
First-Order Methods for
Linearly Constrained Bilevel Optimization

Guy Kornowski† Swati Padmanabhan‡ Kai Wang§ Jimmy Zhang¶ Suvrit Sra∥

Abstract

Algorithms for bilevel optimization often encounter Hessian computations, which
are prohibitive in high dimensions. While recent works offer first-order methods
for unconstrained bilevel problems, the constrained setting remains relatively un-
derexplored. We present first-order linearly constrained optimization methods with
finite-time hypergradient stationarity guarantees. For linear equality constraints, we
attain ϵ-stationarity in Õ(ϵ−2) gradient oracle calls, which is nearly-optimal. For
linear inequality constraints, we attain (δ, ϵ)-Goldstein stationarity in Õ(dδ−1ϵ−3)
gradient oracle calls, where d is the upper-level dimension. Finally, we obtain for
the linear inequality setting dimension-free rates of Õ(δ−1ϵ−4) oracle complex-
ity under the additional assumption of oracle access to the optimal dual variable.
Along the way, we develop new nonsmooth nonconvex optimization methods with
inexact oracles. Our numerical experiments verify these guarantees.

1 Introduction

Bilevel optimization [1–4], an important problem in optimization, is defined as follows:

minimizex∈X F (x) := f(x, y∗(x)) subject to y∗(x) ∈ argminy∈S(x) g(x, y). (1.1)

Here, the value of the upper-level problem at any point x depends on the solution of the lower-
level problem. This framework has recently found numerous applications in meta-learning [5–8],
hyperparameter optimization [9–11], and reinforcement learning [12–15]. Its growing importance
has spurred increasing efforts towards designing computationally efficient algorithms for it.

As demonstrated by [16], a key computational step in algorithms for bilevel optimization is estimating
dy∗(x)/dx, the gradient of the lower-level solution. This gradient estimation problem has been
extensively studied in differentiable optimization [17, 18] by applying the implicit function theorem
to the KKT system of the given problem [19–24]. However, this technique typically entails computing
(or estimating) second-order derivatives, which can be prohibitive in high dimensions [25–27].

Recently, [28] made a big leap forward towards addressing this computational bottleneck. Restricting
themselves to the class of unconstrained bilevel optimization, they proposed a fully first-order method
with finite-time stationarity guarantees. While a remarkable breakthrough, [28] does not directly
extend to the important setting of constrained bilevel optimization. This motivates the question:

Can we develop a first-order algorithm for constrained bilevel optimization?
1Full version: https://arxiv.org/abs/2406.12771. GK, SP, KW, ZZ contributed equally; authors ordered

alphabetically.
†Weizmann Institute of Science. guy.kornowski@weizmann.ac.il
‡Massachusetts Institute of Technology. pswt@mit.edu
§Georgia Institute of Technology. kwang692@gatech.edu
¶Purdue University. zhan5111@purdue.edu
∥Massachusetts Institute of Technology. suvrit@mit.edu

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://arxiv.org/abs/2406.12771

Besides being natural from the viewpoint of complexity theory, this question is well-grounded in
applications such as mechanism design [29, 30], resource allocation [31–34], and decision-making
under uncertainty [20, 35, 36]. Our primary contribution is an affirmative answer to the highlighted
question for bilevel programs with linear constraints, an important problem class often arising in
adversarial training, decentralized meta learning, and sensor networks (see [37]). While there have
been some other recent works [37–39] on this problem, our work is first-order (as opposed to [37])
and offers, in our view, a stronger guarantee on stationarity (compared to [38, 39])— cf. Section 1.2.

1.1 Our contributions

We provide first-order algorithms (with associated finite-time convergence guarantees) for linearly
constrained bilevel programs (Problem 1.1). By “first-order”, we mean that we use only zeroth and
first-order oracle access to f and g. Our assumptions for each of our contributions are in Section 2.1.

(1) Linear equality constraints. As our first contribution, we design first-order algorithms for
solving Problem 1.1 where the lower-level constraint set S(x) := {y : Ax−By − b = 0} comprises
linear equality constraints, and X a convex compact set. With appropriate regularity assumptions
on f and g, we show in this case smoothness in x of the hyperobjective F . Inspired by ideas from
Kwon et al. [40], we use implicit differentiation of the KKT matrix of a slightly perturbed version of
the lower-level problem to design a first-order approximation to ∇F . Constructing our first-order
approximation entails solving a strongly convex optimization problem on affine constraints, which
can be done efficiently. With this inexact gradient oracle in hand, we then run projected gradient
descent, which converges in Õ(ϵ−2) iterations for smooth functions.
Theorem 1.1 (Informal; cf. Theorem 3.1). Given Problem 1.1 with linear equality constraints
S(x) := {y : Ax−By − b = 0} and X a convex compact set, under regularity assumptions on f

and g (Assumptions 2.2 and 2.3), there exists an algorithm, which in Õ(ϵ−2) oracle calls to f and g,
converges to an ϵ-stationary point of F .

For linear equality constrained bilevel optimization, this is the first first-order result attaining ϵ-
stationarity of F with assumptions solely on the constituent functions f and g and none on F — cf.
Section 1.2 for a discussion of the results of Khanduri et al. [37] for this setting.

(2) Linear inequality constraints. Next, we provide first-order algorithms for solving Problem 1.1
where the lower-level constraint set S(x) := {y : Ax−By − b ≤ 0} comprises linear inequality
constraints, and the upper-level variable is unconstrained.
Our measure of convergence of algorithms in this case is that of (δ, ϵ)-stationarity [41]: for a Lipschitz
function, we say that a point x is (δ, ϵ)-stationary if within a δ-ball around x there exists a convex
combination of subgradients of the function with norm at most ϵ (cf. Definition 2.1).
To motivate this notion of convergence, we note that the hyperobjective F (in Problem 1.1) as a
function of x could be nonsmooth and nonconvex (and Lipschitz, as we later prove). Minimizing
such a function in general is known to be intractable [42], necessitating local notions of stationarity.
Indeed, not only is it impossible to attain ϵ-stationarity in finite time [43], even getting near an
approximate stationary point of an arbitrary Lipschitz function is impossible unless the number of
queries is exponential in the dimension [44]. Consequently, for this function class, (δ, ϵ)-stationarity
has recently emerged [43] to be a natural and algorithmically tractable notion of stationarity. We
give the following guarantee under regularity assumptions on f and g.
Theorem 1.2 (Informal; Theorem 4.1). Consider Problem 1.1 with linear inequality constraints
S(x) := {y : Ax−By − b ≤ 0}. Under mild assumptions on f and g (Assumption 2.2) and the
lower-level primal solution y∗ (Assumption 2.4), there exists an algorithm, which converges to
a (δ, ϵ)-stationary point of F in Õ(dδ−1ϵ−3) oracle calls to f and g, where d is the upper-level
variable dimension.

To the best of our knowledge, this is the first result to offer a first-order finite-time stationarity
guarantee on the hyperobjective for linear inequality constrained bilevel optimization (cf. Section 1.2
for a discussion of related work [37–39]). We obtain our guarantee in Theorem 1.2 by first invoking
a result by Zhang and Lan [45] to obtain inexact hyperobjective values of F using only Õ(1) oracle
calls to f and g. We also show (Lemma 4.3) that this hyperobjective F is Lipschitz. We then employ
our inexact zeroth-order oracle for F in Algorithm 2 designed to minimize Lipschitz nonsmooth
nonconvex functions (in particular, F), with the following convergence guarantee.

2

Theorem 1.3 (see Theorem C.1). Given L-Lipschitz F : Rd → R and |F̃ (·)−F (·)| ≤ ϵ, there exists
an algorithm, which, in Õ(dδ−1ϵ−3) calls to F̃ (·), outputs xout with E[dist(0, ∂δF (xout))] ≤ 2ϵ.

While such algorithms using exact zeroth-order access already exist [46], extending them to the
inexact gradient setting is non-trivial; we leverage recent ideas connecting online learning to
nonsmooth nonconvex optimization by Cutkosky, Mehta, and Orabona [47] (cf. Section 4).

(3) Linear inequality under assumptions on dual variable access. For the inequality setting
(i.e., Problem 1.1 with the lower-level constraint set S(x) := {y : Ax−By − b ≤ 0}), we obtain
dimension-free rates under an additional assumption (Assumption 2.5) on oracle access to the
optimal dual variable λ∗ of the lower-level problem. We are not aware of a method to obtain this dual
variable in a first-order fashion (though in practice, highly accurate approximations to λ∗ are readily
available), hence the need for imposing this assumption. We believe that removing this assumption
and obtaining dimension-free first-order rates in this setting would be an important direction for
future work. Our guarantee for this setting is summarized below.

Theorem 1.4 (Informal; Theorem 4.4 combined with Theorem 5.3). Consider Problem 1.1 with
linear inequality constraints S(x) := {y : Ax−By − b ≤ 0} and unconstrained upper-level
variable. Under mild regularity assumptions on f and g (Assumption 2.2), on y∗ (Assumption 2.4),
and assuming oracle access to the optimal dual variable λ∗ (Assumption 2.5), there exists an
algorithm, which in Õ(δ−1ϵ−4) oracle calls to f and g converges to a (δ, ϵ)-stationary point for F .

We obtain this result by first reformulating Problem 4.1 via the penalty method and constructing an
inexact gradient oracle for the hyperobjective F (cf. Section 5). We then employ this inexact gradient
oracle within an algorithm (Algorithm 3) designed to minimize Lipschitz nonsmooth nonconvex
functions (in particular, F), with the following convergence guarantee.

Theorem 1.5 (Informal; Theorem 4.4). Given Lipschitz F : Rd → R and ∥∇̃F (·)−∇F (·)∥ ≤ ϵ,
there exists an algorithm that, in T = O(δ−1ϵ−3) calls to ∇̃F , outputs a (δ, 2ϵ)-stationary point of F .

Our Algorithm 3 is essentially a “first-order” version of Algorithm 2. Similar to Algorithm 2, despite
the existence of algorithms with these guarantees with access to exact gradients [48], their extensions
to the inexact gradient setting are not trivial and also make use of the new framework of Cutkosky,
Mehta, and Orabona [47]. We believe our analysis for this general task can be of independent interest
to the broader optimization community. Lastly, we also use a more implementation-friendly variant
of Algorithm 3 (with slightly worse theoretical guarantees) in numerical experiments.

1.2 Related work

The vast body of work on asymptotic results for bilevel programming, starting with classical works
such as Anandalingam and White [49], Ishizuka and Aiyoshi [50], White and Anandalingam [51],
Vicente, Savard, and Júdice [52], Zhu [53], and Ye and Zhu [54], typically fall into two categories:
those based on approximate implicit differentiation: Amos and Kolter [17], Agrawal et al. [18],
Domke [55], Pedregosa [56], Gould et al. [57], Liao et al. [58], Grazzi et al. [59], and Lorraine, Vicol,
and Duvenaud [60] and those via iterative differentiation: Franceschi et al. [9], Shaban et al. [10],
Domke [55], Grazzi et al. [59], Maclaurin, Duvenaud, and Adams [61], and Franceschi et al. [62].
Another recent line of work in this category includes Khanduri et al. [37], Liu et al. [63], Ye et al.
[64], and Gao et al. [65], which use various smoothing techniques.

The first non-asymptotic result for bilevel programming was provided by Ghadimi and Wang [16],
which was followed by a flurry of work: for example, algorithms that are single-loop stochastic:
Chen, Sun, and Yin [66], Chen et al. [67], and Hong et al. [68], projection-free: Akhtar et al. [69],
Jiang et al. [70], Abolfazli et al. [71], and Cao et al. [72], use variance-reduction and momentum:
Khanduri et al. [73], Guo et al. [74], Yang, Ji, and Liang [75], and Dagréou et al. [76], those for
single-variable bilevel programs: Jiang et al. [70], Sabach and Shtern [77], Amini and Yousefian [78,
79], and Merchav and Sabach [80], and for bilevel programs with special constraints: Khanduri et al.
[37], Abolfazli et al. [71], Tsaknakis, Khanduri, and Hong [81], and Xu and Zhu [82].

The most direct predecessors of our work are those by Khanduri et al. [37], Yao et al. [38], Lu and
Mei [39], Kwon et al. [40], and Liu et al. [63]. As alluded to earlier, Liu et al. [28] recently made
a significant contribution by providing for bilevel programming a fully first-order algorithm with
finite-time stationarity guarantees. This was extended to the stochastic setting by Kwon et al. [40]

3

(which we build upon), simplified and improved by Chen, Ma, and Zhang [83], and extended to the
constrained setting by Khanduri et al. [37], Yao et al. [38], and Lu and Mei [39].

