digits. More details
are in Appendix C.4.
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Table 4: Target domain accuracy (higher is better) obtained in domain adaptation experiments. Results for
ϵKL-UOT are reproduced from the code open-sourced for JUMBOT in (Fatras et al., 2021). MMD-UOT
outperforms ϵKL-UOT in all the domain adaptation tasks considered.

Source Target ϵKL-UOT MMD-UOT
M-MNIST USPS 91.53 94.97
M-MNIST MNIST 99.35 99.50
MNIST M-MNIST 96.51 96.96
MNIST USPS 96.51 97.01
SVHN M-MNIST 94.26 95.35
SVHN MNIST 98.68 98.98
SVHN USPS 92.78 93.22
USPS MNIST 96.76 98.53

Avg. 95.80 96.82

Results: Table 4 reports the accuracy obtained on target datasets. We observe that MMD-UOT-based loss
performs better than ϵKL-UOT-based loss for all the domain adaptation tasks. In Figure 8 (appendix), we
also compare the t-SNE plot of the embeddings learned with the MMD-UOT and the ϵKL-UOT-based loss
functions. The clusters learned with MMD-UOT are better separated (e.g., red- and cyan-colored clusters).

5.5 More Results on Domain Adaptation

In Section 5.4, we compared the proposed MMD-UOT-based loss function with the ϵKL-UOT based loss
function in the JUMBOT framework (Fatras et al., 2021). It should be noted that JUMBOT has a ResNet-
50 backbone. Hence, in this section, we also compare with popular domain adaptation baselines having
ResNet-50 backbone. These include DANN (Ganin et al., 2015), CDANN-E (Long et al., 2017), DEEPJ-
DOT (Damodaran et al., 2018), ALDA (Chen et al., 2020a), ROT (Balaji et al., 2020), and BombOT (Nguyen
et al., 2022). BombOT is a recent state-of-the-art OT-based method for unsupervised domain adaptation
(UDA). As in JUMBOT (Fatras et al., 2021), BombOT also employs ϵKL-UOT based loss function. We
also include the results of the baseline ResNet-50 model, where the model is trained on the source and is
evaluated on the target without employing any adaptation techniques.

Office-Home dataset: We evaluate the proposed method on the Office-Home dataset (Venkateswara
et al., 2017), popular for unsupervised domain adaptation. We use the backbone network of ResNet-50
following. The Office-Home dataset has 15,500 images from four domains: Artistic images (A), Clip Art (C),
Product images (P) and Real-World (R). The dataset contains images of 65 object categories common in
office and home scenarios for each domain. Following (Fatras et al., 2021; Nguyen et al., 2022), evaluation is
done in 12 adaptation tasks. Following JUMBOT, we validate the proposed method on the A→C task and
use the chosen hyperparameters for the rest of the tasks.

Table 5 reports the target accuracies obtained by different methods. The results of the BombOT method are
quoted from (Nguyen et al., 2022), and the results of other baselines are quoted from (Fatras et al., 2021).
We observe that the proposed MMD-UOT-based method achieves the best target accuracy in 11 out of 12
adaptation tasks.

VisDA-2017 dataset: We next consider the next domain adaptation task between the training and
validation sets of the VisDA-2017 (Recht et al., 2018) dataset. We follow the experimental setup detailed in
(Fatras et al., 2021). The source domain of VisDA has 152,397 synthetic images, while the target domain
has 55,388 real-world images. Both the domains have 12 object categories.

Table 6 compares the performance of different methods. The results of the BombOT method are quoted from
(Nguyen et al., 2022), and the results of other baselines are quoted from (Fatras et al., 2021). The proposed
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Table 5: Target accuracies (higher is better) on the Office-Home dataset in the UDA setting. The letters
denote different domains: ‘A’ for Artistic images, ‘P’ for Product images, ‘C’ for Clip art and ‘R’ for Real-
World images. The proposed method achieves the highest accuracy on almost all the domain adaptation
tasks and achieves the best accuracy averaged across the tasks.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg

ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DANN 44.3 59.8 69.8 48.0 58.3 63.0 49.7 42.7 70.6 64.0 51.7 78.3 58.3(Ganin et al., 2015)

CDAN-E 52.5 71.4 76.1 59.7 69.9 71.5 58.7 50.3 77.5 70.5 57.9 83.5 66.6(Long et al., 2017)

DEEPJDOT 50.7 68.7 74.4 59.9 65.8 68.1 55.2 46.3 73.8 66.0 54.9 78.3 63.5(Damodaran et al., 2018)

ALDA 52.2 69.3 76.4 58.7 68.2 71.1 57.4 49.6 76.8 70.6 57.3 82.5 65.8(Chen et al., 2020a)

ROT 47.2 71.8 76.4 58.6 68.1 70.2 56.5 45.0 75.8 69.4 52.1 80.6 64.3(Balaji et al., 2020)

ϵKL-UOT (JUMBOT) 55.2 75.5 80.8 65.5 74.4 74.9 65.2 52.7 79.2 73.0 59.9 83.4 70.0(Fatras et al., 2021)

BombOT 56.2 75.2 80.5 65.8 74.6 75.4 66.2 53.2 80.0 74.2 60.1 83.3 70.4(Nguyen et al., 2022)

Proposed 56.5 77.2 82.0 70.0 77.1 77.8 69.3 55.1 82.0 75.5 59.3 84.0 72.2

Table 6: Target accuracies (higher is better) on the VisDA-2017 dataset in the UDA setting. The proposed
MMD-UOT method achieves the highest accuracy.

Dataset CDAN-E ALDA DEEPJDOT ROT ϵKL-UOT (JUMBOT) BombOT Proposed
VisDA-2017 70.1 70.5 68.0 66.3 72.5 74.6 77.0

method achieves the best performance, improving the accuracy obtained by ϵKL-UOT based JUMBOT and
BombOT methods by 4.5% and 2.4%, respectively.

5.6 Prompt Learning for Few-Shot Classification

The task of learning prompts (e.g. “a tall bird of [class]”) for vision-language models has emerged as a
promising approach to adapt large pre-trained models like CLIP (Radford et al., 2021) for downstream
tasks. The similarity between prompt features (which are class-specific) and visual features of a given image
can help us classify the image. A recent OT-based prompt learning approach, PLOT (Chen et al., 2023),
obtained state-of-the-art results on the K-shot recognition task in which only K images per class are available
during training. We evaluate the performance of MMD-UOT following the setup of (Chen et al., 2023) on
the benchmark EuroSAT (Helber et al., 2018) dataset consisting of satellite images, DTD (Cimpoi et al.,
2014) dataset having images of textures and Oxford-Pets (Parkhi et al., 2012) dataset having images of pets.

Results With the same evaluation protocol as in (Chen et al., 2023), we report the classification accuracy
averaged over three seeds in Table 7. We note that MMD-UOT-based prompt-learning achieves better results
than PLOT, especially when K is less (more challenging case due to lesser training data). With the EuroSAT
dataset, the improvement is as high as 4% for a challenging case of K=1. More details are in Appendix C.5.
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Table 7: Average and standard deviation (over 3 runs) of accuracy (higher is better) on the k-shot classifi-
cation task, shown for different values of shots (k) in the state-of-the-art PLOT framework. The proposed
method replaces OT with MMD-UOT in PLOT, keeping all other hyperparameters the same. The results
of PLOT are taken from their paper (Chen et al., 2023).

Dataset Method 1 2 4 8 16

EuroSAT PLOT 54.05 ± 5.95 64.21 ± 1.90 72.36 ± 2.29 78.15 ± 2.65 82.23 ± 0.91
Proposed 58.47 ± 1.37 66.0 ± 0.93 71.97 ± 2.21 79.03 ± 1.91 83.23 ± 0.24

DTD PLOT 46.55 ± 2.62 51.24 ± 1.95 56.03 ± 0.43 61.70 ± 0.35 65.60 ± 0.82
Proposed 47.27±1.46 51.0±1.71 56.40±0.73 63.17±0.69 65.90 ± 0.29

6 Conclusion

The literature on unbalanced optimal transport (UOT) has largely focused on ϕ-divergence-based regu-
larization. Our work provides a comprehensive analysis of MMD-regularization in UOT, answering many
open questions. We prove novel results on the metricity and the sample efficiency of MMD-UOT, propose
consistent estimators which can be computed efficiently, and illustrate its empirical effectiveness on several
machine learning applications. Our theoretical and empirical contributions for MMD-UOT and its corre-
sponding barycenter demonstrate the potential of MMD-regularization in UOT as an effective alternative
to ϕ-divergence-based regularization. Interesting directions of future work include exploring applications of
IPM-regularized UOT (Remark 4.9) and the generalization of Kantorovich-Rubinstein duality (Remark 4.7).
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A Preliminaries

A.1 Integral Probability Metric (IPM):

Given a set G ⊂ L(X ), the integral probability metric (IPM) (Muller, 1997; Sriperumbudur et al., 2009;
Agrawal & Horel, 2020) associated with G, is defined by:

γG(s0, t0) ≡ max
f∈G

∣∣∣∣∫
X
f ds0 −

∫
X
f dt0

∣∣∣∣ ∀ s0, t0 ∈ R+(X ). (12)

G is called the generating set of the IPM, γG .

In order that the IPM metrizes weak convergence, we assume the following (Muller, 1997):
Assumption A.1. G ⊆ C(X ) and is compact.

Since the IPM generated by G and its absolute convex hull is the same (without loss of generality), we
additionally assume the following:
Assumption A.2. G is absolutely convex.
Remark A.3. We note that the assumptions A.1 and A.2 are needed only to generalize our theoretical results
to an IPM-regularized UOT formulation (Formulation 13). These assumptions are satisfied whenever the
IPM employed for regularization is the MMD (Formulation 6) with a kernel that is continuous and universal
(i.e., c-universal).

A.2 Classical Examples of IPMs

• Maximum Mean Discrepancy (MMD): Let k be a characteristic kernel (Sriperumbudur et al.,
2011) over the domain X , let ∥f∥k denote the norm of f in the canonical reproducing kernel Hilbert
space (RKHS), Hk, corresponding to k. MMDk is the IPM associated with the generating set:
Gk ≡ {f ∈ Hk| ∥f∥k ≤ 1}.

MMDk(s0, t0) ≡max
f∈Gk

∣∣∣∣∫
X
f ds0 −

∫
X
f dt0

∣∣∣∣ .
• Kantorovich metric (Kc): Kantorovich metric also belongs to the family of integral probability

metrics associated with the generating set Wc ≡
{
f : X 7→ R | max

x∈X ̸=y∈X
|f(x)−f(y)|

c(x,y) ≤ 1
}

, where c
is a metric over X . The Kantorovich-Fenchel duality result shows that the 1-Wasserstein metric is
the same as the Kantorovich metric when restricted to probability measures.

• Dudley: This is the IPM associated with the generating set:
Dd ≡ {f : X 7→ R | ∥f∥∞ + ∥f∥d ≤ 1} , where d is a ground metric over X × X . The
so-called Flat metric is related to the Dudley metric. It’s generating set is: Fd ≡
{f : X 7→ R | ∥f∥∞ ≤ 1, ∥f∥d ≤ 1}.

• Kolmogorov: Let X = Rn. Then, the Kolmogorov metric is the IPM associated with the generating
set: K̄ ≡

{
1(−∞,x) | x ∈ Rn

}
.
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• Total Variation (TV): This is the IPM associated with the generating set: T ≡
{f : X 7→ R | ∥f∥∞ ≤ 1} , where ∥f∥∞ ≡ max

x∈X
|f(x)|. Total Variation metric over measures s0, t0 ∈

R+(X ) is defined as:

TV(s, t) ≡
∫

Y d|s− t|(y), where |s− t|(y) ≡
{
s(y)− t(y) if s(y) ≥ t(y)
t(y)− s(y) otherwise

B Proofs and Additional Theory Results

As mentioned in the main paper and Remark 4.9, most of our proofs hold even with a general IPM-regularized
UOT formulation (13) under mild assumptions. We restate such results and give a general proof
that holds for IPM-regularized UOT (Formulation 13), of which MMD-regularized UOT (For-
mulation 6) is a special case.

The proposed IPM-regularized UOT formulation is presented as follows.

UG,c,λ1,λ2(s0, t0) ≡ min
π∈R+(X ×X )

∫
c dπ + λ1γG(π1, s0) + λ2γG(π2, t0), (13)

where γG is defined in equation (12).

We now present the theoretical results and proofs with IPM-regularized UOT (Formulation 13), of which
MMD-regularized UOT (Formulation 6) is a special case. To the best of our knowledge, such an analysis for
IPM-regularized UOT has not been done before.