The works of Yao et al. [38] and Lu and Mei [39] study the more general problem of bilevel
programming with general convex constraints. However, they use KKT stationarity as a proxy to
the hypergradient stationarity. Our Theorem 1.4 is restricted to linear inequality constraints, we
provide stationarity guarantees directly in terms of the objective of interest. Moreover, Yao et al.
[38] assumes joint convexity of the lower-level constraints in upper and lower variables to allow for
efficient projections, while we require convexity only in the lower-level variable.

The current best result for the linearly constrained setting is that of Khanduri et al. [37]. However, this
work requires Hessian computations (and is therefore not fully first-order). Moreover, Khanduri et al.
[37] imposes strong regularity assumptions on the hyperobjective F , which are, in general, impossible
to verify. In contrast, Theorem 1.1 imposes assumptions solely on the constituent functions f and g,
none directly on F , thus making substantial progress on these two fronts.

2 Preliminaries

We follow standard notation (see Appendix A), with only the following crucial definition stated here.
Definition 2.1. Consider a locally Lipschitz function f : Rd → R, a point x ∈ Rd, and a parameter
δ > 0. The Goldstein subdifferential [41] of f at x is the set ∂δf(x) := conv(∪y∈Bδ(x)∂f(y)), where
∂f(x) = conv {limn→∞∇f(xn) : xn → x, xn ∈ dom(∇f)} is the Clarke subdifferential [84] of
f and Bδ(x) denotes the Euclidean ball of radius δ around x. A point x is called (δ, ϵ)-stationary if
dist(0, ∂δf(x)) ≤ ϵ, where dist(x, S) := infy∈S ∥x− y∥.

2.1 Assumptions

We consider Problem 1.1 with linear equality constraints (Section 3) under Assumptions 2.2 and 2.3
and linear inequality constraints (Sections 4 and 5) under Assumptions 2.2, 2.4 and 2.5. We assume
the upper-level (UL) variable x ∈ Rdx , lower-level (LL) variable y ∈ Rdy , and A ∈ Rdh×dx .
Assumption 2.2. For Problem 1.1, we assume the following for both settings we study:

(i) Upper-level: The objective f is Cf -smooth and Lf -Lipschitz continuous in (x, y).
(ii) Lower-level: The objective g is Cg-smooth. Fixing any x ∈ X , g(x, ·) is µg-strongly convex.

(iii) We assume that the linear independence constraint qualification (LICQ) condition holds for the
LL problem at every x and y, i.e., the constraint h(x, y) := Ax−By − b has a full row rank B.

Assumption 2.3. For Problem 3.1 (with linear equality constraints), we additionally assume
that the set X is convex and compact, and that the objective g is Sg-Hessian smooth, that is,∥∥∇2g(x, y)−∇2g(x̄, ȳ)

∥∥ ≤ Sg ∥(x, y)− (x̄, ȳ)∥ ∀x, x̄ ∈ X , and y, ȳ ∈ Rdy .

Assumption 2.4. For Problem 4.1 (with linear inequality constraints), we additionally assume that y∗
is Ly-Lipschitz in x, where y∗ is the LL primal solution y∗(x), λ∗(x) = argmaxy minβ≥0 g(x, y) +
β⊤h(x, y), where h(x, y) := Ax−By − b.
Assumption 2.5. We provide additional results for Problem 4.1 under additional stronger
assumptions stated here: Denote the LL primal and dual solution y∗(x), λ∗(x) =
argmaxy minβ≥0 g(x, y) + β⊤h(x, y), where h(x, y) := Ax − By − b; then, we assume exact
access to λ∗ and that ∥λ∗(x)∥ ≤ R.

Assumptions 2.2(i) and 2.2(ii) are standard in bilevel optimization. Assumption 2.2(iii) is the same as
the complete recourse assumption in stochastic programming [85], that is, the LL problem is feasible
y for every x ∈ Rdx . Assumption 2.3 is used only in the equality case and guarantees smoothness
of F . Assumption 2.4 is used in the inequality case and implies Lipschitzness of F . We need the
stronger assumption in Assumption 2.5 for our dimension-free result for the linear inequality case.

3 Lower-level problem with linear equality constraint

We first obtain improved results for the setting of bilevel programs with linear equality constraints
in the lower-level problem. Our formal problem statement is:

minimizex∈X F (x) := f(x, y∗(x)) subject to y∗(x) ∈ argminy:h(x,y)=0 g(x, y), (3.1)

4

where f , g, h(x, y) := Ax−By− b, and X satisfy Assumptions 2.2 and 2.3. The previous best result
on Problem 3.1 providing finite-time ϵ-stationarity guarantees, by Khanduri et al. [37], required
certain regularity assumptions on F as well as Hessian computations. In contrast, our finite-time
guarantees require assumptions only on f and g, not on F ; indeed, in our work, these desirable prop-
erties of F are naturally implied by our analysis. Specifically, our key insight is that the hypergradient

∇F (x) := ∇xf(x, y
∗)+

(
dy∗(x)

dx

)⊤
∇yf(x, y

∗) for Problem 3.1 is Lipschitz-continuous and admits

an easily computable — yet highly accurate — finite-difference approximation. Therefore, O(ϵ−2) it-
erations of gradient descent on F with this finite-difference gradient proxy yield an ϵ-stationary point.

Specifically, for any fixed x ∈ X , our proposed finite-difference gradient proxy approximating the

non-trivial-to-compute component
(

dy∗(x)
dx

)⊤
∇yf(x, y

∗) of the hypergradient is given by

vx :=
∇x[g(x, y

∗
δ) + ⟨λ∗

δ , h(x, y
∗)⟩]−∇x[g(x, y

∗) + ⟨λ∗, h(x, y∗)⟩]
δ

, (3.2)

where (y∗δ , λ
∗
δ) are the primal and dual solutions to the perturbed lower-level problem:

y∗δ := argminy:h(x,y)=0 g(x, y) + δf(x, y). (3.3)

We show in Lemma 3.2 that v in (3.2) approximates
(

dy∗(x)
dx

)⊤
∇yf(x, y

∗) up to an O(δ)-additive
error, implying the gradient oracle construction outlined in the pseudocode presented in Algorithm 1.
Our full implementable algorithm for solving Problem 3.1 is displayed in Algorithm 5.

Algorithm 1 Inexact Gradient Oracle for Bilevel Program with Linear Equality Constraint

1: Input: Current x, accuracy ϵ, perturbation δ = ϵ2.
2: Compute y∗ (as in Problem 3.1) and corresponding optimal dual λ∗ (as in (B.1))
3: Compute y∗δ (as in (3.3)) and and corresponding optimal dual λ∗

δ (as in (B.7))
4: Compute vx as in (3.2) ▷ Approximates (dy∗(x)/dx)⊤∇yf(x, y

∗)

5: Output: ∇̃F = vx +∇xf(x, y
∗)

Notice that the finite-difference term in (3.2) avoids differentiating through the implicit function
y∗. Instead, all we need to evaluate it are the values of (y∗, λ∗, y∗δ , λ

∗
δ) (and gradients of g and h).

Since (y∗, λ∗) are solutions to a smooth strongly convex linearly constrained problem, they can be
approximated at a linear rate. Similarly, since the approximation error in (3.2) is proportional to
δ (cf. Lemma 3.2), a small enough δ in the perturbed objective g + δf in (3.3) ensures that it is
dominated by the strongly convex and smooth g, whereby accurate approximates to (y∗δ , λ

∗
δ) can also

be readily obtained. Putting it all together, the proposed finite-difference hypergradient proxy in (3.2)
is efficiently computable, yielding the following guarantee.

Theorem 3.1. Consider Problem 3.1 under Assumption 2.2, and let κ = Cg/µg be the condition
number of g. Then Algorithm 5 finds an ϵ-stationary point (in terms of gradient mapping, see (B.14))
after T = Õ(CF (F (x0) − inf F)

√
κϵ−2) oracle calls to f and g, where CF := 2(Lf + Cf +

Cg)C
3
HSg(Lg + ∥A∥)2 is the smoothness constant of the hyperobjective F .

We now sketch the proof of Theorem 3.1. The complete proofs may be found in Appendix B.

3.1 Main technical ideas

We briefly outline the two key technical building blocks alluded to above, that together give us
Theorem 3.1: the approximation guarantee of our finite-difference gradient proxy ((3.2)) and the
smoothness of hyperobjective F (for Problem 3.1). The starting point for both these results is the
following simple observation obtained by implicitly differentiating, with respect to x, the KKT
system associated with y∗ = argminh(x,y)=0 g(x, y) and optimal dual variable λ∗:[

dy∗(x)
dx

dλ∗(x)
dx

]
=

[
∇2

yyg(x, y
∗) ∇yh(x, y

∗)⊤

∇yh(x, y
∗) 0

]−1 [−∇2
yxg(x, y

∗)
−∇xh(x, y

∗)

]
(3.4)

5

The invertibility of the matrix in the preceding equation is proved in Corollary B.3: essentially, this
invertibility is implied by strong convexity of g and∇yh(x, y

∗) = B having full row rank. This in
conjunction with the compactness of X implies that the inverse of the matrix is bounded by some
constant CH (cf. Corollary B.3 for details). Our hypergradient approximation guarantee follows:
Lemma 3.2. For Problem 3.1 under Assumption 2.2, with vx as in (3.2), the following holds:∥∥∥∥vx − (dy∗(x)

dx

)⊤
∇yf(x, y

∗)

∥∥∥∥ ≤ O(CF δ).

Proof sketch; see Appendix B. The main idea is that the two terms being compared are essentially
the same by the implicit function theorem. First, we use the expression for dy∗(x)

dx from (3.4):(
dy∗(x)

dx

)⊤

∇yf(x, y
∗) =

[
−∇2

yxg(x, y
∗)

−∇xh(x, y
∗)

]⊤ [∇2
yyg(x, y

∗) ∇yh(x, y
∗)⊤

∇yh(x, y
∗) 0

]−1 [∇yf(x, y
∗)

0

]
.

We now examine vx. For simplicity of exposition, we instead consider
limδ→0

∇x[g(x,y
∗
δ)+⟨λ∗

δ ,h(x,y
∗)⟩]−∇x[g(x,y

∗)+⟨λ∗,h(x,y∗)⟩]
δ , which, by the fundamental theorem

of calculus and Assumption 2.3 , equals vx up to an O(δ)-additive error. Note that this expression is:

∇2
xyg(x, y

∗)
dy∗δ
dδ

+∇xh(x, y
∗)⊤

dλ∗
δ

dδ
. (3.5)

Since y∗δ is minimizes a strongly convex function over a linear equality constraint (3.3), the reasoning
that yields (3.4) also gives the following, which, when combined with (3.5), finishes the proof:[

dy∗
δ (x)
dδ

dλ∗
δ(x)
dδ

] ∣∣∣∣∣
δ=0

=

[
∇2

yyg(x, y
∗) ∇yh(x, y

∗)⊤

∇yh(x, y
∗) 0

]−1 [−∇yf(x, y
∗)

0

]
. (3.6)

Having shown the construction of the hypergradient approximation, we now state smoothness of the
hyperobjective F (proof in Appendix B), crucial to getting our claimed rate.
Lemma 3.3. The solution y∗ (as defined in Problem 3.1) is O(CH ·(Cg+∥A∥))-Lipschitz continuous
and O(C3

H · Sg · (Cg + ∥A∥)2)-smooth as a function of x. Thus the hyper-objective F is gradient-
Lipschitz with a smoothness constant of CF := O{(Lf + Cf + Cg)C

3
HSg(Lg + ∥A∥)2}.

4 Nonsmooth nonconvex optimization with inexact oracle

We now shift gears from the case of linear equality constraints to that of linear inequality constraints.
Specifically, defining h(x, y) = Ax−By − b, the problem we now consider is

minimizex F (x) := f(x, y∗(x)) subject to y∗(x) ∈ argminy:h(x,y)≤0 g(x, y). (4.1)

As noted earlier, for this larger problem class, the hyperobjective F can be nonsmooth nonconvex,
necessitating our measure of convergence to be the now popular notion of Goldstein stationarity [43].

Our first algorithm for solving Problem 4.1 is presented in Algorithm 2, with its convergence guarantee
in Theorem 4.1. At a high level, this algorithm first obtains access to an inexact zeroth-order oracle to
F (we shortly explain how this is done) and uses this oracle to construct a (biased) gradient estimate
of F . It then uses this gradient estimate to update the iterates with a rule motivated by recent works
reducing nonconvex optimization to online optimization [47]. We explain this in Section 4.1.
Theorem 4.1. Consider Problem 4.1 under Assumptions 2.2 and 2.4. Let κ = Cg/µg be the
condition number of g. Then combining the procedure for Lemma 4.2 with Algorithm 2 run with
ρ = min

{
δ
2 ,

F (x0)−inf F
LfLy

}
, ν = δ−ρ, D = Θ

(
νϵ2ρ2

dxρ2L2
fL

2
y+α2d2

x

)
, and η = Θ

(
νϵ3ρ4

(dxρ2L2
fL

2
y+α2d2

x)
2

)
outputs xout such that E[dist(0, ∂δF (xout))] ≤ ϵ+ α with T oracle calls to f and g, where:

T = O

(√
κdx(F (x0)− inf F)

δϵ3
·

(
L2
fL

2
y + α2

(
dx
δ2

+
dxL

2
fL

2
y

(F (x0)− inf F)2

))
· log(Lf/α)

)
.

6

Algorithm 2 Nonsmooth Nonconvex Algorithm with Inexact Zero-Order oracle

1: Input: Initialization x0 ∈ Rd, clipping parameter D > 0, step size η > 0, smoothing parameter
ρ > 0, accuracy parameter ν > 0, iteration budget T ∈ N, inexact zero-order oracle F̃ : Rd → R.

2: Initialize: ∆1 = 0
3: for t = 1, . . . , T do
4: Sample st ∼ Unif[0, 1], wt ∼ Unif(Sd−1)
5: xt = xt−1 +∆t, zt = xt−1 + st∆t

6: g̃t =
d
2ρ (F̃ (zt + ρwt)− F̃ (zt − ρwt))wt

7: ∆t+1 = clipD (∆t − ηg̃t) ▷ clipD(z) := min{1, D
∥z∥} · z

8: M = ⌊ νD ⌋, K = ⌊ T
M ⌋

9: for k = 1, . . . ,K do
10: xk = 1

M

∑M
m=1 z(k−1)M+m

11: Sample xout ∼ Unif{x1, . . . , xK}
12: Output: xout.

Algorithm 2 is a variant of gradient descent with momentum and clipping, with g̃t the inexact gradient,
∆t a clipped accumulated gradient (hence accounts for past gradients, which serve as a momentum),
and the clipping ensuring that consecutive iterates of the algorithm reside within a δ-ball of each
other. While similar algorithms have appeared in prior work on nonsmooth nonconvex optimization
(e.g. [47]), none of them account for inexactness in the gradient, crucial in our setting.

4.1 Nonsmooth nonconvex optimization with inexact zeroth-order oracle

We can obtain inexact zeroth-order oracle access to F because (as formalized in Lemma 4.2) despite
potential nonsmoothness and nonconvexity of F in Problem 4.1, estimating its value F (x) at any
point x amounts to solving a single smooth and strongly convex optimization problem, which can be
done can be done in Õ(1) oracle calls to f and g by appealing to a result by Zhang and Lan [45].

Lemma 4.2 (Proof in Appendix C.1). Given any x, we can return F̃ (x) such that |F (x)− F̃ (x)| ≤ α

using O(
√
Cg/µg log(Lf/α)) first-order oracle calls to f and g.

Having computed an inexact value of the hyperobjective F , we now show how to use it to develop an
algorithm for solving Problem 4.1. To this end, we first note that F , despite being possibly nonsmooth
and nonconvex, is Lipschitz and hence amenable to the use of recent algorithmic developments in
nonsmooth nonconvex optimization pertaining to Goldstein stationarity.
Lemma 4.3. Under Assumption 2.2 and 2.5, F in Problem 4.1 is O(LfLy)-Lipschitz in x.

With this guarantee on the Lipschitzness of F , we prove Theorem C.1 for attaining Goldstein
stationarity using the inexact zeroth-order oracle of a Lipschitz function. Our proof of Theorem C.1
crucially uses the recent online-to-nonconvex framework of Cutkosky, Mehta, and Orabona [47].
Combining Lemma 4.2 and Theorem C.1 then immediately implies Theorem 4.1.

4.2 Nonsmooth nonconvex optimization with inexact gradient oracle

In Section 5, we provide a way to generate approximate gradients of F . Here, we present an
algorithm that attains Goldstein stationarity of Problem 4.1 using this inexact gradient oracle. While
there has been a long line of recent work on algorithms for nonsmooth nonconvex optimization
with convergence to Goldstein stationarity [43, 48, 86–88], these results necessarily require exact
gradients. This brittleness to any error in gradients renders them ineffective in our setting, where our
computed (hyper)gradient necessarily suffers from an additive error. While inexact oracles are known
to be effective for smooth or convex objectives [89], utilizing inexact gradients in the nonsmooth
nonconvex regime presents a nontrivial challenge. Indeed, without any local bound on gradient
variation due to smoothness, or convexity that ensures that gradients are everywhere correlated with
the direction pointing at the minimum, it is not clear a priori how to control the accumulating price of
inexactness throughout the run of an algorithm. To derive such results, we use the recently proposed
connection between online learning and nonsmooth nonconvex optimization by Cutkosky, Mehta,

7

and Orabona [47]. By controlling the accumulated error suffered by online gradient descent for
linear losses (cf. Lemma C.3), we derive guarantees for our setting of interest, providing Lipschitz
optimization algorithms that converge to Goldstein stationary points even with inexact gradients.

This algorithm matches the best known complexity in first-order nonsmooth nonconvex optimization
[43, 47, 48], merely replacing the convergence to a (δ, ϵ)-stationary point by (δ, ϵ+ α)-stationarity,
where α is the inexactness of the gradient oracle.

Algorithm 3 Nonsmooth Nonconvex Algorithm with Inexact Gradient Oracle

1: Input: Initialization x0 ∈ Rd, clipping parameter D > 0, step size η > 0, accuracy parameter
δ > 0, iteration budget T ∈ N, inexact gradient oracle ∇̃F : Rd → Rd.

2: Initialize: ∆1 = 0
3: for t = 1, . . . , T do
4: Sample st ∼ Unif[0, 1]
5: xt = xt−1 +∆t, zt = xt−1 + st∆t

6: g̃t = ∇̃F (zt)
7: ∆t+1 = clipD (∆t − ηg̃t) ▷ clipD(z) := min{1, D

∥z∥} · z
8: M = ⌊ δ

D ⌋, K = ⌊ T
M ⌋

9: for k = 1, . . . ,K do
10: xk = 1

M

∑M
m=1 z(k−1)M+m

11: Sample xout ∼ Unif{x1, . . . , xK}
12: Output: xout.

Theorem 4.4. Suppose F : Rd → R is L-Lipschitz and that ∥∇̃F (·)−∇F (·)∥ ≤ α. Then running
Algorithm 3 with D = Θ(δϵ

2

L2), η = Θ(δϵ
3

L4), outputs a point xout such that E[dist(0, ∂δF (xout))] ≤
ϵ+ α, with T = O

(
(F (x0)−inf F)L2

δϵ3

)
calls to ∇̃F (·).

We defer the proof of Theorem 4.4 to Appendix C.1. Plugging the complexity of computing inexact
gradients, as given by Theorem 5.3, into the result above, we immediately obtain convergence to a
(δ, ϵ)-stationary point of Problem 1.1 with Õ(δ−1ϵ−4) gradient calls overall.

Implementation-friendly algorithm. While Algorithm 3 matches the best-known results in nons-
mooth nonconvex optimization, it could be impractical due to several hyperparameters which need
tuning. Arguably, a more natural application of the hypergradient estimates would be simply plugging
them into gradient descent, which requires tuning only the stepsize. Since F is neither smooth nor
convex, perturbations are required to guarantee differentiability along the trajectory. We therefore
complement Theorem 4.4 by analyzing perturbed (inexact) gradient descent in the nonsmooth noncon-
vex setting (Algorithm 7) and state its theoretical guarantee in Theorem C.4. Despite its suboptimal
worst-case theoretical guarantees, we find this algorithm easier to implement in practice.

5 Inequality constraints: constructing the inexact gradient oracle

Computing a stationary point of F of Problem 4.1 via any first-order method would require:

∇F (x) = ∇xf(x, y
∗) +

(
dy∗(x)

dx

)⊤
∇yf(x, y

∗), (5.1)

for which the key challenge lies in computing dy∗(x)/dx. This requires differentiating through an
argmin operator, which typically requires second-order derivatives. Instead, here we differentiate
(using the implicit function theorem) through the KKT conditions describing y∗(x) and get:[

∇2
yyg + (λ∗)⊤∇2

yyh ∇yh
⊤
I

diag(λ∗
I)∇yhI 0

][dy∗(x)
dx

dλ∗
I(x)
dx

]
= −

[
∇2

yxg + (λ∗)⊤∇2
yxh

diag(λ∗
I)∇xhI

]
(5.2)

where given x, we assume efficient access to the optimal dual solution λ∗(x) of the LL problem in
Problem 4.1. In (5.2), we use I := {i ∈ [dh] : hi(x, y) = 0, λ∗

i > 0} to denote the set of active

8

constraints with non-zero dual solution, with hI := [hi]i∈I and λ∗
I := [λ∗

i]i∈I being the constraints
and dual variables, respectively, corresponding to I.

Observe that as currently stated, (5.2) leads to a second-order computation of dy∗(x)/dx. In the rest
of the section, we provide a fully first-order approximate hypergradient oracle by constructing an
equivalent reformulation of Problem 4.1 using a penalty function.

5.1 Reformulation via the penalty method

We begin by reformulating Problem 4.1 into a single level constrained optimization problem:

minimizex,y f(x, y) subject to
{
g(x, y) + (λ∗(x))⊤h(x, y) ≤ g∗(x)

h(x, y) ≤ 0
, (5.3)

where g∗(x) := miny:h(x,y)≤0 g(x, y) = g(x, y∗(x)) and λ∗(x) is the optimal dual solution. The
equivalence of this reformulation to Problem 4.1 is spelled out in Appendix D. From (5.3), we define
the following penalty function, crucial to our analysis:

Lλ∗,α(x, y) = f(x, y) + α1

(
g(x, y) + (λ∗)⊤h(x, y)− g∗(x)

)
+

α2

2
∥hI(x, y)∥2 , (5.4)

where α = [α1, α2] ≥ 0 are the penalty parameters. Notably, we can compute its derivative with
respect to x of (5.4) in a fully first-order fashion by the following expression:

∇xLλ∗,α(x, y) = ∇xf(x, y)+α1(∇xg(x, y)+∇xh(x, y)
⊤λ∗−∇xg

∗(x))+α2∇xhI(x, y)
⊤hI(x, y).

To give some intuition for our choice of penalties in (5.4), we note that the two constraints in (5.3)
behave quite differently. The first constraint g(x, y) + λ∗(x)⊤h(x, y) ≤ g∗(x) is one-sided, i.e., can
only be violated or met, and hence just needs a penalty parameter α1 to weight the “violation”. As to
the second constraint h(x, y) ≤ 0, it can be arbitrary. To allow for such a “two-sided” constraint, we
penalize only the active constraints I, i.e., we use ∥hI(x, y)∥2 to penalize deviation.

Next, we define the optimal solutions to the penalty function optimization by:

y∗λ∗,α(x) := argminy Lλ∗,α(x, y). (5.5)

We now show that this minimizer is close to the optimal solution of the LL problem, while suffering
only a small constraint violation.
Lemma 5.1. Given any x, the corresponding dual solution λ∗(x), primal solution y∗(x) of the lower
optimization problem in Problem 4.1, and y∗λ∗,α(x) as in (5.5), satisfy:∥∥y∗λ∗,α(x)− y∗(x)

∥∥ ≤ O(α−1
1) and

∥∥hI(x, y
∗
λ∗,α(x))

∥∥ ≤ O(α
−1/2
1 α

−1/2
2). (5.6)

The proof of Lemma 5.1 is based on the Lipschitzness of f and strong convexity of g for sufficiently
large α1. The aforementioned constraint violation bound on hI(x, y) is later used in Lemma 5.2 to
bound the inexactness of our proposed gradient oracle.

5.2 Main result: approximating the hypergradient

The main export of this section is the following bound on the approximation of the hypergradient.
This, together with the bounds in Lemma 5.1, validate our use of the penalty function in (5.4).
Lemma 5.2. Consider F as in Problem 4.1, L as in (5.4), a fixed x, and y∗λ∗,α as in (5.5). Then
under Assumptions 2.2 and 2.5, we have:∥∥∇F (x)−∇xLλ∗,α(x, y

∗
λ∗,α)

∥∥ ≤ O(α−1
1) +O(α

−1/2
1 α

−1/2
2) +O(α

1/2
1 α

−1/2
2) +O(α

−3/2
1 α

1/2
2).

The proof can be found in Appendix G. With this hypergradient approximation guarantee, we design
Algorithm 4 to compute an inexact gradient oracle for the hyperobjective F .

Theorem 5.3. Given any accuracy parameter α > 0, Algorithm 4 outputs ∇̃xF (x) such that
∥∇̃F (x)−∇F (x)∥ ≤ α within Õ(α−1) gradient oracle evaluations.

The full proof of this result may be found in Appendix H.