B.1 Proof of Theorem 4.1

Theorem 4.1. (Duality) Whenever G satisfies Assumptions A.1 and A.2, c, k ∈ C(X × X ) and X is
compact, we have that:

UG,c,λ1,λ2 (s0, t0) = max
f∈G(λ1),g∈G(λ2)

∫
X f ds0 +

∫
X g dt0,

s.t. f(x) + g(y) ≤ c(x, y) ∀ x, y ∈ X . (14)

Proof. We begin by re-writing the RHS of (13) using the definition of IPMs given in (12):

UG,c,λ1,λ2 (s0, t0) ≡ min
π∈R+(X ×X )

∫
X ×X

c dπ + λ1

(
max
f∈G

∣∣∣∣∫
X
f ds0 −

∫
X
f dπ1

∣∣∣∣)+ λ2

(
max
g∈G

∣∣∣∣∫
X
g dt0 −

∫
X
g dπ2

∣∣∣∣)
∵(A.2)= min

π∈R+(X ×X )

∫
X ×X

c dπ + λ1

(
max
f∈G

∫
X
f ds0 −

∫
X
f dπ1

)
+ λ2

(
max
g∈G

∫
X
g dt0 −

∫
X
g dπ2

)
= min

π∈R+(X ×X )

∫
X ×X

c dπ +
(

max
f∈G(λ1)

∫
X
f ds0 −

∫
X
f dπ1

)
+
(

max
g∈G(λ2)

∫
X
g dt0 −

∫
X
g dπ2

)
= max

f∈G(λ1),g∈G(λ2)

∫
X
f ds0 +

∫
X
g dt0 + min

π∈R+(X ×X )

∫
X ×X

c dπ −
∫

X
f dπ1 −

∫
X
g dπ2

= max
f∈G(λ1),g∈G(λ2)

∫
X
f ds0 +

∫
X
g dt0 + min

π∈R+(X ×X )

∫
X ×X

c− f̄ − ḡ dπ

= max
f∈G(λ1),g∈G(λ2)

∫
X
f ds0 +

∫
X
g dt0 +

{
0 if f(x) + g(y) ≤ c(x, y) ∀ x, y ∈ X ,
−∞ otherwise.

= max
f∈G(λ1),g∈G(λ2)

∫
X
f ds0 +

∫
X
g dt0,

s.t. f(x) + g(y) ≤ c(x, y) ∀ x, y ∈ X .
(15)

Here, f̄(x, y) ≡ f(x), ḡ(x, y) ≡ g(y). The min-max interchange in the third equation is due to Sion’s
minimax theorem: (i) since R(X ) is a topological dual of C(X ) whenever X is compact, the objective is

21



Published in Transactions on Machine Learning Research (01/2024)

bilinear (inner-product in this duality), whenever c, f, g are continuous. This is true from Assumption A.1
and c ∈ C(X×X ). (ii) one of the feasibility sets involves G, which is convex compact by Assumptions A.1, A.2.
The other feasibility set is convex (the closed conic set of non-negative measures).

Remark B.1. Whenever the kernel, k, employed is continuous, the generating set of the corresponding MMD
satisfies assumptions A.2 and Gk ⊆ C(X ). Hence, the above proof also works in our case of MMD-regularized
UOT (i.e., to prove Theorem 4.1 in the main paper).

B.2 Proof of Corollary 4.2

We first derive an equivalent re-formulation of 13, which will be used in our proof.
Lemma B1.

UG,c,λ1,λ2 (s0, t0) ≡ min
s,t∈R+(X )

|s|W1(s, t) + λ1γG(s, s0) + λ2γG(t, t0), (16)

where W1(s, t) ≡
{
W̄1( s

|s| ,
t

|t| ) if |s| = |t|,
∞ otherwise. , with W̄1 as the 1-Wasserstein metric.

Proof.

min
s,t∈R+(X )

|s|W1(s, t) + λ1γG(s, s0) + λ2γG(t, t0)

= min
s,t∈R+(X ); |s|=|t|

|s| min
π̄∈R+

1 (X ×X )

∫
c dπ̄ + λ1γG(s, s0) + λ2γG(t, t0) s.t. π̄1 = s

|s|
, π̄2 = t

|t|

= min
η>0

η min
π̄∈R+

1 (X ×X )

∫
c dπ̄ + λ1γG(ηπ̄1, s0) + λ2γG(ηπ̄2, t0)

= min
η>0

min
π̄∈R+

1 (X ×X )

∫
c ηdπ̄ + λ1γG(ηπ̄1, s0) + λ2γG(ηπ̄2, t0)

= min
π∈R+(X ×X )

∫
c dπ + λ1γG(π1, s0) + λ2γG(π2, t0)

The first equality holds from the definition of W1: W1(s, t) ≡
{
W̄1( s

|s| ,
t

|t| ) if |s| = |t|,
∞ otherwise. . Eliminating

normalized versions s and t using the equality constraints and introducing η to denote their common mass
gives the second equality. The last equality comes after changing the variable of optimization to π ∈
R+ (X × X ) ≡ ηπ̄. Recall that R+(X ) denotes the set of all non-negative Radon measures defined over X ;
while the set of all probability measures is denoted by R+

1 (X ).

Corollary 4.2 in the main paper is restated below with the IPM-regularized UOT formulation (13), followed
by its proof.
Corollary 4.2. (Metricity) In addition to assumptions in Theorem (4.1), whenever c is a metric, UG,c,λ,λ

belongs to the family of integral probability metrics (IPMs). Also, the generating set of this IPM is the
intersection of the generating set of the Kantorovich metric and the generating set of the IPM used for
regularization. Finally, UG,c,λ,λ is a valid norm-induced metric over measures whenever the IPM used for
regularization is norm-induced (e.g. MMD with a characteristic kernel). Thus, U lifts the ground metric c
to that over measures.

Proof. The constraints in dual, (7), are equivalent to: g(y) ≤ min
x∈X

c(x, y) − f(x) ∀ y ∈ X . The RHS is
nothing but the c-conjugate (c-transform) of f . From Proposition 6.1 in (Peyré & Cuturi, 2019), whenever

c is a metric we have: min
x∈X

c(x, y) − f(x) =
{
−f(y) if f ∈ Wc,
−∞ otherwise. Here, Wc is the generating set of the

Kantorovich metric lifting c. Thus the constraints are equivalent to: g(y) ≤ −f(y) ∀ y ∈ X , f ∈ Wc.
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Now, since the dual, (7), seeks to maximize the objective with respect to g, and monotonically increases
with values of g; at optimality, we have that g(y) = −f(y) ∀ y ∈ X . Note that this equality is possible to
achieve as both g,−f ∈ G(λ) ∩Wc (these sets are absolutely convex). Eliminating g, one obtains:

UG,c,λ,λ (s0, t0) = max
f∈G(λ)∩Wc

∫
X f ds0 −

∫
X f dt0,

Comparing this and the definition of IPMs 12, we have that UG,c,λ,λ belongs to the family of IPMs. Since
any IPM is a pseudo-metric (induced by a semi-norm) over measures (Muller, 1997), the only condition left
to be proved is positive definiteness with UG,c,λ,λ(s0, t0). Following Lemma B1, we have that for optimal
s∗, t∗ in (16), UG,c,λ,λ(s0, t0) = 0 ⇐⇒ (i) W1(s∗, t∗) = 0, (ii) γG(s∗, s0) = 0, (iii) γG(t∗, t0) = 0 as each term
in the RHS is non-negative. When the IPM used for regularization is a norm-induced metric (e.g. the MMD
metric or the Dudley metric), the conditions (i), (ii), (iii) ⇐⇒ s∗ = t∗ = s0 = t0, which proves the positive
definiteness. Hence, we proved that UG,c,λ,λ is a norm-induced metric over measures whenever the IPM used
for regularization is a metric.

Remark B.2. Recall that MMD is a valid norm-induced IPM metric whenever the kernel employed is char-
acteristic. Hence, our proof above also shows the metricity of the MMD-regularized UOT (as per corollary 4.2
in the main paper).

Remark B.3. If G is the unit uniform-norm ball (corresponding to TV), our result specializes to that
in (Piccoli & Rossi, 2016), which proves that UG,c,λ,λ coincides with the so-called Flat metric (or the bounded
Lipschitz distance).

Remark B.4. If the regularizer is the Kantorovich metric3, i.e., G = Wc, and λ1 = λ2 = λ ≥ 1, then
UWc,c,λ,λ coincides with the Kantorovich metric. In other words, the Kantorovich-regularized OT is the same
as the Kantorovich metric. Hence providing an OT interpretation for the Kantorovich metric that is valid
for potentially un-normalized measures in R+(X ).

B.3 Proof of Corollary 4.3

Proof. As discussed in Theorem 4.1 and Corollary 4.2, the MMD-regularized UOT (Formulation 6) is an
IPM with the generating set as an intersection of the generating sets of the MMD and the Kantorovich-
Wasserstein metrics. We now present special cases when MMD-regularized UOT (Formulation 6) recovers
back the Kantorovich-Wasserstein metric and the MMD metric.
Recovering Kantorovich. Recall that Gk(λ) = {λg | g ∈ Gk}. From the definition of Gk(λ), f ∈ Gk(λ) =⇒
f ∈ Hk, ∥f∥k ≤ λ. Hence, as λ→∞,Gk(λ) = Hk. Using this in the duality result of Theorem 4.1, we have
the following.

lim
λ→∞

Uk,c,λ,λ(s0, t0) = lim
λ→∞

max
f∈Gk(λ)∩Wc

∫
fds0 −

∫
fdt0 = max

f∈Hk∩Wc

∫
fds0 −

∫
fdt0

(1)= max
f∈C(X )∩Wc

∫
fds0 −

∫
fdt0

(2)= max
f∈Wc

∫
fds0 −

∫
fdt0

Equality (1) holds because Hk is dense in the set of continuous functions, C(X ). For equality (2), we use
that Wc consists of only 1-Lipschitz continuous functions. Thus, ∀s0, t0 ∈ R+(X ), limλ→∞ Uk,c,λ,λ(s0, t0) =
Kc(s0, t0).
Recovering MMD. We next show that when 0 < λ1 = λ2 = λ ≤ 1 and the cost metric c is such that
c(x, y) ≥

√
k(x, x) + k(y, y)− 2k(x, y) = ∥ϕ(x) − ϕ(y)∥k ∀x, y (Dominating cost assumption discussed

in B.4), then ∀s0, t0 ∈ R+(X ), Uk,c,λ,λ(s0, t0) = MMDk(s0, t0).

3The ground metric in UG,c,λ,λ must be the same as that defining the Kantorovich regularizer.
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Let f ∈ Gk(λ) =⇒ f = λg where g ∈ Hk, ∥g∥ ≤ 1. This also implies that λg ∈ Hk as λ ∈ (0, 1].

|f(x)− f(y)| = | ⟨λg, ϕ(x)− ϕ(y)⟩ | (RKHS property)
≤ | ⟨g, ϕ(x)− ϕ(y)⟩ | (∵ 0 < λ ≤ 1)
≤ ∥g∥k∥ϕ(x)− ϕ(y)∥k (Cauchy Schwarz)
≤ ∥ϕ(x)− ϕ(y)∥k (∵ ∥g∥ ≤ 1)
≤ c(x, y) (Dominating cost assumption, discussed in B.4)
=⇒ f ∈ Wc

Therefore, Gk(λ) ⊆ WC and hence, Gk(λ) ∩WC = Gk(λ). This relation, together with the metricity result
shown in Corollary 4.2, implies that Uk,c,λ,λ(s0, t0) = λMMDk(s0, t0). In B.4, we show that the Euclidean
distance satisfies the dominating cost assumption when the kernel employed is the Gaussian kernel and the
inputs lie on a unit-norm ball.

B.4 Dominating Cost Assumption with Euclidean cost and Gaussian Kernel

We present a sufficient condition for the Dominating cost assumption (used in Corollary 4.3) to be satisfied
while using a Euclidean cost and a Gaussian kernel based MMD. We consider the characteristic RBF kernel,
k(x, y) = exp (−s∥x− y∥2), and show that for the hyper-parameter, 0 < s ≤ 0.5, the Euclidean cost is
greater than the Kernel cost when the inputs are normalized, i.e., ∥x∥ = ∥y∥ = 1.

∥x− y∥2 ≥ k(x, x) + k(y, y)− 2k(x, y)
⇐⇒ ∥x∥2 + ∥y∥2 − 2 ⟨x, y⟩ ≥ 2− 2k(x, y)
⇐⇒ ⟨x, y⟩ ≤ exp (−2s(1− ⟨x, y⟩)) (Assuming normalized inputs)

(17)

From Cauchy Schwarz inequality, −∥x∥∥y∥ ≤ ⟨x, y⟩ ≤ ∥x∥∥y∥. With the assumption of normalized inputs,
we have that −1 ≤ ⟨x, y⟩ ≤ 1. We consider two cases based on this.

Case 1: ⟨x, y⟩ ∈ [−1, 0] In this case, condition (17) is satisfied ∀s ≥ 0 because k(x, y) ≥ 0 ∀x, y with a
Gaussian kernel.

Case 2: ⟨x, y⟩ ∈ (0, 1] In this case, our problem in condition (17) is to find s ≥ 0 such that ln ⟨x, y⟩ ≤
−2s(1− ⟨x, y⟩). We further consider two sub-cases and derive the required condition as follows:

Case 2A: ⟨x, y⟩ ∈ (0, 1
e

]
We re-parameterize ⟨x, y⟩ = e−n for n ≥ 1. With this, we need to find s ≥ 0 such

that −n ≤ −2s(1− e−n) ⇐⇒ n ≥ 2s(1− e−n). This is satisfied when 0 < s ≤ 0.5 because e−n ≥ 1− n.

Case 2B: ⟨x, y⟩ ∈ ( 1
e ,∞) We re-parameterize ⟨x, y⟩ = e− 1

n for n > 1. With this, we need to find s ≥ 0
such that 1

n

(
1−e− 1

n

) ≥ 2s. We consider the function f(n) = n
(

1− e− 1
n

)
for n ≥ 1. We now show that f is

an increasing function by showing that the gradient df
dn = 1−

(
1 + 1

n

)
e− 1

n is always non-negative.

df
dn ≥ 0

⇐⇒ e
1
n ≥

(
1 + 1

n

)
⇐⇒ 1

n
− ln

(
1 + 1

n

)
≥ 0

⇐⇒ 1
n
− (ln (n+ 1)− ln (n)) ≥ 0
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Applying the Mean Value Theorem on g(n) = lnn, we get

ln (n+ 1)− lnn = (n+ 1− n)1
z
, where n ≤ z ≤ n+ 1

=⇒ ln
(

1 + 1
n

)
= 1
z
≤ 1
n

=⇒ df
dn = 1

n
− ln

(
1 + 1

n

)
≥ 0

The above shows that f is an increasing function of n. We note that limn→∞ f(n) = 1, hence, 1
f(n) =

1

n

(
1−e− 1

n

) ≥ 1 which implies that condition (17) is satisfied by taking 0 < s ≤ 0.5.

B.5 Proof of Corollary 4.4

Corollary 4.4 in the main paper is restated below with the IPM-regularized UOT formulation (13), followed
by its proof.
Corollary 4.4. UG,c,λ,λ(s, t) ≤ min (λγG(s, t),Kc(s, t)) .

Proof. Theorem 4.1 shows that UG,c,λ,λ is an IPM whose generating set is the intersection of the generating
sets of Kantorovich and the scaled version of the IPM used for regularization. Thus, from the definition of
max, we have that UG,c,λ,λ(s, t) ≤ λγG(s, t) and UG,c,λ,λ(s, t) ≤ Kc(s, t). This implies that UG,c,λ,λ(s, t) ≤
min (λγG(s, t),Kc(s, t)). As a special case, Uk,c,λ,λ(s, t) ≤ min (λMMDk(s, t),Kc(s, t)).

B.6 Proof of Corollary 4.5

Corollary 4.5 in the main paper is restated below with the IPM-regularized UOT formulation (13), followed
by its proof.
Corollary 4.5. (Weak Metrization) UG,c,λ,λ metrizes the weak convergence of normalized measures.

Proof. For convenience of notation, we denote UG,c,λ,λ by U . From Corollary 4.4 in the main paper,

0 ≤ U(βn, β) ≤ Kc(βn, β)

From Sandwich theorem, limβn⇀β U(βn, β) → 0 as limβn⇀β Kc(βn, β)) → 0 by Theorem 6.9 in (Villani,
2009).

B.7 Proof of Corollary 4.6

Corollary 4.6 in the main paper is restated below with the IPM-regularized UOT formulation (13), followed
by its proof.
Corollary 4.6. (Sample Complexity) Let us denote UG,c,λ,λ, defined in 13, by Ū . Let ŝm, t̂m denote the
empirical estimates of s0, t0 ∈ R+(X ) respectively with m samples. Then, Ū(ŝm, t̂m) → Ū(s0, t0) at a rate
(apart from constants) same as that of γG(ŝm, s0)→ 0.

Proof. We use metricity of Ū proved in Corrolary 4.2. From triangle inequality of the metric Ū and Corol-
lary 4.4 in the main paper, we have that
0 ≤ |Ū(ŝm, t̂m)− Ū(s0, t0)| ≤ Ū(ŝm, s0) + Ū(t0, t̂m) ≤ λ

(
γG(ŝm, s0) + γG(t̂m, t0)

)
.

Hence, by Sandwich theorem, Ū(ŝm, t̂m)→ Ū(s0, t0) at a rate at which γG(ŝm, s0)→ 0 and γG(t̂m, t0)→ 0. If
the IPM used for regularization is MMD with a normalized kernel, then MMDk (s0, ŝm) ≤

√
1
m +

√
2 log(1/δ)

m

with probability at least 1− δ (Smola et al., 2007).

From the union bound, with probability at least 1−δ, |Ū (sm, tm)−Ū (s0, t0) | ≤ 2λ
(√

1
m +

√
2 log(2/δ)

m

)
.
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B.8 Proof of Theorem 4.8

We first restate the standard Moreau-Rockafellar theorem, which we refer to in this discussion.
Theorem B2. Let X be a real Banach space and f, g : X 7→ R ∪ {∞} be closed convex functions such that
dom(f)∩dom(g) is not empty, then: (f+g)∗(y) = min

x1+x2=y
f∗(x1)+g∗(x2) ∀y ∈ X∗. Here, f∗ is the Fenchel

conjugate of f , and X∗ is the topological dual space of X.

Theorem 4.8 in the main paper is restated below with the IPM-regularized UOT formulation 13, followed
by its proof.
Theorem 4.8. In addition to the assumptions in Theorem 4.1, if c is a valid metric, then

UG,c,λ1,λ2 (s0, t0) = min
s,t∈R(X )

Kc(s, t) + λ1γG(s, s0) + λ2γG(t, t0). (18)

Proof. Firstly, the result in the theorem is not straightforward and is not a consequence of Kantorovich-
Rubinstein duality. This is because the regularization terms in our original formulation (13, 16) enforce
closeness to the marginals of a transport plan and hence necessarily must be of the same mass and must
belong to R+(X ). Whereas in the RHS of 18, the regularization terms enforce closeness to marginals that
belong to R(X ) and more importantly, they could be of different masses.

We begin the proof by considering indicator functions Fc and FG defined over C(X )× C(X ) as:

Fc(f, g) =
{ 0 if f(x) + g(y) ≤ c(x, y) ∀ x, y ∈ X ,
∞ otherwise. , FG,λ1,λ2(f, g) =

{ 0 if f ∈ G(λ1), g ∈ G(λ2),
∞ otherwise .

Recall that the topological dual of C(X ) is the set of regular Radon measures R(X ) and the duality product
⟨f, s⟩ ≡

∫
f ds ∀ f ∈ C(X ), s ∈ R(X ). Now, from the definition of Fenchel conjugate in the (direct sum)

space C(X ) ⊕ C(X ), we have: F ∗
c (s, t) = max

f∈C(X ),g∈C(X )

∫
f ds +

∫
g dt, s.t.f(x) + g(y) ≤ c(x, y) ∀ x, y ∈ X ,

where s, t ∈ R(X ). Under the assumptions that X is compact and c is a continuous metric, Proposition 6.1
in (Peyré & Cuturi, 2019) shows that F ∗

c (s, t) = max
f∈Wc

∫
fds−

∫
fdt = Kc(s, t).

On the other hand, FG,λ1,λ2(f, g) =
(

max
f∈G(λ1)

∫
f ds + max

g∈G(λ2)

∫
g dt

)
= λ1γG(s, 0) + λ2γG(t, 0). Now,

we have that the RHS of 18 is min
s,t,s1,t1∈R(X ):(s,t)+(s1,t1)=(s0,t0)

F ∗
c (s, t) + F ∗

G,λ1,λ2
(s1, t1). This is be-

cause γG(s0 − s, 0) = γG(s0, s). Now, observe that the indicator functions FG,λ1,λ2 , Fc are closed, con-
vex functions because their domains are closed, convex sets. Indeed, G is a closed, convex set by As-
sumptions A.1, A.2. Also, it is simple to verify that the set {(f, g) | f(x) + g(y) ≤ c(x, y) ∀ x, y ∈ X}
is closed and convex. Hence by applying the Moreau-Rockafellar formula (Theorem B2), we have that
the RHS of 18 is equal to (Fc + FG,λ1,λ2)∗ (s0, t0). But from the definition of conjugate, we have that
(Fc + FG,λ1,λ2)∗ (s0, t0) ≡ max

f∈C(X ),g∈C(X )

∫
X f ds0 +

∫
X g dt0 − Fc(f, g) − FG,λ1,λ2(f, g). Finally, from the

definition of the indicator functions Fc, FG,λ1,λ2 , this is same as the final RHS in 15. Hence Proved.

Remark B.5. Whenever the kernel, k, employed is continuous, the generating set of the corresponding
MMD satisfies assumptions A.1, A.2 and Gk ⊆ C(X ). Hence, the above proof also works in our case of
MMD-UOT.

B.9 Proof of Theorem 4.10: Consistency of the Proposed Estimator

Proof. From triangle inequality,

|Ûm(ŝm, t̂m)− Ū(s0, t0)| ≤ |Ûm(ŝm, t̂m)− Ûm(s0, t0)|+ |Ûm(s0, t0)− Ū(s0, t0)|, (19)

where Ûm(s0, t0) is same as Ū(s0, t0) except that it employs the restricted feasibility set, F(ŝm, t̂m), for the
transport plan: set of all joints supported using the samples in ŝm, t̂m alone i.e.,

F(ŝm, t̂m) ≡
{∑m

i=1
∑m

j=1 αijδ(x1i,x2j) | αij ≥ 0 ∀ i, j = 1, . . . ,m
}

. Here, δz is the Dirac measure at z. We
begin by bounding the first term in RHS of (19).
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We denote the (common) objective in Ûm(·, ·), Ū(·, ·) as a function of the transport plan, π, by h(π, ·, ·).
Then,

Ûm(ŝm, t̂m)− Ûm(s0, t0) = min
π∈F(ŝm,t̂m)

h(π, ŝm, t̂m)− min
π∈F(ŝm,t̂m)

h(π, s0, t0)

≤ h(π0∗, ŝm, t̂m)− h(π0∗, s0, t0)
(

where π0∗ = arg min
π∈F(ŝm,t̂m)

h(π, s0, t0)
)

= λ1
(
MMDk(π0∗

1 , ŝm)−MMDk(π0∗
1 , s0)

)
+ λ2

(
MMDk(π0∗

2 , t̂m)−MMDk(π0∗
2 , t0)

)
≤ λ1MMDk(s0, ŝm) + λ2MMDk(t0, t̂m) (∵ MMDk satisfies triangle inequality)

Similarly, one can show that Ûm(s0, t0)− Ûm(ŝm, t̂m) ≤ λ1MMDk(s0, ŝm) + λ2MMDk(t0, t̂m). Now, (Muan-
det et al., 2017, Theorem 3.4) shows that, with probability at least 1−δ, MMDk(s0, ŝm) ≤ 1√

m
+
√

2 log(1/δ)
m ,

where k is a normalized kernel. Hence, the first term in inequality (19) is upper-bounded by (λ1 +

λ2)
(

1√
m

+
√

2 log 2/δ
m

)
, with probability at least 1− δ.

We next look at the second term in inequality (19): |Ûm(s0, t0)−Ū(s0, t0)|. Let π̄m be the optimal transport
plan in definition of Ûm(s0, t0). Let π∗ be the optimal transport plan in the definition of Ū(s0, t0). Consider
another transport plan: π̂m ∈ F(ŝm, t̂m) such that π̂m(xi, yj) = η(xi,yj)

m2 where η(xi, yj) = π∗(xi,yj)
s0(xi)t0(yj) for

i, j ∈ [1,m].

|Ûm(s0, t0)− Ū(s0, t0)| = Ûm(s0, t0)− Ū(s0, t0)
= h(π̄m, s0, t0)− h(π∗, s0, t0)
≤ h(π̂m, s0, t0)− h(π∗, s0, t0) (∵ π̄m is optimal,)

≤
∫
c dπ̂m −

∫
c dπ∗ + λ1∥µk(π̂m

1 )− µk(π∗
1)∥k + λ2∥µk(π̂m

2 )− µk(π∗
2)∥k

(∵ Triangle inequality)

To upper bound these terms, we utilize the fact that the RKHS, Hk, corresponding to a c-universal kernel,
k, is dense in C(X ) wrt. the supnorm (Sriperumbudur et al., 2011) and like-wise the direct-product space,
Hk ⊗Hk, is dense in C(X × X ) (Gretton, 2015). Given any f ∈ C(X ) × C(X ), and arbitrarily small ϵ > 0,
we denote by fϵ, f−ϵ the functions in Hk ⊗Hk that satisfy the condition:

f − ϵ/2 ≤ f−ϵ ≤ f ≤ fϵ ≤ f + ϵ/2.

Such an fϵ ∈ Hk ⊗ Hk will exist because: i) f + ϵ/4 ∈ C(X ) × C(X ) and ii) Hk ⊗ Hk ⊆ C(X ) × C(X ) is
dense. So there must exist some fϵ ∈ Hk ⊗ Hk such that |f(x, y) + ϵ/4 − fϵ(x, y)| ≤ ϵ/4 ∀ x, y ∈ X ⇐⇒
f(x, y) ≤ fϵ(x, y) ≤ f(x, y) + ϵ/2 ∀ x, y ∈ X . Analogously, f−ϵ exists. In other words, fϵ, f−ϵ ∈ Hk ⊗Hk are
arbitrarily close upper-bound (majorant), lower-bound (minorant) of f ∈ C(X )× C(X ).