9

Algorithm 4 Inexact Gradient Oracle for General Inequality Constraints

1: Input: Upper level variable x, accuracy α, penalty parameters α1 = α−2, α2 = α−4.
2: Compute y∗, λ∗, and active constraints I of the constrained LL problem miny:h(x,y)≤0 g(x, y).
3: Define penalty function Lλ∗,α(x, y) by (5.4)
4: Compute the minimizer y∗λ∗,α = argminy Lλ∗,α(x, y) (as in (5.5)).
5: Output: ∇̃F := ∇xLλ∗,α(x, y

∗
λ∗,α).

0.0

0.2

0.4

0.6

0.8

1.0

Gr
ad

ie
nt

 e
rro

r
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950

Iteration
0.0

0.2

0.4

0.6

0.8

1.0

Op
tim

al
ity

 g
ap

cvxpylayer
F2CBA (Algorithm 3)

(a) Convergence and gradient er-
ror of Fully First-order Constrained
Bilevel Algorithm (F2CBA) com-
pared to cvxpylayer [18].

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950

Iteration
0.0

0.5

1.0

1.5

2.0

Op
tim

al
ity

 g
ap

F2CBA 2=0.0001
F2CBA 2=0.001
F2CBA 2=0.01
F2CBA 2=0.1
F2CBA 2=1.0

(b) Convergence analysis with vary-
ing gradient inexactness α to mea-
sure the tradeoff of accuracy and
convergence.

100 200 300 400 500 600 700 800 900 1000

Inner level dimension
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
(s

)

cvxpylayer
F2CBA

(c) Computation cost per gradient
step of varying problem size dy . We
vary dy from 100 to 1000 to mea-
sure the computation cost.

Figure 1: We run Algorithm 3 using Algorithm 4 on the bilevel optimization in the toy example in Problem L.1
with dx = 100, dy = 200, nconst = dy/5, and accuracy α = 0.1. Figure 2a, Figure 2b, Figure 2c vary # of
iterations, gradient exactness α, and dy , respectively, to compare the performance under different settings.

6 Experiments

We generate instances of the following constrained bilevel optimization problem:

minx c⊤y∗ + 0.01 ∥x∥2 + 0.01 ∥y∗∥2 s.t. y∗ = argminy:h(x,y)≤0

1

2
y⊤Qy + x⊤Py, (6.1)

where h(x, y) = Ay − b is a dh-dim linear constraint. The PSD matrix Q ∈ Rdy×dy , c ∈ Rdy , P ∈
Rdx×dy , and constraints A ∈ Rdh×dy , b ∈ Rdh are randomly generated from normal distributions (cf.
Appendix K). We compare Algorithm 3 with a non-fully first-order method using cvxpyLayer [18].
Both algorithms use Adam [90] to control the learning rate, and are averaged over 10 random seeds.

Figure 2a shows that both the algorithms converge to the same optimal solution at the same
rate. Simultaneously, the colorful bars represent the gradient differences between two meth-
ods, showing the inexactness of our gradients. Figure 2b additionally varies this inexactness
to demonstrate its impact on convergence with standard deviation plotted. Figure 2c com-
pares the computation costs for different lower-level problem sizes. Our fully first-order
method significantly outperforms, in computation cost, the non-fully first-order method im-
plemented using differentiable optimization method. The implementation can be found in
https://github.com/guaguakai/constrained-bilevel-optimization.

7 Limitations and future directions

One limitation to our approach is that the inexact gradient oracle we constructed in Section 5 requires
access to the exact dual multiplier λ∗. For a first-order algorithm, the closest proxy one could get to
this would be a highly accurate approximation (which could be computed up to ϵ error in O(log(1/ϵ))
gradient oracle evaluations). Removing this “exact dual access” assumption (Assumption 2.5) would
be an important result.

Another important direction for future work would be to extend the hypergradient stationarity
guarantee of Theorem 1.4 to bilevel programs with general convex constraints. To this end, we
conjecture that the use of a primal-only gradient approximation oracle could be potentially effective.

Finally, our current rate of Õ(δ−1ϵ−4) oracle calls for reaching (δ, ϵ)-Goldstein stationarity is not
necessarily inherent to the problem; indeed, it might be the case that an alternate approach could
improve it to the best known rate of O(δ−1ϵ−3) for nonsmooth nonconvex optimization.

10

https://github.com/guaguakai/constrained-bilevel-optimization

Acknowledgments

GK is supported by an Azrieli Foundation graduate fellowship. KW is supported by Schmidt Sciences
AI2050 Fellowship and NSF IIS-2403240. SS acknowledges generous support from the Alexander
von Humboldt Foundation. SP is supported by NSF CCF-2112665 (TILOS AI Research Institute)
and gratefully acknowledges Ali Jadbabaie for many useful discussions. ZZ is supported by NSF
FODSI Fellowship.

References
[1] Jerome Bracken and James T McGill. “Mathematical programs with optimization problems in

the constraints”. In: Operations research 21.1 (1973), pp. 37–44 (cit. on p. 1).
[2] Benoît Colson, Patrice Marcotte, and Gilles Savard. “An overview of bilevel optimization”. In:

Annals of operations research 153 (2007), pp. 235–256 (cit. on p. 1).
[3] Jonathan F Bard. Practical bilevel optimization: algorithms and applications. Vol. 30. Springer

Science & Business Media, 2013 (cit. on p. 1).
[4] Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. “A review on bilevel optimization: From

classical to evolutionary approaches and applications”. In: IEEE transactions on evolutionary
computation 22.2 (2017), pp. 276–295 (cit. on p. 1).

[5] Jake Snell, Kevin Swersky, and Richard Zemel. “Prototypical networks for few-shot learning”.
In: Advances in neural information processing systems 30 (2017) (cit. on p. 1).

[6] Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. “Meta-learning with
differentiable closed-form solvers”. In: arXiv preprint arXiv:1805.08136 (2018) (cit. on p. 1).

[7] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. “Meta-learning with
implicit gradients”. In: Advances in neural information processing systems 32 (2019) (cit. on
p. 1).

[8] Kaiyi Ji, Jason D Lee, Yingbin Liang, and H Vincent Poor. “Convergence of meta-learning
with task-specific adaptation over partial parameters”. In: Advances in Neural Information
Processing Systems 33 (2020), pp. 11490–11500 (cit. on p. 1).

[9] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.
“Bilevel programming for hyperparameter optimization and meta-learning”. In: International
conference on machine learning. PMLR. 2018, pp. 1568–1577 (cit. on pp. 1, 3).

[10] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. “Truncated back-
propagation for bilevel optimization”. In: The 22nd International Conference on Artificial
Intelligence and Statistics. PMLR. 2019, pp. 1723–1732 (cit. on pp. 1, 3).

[11] Matthias Feurer and Frank Hutter. “Hyperparameter optimization”. In: Automated machine
learning: Methods, systems, challenges (2019), pp. 3–33 (cit. on p. 1).

[12] Vijay Konda and John Tsitsiklis. “Actor-critic algorithms”. In: Advances in neural information
processing systems 12 (1999) (cit. on p. 1).

[13] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018 (cit. on p. 1).

[14] M Hong, H Wai, Z Wang, and Z Yang. “A two-timescale framework for bilevel optimization:
Complexity analysis and application to actor-critic. arXiv e-prints, art”. In: arXiv preprint
arXiv:2007.05170 (2020) (cit. on p. 1).

[15] Haifeng Zhang, Weizhe Chen, Zeren Huang, Minne Li, Yaodong Yang, Weinan Zhang, and
Jun Wang. “Bi-level actor-critic for multi-agent coordination”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 34. 05. 2020, pp. 7325–7332 (cit. on p. 1).

[16] Saeed Ghadimi and Mengdi Wang. “Approximation methods for bilevel programming”. In:
arXiv preprint arXiv:1802.02246 (2018) (cit. on pp. 1, 3, 24).

[17] Brandon Amos and J Zico Kolter. “Optnet: Differentiable optimization as a layer in neural
networks”. In: International Conference on Machine Learning. PMLR. 2017, pp. 136–145
(cit. on pp. 1, 3).

[18] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J
Zico Kolter. “Differentiable convex optimization layers”. In: Advances in neural information
processing systems 32 (2019) (cit. on pp. 1, 3, 10, 37, 38).

11

[19] Priya Donti, Brandon Amos, and J Zico Kolter. “Task-based end-to-end model learning in
stochastic optimization”. In: Advances in neural information processing systems 30 (2017)
(cit. on p. 1).

[20] Bryan Wilder, Bistra Dilkina, and Milind Tambe. “Melding the data-decisions pipeline:
Decision-focused learning for combinatorial optimization”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 33. 01. 2019, pp. 1658–1665 (cit. on pp. 1, 2).

[21] James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. “End-to-end
constrained optimization learning: A survey”. In: arXiv preprint arXiv:2103.16378 (2021)
(cit. on p. 1).

[22] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. “Meta-learning
with differentiable convex optimization”. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2019, pp. 10657–10665 (cit. on p. 1).

[23] Bo Tang and Elias B Khalil. “Pyepo: A pytorch-based end-to-end predict-then-optimize library
for linear and integer programming”. In: arXiv preprint arXiv:2206.14234 (2022) (cit. on p. 1).

[24] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. “Deep equilibrium models”. In: Advances in
neural information processing systems 32 (2019) (cit. on p. 1).

[25] Akshay Mehra and Jihun Hamm. “Penalty method for inversion-free deep bilevel optimization”.
In: Asian conference on machine learning. PMLR. 2021, pp. 347–362 (cit. on p. 1).

[26] Kaiyi Ji, Junjie Yang, and Yingbin Liang. “Bilevel optimization: Convergence analysis and
enhanced design”. In: International conference on machine learning. PMLR. 2021, pp. 4882–
4892 (cit. on p. 1).

[27] Kai Wang, Sanket Shah, Haipeng Chen, Andrew Perrault, Finale Doshi-Velez, and Milind
Tambe. “Learning mdps from features: Predict-then-optimize for sequential decision making
by reinforcement learning”. In: Advances in Neural Information Processing Systems 34 (2021),
pp. 8795–8806 (cit. on p. 1).

[28] Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. “Bome! bilevel optimization
made easy: A simple first-order approach”. In: Advances in neural information processing
systems 35 (2022), pp. 17248–17262 (cit. on pp. 1, 3).

[29] Kai Wang, Lily Xu, Andrew Perrault, Michael K Reiter, and Milind Tambe. “Coordinating
followers to reach better equilibria: End-to-end gradient descent for stackelberg games”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36. 5. 2022, pp. 5219–5227
(cit. on p. 2).

[30] Paul Dütting, Zhe Feng, Harikrishna Narasimhan, David C Parkes, and Sai S Ravindranath.
“Optimal auctions through deep learning”. In: Communications of the ACM 64.8 (2021),
pp. 109–116 (cit. on p. 2).

[31] Jiuping Xu, Yan Tu, and Ziqiang Zeng. “Bilevel optimization of regional water resources
allocation problem under fuzzy random environment”. In: Journal of Water Resources Planning
and Management 139.3 (2013), pp. 246–264 (cit. on p. 2).

[32] Walter J Gutjahr and Nada Dzubur. “Bi-objective bilevel optimization of distribution center
locations considering user equilibria”. In: Transportation Research Part E: Logistics and
Transportation Review 85 (2016), pp. 1–22 (cit. on p. 2).

[33] Yue Zhang, Oded Berman, Patrice Marcotte, and Vedat Verter. “A bilevel model for preventive
healthcare facility network design with congestion”. In: IIE Transactions 42.12 (2010), pp. 865–
880 (cit. on p. 2).

[34] Amir M Fathollahi-Fard, Mostafa Hajiaghaei-Keshteli, Reza Tavakkoli-Moghaddam, and Neale
R Smith. “Bi-level programming for home health care supply chain considering outsourcing”.
In: Journal of Industrial Information Integration 25 (2022), p. 100246 (cit. on p. 2).

[35] Adam N Elmachtoub and Paul Grigas. “Smart “predict, then optimize””. In: Management
Science 68.1 (2022), pp. 9–26 (cit. on p. 2).

[36] Miguel Angel Muñoz, Salvador Pineda, and Juan Miguel Morales. “A bilevel framework
for decision-making under uncertainty with contextual information”. In: Omega 108 (2022),
p. 102575 (cit. on p. 2).

[37] Prashant Khanduri, Ioannis Tsaknakis, Yihua Zhang, Jia Liu, Sijia Liu, Jiawei Zhang, and
Mingyi Hong. “Linearly constrained bilevel optimization: A smoothed implicit gradient
approach”. In: International Conference on Machine Learning. PMLR. 2023, pp. 16291–
16325 (cit. on pp. 2–5).

12

[38] Wei Yao, Chengming Yu, Shangzhi Zeng, and Jin Zhang. Constrained Bi-Level Optimization:
Proximal Lagrangian Value function Approach and Hessian-free Algorithm. 2024. arXiv:
2401.16164 [cs.LG] (cit. on pp. 2–4).

[39] Zhaosong Lu and Sanyou Mei. First-order penalty methods for bilevel optimization. 2024.
arXiv: 2301.01716 [math.OC] (cit. on pp. 2–4).