We now upper-bound the first of the set of terms (denote s0(x)t0(y) by ξ(x, y) and ξ̂m(x, y) is the corre-
sponding empirical measure):∫

c dπ̂m −
∫
c dπ∗ ≤

∫
cϵ dπ̂m −

∫
c−ϵ dπ∗

= ⟨cϵ, µk(π̂m)⟩ − ⟨c−ϵ, µk(π∗)⟩
= ⟨cϵ, µk(π̂m)⟩ − ⟨cϵ, µk(π∗)⟩+ ⟨cϵ, µk(π∗)⟩ − ⟨c−ϵ, µk(π∗)⟩
= ⟨cϵ, µk(π̂m)− µk(π∗)⟩+ ⟨cϵ − c−ϵ, µk(π∗)⟩
≤ ⟨cϵ, µk(π̂m)− µk(π∗)⟩+ ϵσπ∗

(∵ ∥cϵ − c−ϵ∥∞ ≤ ϵ and define σs as the mass of measure s)
≤ ∥cϵ∥k∥µk(π̂m)− µk(π∗)∥k + ϵσπ∗
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One can obtain the tightest upper bound by choosing cϵ ≡ arg minv∈Hk⊗Hk
∥v∥k s.t. c ≤ v ≤ c + ϵ/2.

Accordingly, we replace ∥c∥k by g(ϵ) in the theorem statement4. Further, we have:

∥µk(π̂m)− µk(π∗)∥2
k =

∥∥∥∥∫ ϕk(x)⊗ ϕk(y)dπ̂m(x, y)−
∫
ϕk(x)⊗ ϕk(y)dπ∗(x, y)

∥∥∥∥2

k

=
∥∥∥∥∫ ϕk(x)⊗ ϕk(y)d (π̂m(x, y)− π∗(x, y))

∥∥∥∥2

k

=
〈∫

ϕk(x)⊗ ϕk(y)d (π̂m(x, y)− π∗(x, y)) ,
∫
ϕk(x′)⊗ ϕk(y′)d (π̂m(x′, y′)− π∗(x′, y′))

〉
=
〈∫

ϕk(x)⊗ ϕk(y)η(x, y)d
(
ξ̂m(x, y)− ξ(x, y)

)
,

∫
ϕk(x′)⊗ ϕk(y′)η(x′, y′)d

(
ξ̂m(x′, y′)− ξ(x′, y′)

)〉
=
∫ ∫

⟨ϕk(x)⊗ ϕk(y), ϕk(x′)⊗ ϕk(y′)⟩η(x, y)η(x′, y′)d
(
ξ̂m(x, y)− ξ(x, y)

)
d
(
ξ̂m(x′, y′)− ξ(x′, y′)

)
=
∫ ∫

⟨ϕk(x), ϕk(x′)⟩⟨ϕk(y), ϕk(y′)⟩η(x, y)η(x′, y′)d
(
ξ̂m(x, y)− ξ(x, y)

)
d
(
ξ̂m(x′, y′)− ξ(x′, y′)

)
=
∫ ∫

k(x, x′)k(y, y′)η(x, y)η(x′, y′)d
(
ξ̂m(x, y)− ξ(x, y)

)
d
(
ξ̂m(x′, y′)− ξ(x′, y′)

)
Now, observe that k̃ : X ×X ×X ×X defined by k̃ ((x, y), (x′, y′)) ≡ k(x, x′)k(y, y′)η(x, y)η(x′, y′) is a valid
kernel. This is because k̃ = kakbkc, where ka ((x, y), (x′, y′)) ≡ k(x, x′) is a kernel, kb ((x, y), (x′, y′)) ≡
k(y, y′) is a kernel, and kc ((x, y), (x′, y′)) ≡ η(x, y)η(x′, y′) is a kernel (the unit-rank kernel), and product of
kernels is indeed a kernel. Let ψ(x, y) be the feature map corresponding to k̃. Then, the final RHS in the
above set of equations is:

=
∫ ∫

⟨ψ(x, y), ψ(x′, y′)⟩d
(
ξ̂m(x, y)− ξ(x, y)

)
d
(
ξ̂m(x′, y′)− ξ(x′, y′)

)
=
〈∫

ψ(x, y)d
(
ξ̂m(x, y)− ξ(x, y)

)
,

∫
ψ(x′, y′)d

(
ξ̂m(x′, y′)− ξ(x′, y′)

)〉
.

Hence, we have that: ∥µk(π̂m)− µk(π∗)∥k =
∥∥∥µk̃(ξ̂m)− µk̃(ξ)

∥∥∥
k̃
. Again, using (Muandet et al., 2017,

Theorem 3.4), with probability at least 1 − δ,
∥∥∥µk̃(ξ̂m)− µk̃(ξ)

∥∥∥
k̃
≤ Ck̃

m +
√

2Ck̃ log(1/δ)
m , where Ck̃ =

max
x,y,x′,y′∈X

k̃ ((x, y), (x′, y′)). Note that Ck̃ < ∞ as X is compact and s0, t0 are assumed to be positive
measures and k is normalized.

Now the MMD-regularizer terms can be bounded using a similar strategy. Recall that, π̂m
1 (xi) =∑n

j=1
π∗(xi,yj)

m2s0(xi)t0(yj) , so we have the following.

∥µk(π̂m
1 )− µk(π∗

1)∥2
k =

∥∥∥∥∫ ϕk(x)dπ̂m
1 (x)−

∫
ϕk(x)dπ∗

1(x)
∥∥∥∥2

k

=
∥∥∥∥∫ ϕk(x)d (π̂m

1 (x)− π∗
1(x))

∥∥∥∥2

k

=
〈∫

ϕk(x)d (π̂m
1 (x)− π∗

1(x)) ,
∫
ϕk(x′)d (π̂m

1 (x′)− π∗
1(x′))

〉
=
〈∫

ϕk(x)η(x, y)d
(
ξ̂m(x, y)− ξ(x, y)

)
,

∫
ϕk(x′)η(x′, y′)d

(
ξ̂m(x′, y′)− ξ(x′, y′)

)〉
=
∫ ∫

⟨ϕk(x), ϕk(x′)⟩η(x, y)η(x′, y′)d
(
ξ̂m(x, y)− ξ(x, y)

)
d
(
ξ̂m(x′, y′)− ξ(x′, y′)

)
=
∫ ∫

k(x, x′)η(x, y)η(x′, y′)d
(
ξ̂m(x, y)− ξ(x, y)

)
d
(
ξ̂m(x′, y′)− ξ(x′, y′)

)
.

4This leads to a slightly weaker bound, but we prefer it for ease of presentation
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Now, observe that k̄ : X × X × X × X defined by k̄ ((x, y), (x′, y′)) ≡ k(x, x′)η(x, y)η(x′, y′) is a valid ker-
nel. This is because k̄ = k1k2, where k1 ((x, y), (x′, y′)) ≡ k(x, x′) is a kernel and k2 ((x, y), (x′, y′)) ≡
η(x, y)η(x′, y′) is a kernel (the unit-rank kernel), and product of kernels is indeed a kernel. Hence,
we have that: ∥µk(π̂m

1 )− µk(π∗
1)∥k =

∥∥∥µk̄(ξ̂m)− µk̄(ξ)
∥∥∥

k̄
. Similarly, we have: ∥µk(π̂m

2 )− µk(π∗
2)∥k =∥∥∥µk̄(ξ̂m)− µk̄(ξ)

∥∥∥
k̄
. Again, using (Muandet et al., 2017, Theorem 3.4), with probability at least 1 − δ,∥∥∥µk̄(ξ̂m)− µk̄(ξ)

∥∥∥
k̄
≤ Ck̄

m +
√

2Ck̄ log(1/δ)
m , where Ck̄ = max

x,y,x′,y′∈X
k̄ ((x, y), (x′, y′)). Note that Ck̄ <

∞ as X is compact, s0, t0 are assumed to be positive measures, and k is normalized. From the
union bound, we have:

∣∣∣Ûm(ŝm, t̂m)− Ū(s0, t0)
∣∣∣ ≤ (λ1 + λ2)

(
1√
m

+
√

2 log (5/δ)
m + Ck̄

m +
√

2Ck̄ log(5/δ)
m

)
+

g(ϵ)
(

Ck̃

m +
√

2Ck̃ log (5/δ)
m

)
+ ϵσπ∗ , with probability at least 1 − δ. In other words, w.h.p. we have:∣∣∣Ûm(ŝm, t̂m)− Ū(s0, t0)

∣∣∣ ≤ O (λ1+λ2√
m

+ g(ϵ)
m + ϵσπ∗

)
for any ϵ > 0. Hence proved.

B.9.1 Bounding g(ϵ)

Let the target function to be approximated be h∗ ∈ C(X ) ⊂ L2(X ), which is the set of square-integrable
functions (wrt. some measure). Since X is compact, k being c-universal, it is also L2-universal.

Consider the inclusion map ι : Hk 7→ L2(X ), defined by ι g = g. Let’s denote the adjoint of ι by ι∗. Consider
the regularized least square approximation of h∗ defined by ht ≡ (ι∗ι + t)−1ι∗h∗ ∈ Hk, where t > 0. Now,
using standard results, we have:

∥ιht − h∗∥L2 = ∥
(
ι(ι∗ι+ t)−1ι∗ − I

)
h∗∥L2

= ∥
(
ι ι∗(ι ι∗ + t)−1 − I

)
h∗∥L2

= ∥
(
ι ι∗(ι ι∗ + t)−1 − (ι ι∗ + t)(ι ι∗ + t)−1)h∗∥L2

= t∥ (ι ι∗ + t)−1
h∗∥L2

≤ t∥ (ι ι∗)−1
h∗∥L2

The last inequality is true because the operator ι ι∗ is PD and t > 0. Thus, if t ≡ t̂ = ϵ
∥(ι ι∗)−1h∗∥L2

, then
∥ιht̂ − h∗∥∞ ≤ ∥ιht̂ − h∗∥L2 ≤ ϵ. Clearly,

g(ϵ) ≤ ∥ht̂∥Hk

=
√
⟨ht̂, ht̂⟩Hk

=
√
⟨(ι∗ι+ t̂)−1ι∗h∗, (ι∗ι+ t̂)−1ι∗h∗⟩Hk

=
√
⟨ι∗(ι ι∗ + t̂)−1h∗, ι∗(ι ι∗ + t̂)−1h∗⟩Hk

=
√
⟨(ι ι∗ + t̂)−1ι ι∗(ι ι∗ + t̂)−1h∗, h∗⟩L2

=
√
⟨(ι ι∗)

1
2 (ι ι∗ + t̂)−1h∗, (ι ι∗)

1
2 (ι ι∗ + t̂)−1h∗⟩L2

= ∥ (ι ι∗)
1
2 (ι ι∗ + t̂)−1h∗∥L2 .

Now, consider the spectral function f(λ) = λ
1
2

λ+t̂
. This is maximized when λ = t̂. Hence, f(λ) ≤ 1

2
√

t̂
. Thus,

g(ϵ) ≤ ∥h∗∥L2
√

∥(ι ι∗)−1h∗∥L2

2
√

ϵ
. Therefore, as ϵ decays as 1

m2/3 , then, g(ϵ)
m ≤ O

( 1
m2/3

)
.
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B.10 Solving Problem (9) using Mirror Descent

Problem (9) is an instance of a convex program and can be solved using Mirror Descent (Ben-Tal & Ne-
mirovski, 2021), presented in Algorithm 2.

Algorithm 2 Mirror Descent for solving Problem (9)
Require: Initial α1 ≥ 0, max iterations N .
f(α) = Tr

(
αC⊤

12
)

+ λ1
∥∥α1− σ1

m 1
∥∥

G11
+ λ2

∥∥α⊤1− σ2
m 1
∥∥

G22
.

for i← 1 to N do
if ∥∇f(αi)∥ ≠ 0 then

si = 1/∥∇f(αi)∥∞.
else

return αi.
end if
αi+1 = αi ⊙ e−si∇f(αi).

end for
return αi+1.

B.11 Equivalence between Problems (9) and (10)

We comment on the equivalence between Problems (9) and (10) based on the equivalence of their Ivanov
forms:

Ivanov form for Problem (9) is

min
α≥0∈Rm1×m2

Tr
(
αC⊤

12
)

s.t.
∥∥∥∥α1− σ1

m1
1
∥∥∥∥

G11

≤ r1,

∥∥∥∥α⊤1− σ2

m2
1
∥∥∥∥

G22

≤ r2,

where r1, r2 > 0.

Similarly, the Ivanov form for Problem (10) is

min
α≥0∈Rm1×m2

Tr
(
αC⊤

12
)

s.t.
∥∥∥∥α1− σ1

m1
1
∥∥∥∥2

G11

≤ r̄1,

∥∥∥∥α⊤1− σ2

m2
1
∥∥∥∥2

G22

≤ r̄2,

where r̄1, r̄2 > 0.

As we can see, the Ivanov forms are the same with r̄1 = r2
1, r̄2 = r2

2, the solutions obtained for Problems (9)
and (10) are the same.

B.12 Proof of Lemma 4.11

Proof. Let f(α) denote the objective of Problem (10), G11, G22 are the Gram matrices over the source and
target samples, respectively and m1,m2 as the number of source and target samples respectively.

∇f(α) = C12 + 2
(
λ1G11

(
α1m2 −

σ1

m1
1m1

)
1⊤

m2
+ λ21m1

(
1⊤

m1
α− 1⊤

m2

σ2

m2

)
G22

)
We now derive the Lipschitz constant of this gradient.

∇f(α)−∇f(β) = 2
(
λ1G11 (α− β) 1m21⊤

m2
+ 1m11⊤

m1
λ2 (α− β)G22

)
vec
(
(∇f(α)−∇f(β))⊤) = 2

(
λ1vec

(
(G11 (α− β) 1m21⊤

m2

)⊤) + λ2vec
(
(1m11⊤

m1
(α− β)G22)⊤) )

= 2
(
λ11m21⊤

m2
⊗G11 + λ2G22 ⊗ 1m11⊤

m1

)
vec(α− β)

where ⊗ denotes Kronecker product.
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∥vec(∇f(α)−∇f(β))∥F = ∥vec
(
(∇f(α)−∇f(β))⊤) ∥F

≤ 2∥λ11m21⊤
m2
⊗G11 + λ2G22 ⊗ 1m11⊤

m1
∥F ∥vec(α− β)∥F (Cauchy Schwarz).

This implies the Lipschitz smoothness constant

L = 2∥λ11m21⊤
m2
⊗G11 + λ2G22 ⊗ 1m11⊤

m1
∥F

= 2
√

(λ1m2)2∥G11∥2
F + (λ2m1)2∥G22∥2

F + 2λ1λ2
〈
1m21⊤

m2
⊗G11, G22 ⊗ 1m11⊤

m1

〉
F

= 2
√

(λ1m2)2∥G11∥2
F + (λ2m1)2∥G22∥2

F + 2λ1λ2(1⊤
m1
G111m1) (1⊤

m2
G221m2).

For the last equality, we use the following properties for Kronecker products-
Mixed product property: (A⊗B)⊤ = A⊤ ⊗B⊤, (A⊗B)(C ⊗D) = (AC)⊗ (BD) and
Spectrum property: Tr ((AC)⊗ (BD)) = Tr (AC) Tr (BD).

B.13 Solving Problem (10) using Accelerated Projected Gradient Descent

In Algorithm 1, we present the accelerated projected gradient descent (APGD) algorithm that we use to solve
Problem (10), as discussed in Section 4.2. The projection operation involved is Project≥0(x) = max(x, 0).

B.14 More on the Barycenter problem

B.14.1 Proof of Lemma 4.12

Proof. Recall that we estimate the barycenter with the restriction that the transport plan πi corresponding
to Û(ŝi, s) is supported on Di × ∪n

i=1Di. Let β ≥ 0 ∈ Rm denote the probabilities parameterizing the
barycenter, s. With Ûm as defined in Equation (9), the MMD-UOT barycenter formulation, B̂m(ŝ1, · · · , ŝn) =
min
β≥0

∑n
i=1 ρiÛm (ŝi, s(β)), becomes

min
α1,··· ,αn,β≥0

n∑
i=1

ρi

{
Tr
(
αiC⊤

i

)
+ λ1∥αi1−

σi

mi
1∥Gii

+ λ2∥α⊤
i 1− β∥G

}
. (20)

Following our discussion in Sections 4.2 and B.11, we present an equivalent barycenter formulation with
squared-MMD regularization. This not only makes the objective smooth, allowing us to exploit accelerated
solvers, but also simplifies the problem, as we discuss next.

B′
m(ŝ1, · · · , ŝn) ≡ min

α1,··· ,αn,β≥0

n∑
i=1

ρi

{
Tr
(
αiC⊤

i

)
+ λ1∥αi1−

σi

mi
1∥2

Gii
+ λ2∥α⊤

i 1− β∥2
G

}
. (21)

The above problem is a least squares problem in terms of β with a non-negativity constraint. Equating the
gradient wrt β as 0, we get G(β−

∑n
j=1 ρjα

⊤
j 1) = 0. As the Gram matrices of universal kernels are full-rank

(Song, 2008, Corollary 32), this implies β =
∑n

j=1 ρjα
⊤
j 1, which also satisfies the non-negativity constraint.

Substituting β =
∑n

j=1 ρjα
⊤
j 1 in 21 gives us the MMD-UOT barycenter formulation:

B′
m(ŝ1, · · · , ŝn) ≡ min

α1,··· ,αn,β≥0

n∑
i=1

ρi

{
Tr
(
αiC⊤

i

)
+ λ1∥αi1−

σi

mi
1∥2

Gii
+ λ2∥α⊤

i 1−
n∑

j=1
ρjα

⊤
j 1∥2

G

}
. (22)
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B.14.2 Solving the Barycenter Formulation

The objective of 22, as a function of αi, has the following smoothness constant (derivation analogous to
Lemma 4.11 in the main paper).

Li = 2ρi

√
(λ1m)2∥Gii∥2

F + (ηimi)2 ∥G∥2
F + 2λ1ηi(1⊤

mi
Gii1mi

)(1⊤
mG1m)

where ηi = λ2(1−ρi). We jointly optimize for αi’s using accelerated projected gradient descent with step-size
1/Li.

B.14.3 Consistency of the Barycenter estimator

Similar to Theorem 4.10, we show the consistency of the proposed sample-based barycenter estimator. Let
ŝi be the empirical measure supported over m samples from si. From the proof of Lemma 4.12 and 22, recall
that,

B′
m(s1, · · · , sn) = min

α1,··· ,αn≥0

n∑
i=1

ρi

(
Tr
(
αiC⊤

i

)
+ λ1∥αi1− ŝi∥2

Gii
+ λ2∥α⊤

i 1−
n∑

j=1
ρjα

⊤
j 1∥2

G

)
.

Now let us denote the true Barycenter with squared-MMD regularization by B(s1, · · · , sn) ≡
min

s∈R+(X )

∑n
i=1 ρiU(si, s) where U(si, s) ≡ min

πi∈R+(X )

∫
c dπi + λ1MMD2

k(πi
1, si) + λ2MMD2

k(πi
2, s). Let

π1∗, . . . , πn∗, s∗ be the optimal solutions corresponding to B(s1, · · · , sn). It is easy to see that s∗ =∑n
j=1 ρjπ

j∗
2 (for e.g. refer (Cohen et al., 2020, Sec C)). After eliminating s, we have: B(s1, · · · , sn) =

min
π1,...,πn∈R+(X )

∑n
i=1 ρi

(∫
c dπi + λ1MMD2

k(πi
1, si) + λ2MMD2

k(πi
2,
∑n

j=1 ρjπ
j
2)
)

.

Theorem B3. Let ηi(x, z) ≡ πi∗(x,z)
si(x)s′(z) where s′ is the mixture density s′ ≡

∑n
i=1

1
nsi. Under

mild assumptions that the functions, ηi, c ∈ Hk ⊗ Hk, we have that w.h.p., the estimation error,
|B′

m(ŝ1, · · · , ŝm)− B(s1, · · · , sn)| ≤ O( max
i∈[1,n]

(
∥ηi∥k∥c∥k

)
/m).

Proof. From triangle inequality,

|B′
m(ŝ1, · · · , ŝn)−B(s1, · · · , sn)| ≤ |B′

m(ŝ1, · · · , ŝn)−B′
m(s1, · · · , sn)|+|B′

m(s1, · · · , sn)−B(s1, · · · , sn)|, (23)

where B′
m(s1, · · · , sn) is the same as B(s1, · · · , sn) except that it employs restricted feasibility sets,

Fi(ŝ1, · · · , ŝn) for corresponding αi as the set of all joints supported at the samples in ŝ1, · · · , ŝn alone.
Let Di = {xi1, · · · , xim} and the union of all samples, ∪Dn

i=1 = {z1, · · · , zmn}.
Fi(ŝ1, · · · , ŝn) ≡

{∑m
l=1
∑mn

j=1 αljδ(xil,zj) | αlj ≥ 0 ∀ l = 1, . . . ,m; j = 1, . . . ,mn
}

. Here, δr is the Dirac
measure at r. We begin by bounding the first term.

We denote the (common) objective in B′
m(·), B(·) as a function of the transport plans, (π1, · · · , πn), by

h(π1, · · · , πn, ·).

B′
m(ŝ1, · · · , ŝn)− B′

m(s1, · · · , sn) = min
πi∈Fi(ŝ1,··· ,ŝn)

h(π1, · · · , πn, ŝ1, · · · , ŝn)− min
πi∈Fi(ŝ1,··· ,ŝn)

h(π1, · · · , πn, s1, · · · , sn)

≤ h(π̄1∗, · · · , π̄n∗, ŝ1, · · · , ŝn)− h(π̄1∗, · · · , π̄n∗, s1, · · · , sn)(
where π̄i∗ = arg minπi∈Fi(ŝ1,··· ,ŝn) h(π1, · · · , πn, s1, · · · , sn) for i ∈ [1, n]

)
=
∑n

i=1 λ1ρi

(
MMD2

k(π̄i∗
1 , ŝi)−MMD2

k(π̄i∗
1 , si)

)
=
∑n

i=1 ρiλ1
(
MMDk(π̄i∗

1 , ŝi)−MMDk(π̄i∗
1 , si)

) (
MMDk(π̄i∗

1 , ŝi) + MMDk(π̄i∗, si)
)

(1)
≤ 2λ1M

∑n
i=1 ρi

(
MMDk(π̄i∗

1 , ŝi)−MMDk(π̄i∗
1 , si)

)
≤ 2λ1M

∑n
i=1 ρiMMDk(ŝi, si) (As MMD satisfies Triangle Inequality),

≤ 2λ1M max
i∈[1,n]

MMDk(ŝi, si)
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where for inequality (1) we use that max
s,t∈R+

1 (X )
MMDk(s, t) = M < ∞ as the generating set of MMD is

compact.

As with probability at least 1 − δ, MMDk(ŝi, si) ≤ 1√
m

+
√

2 log(1/δ)
m (Smola et al., 2007), with union

bound, we get that the first term in inequality (23) is upper-bounded by 2λ1M

(
1√
m

+
√

2 log 2n/δ
m

)
, with

probability at least 1− δ.

We next look at the second term in inequality (23): |B′
m(s1, · · · , sn) − B(s1, · · · , sn)|. Let (π̄1, · · · , π̄n) be

the solutions of B′
m(s1, · · · , sn). Let (π1∗, · · · , πn∗) be the solutions of B(s1, · · · , sn). Recall that s′ denotes

the mixture density s′ ≡
∑n

i=1
1
nsi. Let us denote the empirical distribution of s′ by ŝ′ (i.e., uniform samples

from ∪n
i=1Di). Consider the transport plans: π̂im ∈ Fi(ŝ1, · · · , ŝn) such that π̂im(l, j) = ηi(xl,zj)

m2n where
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ηi(xl, zj) = πi∗(xl,zj)
si(xl)s′(zj) , for l ∈ [1,m]; j ∈ [1,mn].

|B′
m(s1, · · · , sn)− B(s1, · · · , sn)| = B′

m(s1, · · · , sn)− B(s1, · · · , sn)
= h(π̄1m, · · · , π̄nm, s1, · · · , sn)− h(π1∗, · · · , πn∗, s1, · · · , sn)
≤ h(π̂1m, · · · , π̂nm, s1, · · · , sn)− h(π1∗, · · · , πn∗, s1, · · · , sn)

=
n∑

i=1
ρi

{〈
µk(π̂im)− µk(πi∗), ci

〉
+ 2λ1M

(
∥µk(π̂im

1 )− µk(si)∥k

− ∥µk(πi∗
1 )− µk(si)∥k

)
+

2λ2M

∥∥∥∥∥∥µk(π̂im
2 )− µk

 n∑
j=1

ρj π̂
jm
2

∥∥∥∥∥∥
k

−

∥∥∥∥∥∥µk(πi∗
2 )− µk

 n∑
j=1

ρjπ
j∗
2

∥∥∥∥∥∥
k

}
(Upper-bounding the sum of two MMD terms by 2M)

≤
n∑

i=1
ρi

{〈
µk(π̂im)− µk(πi∗), ci

〉
+ 2λ1M

∥∥µk(π̂im
1 )− µk(πi∗

1 )
∥∥

k
+

2λ2M

∥∥∥∥∥∥µk(π̂im
2 )− µk

 n∑
j=1

ρj π̂
jm
2

∥∥∥∥∥∥
k

−

∥∥∥∥∥∥µk(πi∗
2 )− µk

 n∑
j=1

ρjπ
j∗
2

∥∥∥∥∥∥
k

}
(Using triangle inequality)

≤
n∑

i=1
ρi

{〈
µk(π̂im)− µk(πi∗), ci

〉
+ 2λ1M∥µk(π̂im

1 )− µk(πi∗
1 )∥k+

2λ2M

∥µk(π̂im
2 )− µk(πi∗

2 )∥k +
n∑

j=1
ρj∥µk(π̂jm

2 )− µk(πj∗
2 )∥k

}
(Triangle Inequality and linearity of the kernel mean embedding)

≤
n∑

i=1
ρi

{
∥µk(π̂im)− µk(πi∗)∥k ∥ci∥k + 2λ1M∥µk(π̂im

1 )− µk(πi∗
1 )∥k+

2λ2M

∥µk(π̂im
2 )− µk(πi∗

2 )∥k +
n∑

j=1
ρj∥µk(π̂jm

2 )− µk(πj∗
2 )∥k

}
(Cauchy Schwarz)

≤ max
i∈[1,n]

{
∥µk(π̂im)− µk(πi∗)∥k ∥ci∥k + 2λ1M∥µk(π̂im

1 )− µk(πi∗
1 )∥k+

2λ2M

(
∥µk(π̂im

2 )− µk(πi∗
2 )∥k + max

j∈[1,n]
∥µk(π̂jm

2 )− µk(πj∗
2 )∥k

)}
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We now repeat the steps similar to B.9 (for bounding the second term in the proof of Theorem 4.10) and
get the following.