[40] Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. “A fully first-order
method for stochastic bilevel optimization”. In: International Conference on Machine Learning.
PMLR. 2023, pp. 18083–18113 (cit. on pp. 2, 3).

[41] AA Goldstein. “Optimization of Lipschitz continuous functions”. In: Mathematical Program-
ming 13 (1977), pp. 14–22 (cit. on pp. 2, 4).

[42] Arkadij Semenovič Nemirovskij and David Borisovich Yudin. “Problem complexity and
method efficiency in optimization”. In: (1983) (cit. on p. 2).

[43] Jingzhao Zhang, Hongzhou Lin, Stefanie Jegelka, Suvrit Sra, and Ali Jadbabaie. “Complexity
of finding stationary points of nonconvex nonsmooth functions”. In: International Conference
on Machine Learning. PMLR. 2020, pp. 11173–11182 (cit. on pp. 2, 6–8).

[44] Guy Kornowski and Ohad Shamir. “Oracle complexity in nonsmooth nonconvex optimization”.
In: Journal of Machine Learning Research 23.314 (2022), pp. 1–44 (cit. on p. 2).

[45] Zhe Zhang and Guanghui Lan. “Solving Convex Smooth Function Constrained Optimization
Is Almost As Easy As Unconstrained Optimization”. In: arXiv preprint arXiv:2210.05807
(2022) (cit. on pp. 2, 7, 24, 34).

[46] Guy Kornowski and Ohad Shamir. “An algorithm with optimal dimension-dependence for
zero-order nonsmooth nonconvex stochastic optimization”. In: Journal of Machine Learning
Research 25.122 (2024), pp. 1–14 (cit. on pp. 3, 25).

[47] Ashok Cutkosky, Harsh Mehta, and Francesco Orabona. In: International Conference on
Machine Learning. PMLR. 2023, pp. 6643–6670 (cit. on pp. 3, 6–8, 26).

[48] Damek Davis, Dmitriy Drusvyatskiy, Yin Tat Lee, Swati Padmanabhan, and Guanghao Ye. “A
gradient sampling method with complexity guarantees for Lipschitz functions in high and low
dimensions”. In: Advances in neural information processing systems 35 (2022), pp. 6692–6703
(cit. on pp. 3, 7, 8).

[49] G Anandalingam and DJ White. “A solution method for the linear static Stackelberg problem
using penalty functions”. In: IEEE Transactions on automatic control 35.10 (1990), pp. 1170–
1173 (cit. on p. 3).

[50] Yo Ishizuka and Eitaro Aiyoshi. “Double penalty method for bilevel optimization problems”.
In: Annals of Operations Research 34.1 (1992), pp. 73–88 (cit. on p. 3).

[51] Douglas J White and G Anandalingam. “A penalty function approach for solving bi-level
linear programs”. In: Journal of Global Optimization 3 (1993), pp. 397–419 (cit. on p. 3).

[52] Luis Vicente, Gilles Savard, and Joaquim Júdice. “Descent approaches for quadratic bilevel
programming”. In: Journal of Optimization theory and applications 81.2 (1994), pp. 379–399
(cit. on p. 3).

[53] DL Zhu. “Optimality conditions for bilevel programming problems”. In: Optimization 33.1
(1995), pp. 9–27 (cit. on p. 3).

[54] JJ Ye and DL Zhu. “Exact penalization and necessary optimality conditions for generalized
bilevel programming problems”. In: SIAM Journal on optimization 7.2 (1997), pp. 481–507
(cit. on p. 3).

[55] Justin Domke. “Generic methods for optimization-based modeling”. In: Artificial Intelligence
and Statistics. PMLR. 2012, pp. 318–326 (cit. on p. 3).

[56] Fabian Pedregosa. “Hyperparameter optimization with approximate gradient”. In: International
conference on machine learning. PMLR. 2016, pp. 737–746 (cit. on p. 3).

[57] Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and
Edison Guo. “On differentiating parameterized argmin and argmax problems with application
to bi-level optimization”. In: arXiv preprint arXiv:1607.05447 (2016) (cit. on p. 3).

[58] Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, KiJung Yoon, Xaq Pitkow, Raquel
Urtasun, and Richard Zemel. “Reviving and improving recurrent back-propagation”. In: Inter-
national Conference on Machine Learning. PMLR. 2018, pp. 3082–3091 (cit. on p. 3).

13

https://arxiv.org/abs/2401.16164
https://arxiv.org/abs/2301.01716

[59] Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. “On the iteration
complexity of hypergradient computation”. In: International Conference on Machine Learning.
PMLR. 2020, pp. 3748–3758 (cit. on p. 3).

[60] Jonathan Lorraine, Paul Vicol, and David Duvenaud. “Optimizing millions of hyperparameters
by implicit differentiation”. In: International conference on artificial intelligence and statistics.
PMLR. 2020, pp. 1540–1552 (cit. on p. 3).

[61] Dougal Maclaurin, David Duvenaud, and Ryan Adams. “Gradient-based hyperparameter
optimization through reversible learning”. In: International conference on machine learning.
PMLR. 2015, pp. 2113–2122 (cit. on p. 3).

[62] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. “Forward and
reverse gradient-based hyperparameter optimization”. In: International Conference on Machine
Learning. PMLR. 2017, pp. 1165–1173 (cit. on p. 3).

[63] Risheng Liu, Xuan Liu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. “A value-function-
based interior-point method for non-convex bi-level optimization”. In: International Confer-
ence on Machine Learning. PMLR. 2021, pp. 6882–6892 (cit. on p. 3).

[64] Jane J Ye, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. “Difference of convex algorithms
for bilevel programs with applications in hyperparameter selection”. In: Mathematical Pro-
gramming 198.2 (2023), pp. 1583–1616 (cit. on p. 3).

[65] Lucy L. Gao, Jane J. Ye, Haian Yin, Shangzhi Zeng, and Jin Zhang. Moreau Envelope Based
Difference-of-weakly-Convex Reformulation and Algorithm for Bilevel Programs. 2024. arXiv:
2306.16761 [math.OC] (cit. on p. 3).

[66] Tianyi Chen, Yuejiao Sun, and Wotao Yin. “Closing the gap: Tighter analysis of alternat-
ing stochastic gradient methods for bilevel problems”. In: Advances in Neural Information
Processing Systems 34 (2021), pp. 25294–25307 (cit. on p. 3).

[67] Tianyi Chen, Yuejiao Sun, Quan Xiao, and Wotao Yin. “A single-timescale method for
stochastic bilevel optimization”. In: International Conference on Artificial Intelligence and
Statistics. PMLR. 2022, pp. 2466–2488 (cit. on p. 3).

[68] Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. “A two-timescale stochastic
algorithm framework for bilevel optimization: Complexity analysis and application to actor-
critic”. In: SIAM Journal on Optimization 33.1 (2023), pp. 147–180 (cit. on p. 3).

[69] Zeeshan Akhtar, Amrit Singh Bedi, Srujan Teja Thomdapu, and Ketan Rajawat. “Projection-
free stochastic bi-level optimization”. In: IEEE Transactions on Signal Processing 70 (2022),
pp. 6332–6347 (cit. on p. 3).

[70] Ruichen Jiang, Nazanin Abolfazli, Aryan Mokhtari, and Erfan Yazdandoost Hamedani. “A
conditional gradient-based method for simple bilevel optimization with convex lower-level
problem”. In: International Conference on Artificial Intelligence and Statistics. PMLR. 2023,
pp. 10305–10323 (cit. on p. 3).

[71] Nazanin Abolfazli, Ruichen Jiang, Aryan Mokhtari, and Erfan Yazdandoost Hamedani. “An
Inexact Conditional Gradient Method for Constrained Bilevel Optimization”. In: arXiv preprint
arXiv:2306.02429 (2023) (cit. on p. 3).

[72] Jincheng Cao, Ruichen Jiang, Nazanin Abolfazli, Erfan Yazdandoost Hamedani, and Aryan
Mokhtari. “Projection-free methods for stochastic simple bilevel optimization with convex
lower-level problem”. In: Advances in Neural Information Processing Systems 36 (2024)
(cit. on p. 3).

[73] Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran
Yang. “A near-optimal algorithm for stochastic bilevel optimization via double-momentum”.
In: Advances in neural information processing systems 34 (2021), pp. 30271–30283 (cit. on
p. 3).

[74] Zhishuai Guo, Quanqi Hu, Lijun Zhang, and Tianbao Yang. “Randomized stochastic
variance-reduced methods for multi-task stochastic bilevel optimization”. In: arXiv preprint
arXiv:2105.02266 (2021) (cit. on p. 3).

[75] Junjie Yang, Kaiyi Ji, and Yingbin Liang. “Provably faster algorithms for bilevel optimization”.
In: Advances in Neural Information Processing Systems 34 (2021), pp. 13670–13682 (cit. on
p. 3).

[76] Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. “A framework for bilevel
optimization that enables stochastic and global variance reduction algorithms”. In: Advances
in Neural Information Processing Systems 35 (2022), pp. 26698–26710 (cit. on p. 3).

14

https://arxiv.org/abs/2306.16761

[77] Shoham Sabach and Shimrit Shtern. “A first order method for solving convex bilevel opti-
mization problems”. In: SIAM Journal on Optimization 27.2 (2017), pp. 640–660 (cit. on
p. 3).

[78] Mostafa Amini and Farzad Yousefian. “An iterative regularized incremental projected sub-
gradient method for a class of bilevel optimization problems”. In: 2019 American Control
Conference (ACC). IEEE. 2019, pp. 4069–4074 (cit. on p. 3).

[79] Mostafa Amini and Farzad Yousefian. “An iterative regularized mirror descent method for
ill-posed nondifferentiable stochastic optimization”. In: arXiv preprint arXiv:1901.09506
(2019) (cit. on p. 3).

[80] Roey Merchav and Shoham Sabach. “Convex Bi-level Optimization Problems with Nonsmooth
Outer Objective Function”. In: SIAM Journal on Optimization 33.4 (2023), pp. 3114–3142
(cit. on p. 3).

[81] Ioannis Tsaknakis, Prashant Khanduri, and Mingyi Hong. “An implicit gradient-type method
for linearly constrained bilevel problems”. In: ICASSP 2022-2022 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2022, pp. 5438–5442
(cit. on p. 3).

[82] Siyuan Xu and Minghui Zhu. “Efficient gradient approximation method for constrained bilevel
optimization”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 37. 10.
2023, pp. 12509–12517 (cit. on p. 3).

[83] Lesi Chen, Yaohua Ma, and Jingzhao Zhang. “Near-Optimal Fully First-Order Algorithms
for Finding Stationary Points in Bilevel Optimization”. In: arXiv preprint arXiv:2306.14853
(2023) (cit. on p. 4).

[84] Frank H Clarke. “Generalized gradients of Lipschitz functionals”. In: Advances in Mathematics
40.1 (1981), pp. 52–67 (cit. on p. 4).

[85] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczynski. Lectures on stochastic
programming: modeling and theory. SIAM, 2021 (cit. on p. 4).

[86] Michael Jordan, Guy Kornowski, Tianyi Lin, Ohad Shamir, and Manolis Zampetakis. “De-
terministic nonsmooth nonconvex optimization”. In: The Thirty Sixth Annual Conference on
Learning Theory. PMLR. 2023, pp. 4570–4597 (cit. on p. 7).

[87] Siyu Kong and AS Lewis. “The cost of nonconvexity in deterministic nonsmooth optimization”.
In: Mathematics of Operations Research (2023) (cit. on p. 7).

[88] Benjamin Grimmer and Zhichao Jia. “Goldstein Stationarity in Lipschitz Constrained Opti-
mization”. In: arXiv preprint arXiv:2310.03690 (2023) (cit. on p. 7).

[89] Olivier Devolder, François Glineur, and Yurii Nesterov. “First-order methods of smooth convex
optimization with inexact oracle”. In: Mathematical Programming 146 (2014), pp. 37–75
(cit. on p. 7).

[90] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980 (2014) (cit. on pp. 10, 38).

[91] Guanghui Lan. First-order and stochastic optimization methods for machine learning. Vol. 1.
Springer, 2020 (cit. on p. 23).

[92] Ohad Shamir. “An optimal algorithm for bandit and zero-order convex optimization with two-
point feedback”. In: The Journal of Machine Learning Research 18.1 (2017), pp. 1703–1713
(cit. on p. 24).

[93] Simon S Du and Wei Hu. “Linear convergence of the primal-dual gradient method for convex-
concave saddle point problems without strong convexity”. In: The 22nd International Confer-
ence on Artificial Intelligence and Statistics. PMLR. 2019, pp. 196–205 (cit. on p. 36).

[94] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. “Pytorch: An imperative
style, high-performance deep learning library”. In: Advances in neural information processing
systems 32 (2019) (cit. on p. 37).