∥µk(π̂im)− µk(πi∗)∥k = max
f∈Hk,∥f∥k≤1

∣∣∣ ∫ f dπ̂im −
∫
f dπi∗

∣∣∣
= max

f∈Hk,∥f∥k≤1

∫
f dπ̂im −

∫
f dπi∗

= max
f∈Hk,∥f∥k≤1

∑m
l=1
∑mn

j=1 f(xl, zj) πi∗(xl,zj)
m2nsi(xl)s′(zj) −

∫ ∫
f(x, z) πi∗(x,z)

si(x)s′(z)si(x)s′(z) dx dz

= max
f∈Hk,∥f∥k≤1

EX∼ŝi−si,Z∼ŝ′−s′

[
f(X,Z) πi∗(X,Z)

si(X)s′(Z)

]
= max

f∈Hk,∥f∥k≤1
EX∼ŝi−si,Z∼ŝ′−s′

[
f(X,Z)ηi(X,Z)

]
= max

f∈Hk,∥f∥k≤1
EX∼ŝi−si,Z∼ŝ′−s′

[〈
f ⊗ ηi, ϕ(X)⊗ ϕ(Z)⊗ ϕ(X)⊗ ϕ(Z)

〉]
= max

f∈Hk,∥f∥k≤1

〈
f ⊗ ηi,EX∼ŝi−si,Z∼ŝ′−s′ [ϕ(X)⊗ ϕ(Z)⊗ ϕ(X)⊗ ϕ(Z)]

〉
≤ max

f∈Hk,∥f∥k≤1
∥f ⊗ ηi∥k∥EX∼ŝi−si,Z∼ŝ′−s′ [ϕ(X)⊗ ϕ(Z)⊗ ϕ(X)⊗ ϕ(Z)] ∥k

(∵ Cauchy Schwarz)
= max

f∈Hk,∥f∥k≤1
∥f∥k∥ηi∥k∥EX∼ŝi−si,Z∼ŝ′−s′ [ϕ(X)⊗ ϕ(X)⊗ ϕ(Z)⊗ ϕ(Z)] ∥k

(∵ properties of norm of tensor product)
= max

f∈Hk,∥f∥k≤1
∥f∥k∥ηi∥k∥EX∼ŝi−si

[ϕ(X)⊗ ϕ(X)]⊗ EZ∼ŝ′−s′ [ϕ(Z)⊗ ϕ(Z)] ∥k

≤ ∥ηi∥k∥EX∼ŝi−si [ϕ(X)⊗ ϕ(X)] ∥k∥EZ∼ŝ′−s′ [ϕ(Z)⊗ ϕ(Z)] ∥k

= ∥ηi∥k∥µk2(ŝi)− µk2(si)∥k2∥µk2(ŝ′)− µk2(s′)∥k2

(∵ ϕ(·)⊗ ϕ(·) is the feature map corresponding to k2.)

Similarly, we have the following for the marginals.

∥µk(π̂im
1 )− µk(πi∗

1 )∥k = max
f∈Hk,∥f∥k≤1

∣∣∣ ∫ f dπ̂im
1 −

∫
f dπi∗

1

∣∣∣
= max

f∈Hk,∥f∥k≤1

∫
f dπ̂im

1 −
∫
f dπi∗

1

= max
f∈Hk,∥f∥k≤1

m∑
l=1

mn∑
j=1

f(xl)
πi∗(xl, zj)

m2nsi(xl)s′(zj) −
∫ ∫

f(x) π
i∗(x, z)

si(x)s′(z)si(x)s′(z) dx dz

= max
f∈Hk,∥f∥k≤1

EX∼ŝi−si,Z∼ŝ′−s′

[
f(X) π

i∗(X,Z)
si(X)s′(Z)

]
= max

f∈Hk,∥f∥k≤1
EX∼ŝi−si,Z∼ŝ′−s′

[
f(X)ηi(X,Z)

]
= max

f∈Hk,∥f∥k≤1
EX∼ŝi−si,Z∼ŝ′−s′

[〈
f ⊗ ηi, ϕ(X)⊗ ϕ(X)⊗ ϕ(Z)

〉]
= max

f∈Hk,∥f∥k≤1

〈
f ⊗ ηi,EX∼ŝi−si,Z∼ŝ′−s′ [ϕ(X)⊗ ϕ(X)⊗ ϕ(Z)]

〉
≤ max

f∈Hk,∥f∥k≤1
∥f ⊗ ηi∥k∥EX∼ŝi−si,Z∼ŝ′−s′ [ϕ(X)⊗ ϕ(X)⊗ ϕ(Z)] ∥k

(∵ Cauchy Schwarz)
= max

f∈Hk,∥f∥k≤1
∥f∥k∥ηi∥k∥EX∼ŝi−si,Z∼ŝ′−s′ [ϕ(X)⊗ ϕ(X)⊗ ϕ(Z)] ∥k

(∵ properties of norm of tensor product)
= max

f∈Hk,∥f∥k≤1
∥f∥k∥ηi∥k∥EX∼ŝi−si

[ϕ(X)⊗ ϕ(X)]⊗ EZ∼ŝ′−s′ [ϕ(Z)] ∥k

≤ ∥ηi∥k∥EX∼ŝi−si
[ϕ(X)⊗ ϕ(X)] ∥k∥EZ∼ŝ′−s′ [ϕ(Z)] ∥k

= ∥ηi∥k∥µk2(ŝi)− µk2(si)∥k2∥µk(ŝ′)− µk(s′)∥k

(∵ ϕ(·)⊗ ϕ(·) is the feature map corresponding to k2.)
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Thus, with probability at least 1 − δ, |B′
m(s1, · · · , sn)− B(s1, · · · , sn)| ≤(

max
i∈[1,n]

{
∥ηi∥k∥ci∥k + 2λ1M∥ηi∥k + 2λ2M(∥ηi∥k + max

j∈[1,n]
∥ηj∥k)

})(
1√
m

+
√

2 log (2n+2)/δ
m

)2
. Ap-

plying union bound again for the inequality in 23, we get that with probability at least 1 − δ,
|B′

m(ŝ1, · · · , ŝn)− B(s1, · · · , sn)| ≤
(

1√
m

+
√

2 log (2n+4)/δ
m

)(
2λ1M + ζ

(
1√
m

+
√

2 log (2n+4)/δ
m

))
, where

ζ =
(

max
i∈[1,n]

{
∥ηi∥k∥ci∥k + 2λ1M∥ηi∥k + 2λ2M(∥ηi∥k + max

j∈[1,n]
∥ηj∥k)

})
.

B.15 More on Formulation (10)

Analogous to Formulation (10) in the main paper, we consider the following formulation where an IPM
raised to the qth power with q > 1 ∈ Z is used for regularization.

UG,c,λ1,λ2,q (s0, t0) ≡ min
π∈R+(X ×X )

∫
c dπ + λ1γ

q
G(π1, s0) + λ2γ

q
G(π2, t0) (24)

Formulation (10) in the main paper is a special case of Formulation (24), when IPM is MMD and q = 2.

Following the proof in Lemma B1, one can easily show that

UG,c,λ1,λ2,q (s0, t0) ≡ min
s,t∈R+(X )

|s|W1(s, t) + λ1γ
q
G(s, s0) + λ2γ

q
G(t, t0). (25)

To simplify notations, we denote UG,c,λ,λ,2 by U in the following. It is easy to see that U satisfies the
following properties by inheritance.

1. U ≥ 0 as each of the terms in the objective in Formulation (25) is greater than 0.

2. U(s0, t0) = 0 ⇐⇒ s0 = t0, whenever the IPM used for regularization is a norm-induced metric. As
W1, γG are non-negative terms, U(s0, t0) = 0 ⇐⇒ s = t, γG(s, s0) = 0, γG(t, t0) = 0. If IPM used
for regularization is a norm-induced metric, the above condition reduces to s0 = t0.

3. U(s0, t0) = U(t0, s0) as each term in Formulation (25) is symmetric.

We now derive sample complexity with Formulation (24).
Lemma B4. Let us denote UG,c,λ1,λ2,q defined in Formulation (9) by U , where q > 1 ∈ Z. Let ŝm, t̂m denote
the empirical estimates of s0, t0 ∈ R+

1 (X ) respectively with m samples. Then, U(ŝm, t̂m) → U(s0, t0) at a
rate same as that of γG(ŝm, s0)→ 0.

Proof.
U (s0, t0) ≡ min

π∈R+(X ×X )
h(π, s0, t0) ≡

∫
c dπ + λγq

G(π1, s0) + λγq
G(π2, t0)

We have,

U (sm, tm)− U (s0, t0) = min
π∈R+(X ×X )

h(π, ŝm, t̂m)− min
π∈R+(X ×X )

h(π, s0, t0)

≤ h(π∗, ŝm, t̂m)− h(π∗, s0, t0)
(

where π∗ = arg min
π∈R+(X ×X )

h(π, s0, t0)
)

= λ
(
γq

G(π∗
1 , ŝm)− γq

G(π∗
1 , s0) + γq

G(π∗
2 , t̂m)− γq

G(π∗
2 , t0)

)
= λ

(
(γG(π∗

1 , ŝm)− γG(π∗
1 , s0))

(
q−1∑
i=0

γi
G(π∗

1 , ŝm)γq−1−i
G (π∗

1 , s0)
))

+

λ

((
γG(π∗

2 , t̂m)− γG(π∗
2 , t0)

)(q−1∑
i=0

γi
G(π∗

2 , t̂m)γq−1−i
G (π∗

2 , t0)
))
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≤ λ

(
γG(s0, ŝm)

(
q−1∑
i=0

γi
G(π∗

1 , ŝm)γq−1−i
G (π∗

1 , s0)
))

+

λ

(
γG(t0, t̂m)

(
q−1∑
i=0

γi
G(π∗

2 , t̂m)γq−1−i
G (π∗

2 , t0)
))

(∵ γG satisfies triangle inequality)

≤ λ

(
γG(s0, ŝm)

q−1∑
i=0

((
q − 1
i

)
γi

G(π∗
1 , ŝm)γq−1−i

G (π∗
1 , s0)

))
+

λ

(
(γG(t0, t̂m)

(
q−1∑
i=0

(
q − 1
i

)
γi

G(π∗
2 , t̂m)γq−1−i

G (π∗
2 , t0)

))
= λ

(
γG(s0, ŝm) (γG(π∗

1 , ŝm) + γG(π∗
1 , s0))q−1

+ γG(t0, t̂m)
(
γG(π∗

2 , t̂m) + γG(π∗
2 , t0)

)q−1
)

≤ λ(2M)q−1 (γG(s0, ŝm) + γG(t0, t̂m)
)
.

For the last inequality, we use that max
a∈R+

1 (X )
max

b∈R+
1 (X )

γG(a, b) = M <∞ as the domain is compact.

Similarly, one can show the other way inequality, resulting in the following.

|U(s0, t0)− U(sm, tm)| ≤ λ(2M)q−1 (γG(s0, ŝm) + γG(t0, t̂m)
)
. (26)

The rate at which |U (sm, tm) − U (s0, t0) | goes to zero is hence the same as that with which either of the
IPM terms goes to zero. For example, if the IPM used for regularization is MMD with a normalized kernel,
then MMDk (s0, ŝm) ≤

√
1
m +

√
2 log(1/δ)

m with probability at least 1− δ (Smola et al., 2007).

From the union bound, with probability at least 1 − δ, |U (sm, tm) − U (s0, t0) | ≤

2λ(2M)q−1
(√

1
m +

√
2 log(2/δ)

m

)
. Thus, O

(
1√
m

)
is the common bound for the rate at which the

LHS as well as the MMDk (s0, ŝm) decays to zero.

B.16 Robustness

We show the robustness property of IPM-regularized UOT 13 with the same assumptions on the noise model
as used in (Fatras et al., 2021, Lemma 1) for KL-regularized UOT.

Lemma B5. (Robustness) Let s0, t0 ∈ R+
1 (X ). Consider sc = ρs0 + (1− ρ)δz (ρ ∈ [0, 1]), a distribution

perturbed by a Dirac outlier located at some z outside of the support of t0. Let m(z) =
∫
c(z, y)dt0(y).

We have that, UG,c,λ1,λ2(sc, t0) ≤ ρ UG,c,λ1,λ2(s0, t0) + (1− ρ)m(z).
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Proof. Let π be the solution of UG,c,λ1,λ2(s0, t0). Consider π̃ = ρπ + (1 − ρ)δz ⊗ t0. It is easy to see that
π̃1 = ρπ1 + (1− ρ)δz and π̃2 = ρπ2 + (1− ρ)t0.

UG,c,λ1,λ2(sc, t0) ≤
∫
c(x, y)dπ̃(x, y) + λ1γG(π̃1, sc) + λ2γG(π̃2, t0) (Using the definition of min)

≤
∫
c(x, y)dπ̃(x, y) + λ1 (ργG(π1, s0) + (1− ρ)γG(δz, δz)) + λ2 (ργG(π2, t0) + (1− ρ)γG(t0, t0))

(∵ IPMs are jointly convex)

=
∫
c(x, y)dπ̃(x, y) + ρ (λ1γG(π1, s0) + λ2γG(π2, t0))

= ρ

∫
c(x, y)dπ(x, y) +

∫
(1− ρ)c(z, y)d(δz ⊗ t0)(z, y) + ρ (λ1γG(π1, s0) + λ2γG(π2, t0))

= ρ

∫
c(x, y)dπ(x, y) +

∫
(1− ρ)c(z, y)dt0(y) + ρ (λ1γG(π1, s0) + λ2γG(π2, t0))

= ρ UG,c,λ1,λ2(s0, t0) + (1− ρ)m(z).

We note that m(z) is finite as t0 ∈ R+
1 (X ).

We now present robustness guarantees with a different noise model.
Corollary B6. We say a measure q ∈ R+(X ) is corrupted with ρ ∈ [0, 1] fraction of noise when q =
(1− ρ)qc + ρqn, where qc is the clean measure and qn is the noisy measure.
Let s0, t0 ∈ R+(X ) be corrupted with ρ fraction of noise such that |sc− sn|T V ≤ ϵ1 and |tc− tn|T V ≤ ϵ2. We
have that UG,c,λ,λ(s0, t0) ≤ UG,c,λ,λ(sc, tc) + ρβ(ϵ1 + ϵ2), where β = max

f∈G(λ)∩Wc

∥f∥∞.

Proof. We use our duality result of UG,c,λ,λ, from Theorem 4.1. We first upper-bound UG,c,λ,λ (sn, tn) which
is later used in the proof.

UG,c,λ,λ (sn, tn) = max
f∈G(λ)∩Wc

∫
fdsn −

∫
fdtn

= max
f∈G(λ)∩Wc

∫
fd (sn − sc) +

∫
fdsc −

∫
fd (tn − tc)−

∫
fdtc

≤ max
f∈G(λ)∩Wc

∫
fd (sn − sc) + max

f∈G(λ)∩Wc

∫
fd (tn − tc) + max

f∈G(λ)∩Wc

(∫
fdsc −

∫
fdtc

)
≤ β(|sc − sn|T V + |tc − tn|T V ) + UG,c,λ,λ(sc, tc)
= β(ϵ1 + ϵ2) + UG,c,λ,λ(sc, tc). (27)

We now show the robustness result as follows.

UG,c,λ,λ(s0, t0) = max
f∈G(λ)∩Wc

∫
fds0 −

∫
fdt0

= max
f∈G(λ)∩Wc

(1− ρ)
∫
fdsc + ρ

∫
fdsn − (1− ρ)

∫
fdtc − ρ

∫
fdtn

= max
f∈G(λ)∩Wc

(1− ρ)
(∫

fdsc −
∫
fdtc

)
+ ρ

(∫
fdsn −

∫
fdtn

)
≤ max

f∈G(λ)∩Wc

(1− ρ)
(∫

fdsc −
∫
fdtc

)
+ max

f∈G(λ)∩Wc

ρ

(∫
fdsn −

∫
fdtn

)
= (1− ρ) UG,c,λ,λ (sc, tc) + ρ UG,c,λ,λ (sn, tn)
≤ (1− ρ) UG,c,λ,λ (sc, tc) + ρ (UG,c,λ,λ (sc, tc) + β(ϵ1 + ϵ2)) (Using 27)
= UG,c,λ,λ (sc, tc) + ρβ(ϵ1 + ϵ2).
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We note that β = max
f∈G(λ)∩Wc

∥f∥∞ ≤ max
f∈Wc

∥f∥∞ < ∞. Also, as β ≤ min
(

max
f∈Gk(λ)

∥f∥∞, max
f∈Wc

∥f∥∞

)
≤

min
(
λ, max

f∈Wc

∥f∥∞

)
(for a normalized kernel).

B.17 Connections with Spectral Normalized GAN

We comment on the applicability of MMD-UOT in generative modelling and draw connections with the
Spectral Norm GAN (SN-GAN) (Miyato et al., 2018) formulation.

A popular approach in generative modelling is to define a parametric function gθ : Z 7→ X that takes a
noise distribution and generates samples from Pθ distribution. We then learn θ to make Pθ closer to the real
distribution, Pr. On formulating this problem with the dual of MMD-UOT derived in Theorem 4.1, we get

min
θ

max
f∈Wc∩Gk(λ)

∫
fdPθ −

∫
fdPr (28)

We note that in the above optimization problem, the critic function or the discriminator f should satisfy
∥f∥c ≤ 1 and ∥f∥k ≤ λ where ∥f∥c denotes the Lipschitz norm under the cost function c. Let the critic func-
tion be fW , parametrized using a deep convolution neural network (CNN) with weights W = {W1, · · · ,WL},
where L is the depth of the network. Let F be the space of all such CNN models, then Problem (28) can be
approximated as follows.

min
θ

max
fW ∈F ;∥fW ∥c≤1,∥fW ∥k≤λ

∫
fW dPθ −

∫
fW dPr (29)

The constraint ∥f∥c ≤ 1 is popularly handled using a penalty on the gradient, ∥∇fW ∥ (Gulrajani et al.,
2017). The constraint on the RKHS norm, ∥f∥k, is more challenging for an arbitrary neural network.
Thus, we follow the approximations proposed in (Bietti et al., 2019). (Bietti et al., 2019) use the result
derived in (Bietti & Mairal, 2017) that constructs a kernel whose RKHS contains a CNN, f̄ , with the same
architecture and parameters as f but with activations that are smooth approximations of ReLU. With this
approximation, (Bietti et al., 2019) shows tractable bounds on the RKHS norm. We consider their upper
bound based on spectral normalization of the weights in fW . With this, Problem (29) can be approximated
with the following.

min
θ

max
fW ∈F

∫
fW dPθ −

∫
fW dPr + ρ1∥∇fW ∥+ ρ2

L∑
i=1

1
λ
∥Wi∥2

sp, (30)

where ∥.∥sp denotes the spectral norm and ρ1, ρ2 > 0. Formulations like (30) have been successfully applied
as variants of Spectral Normalized GAN (SN-GAN). This shows the utility of MMD-regularized UOT in
generative modelling.

B.18 Comparison with WAE

The OT problem in WAE (RHS in Theorem 1 in (Tolstikhin et al., 2018)) using our notation is:

min
π∈R+

1 (X ×Z)

∫
c (x,G(z)) dπ(x, z), s.t. π1 = PX , π2 = PZ , (31)

where X ,Z are the input and latent spaces, G is the decoder, and PX , PZ are the probability measures
corresponding to the underlying distribution generating the given training set and the latent prior (e.g.,
Gaussian).

(Tolstikhin et al., 2018) employs a one-sided regularization. More specifically, (Tolstikhin et al., 2018, eqn.
(4)) in our notation is:

min
π∈R+

1 (X ×Z)

∫
c (x,G(z)) dπ(x, z) + λ2MMDk(π2, PZ), s.t. π1 = PX . (32)
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However, in our work, the proposed MMD-UOT formulation corresponding to (31) reads as:

min
π∈R+

1 (X ×Z)

∫
c (x,G(z)) dπ(x, z) + λ1MMDk(π1, PX) + λ2MMDk(π2, PZ). (33)

It is easy to see that the WAE formulation (32) is a special case of our MMD-UOT formulation (33). Indeed,
as λ1 →∞, both formulations are the same.

The theoretical advantages of MMD-UOT over WAE are that MMD-UOT induces a new family of metrics
and can be efficiently estimated from samples at a rate O( 1√

m
) whereas WAE is not expected to induce

a metric as the symmetry is broken. Also, WAE is expected to be cursed with dimensions in terms of
estimation, as a marginal is exactly matched, similar to unregularized OT.

We now present the details of estimating (33) in the context of VAEs. The transport plan π is factorized as
π(x, z) ≡ π1(x)π(z|x), where π(z|x) is the encoder. For the sake of fair comparison, we choose this encoder
and the decoder, G, to be exactly the same as that in (Tolstikhin et al., 2018). Since π1(x) is not modelled by
WAE, we fall back to the default parametrization in our paper of distributions supported over the training
points. More specifically, if D = {x1, . . . , xm} is the training set (sampled from PX), then our formulation
reads as:

min
π(z|x),α∈∆m

m∑
i=1

αi

∫
c (xi, G(z)) dπ(z|xi) + λ1MMD2

k

(
α,

1
m

1
)

+ λ2MMD2
k

(
m∑

i=1
αiπ(z|xi), PZ

)
, (34)

where G is the gram-matrix over the training set D. We solve (34) using SGD, where the block over the α
variables can employ accelerated gradient steps.

C Experimental Details and Additional Results

We present more experimental details and additional results in this section. We have followed standard
practices to ensure reproducibility. We will open-source the codes to reproduce all our experiments upon
acceptance of the paper.

C.1 Synthetic Experiments

We present more details for the experiments in Section 5.1, along with additional experimental results.

Transport Plan and Barycenter We use squared-Euclidean cost as the ground metric. We take points
[1, 2, · · · , 50] and consider Gaussian distribution over them with mean, and standard deviation as (15, 5)
and (35, 3), respectively. The hyperparameters for MMD-UOT are λ as 100 and σ2 in the RBF kernel
(k(x, y) = exp

(
−∥x−y∥2

2σ2

)
) as 1. The hyperparameters for ϵKL-UOT are λ and ϵ as 1.

For the barycenter experiment, we take points [1, 2, · · · , 100] and consider Gaussian distribution over them
with mean, and standard deviation as (20, 5) and (60, 8), respectively. The hyperparameters for MMD-UOT
are λ as 100 and σ2 in the RBF kernel as 10. The hyperparameters for ϵKL-UOT are λ as 100 and ϵ as
10−3.

Visualizing the Level Sets For all OT variants squared-Euclidean is used as a ground metric. For the
level set with MMD, RBF kernel is used with σ2 as 3. For MMD-UOT, λ is 1 and RBF kernel is used with
σ2 as 1. For plotting the level set contours, 20 lines are used for all methods.

Computation Time The source and target measures are Uniform distributions from which we sample
5,000 points. The dimensionality of the data is 5. The experiment is done with hyper-parameters as
squared-Euclidean distance, squared-MMD regularization with RBF kernel, sigma as 1 and lambda as 0.1.
ϵKL-UOT’s entropic regularization coefficient is 0.01, and lambda is 1. We choose entropic regularization
coefficient from the set {1e − 3, 1e − 2, 1e − 1} and lambda from the set {1e − 2, 1e − 1, 1}. This hyper-
parameter resulted in the fastest convergence. This experiment was done on an NVIDIA-RTX 2080 GPU.
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𝜖 𝜖

Figure 4: Computation time: Convergence plots with m = 5000 for the case of the same source and
target measures where the optimal objective is expected to be 0. Left: MMD-UOT Problem (10) solved
with accelerated projected gradient descent. Right: ϵKL-UOT’s convergence plot is shown separately. We
observe that ϵKL-UOT’s objective plateaus in 0.3 seconds. We note that our convergence to the optimal
objective is faster than that of ϵKL-UOT.

Figure 5: Sample efficiency: Log-log plot of optimal objective vs number of samples. The optimal objective
values of MMD-UOT and ϵKL-UOT formulation are shown as the number of samples increases. The data
lies in 10 dimensions, and the source and target measures are both Uniform. MMD-UOT can be seen to
have a better rate of convergence.

Sample Complexity In Theorem 4.10 in the main paper, we proved an attractive sample complexity of
O
(
m− 1

2

)
for our sample-based estimators. In this section, we present a synthetic experiment to show that

the convergence of MMD-UOT’s metric towards the true value is faster than that of ϵKL-UOT. We sample
10-dimensional sources and target samples from Uniform sources and target marginals, respectively. As the
marginals are equal, the metrics over measures should converge to 0 as the number of samples increases.
We repeat the experiment with an increasing number of samples. We use squared-Euclidean cost. For
ϵKL-UOT, λ = 1, ϵ = 1e − 2. For MMD-UOT, λ = 1 and RBF kernel with σ = 1 is used. In Figure 5,
we plot MMD-UOT’s objective and the square root of the ϵKL-UOT objective on increasing the number of
samples. It can be seen from the plot that the MMD-UOT achieves a better rate of convergence compared
to ϵKL-UOT.