[95] Steven Diamond and Stephen Boyd. “CVXPY: A Python-embedded modeling language for
convex optimization”. In: Journal of Machine Learning Research 17.83 (2016), pp. 1–5 (cit. on
p. 37).

15

Appendix

A Notation

We use ⟨·, ·⟩ to denote inner products and ∥ · ∥ for the Euclidean norm. Unless transposed, all vectors
are column vectors. For f : Rd2 → Rd1 its Jacobian with respect to x ∈ Rd2 is∇f ∈ Rd1×d2 . For
f : Rd → R, we overload∇f to refer to its gradient (the transposed Jacobian), a column vector. We
use ∇x to denote partial derivatives with respect to x.

A function f : Rn → Rm is L-Lipschitz if for any x, y, we have ∥f(x) − f(y)∥ ≤ L∥x − y∥.
A differentiable function f : Rn → R is convex if for any x, y ∈ Rn we have f(y) ≥ f(x) +
∇f(x)⊤(y− x); it is µ-strongly convex if f − µ

2 ∥ · ∥
2 is convex; it is β-smooth if∇f is β-Lipschitz.

For a Lipschitz function f , a point x is (δ, ϵ)-stationary if within a δ-ball around x, there exists a
convex combination of subgradients of f with norm at most ϵ. For a differentiable function f , we say
that x is ϵ-stationary if ∥∇f(x)∥ ≤ ϵ.

B Proofs from Section 3

In this section, we provide the full proofs of claims for bilevel programs with linear equality
constraints, as stated in Section 3. We first state a few technical results using the implicit function
theorem that we repeatedly invoke in our results for this setting.
Lemma B.1. Fix a point x. Given y∗ = argminy:h(x,y)=0 g(x, y) where g is strongly convex in y
and λ∗ is the dual optimal variable for this problem, define Leq(x, y, λ) = g(x, y) + ⟨λ, h(x, y)⟩.
Then, we have[

∇2
yyLeq(x, y

∗, λ∗) ∇yh(x, y
∗)⊤

∇yh(x, y
∗) 0

]
︸ ︷︷ ︸

H for linear equality constraints

[
dy∗

dx
dλ∗

dx

]
=

[
−∇2

yxg(x, y
∗)−∇2

yx⟨λ∗, h(x, y∗)⟩
−∇xh(x, y

∗)

]
.

Proof. Since g is strongly convex, by linear constraint qualification, the KKT condition is both
sufficient and necessary condition for optimality. Hence, consider the following KKT system
obtained via first order optimality of y∗, with dual optimal variable λ∗:

∇yg(x, y
∗) +∇y⟨λ∗, h(x, y∗)⟩ = 0, and h(x, y∗) = 0. (B.1)

Differentiating the system of equations in (B.1) with respect to x and rearranging terms in a matrix-
vector format yields:[
∇2

yyg(x, y
∗) +∇2

yy⟨λ∗, h(x, y∗)⟩ ∇yh(x, y
∗)⊤

∇yh(x, y
∗) 0

] [
dy∗

dx
dλ∗

dx

]
=

[
−∇2

yxg(x, y
∗)−∇2

yx⟨λ∗, h(x, y∗)⟩
−∇xh(x, y

∗)

]
(B.2)

Noting that∇2
yyLeq(x, y, λ) = ∇2

yyg(x, y)+∇2
yy⟨λ, h(x, y)⟩, we can write (B.2) in the form shown

in the lemma.

Lemma B.2. Consider the setup in Lemma B.1. The matrix H defined in (3.4) is invertible if the
Hessian ∇2

yyLeq(x, y
∗, λ∗) := ∇2

yyg(x, y
∗) +∇2

yy⟨λ∗, h(x, y∗)⟩ satisfies ∇2
yyLeq(x, y

∗, λ∗) ≻ 0
over the tangent plane T := {y : ∇yh(x, y

∗)y = 0} and ∇yh has full rank.

Proof. Let u = [y, λ]. We show that Hu = 0 implies u = 0, which in turn implies invertibility of
H . If∇yh(x, y

∗)y ̸= 0, then by construction of u and H , we must also have Hu ̸= 0. Otherwise if
∇yh(x, y

∗)y = 0 and y ̸= 0, the quadratic form u⊤Hu is positive, as seen by

u⊤Hu = y⊤∇2
yyLeq(x, y

∗, λ∗)y > 0,

where the final step is by the assumption of Leq being positive definite over the defined tangent plane
T = {y : ∇yh(x, y

∗)y = 0}. If y = 0 while Hu = 0, then ∇yh having full rank implies λ = 0.
Combined with y = 0, this means u = 0, as required when Hu = 0. This concludes the proof.

16

Corollary B.3. For Problem 3.1 under Assumption 2.2 and Assumption 2.3, the matrix H (as defined
in (3.4)) is non-singular. Further, there exists a finite CH such that ∥H−1∥ ≤ CH .

Proof. Since we are assuming strong convexity of g, Lemma B.2 applies, yielding the claimed
invertibility of H . Combined with the boundedness of variables x (per Assumption 2.3) and continuity
of the inverse implies a bound on ∥H−1∥.

B.1 Construction of the inexact gradient oracle

We now show how to construct the inexact gradient oracle for the objective F in Problem 3.1. As
sketched in Section 3, we then use this oracle in a projected gradient descent algorithm to get the
claimed guarantee.
Lemma B.4. Consider Problem 3.1 under Assumption 2.2 and Assumption 2.3. Let y∗δ be as defined
in (3.3). Then, for any δ ∈ [0,∆] with ∆ ≤ µg/2Cf , the following relation is valid:

∥y∗δ − y∗∥ ≤M(x)δ, with M(x) :=
2

µg
∥∇yf(x, y

∗)∥ ≤ 2Lf

µg
.

Proof. The first-order optimality condition applied to g(x, y) + δf(x, y) at y∗ and y∗δ gives

⟨∇yg(x, y
∗
δ) + δ∇yf(x, y

∗
δ), y

∗ − y∗δ ⟩ ≥ 0,

which upon adding and subtracting ∇yf(x, y
∗) transforms into

⟨∇yg(x, y
∗
δ) + δ[∇yf(x, y

∗
δ)−∇yf(x, y

∗)] + δ∇yf(x, y
∗), y∗ − y∗δ ⟩ ≥ 0. (B.3)

Similarly, the first-order optimality condition applied to g at y∗ and y∗δ gives

⟨∇yg(x, y
∗), y∗δ − y∗⟩ ≥ 0. (B.4)

Adding Inequality (B.3) and Inequality (B.4) and rearranging yields

⟨∇yg(x, y
∗
δ)−∇yg(x, y

∗) + δ[∇yf(x, y
∗
δ)−∇yf(x, y

∗)], y∗δ − y∗⟩ ≤ ⟨δ∇yf(x, y
∗), y∗ − y∗δ ⟩.

Applying to the left side above a lower bound via strong convexity of g + δf and to the right hand
side an upper bound via Cauchy-Schwarz inequality, we have

s∥y∗δ − y∗∥ ≤ δ∥∇yf(x, y
∗)∥, (B.5)

where s is the strong convexity of g + δf . Since f is Cf -smooth, the worst case value of this is
s = µg − δCf = µg − µg

2Cf
Cf = µg/2, which when plugged in Inequality (B.5) then gives the

claimed bound.

Lemma B.5. Consider Problem 3.1 under Assumption 2.2 and Assumption 2.3. Then the following
relation is valid.

lim
δ→0

∇x[g(x, y
∗
δ (x)) + λ∗

δh(x, y
∗)]−∇x[g(x, y

∗(x)) + λ∗h(x, y∗)]

δ
=

(
dy∗(x)

dx

)⊤

∇yf(x, y
∗(x)).

Proof. Recall that by definition, g is strongly convex and y∗ = argminy:h(x,y)=0 g(x, y). Hence,
we can apply Lemma B.1. Combining this with Lemma B.2 and further applying that linearity of h
implies∇2

yyh = 0 and ∇2
xyh = 0, we obtain the following:[

dy∗

dx
dλ∗

dx

]
=

[
∇2

yyg(x, y
∗) ∇yh(x, y

∗)⊤

∇yh(x, y
∗) 0

]−1 [−∇2
yxg(x, y

∗)
−∇xh(x, y

∗)

]
.

So we can express the right-hand side of the claimed equation in the lemma statement by(
dy∗(x)

dx

)⊤

∇yf(x, y
∗(x)) =

[(
dy∗

dx

)⊤ (
dλ∗

dx

)⊤] [∇yf(x, y
∗(x))

0

]
,

which can be further simplified to[
−∇2

yxg(x, y
∗)⊤ −∇xh(x, y

∗)⊤
] [∇2

yyg(x, y
∗) ∇yh(x, y

∗)⊤

∇yh(x, y
∗) 0

]−1 [∇yf(x, y
∗(x))

0

]
. (B.6)

17

We now apply Lemma B.1 to the perturbed problem defined in (3.3). We know from Lemma B.4 that
limδ→0 y

∗
δ = y∗. The associated KKT system is given by

δ∇yf(x, y
∗
δ) +∇yg(x, y

∗
δ) +∇y⟨λ∗

δ , h(x, y
∗
δ)⟩ = 0 and h(x, y∗δ) = 0. (B.7)

Taking the derivative with respect of (B.7) gives the following implicit system, where we used the
fact that h is linear and hence∇2

yyh = 0:[
δ∇2

yyf(x, y
∗
δ) +∇2

yyg(x, y
∗
δ) ∇yh(x, y

∗
δ)

⊤

∇yh(x, y
∗
δ) 0

]
︸ ︷︷ ︸

Hδ

[
dy∗

δ

dδ
dλ∗

δ

dδ

]
=

[
−∇yf(x, y

∗
δ)

⊤

0

]
. (B.8)

For a sufficiently small δ, we have ∇2
yyg(x, y

∗
δ) + δ∇2

yyf(x, y
∗
δ) ⪰

µg

2 I , which implies invertibility
of Hδ by an application of Lemma B.2. Since Lemma B.4 implies limδ→0 y

∗
δ = y∗, we get[

dy∗
δ

dδ
dλ∗

δ

dδ

]
|δ=0 =

[
∇2

yyg(x, y
∗) ∇yh(x, y

∗)⊤

∇yh(x, y
∗) 0

]−1 [−∇yf(x, y
∗)

0

]
.

So we can express the left-hand side of the expression in the lemma statement by

lim
δ→0

∇x[g(x, y
∗
δ (x)) + ⟨λ∗

δ , h(x, y
∗)⟩]−∇x[g(x, y

∗(x)) + ⟨λ∗, h(x, y∗)⟩]
δ

= ∇2
xyg(x, y

∗)
dy∗δ
dδ

+∇xh(x, y
∗)⊤

dλ∗
δ

dδ

=
[
∇2

xyg(x, y
∗) ∇xh(x, y

∗)⊤
] [∇2

yyg(x, y
∗) ∇yh(x, y

∗)⊤

∇yh(x, y
∗) 0

]−1 [−∇yf(x, y
∗)

0

]
,

which matches (B.6) (since (∇2
yxg)

⊤ = ∇2
xyg), thus concluding the proof.

Lemma 3.3. The solution y∗ (as defined in Problem 3.1) is O(CH ·(Cg+∥A∥))-Lipschitz continuous
and O(C3

H · Sg · (Cg + ∥A∥)2)-smooth as a function of x. Thus the hyper-objective F is gradient-
Lipschitz with a smoothness constant of CF := O{(Lf + Cf + Cg)C

3
HSg(Lg + ∥A∥)2}.

Proof. Rearranging (3.4) and applying Corollary B.3, we have[
dy∗

dx
dλ∗

dx

]
=

[
∇2

yyg(x, y
∗) B⊤

B 0

]−1 [−∇2
yxg(x, y

∗)
−∇xh(x, y

∗)

]
.

This implies a Lipschitz bound of CH · (Cg + ∥A∥). Next, note that in the case with linear equality
constraints, the terms in (B.2) involving second-order derivatives of h are all zero; differentiating
(B.2) with respect to x, we notice that the linear system we get again has the same matrix H from
before. We can therefore again perform the same inversion and apply the bound on ∥H−1∥ and on
the third-order derivatives of g (Assumption 2.3) to observe that ∥d

2y∗

dx2 ∥ ≤ O(CH · Sg∥dy
∗

dx ∥
2) =

O(C3
H · Sg · (Cg + ∥A∥)2), where we are hiding numerical constants in the Big-Oh notation.

As a result, we can calculate the Lipschitz smoothness constant associated with the hyper-objective
F by

∥∇F (x)−∇F (x̄)∥

≤ ∥dy
∗(x)

dx
∇yf(x, y

∗(x))− dy∗(x̄)

dx
∇yf(x̄, y

∗(x̄))∥+ ∥∇xf(x, y
∗(x))−∇xf(x̄, y

∗(x̄))∥

≤ [CfCH(Lg + ∥A∥) + CfC
2
H(Lg + ∥A∥)2 + LfC

3
HSg(Lg + ∥A∥)2]∥x− x̄∥

+ [Cf + CfCH(Lg + ∥A∥)]∥x− x̄∥
≤ 2(Lf + Cf + Cg)C

3
HSg(Lg + ∥A∥)2︸ ︷︷ ︸

CF

∥x− x̄∥.