Effect of Regularization In Figures 7 and 6, we visualize matching the marginals of MMD-UOT’s optimal
transport plan. We show the results with both RBF kernel k(x, y) = exp

(
−∥x−y∥2

2∗10−6

)
and the IMQ kernel

k(x, y) =
(
10−6 + ∥x− y∥2)−0.5. As we increase λ, the matching becomes better for unnormalized measures,

and the marginals exactly match the given measures when the measures are normalized. We have also shown
the unbalanced case results with KL-UOT. As the POT library (Flamary et al., 2021) doesn’t allow including
a simplex constraint for KL-UOT, we do not show this.
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                MMD-UOT with RBF kernel

                MMD-UOT with IMQ kernel

                KL-UOT

Figure 6: (With unnormalized measures) Visualizing the marginals of transport plans learnt by MMD-UOT
and KL-UOT, on increasing λ.

                MMD-UOT with IMQ kernel

                MMD-UOT with RBF kernel

Figure 7: (With normalized measures) Visualizing the marginals of MMD-UOT (solved with simplex con-
straints) plan on increasing λ. We do not show KL-UOT here as the Sinkhorn algorithm for solving KL-UOT
in the POT library (Flamary et al., 2021) does not incorporate the Simplex constraints on the transport
plan.

C.2 Two-sample Test

Following (Liu et al., 2020), we repeat the experiment 10 times, and in each trial, we randomly sample a
validation subset and a test subset of size N from the given real and fake MNIST datasets. We run the
two-sample test experiment for type-II error on the test set for a given trial using the hyperparameters
chosen for that trial. The hyperparameters were tuned for N = 100 for each trial. The hyperparameters
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Table 8: Test power (higher is better) for the task of CIFAR-10.1 vs CIFAR 10. The proposed MMD-UOT
method achieves the best results.

ME SCF C2ST-S C2ST-L MMD ϵKL-UOT MMD-UOT
0.588 0.171 0.452 0.529 0.316 0.132 0.643

for a given trial were chosen based on the average empirical test power (higher is better) over that trial’s
validation dataset.

We use squared-Euclidean distance for MMD-UOT and ϵKL-UOT formulations. RBF kernel, k(x, y) =
exp

(
−∥x−y∥2

2σ2

)
, is used for MMD and for MMD-UOT formulation. The hyperparameters are chosen from

the following set. For the MMD-UOT and MMD, σ was chosen from {median, 40, 60, 80, 100} where the
median is the median-heuristic (Gretton et al., 2012). For the MMD-UOT an ϵKL-UOT, λ is chosen from
{0.1, 1, 10}. For ϵKL-UOT, ϵ was chosen from {1, 10−1, 10−2, 10−3, 10−4}. Based on validation, σ as the
median is chosen for MMD at all trials. For ϵKL-UOT, the best hyperparameters (λ, ϵ) are (10, 0.001) for
trial number 3, (0.1, 0.1) for trial number 10 and (1, 0.1) for the remaining the 8 trials. For MMD-UOT,
the best hyperparameters (λ, σ2) are (0.1, 60) for trial number 9 and (1,median2) for the remaining 9 trials.

Additional Results Following (Liu et al., 2020), we consider the task of verifying that the datasets
CIFAR-10 (Krizhevsky, 2009) and CIFAR-10.1 (Recht et al., 2018) are statistically different. We follow the
same experimental setup as given in (Liu et al., 2020). The training is done on 1,000 images from each
dataset, and the test is on 1,031 images. The experiment is repeated 10 times, and the average test power is
compared with the results shown in (Liu et al., 2020) with the popular baselines: ME (Chwialkowski et al.,
2015; Jitkrittum et al., 2016), SCF (Chwialkowski et al., 2015; Jitkrittum et al., 2016), C2ST-S (Lopez-Paz &
Oquab, 2017), C2ST-L (Cheng & Cloninger, 2019). We repeat the experiment following the same setup for
the MMD and ϵKL-UOT baselines. The chosen hyperparameters (λ, ϵ) for the 10 different experimen-
tal runs ϵKL-UOT are (0.1, 0.1), (1, 0.1), (1, 0.1), (1, 0.01), (1, 0.1), (1, 0.1), (1, 0.1), (0.1, 0.1), (1, 0.1), (1, 0.1)
and (1, 0.1). The chosen (λ, σ2) for the 10 different experimental runs of MMD-UOT are
(0.1,median), (1, 60), (10, 100), (0.1, 80), (0.1, 40), (0.1, 40), (0.1, 40), (1,median), (0.1, 80) and (1, 40). Table 8
shows that the proposed MMD-UOT obtains the highest test power.

C.3 Single-Cell RNA sequencing

scRNA-seq helps us understand how the expression profile of the cells changes over stages (Schiebinger
et al., 2019). A population of cells is represented as a measure of the gene expression space, and as they
grow/divide/die, and the measure evolves over time. While scRNA-seq records such a measure at a time
stamp, it does so by destroying the cells (Schiebinger et al., 2019). Thus, it is impossible to monitor how
the cell population evolves continuously over time. In fact, only a few measurements at discrete timesteps
are generally taken due to the cost involved.

We perform experiments on the Embryoid Body (EB) single-cell dataset (Moon et al., 2019). The Embryoid
Body dataset comprises data at 5 timesteps with sample sizes as 2381, 4163, 3278, 3665 and 3332, respectively.

The MMD barycenter interpolating between measures s0, t0 has the closed form solution as 1
2 (s0 + t0). For

evaluating the performance at timestep ti, we select the hyperparameters based on the task of predicting for
{t1, t2, t3} \ ti. We use IMQ kernel k(x, y) =

(
1+∥x−y∥2

K2

)−0.5
. The λ hyperparameter for the validation of

MMD-UOT is chosen from {0.1, 1, 10} and K2 is chosen from {1e− 4, 1e− 3, 1e− 2, 1e− 1,median}, where
median denotes the median of {0.5∥x− y∥2∀x, y ∈ D s.t. x ̸= y} over the training dataset (D). The chosen
(λ,K2) for timesteps t1, t2, t3 are (1, 0.1), (1, median) and (1, median), respectively. The λ hyperparameter
for the validation of ϵKL-UOT is chosen from {0.1, 1, 10} and ϵ is chosen from {1e − 5, 1e − 4, 1e − 3, 1e −
2, 1e−1}. The chosen (λ, ϵ) for timesteps t1, t2, t3 are (10, 0.01), (1, 0.1) and (1, 0.1) respectively. In Table 9,
we compare against additional OT-based methods W̄1, W̄2, ϵOT.
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Table 9: Additional OT-based baselines for two-sample test: Average Test Power (between 0 and 1; higher
is better) on MNIST. MMD-UOT obtains the highest average test power at all timesteps even with the
additional baselines.

N W̄1 W̄2 ϵOT MMD-UOT
100 0.111 0.099 0.108 0.154
200 0.232 0.207 0.191 0.333
300 0.339 0.309 0.244 0.588
400 0.482 0.452 0.318 0.762
500 0.596 0.557 0.356 0.873
1000 0.805 0.773 0.508 0.909

Figure 8: (Best viewed in color) The t-SNE plots of the source and target embeddings learnt for the M-
MNIST to USPS domain adaptation task. Different cluster colors imply different classes. The quality of
the learnt representations can be judged based on the separation between clusters. The clusters obtained by
MMD-UOT seem better separated (for example, the red and the cyan-colored clusters).

C.4 Domain Adaptation in JUMBOT framework

The experiments are performed with the same seed as used by JUMBOT. For the experiment on the Digits
dataset, the chosen hyper-parameters for MMD-UOT are K2 in the IMQ kernel k(x, y) =

(
1+∥x−y∥2

K2

)−0.5

as 10−2 and λ as 100. In Figure 8, we also compare the t-SNE plot of the embeddings learnt with the MMD-
UOT and ϵKL-UOT-based loss. The clusters formed with the proposed MMD-UOT seem better separated
(for example, the red and the cyan-colored clusters). For the experiment on the Office-Home dataset, the
chosen hyperparameters for MMD-UOT are

(
λ = 100, IMQ kernel with K2 = 0.1

)
. For the VisDA-2017

dataset, the chosen hyperparameters for MMD-UOT are
(
λ = 1, IMQ kernel with K2 as 10

)
.

For the validation phase on the Digits and the Office-Home datasets, we choose λ from the set {1, 10, 100}
and K2 from the set {0.01, 0.1, 10, 100,median}. For the validation phase on VisDA, we choose λ from the
set {1, 10, 100} and K2 from the set {0.1, 10, 100}.
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   PLOT

      Proposed MMD-UOT-based Prompt Learning

Original image

Figure 9: The attention maps corresponding to each of the four prompts for the baseline (PLOT) and
the proposed method. The prompts learnt using the proposed MMD-UOT capture diverse attributes for
identifying the cat (Oxford-Pets dataset): lower body, upper body, image background and the area near the
mouth.

Original image    PLOT

      Proposed MMD-UOT-based Prompt Learning

Figure 10: The attention maps corresponding to each of the 4 prompts for the baseline (PLOT) and the
proposed method. The prompts learnt using the proposed MMD-UOT capture diverse attributes for identi-
fying the dog (Oxford-Pets dataset): the forehead and the nose, the right portion of the face, the head along
with the left portion of the face, and the ear.

C.5 Prompt Learning

Let F = {fm|Mm=1} denote the set of visual features for a given image and Gr = {gn|Nn=1} denote the set of
textual prompt features for class r. Following the setup in the PLOT baseline, an OT distance is computed
between empirical measures over 49 image features and 4 textual prompt features, taking cosine similarity
cost. Let dOT (x, r) denote the OT distance between the visual features of image x and prompt features of
class r. The prediction probability is given by p(y = r|x) = exp ((1−dOT (x,r)/τ))∑T

r=1
exp ((1−dOT (x,r)/τ))

, where T denotes the
total no. of classes and τ is the temperature of softmax. The textual prompt embeddings are then optimized
with the cross-entropy loss. Additional results on Oxford-Pets (Parkhi et al., 2012) and UCF101 (Soomro
et al., 2012) datasets are shown in Table 11.
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Table 10: Hyperparameters (kernel type, kernel hyperparameter, λ) for the prompt learning experiment.

Dataset 1 2 4 8 16
EuroSAT (imq2, 10−3, 500) (imq1, 104, 103) (imq1, 10−2, 500) (imq1, 104, 500) (rbf, 1, 500)
DTD (imq1, 10−2, 10) (rbf, 100, 100) (imq2, 10−2, 10) (rbf, 10−2, 10) (rbf, 0.1, 1)
Oxford-Pets (imq2, 0.01, 500) (rbf, 10−3, 10) (imq, 1, 10) (imq1, 0.1, 10) (imq1, 0.01, 1)
UCF101 (rbf, 1, 100) (imq2, 10, 100) (rbf, 0.01, 1000) (rbf, 10−4, 10) (rbf, 100, 103)

Table 11: Additional Prompt Learning results. Average and standard deviation (over 3 runs) of accuracy
(higher is better) on the k-shot classification task, shown for different values of shots (k) in the state-of-
the-art PLOT framework. The proposed method replaces OT with MMD-UOT in PLOT, keeping all other
hyperparameters the same. The results of PLOT are taken from their paper (Chen et al., 2023).

Dataset Method 1 2 4 8 16

EuroSAT PLOT 54.05 ± 5.95 64.21 ± 1.90 72.36 ± 2.29 78.15 ± 2.65 82.23 ± 0.91
Proposed 58.47 ± 1.37 66.0 ± 0.93 71.97 ± 2.21 79.03 ± 1.91 83.23 ± 0.24

DTD PLOT 46.55 ± 2.62 51.24 ± 1.95 56.03 ± 0.43 61.70 ± 0.35 65.60 ± 0.82
Proposed 47.27±1.46 51.0±1.71 56.40±0.73 63.17±0.69 65.90 ± 0.29

Oxford-Pets PLOT 87.49 ± 0.57 86.64 ± 0.63 88.63 ± 0.26 87.39 ± 0.74 87.21 ± 0.40
Proposed 87.60 ± 0.65 87.47 ± 1.04 88.77 ± 0.46 87.23 ± 0.34 88.27 ± 0.29

UCF101 PLOT 64.53 ± 0.70 66.83 ± 0.43 69.60 ± 0.67 74.45 ± 0.50 77.26 ± 0.64
Proposed 64.2 ± 0.73 67.47 ± 0.82 70.87 ± 0.48 74.87 ± 0.33 77.27 ± 0.26

Avg acc. PLOT 63.16 67.23 71.66 75.42 78.08
Proposed 64.38 67.98 72.00 76.08 78.67

Following the PLOT baseline, we use the last-epoch model. The authors empirically found that learning 4
prompts with the PLOT method gave the best results. In our experiments, we keep the number of prompts
and the other neural network hyperparameters fixed. We only choose λ and the kernel hyperparameters
for prompt learning using MMD-UOT. For this experiment, we also validate the kernel type. Besides RBF,
we consider two kernels belonging to the IMQ family: k(x, y) =

(
1+∥x−y∥2

K2

)−0.5
(referred to as imq1) and

k(x, y) = (K2 + ∥x − y∥2)−0.5 (referred to as imq2). We choose λ from {10, 100, 500, 1000} and kernel
hyperparameter (K2 or σ2) from {1e − 3, 1e − 2, 1e − 1, 1, 10, 1e + 2, 1e + 3}. The chosen hyperparameters
are included in Table 10.
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