18

Lemma 3.2. For Problem 3.1 under Assumption 2.2, with vx as in (3.2), the following holds:∥∥∥∥vx − (dy∗(x)
dx

)⊤
∇yf(x, y

∗)

∥∥∥∥ ≤ O(CF δ).

Proof. For simplicity, we adopt the following notation throughout this proof: gxy(x, y) = ∇2
xyg,

and gxyy denotes the tensor such that its ijk entry is given by ∂3g
∂xi∂yj∂yk

. We first consider the terms
involving g. By the fundamental theorem of calculus, we have

∇xg(x, y
∗
δ (x))−∇xg(x, y

∗(x)) =

∫ δ

t=0

gxy(x, y
∗
t (x))

dy∗t (x)

dt
dt.

As a result, we have

∇xg(x, y
∗
δ (x))−∇xg(x, y

∗(x))

δ
− gxy(x, y

∗(x))
dy∗t (x)

dt
|t=0

=
1

δ

∫ δ

t=0

(
gxy(x, y

∗
t (x))

dy∗t (x)

dt
− gxy(x, y

∗(x))
dy∗t (x)

dt
|t=0

)
dt

=
1

δ

∫ δ

t=0

(
gxy(x, y

∗
t (x))

dy∗t (x)

dt
− gxy(x, y

∗(x))
dy∗t (x)

dt
|t=0

)
dt

=
1

δ

∫ δ

t=0

(gxy(x, y
∗
t (x))− gxy(x, y

∗(x)))
dy∗t (x)

dt
dt+

1

δ

∫ δ

t=0

gxy(x, y
∗(x)) ·

(
dy∗t (x)

dt
− dy∗t (x)

dt
|t=0

)
dt.

(B.9)

We now bound each of the terms on the right-hand side of (B.9). For the first term, we have

∥1
δ

∫ δ

t=0

(gxy(x, y
∗
t (x))− gxy(x, y

∗(x))dt)
dy∗t (x)

dt
∥

≤ 1

δ

∫ δ

t=0

∥dy
∗
t (x)

dt
∥ ·
∫ t

s=0

∥gxyy(x, y∗s (x))∥∥
dy∗s (x)

ds
∥ds · dt

≤ 1

δ

∫ δ

t=0

∥dy
∗
t (x)

dt
∥ · max

s∈[0,δ]
∥gxyy(x, y∗s (x))∥ · ∥

dy∗s (x)

ds
∥tdt

≤ 1

δ
· max
u∈[0,δ]

∥gxyy(x, y∗u(x))∥ · δ2 · max
t∈[0,δ]

∥dy
∗
t (x)

dt
∥2

≤ δ · max
u∈[0,δ]

∥gxyy(x, y∗u(x))∥ · max
t∈[0,δ]

∥dy
∗
t (x)

dt
∥2

= δ · Sg ·M2
y , (B.10)

where My is the Lipschitz bound on y∗ as shown in Lemma 3.3, and Sg is the smoothness of g from
Assumption 2.3. For the second term on the right-hand side of (B.9), we have

∥1
δ

∫ δ

t=0

gxy(x, y
∗(x)) ·

(
dy∗t (x)

dt
− dy∗(x)

dt

)
∥ ≤ 1

δ
· ∥gxy(x, y∗(x))∥ ·

∫ δ

t=0

(∫ t

s=0

∥ d
2

ds2
y∗s (x)∥ds

)
dt

≤ 1

δ
· ∥gxy(x, y∗(x))∥ · max

s∈[0,δ]
∥ d

2

ds2
y∗s (x)∥ · δ2

≤ δ · ∥gxy(x, y∗(x))∥ · max
s∈[0,δ]

∥ d
2

ds2
y∗s (x)∥

= δ · Cg · Cy, (B.11)

19

where Cg is the bound on smoothness of g as in Assumption 2.3, and Cy is the bound on ∥d
2y∗

dx2 ∥
from Lemma 3.3. For the terms involving the function h, we have

∥λ
∗
δ − λ∗

δ
− dλ∗

δ

dδ
|δ=0∥ =

1

δ

∫ δ

t=0

∥dλ
∗
t

dt
− dλ∗

δ

dδ
|δ=0∥dt

=
1

δ

∫ δ

t=0

∫ t

s=0

∥ d
2

ds2
λ∗
s∥ds · dt

≤ 1

δ
max
s∈[0,δ]

∥ d
2

ds2
λ∗
s∥ · δ2 ≤ δ · max

s∈[0,δ]
∥ d

2

ds2
λ∗
s∥

= δ · Cℓ, (B.12)

where Cℓ is the bound on ∥d
2λ∗

ds2 ∥ from Lemma 3.3. Combining (B.9), Inequality (B.10), Inequal-
ity (B.11), and Inequality (B.12), along with Lemma B.5, Corollary B.3, and Lemma 3.3, we have
that overall bound is

δ · (SgM
2
y + CgCy + Cℓ) ≤ O(δ · (Sg · C3

H · (Cg + ∥A∥)2 · (Cg + Cf + Lf))).

B.2 Cost of linear equality constrained bilevel program

Algorithm 5 The Fully First-Order Method for Bilevel Equality Constrained Problem

1: Input: Current x0, accuracy ϵ, perturbation δ = ϵ2/8C2
FRX with CF = 2(Lf + Cf +

Cg)C
3
HSg(Lg + ∥A∥)2, accuracy for the lower level problem δ̃ = 2(Cg + ∥A∥)δ2.

2: for t=0,1,2,... do
3: Run Algorithm 6 to generate δ̃-accurate primal and dual solutions (ŷ∗, λ̂∗) for

min
y:Axt+By=b

g(xt, y)

4: Run Algorithm 6 to generate δ̃-accurate primal and dual solutions (ŷ∗δ , λ̂
∗
δ) for

min
y:Axt+By=b

g(xt, y) + δf(xt, y)

5: Compute v̂t :=
∇x[g(xt,ŷ

∗
δ)+λ̂∗

δh(x,ŷ
∗)]−∇x[g(xt,ŷ

∗)+λ̂∗h(x,ŷ∗)]
δ , set

∇̃F (xt) := v̂t +∇xf(x, ŷ
∗(x)).

6: Set xt+1 ← argminz∈X ∥z − (xt − 1
CF
∇̃F (xt))∥2.

Theorem 3.1. Consider Problem 3.1 under Assumption 2.2, and let κ = Cg/µg be the condition
number of g. Then Algorithm 5 finds an ϵ-stationary point (in terms of gradient mapping, see (B.14))
after T = Õ(CF (F (x0) − inf F)

√
κϵ−2) oracle calls to f and g, where CF := 2(Lf + Cf +

Cg)C
3
HSg(Lg + ∥A∥)2 is the smoothness constant of the hyperobjective F .

Proof. We first show the inexact gradient ∇̃F (xt) generated in Algorithm 5 is an δ-accurate approxi-
mation to the hyper-gradient∇F (xt). Consider the inexact gradient defined in (3.2)

∥vt − v̂t∥ ≤
1

δ
{∥[∇xg(xt, ŷ

∗
δ)−∇x[g(xt, ŷ

∗)]− [∇xg(xt, y
∗
δ)−∇x[g(xt, y

∗)∥

+ ∥λ̂∗
δ − λ̂∗ − [λ∗

δ − λ∗∥∥A∥}

≤ 2

δ
[Cg + ∥A∥]δ̃.

20

Thus we get

∥∇̃F (xt)−∇F (xt)∥ ≤ ∥∇xf(xt, y
∗)−∇xf(xt, ŷ

∗)∥+
∥∥v̂t − vt

∥∥+ ∥vt − dy∗(xt)

dx
∇yf(xt, y

∗(xt))∥

≤ Cf δ̃ +
2

δ
[Cg + ∥A∥]δ̃ + CF δ

≤ 2δ̃

δ
[Cf + Cg + ∥A∥] + CF δ

≤ ϵ2

4CFRX
.

Applied to the CF -smooth hyper-objective F , such an inexact gradient oracle satisfies the requirement
for Proposition B.6. Thus an ϵ-stationary point with ∥GF (xt)∥ ≤ ϵ (see Eq. (B.14) for the definition
of gradient mapping) must be found in N = O(CF (F (x0)−F∗)

ϵ2) iterations. Noting the evaluation of
inexact solutions (ŷ∗, λ̂∗, ŷ∗δ , λ̂

∗
δ) requires Õ(

√
Cg/µg) first order oracle evaluations, we arrive at

the total oracle complexity of Õ(
√
Cg/µg

CF (F (x0)−F∗)
ϵ2) for finding an ϵ-stationary point.

B.3 The cost of inexact projected gradient descent method

In this subsection, we state the number of iterations required by projected gradient descent method
to find an ϵ-stationary point using inexact gradient oracles. Specifically, we consider the following
non-convex smooth problem where the objective F is assumed to be CF -Lipschitz smooth:

minimizex∈XF (x). (B.13)

Since the feasible region X is compact, we use the norm of the following gradient mapping GF (x) as
the stationarity criterion

GF (x) := CF (x− x+) where x+ = argmin
z∈X

∥∥∥∥z − (x− 1

CF
∇F (x)

)∥∥∥∥2 . (B.14)

Initialized to some x0 and the inexact gradient oracle ∇̃F , the updates of the inexact projected
gradient descent method is given by

For t=1,2,..., N do:

Set xt ← argmin
z∈X

∥∥∥∥z − (xt−1 −
1

CF
∇̃F (xt−1)

)∥∥∥∥2 . (B.15)

The next proposition calculates the complexity result.
Proposition B.6. Consider the constrained optimization problem in (B.13) with F being CF -Lipschitz
smooth and X having a radius of R. When supplied with a δ = ϵ2/4CFR -inexact gradient oracle
∇̃F , that is, ∥∇F (x) − ∇̃F (x)∥ ≤ δ, the solution generated by the projected gradient descent
method (B.15) satisfies

min
t∈[N]

∥GF (xt)∥2 ≤
CF (F (x0)− F ∗)

N
+ δCFR,

that is, it takes at most O(CF (F (x0)−F∗)
ϵ2) iterations to generate some x̄ with ∥GF (x)∥ ≤ ϵ.

Proof. By CF -smoothness of F , we have

f(xt+1) = f(xt −
1

CF
G̃F (xt)) ≤ f(xt)−

1

CF
G̃F (xt)

⊤∇f(xt) +
1

2CF
∥G̃F (xt)∥2

= f(xt)−
1

2CF
∥G̃F (xt)(xt)∥2 +

1

CF
G̃F (xt)

⊤(G̃F (xt)−∇f(xt)).

(B.16)

21

We now show that 1
β G̃F (xt)

⊤(G̃F (xt) − ∇f(xt)) ≤ 0. Let ỹt = xt − 1
CF
∇̃F (xt), and let yt =

xt − 1
CF
∇f(xt). Then have that

1

CF
G̃F (xt)

⊤(
1

CF
G̃F (xt)−∇f(xt)) = CF (xt − projX (ỹt))

⊤(yt − projX (ỹt))

= CF (xt − projX (ỹt))
⊤(ỹt − projX (ỹt))

+ CF (xt − projX (ỹt))
⊤(yt − ỹt)

≤ CF (xt − projX (ỹt))
⊤(yt − ỹt)

≤ δCFR,

where the penultimate inequality uses the fact that X is a convex set, and R is the diameter of the set
X . Combining this with Inequality (B.16), we have that the function decrease per iteration is

F (xt+1) ≤ F (xt)−
1

2CF
∥G̃F (xt)∥2 + δCFR.

Summing over N iterations telescopes the terms, we get

min
t∈[N]

∥G̃F (xt)∥2 ≤
1

N
CF (F (x0)− F ∗) + δCFR.

Substituting in N = 4
ϵ2CF (F (x0)− F ∗) and the choice of δ = ϵ2/4CFR, we get

min
t∈[N]

∥G̃F (xt)∥2 ≤
ϵ2

2
.

Taking into account the fact that ∥G̃F (xt)− GF (xt)∥ ≤ ∥∇F (xt)− ∇̃F (xt)∥ ≤ δ, we obtain the
desired result.

B.4 The cost of generating approximate solutions to the linearly constrained LL problem

In this subsection, we address the issue of generating approximations to the primal and dual solutions
(y∗, λ∗) associated with the lower-level problem in Problem 3.1. These approximations are required
for computing the approximate hypergradient in Algorithm 1. For notational simplicity, we are going
to consider the following constrained strongly convex problem:

minimizey∈Rd g(y)
subject to By = b.

(B.17)

We propose the following simple scheme to generate approximate solutions to Problem B.17.

Compute a feasible ŷ such that ∥ŷ − y∗∥ ≤ δ. Then solve

λ̂ = arg min
λ∈Rm

∥∇yg(ŷ)−B⊤λ∥2. (B.18)

The following lemma tells us that λ̂ is close to λ∗ if B has full row rank.
Lemma B.7. Suppose g in Problem B.17 is a Cg-Lipschitz smooth, and the matrix B has full row
rank such that the following matrix MB is invertible

MB =

[
I B⊤

B 0

]
.

Then the approximate solution (λ̂, ŷ) from (B.18) satisfies ∥λ̂− λ∗∥ ≤ ∥M−1
B ∥(1 + Cg)δ.

Proof. Since (λ∗, y∗) satisfy the KKT conditions, they are the solution to the following linear system[
I B⊤

B 0

]
︸ ︷︷ ︸

=MB

[
y∗

λ∗

]
=

[
−∇yg(y

∗) + Iy∗

b

]
. (B.19)

22

That is [
y∗

λ∗

]
= M−1

B

[
−∇yg(y

∗) + Iy∗

b

]
.

On the other hand, the approximate solutions (ŷ, λ̂) in (B.18) satisfies[
I B⊤

B 0

] [
ŷ

λ̂

]
=

[
B⊤λ̂+ Iŷ

b

]
.

We show the right hand side (r.h.s) of the above equation to be close to the r.h.s of (B.19). Let
S := {B⊤λ : λ ∈ Rm} denote the subspace spanned by the rows of B. We can rewrite B⊤λ̂ as the
projection of∇g(ŷ) onto S, that is,

B⊤λ̂ = argmin
s∈S
∥∇yg(ŷ)− s∥2

−∇yg(y
∗) =B⊤λ∗ = argmin

s∈S
∥∇yg(y

∗)− s∥2,

where the second relation follows from the KKT conditon associated with (λ∗, y∗). Since the
projection is an non-expansive operation, we have

∥B⊤λ̂− (−∇yg(y
∗))∥ = ∥B⊤λ̂−B⊤λ∗∥ ≤ ∥∇yg(ŷ)−∇g(y∗)∥ ≤ Cg∥ŷ − y∗∥ ≤ Cgδ.

We can rewrite (ŷ, λ̂) as solutions to the following linear system with some ∥τ∥ ≤ (1 + Cg)δ,[
ŷ

λ̂

]
= M−1

B

[
−∇yg(y

∗) + Iy∗ + τ
b

]
.

Thus we get

∥
[
ŷ

λ̂

]
−
[
y∗

λ∗

]
∥ = ∥M−1

B ∥∥
[
τ
0

]
≤ ∥M−1

B ∥(1 + Cg)δ.

Now we can just use the AGD method to generate a close enough approximate solution ŷ and call up
the Subroutine in (B.18) to generate the approximate dual solution λ̂.

Algorithm 6 The Projected Gradient Method to Generate Primal and Dual Solutions for a Linearly
Constrained Problem

1: Input: accuracy requirement ϵ > 0 and linearly constrained problem miny:By=b g(y).
2: Starting from y0 = 0 and using Y := {y ∈ Rd : By = b} as the simple feasible region.
3: Run the Accelerated Gradient Descent (AGD) Method (Section 3.3 in [91]) for N =

⌈4
√
Cg/µg log

∥y∗∥∥M−1
B ∥(Cg+1)

µgϵ
⌉ iterations.

4: Use the yN as the approximate solution ŷ to generate λ̂ according to (B.18).
5: return (ŷ, λ̂)

Proposition B.8. Suppose the objective function g is both Lg-smooth and µg-strongly convex, and
that the constraint satisfies the assumption in Lemma B.7. Fix an ϵ > 0, the solution (ŷ, λ̂) returned
by the above procedure satisfies ∥y∗ − ŷ∥ ≤ ϵ and ∥λ̂ − λ∗∥ ≤ ϵ. In another words, the cost of

generating ϵ-close primal and dual solutions are bounded by O(
√

Cg

µg
log 1

ϵ).

Proof. With N := ⌈4
√
Cg/µg log

∥y∗∥∥M−1
B ∥(Lg+1)

µgϵ
⌉, Theorem 3.7 in [91] shows that ∥yN − ŷ∥ ≤

ϵ/∥M−1
B ∥(1 + Lg). Then we can apply Lemma B.7 to obtain the desired bound.

23

C Proofs for Section 4

Our algorithms are based on the Lipschitzness of F , which we prove below.
Lemma 4.3. Under Assumption 2.2 and 2.5, F in Problem 4.1 is O(LfLy)-Lipschitz in x.

Proof. By Lemma 2.1 of [16], the hypergradient of F computed with respect to the variable x

may be expressed as ∇xF (x) = ∇xf(x, y
∗(x)) +

(
dy∗(x)

dx

)⊤
· ∇yf(x, y

∗(x)). Since we impose
Lipschitzness on f and y∗, we can bound each of the terms of∇xF (x) by the claimed bound.

C.1 Faster algorithm for low upper-level dimensions

In this section we analyze Algorithm 2, which as stated in Section 4, requires evaluating only the
hyperobjective F (as opposed to estimating the hypergradient in Algorithm 3).

The motivation for designing such an algorithm, is that while evaluating∇F up to α accuracy requires
O(α−1) gradient evaluations, the hyperobjective value can be estimated at a linear rate:

Lemma 4.2 (Proof in Appendix C.1). Given any x, we can return F̃ (x) such that |F (x)− F̃ (x)| ≤ α

using O(
√
Cg/µg log(Lf/α)) first-order oracle calls to f and g.

Proof of Lemma 4.2. We note that it suffices to find ỹ∗ such that ∥ỹ∗ − y∗(x)∥ ≤ α/Lf , since
setting F̃ (x) := f(x, ỹ∗) will then satisfy |F̃ (x)−F (x)| = |f(x, ỹ∗)−f(x, y∗(x))| ≤ Lf · α

Lf
= α

by Lispchitzness of f , as required. Noting that y∗(x) = argminh(x,y)≤0 g(x, y) is the solution
to a constrained smooth, strongly-convex problem with condition number Cg/µg, it is possible to
approximate it up to α/Lf with O(

√
Cg/µg log(Lf/α)) first-order oracle calls using the result of

Zhang and Lan [45].

Accordingly, we consider Algorithm 2, which is a zero-order variant of Algorithm 3, whose guarantee
is summarized is the theorem below.
Theorem C.1. Suppose F : Rd → R is L-Lipschitz, and that |F̃ (·) − F (·)| ≤ α. Then run-

ning Algorithm 3 with ρ = min
{

δ
2 ,

F (x0)−inf F
L

}
, ν = δ − ρ, D = Θ

(
νϵ2ρ2

dρ2L2+α2d2

)
, η =

Θ
(

νϵ3ρ4

(dρ2L2+α2d2)2

)
, outputs a point xout such that E[dist(0, ∂δF (xout))] ≤ ϵ+ α with

T = O

(
d(F (x0)− inf F)

δϵ3
·
(
L2 + α2(

d

δ2
+

dL2

(F (x0)− inf F)2
)

))
calls to F̃ (·).

Combining the result of Theorem C.1 with the complexity of hyperobjective estimation, as given
by Lemma 4.2, we obtain convergence to a (δ, ϵ)-stationary point of Problem 4.1 with Õ(dxδ

−1ϵ−3)
gradient calls overall.

C.1.1 Proof of Theorem C.1

Denoting the uniform randomized smoothing Fρ(x) := E∥z∥≤1[F (x+ ρ · z)] where the expectation,
here and in what follows, is taken with respect to the uniform measure, it is well known [92, Lemma
10] that

E∥w∥=1

[
d
2ρ (F (x+ ρw)− F (x− ρw))w

]
= ∇Fρ(x) ,

E∥w∥=1

∥∥∥∇Fρ(x)− d
2ρ (F (x+ ρw)− F (x− ρw))w

∥∥∥2 ≲ dL2 . (C.1)

We first show that replacing the gradient estimator with the inexact evaluations F̃ (·) leads to a biased
gradient estimator of F .

Lemma C.2. Suppose |F (·)− F̃ (·)| ≤ α. Denoting

gx = d
2ρ (F (x+ ρw)− F (x− ρw))w ,

g̃x = d
2ρ (F̃ (x+ ρw)− F̃ (x− ρw))w ,

24

it holds that

E∥w∥=1 ∥gx − g̃x∥ ≤
αd

ρ
, and E∥w∥=1 ∥g̃x∥

2 ≲
α2d2

ρ2
+ dL2 .

Proof. For the first bound, we have

E∥w∥=1 ∥gx − g̃x∥ ≤
d

2ρ
(2α)E∥w∥=1 ∥w∥ =

αd

ρ
,

while for the second bound

E∥w∥=1 ∥g̃x∥
2
= E∥w∥=1 ∥g̃x − gx + gx∥2 ≤ 2E∥w∥=1 ∥g̃x − gx∥2+2E∥w∥=1 ∥gx∥

2 ≲
d2

ρ2
·α2+dL2 ,

where the last step invoked (C.1).

We are now ready to analyze Algorithm 2. We denote α′ = αd
ρ , G̃ =

√
α2d2

ρ2 + dL2. Since
xt = xt−1 +∆t, we have

Fρ(xt)− Fρ(xt−1) =

∫ 1

0

⟨∇Fρ(xt−1 + s∆t),∆t⟩ ds

= Est∼Unif[0,1] [∇Fρ(xt−1 + st∆t),∆t]

= E [⟨∇Fρ(zt),∆t⟩] .

By summing over t ∈ [T] = [K ×M], we get for any fixed sequence u1, . . . , uK ∈ Rd :

inf Fρ ≤ Fρ(xT) ≤ Fρ(x0) +

T∑
t=1

E [⟨∇Fρ(zt),∆t⟩]

= Fρ(x0) +

K∑
k=1

M∑
m=1

E
[〈
∇Fρ(z(k−1)M+m),∆(k−1)M+m − uk

〉]
+

K∑
k=1

M∑
m=1

E
[〈
∇Fρ(z(k−1)M+m), uk

〉]
≤ Fρ(x0) +

K∑
k=1

RegM (uk) +

K∑
k=1

M∑
m=1

E
[〈
∇Fρ(z(k−1)M+m), uk

〉]
≤ Fρ(x0) +KDG̃

√
M +Kα′DM +

K∑
k=1

M∑
m=1

E
[〈
∇Fρ(z(k−1)M+m), uk

〉]
where the last inequality follows by combining Lemma C.2 and Lemma C.3. By setting uk :=

−D
∑M

m=1 ∇Fρ(z(k−1)M+m)

∥∑M
m=1 ∇Fρ(z(k−1)M+m)∥ , rearranging and dividing by DT = DKM we obtain

1

K

K∑
k=1

E

∥∥∥∥∥ 1

M

M∑
m=1

∇Fρ(z(k−1)M+m)

∥∥∥∥∥ ≤ Fρ(x0)− inf Fρ

DT
+

G̃√
M

+ α′

=
Fρ(x0)− inf Fρ

Kν
+

√
α2d2

ρ2 + L2d
√
M

+
αd

ρ

≤ Fρ(x0)− inf Fρ

Kν
+

αd
ρ√
M

+
L
√
d√

M
+

αd

ρ
. (C.2)

Finally, note that for all m ∈ [M] :
∥∥z(k−1)M+m − xk

∥∥ ≤MD ≤ ν, therefore∇Fρ(z(k−1)M+m) ∈
∂νFρ(xk) ⊂ ∂δF (xk), where the last containment is due to [46, Lemma 4] by using our assignment
ρ+ ν = δ. Invoking the convexity of the Goldstein subdifferential, this implies that

1

M

M∑
m=1

∇Fρ(z(k−1)M+m) ∈ ∂δF (xk) ,

25

thus it suffices to bound the first three summands in (C.2) by ϵ in order to finish the proof. This

happens as long as Fρ(x0)−inf Fρ

Kν ≤ ϵ
3 ,

αd
ρ√
M
≤ ϵ

3 , and L
√
d√

M
≤ ϵ

3 , which imply K ≳ Fρ(x0)−inf Fρ

νϵ ,

M ≳ α2d2

ρ2ϵ2 , and M ≳ L2d
ϵ2 . By our assignments of ρ and ν, these result in

T = KM = O

(
Fρ(x0)− inf Fρ

νϵ
·
(
α2d2

ρ2ϵ2
+

L2d

ϵ2

))
= O

(
(F (x0)− inf F)d

δϵ3
·
(
α2d

ρ2
+ L2

))
= O

(
(F (x0)− inf F)d

δϵ3
·
(
α2d ·max

{
1

δ2
,

L2

(F (x0)− inf F)2

}
+ L2

))
,

completing the proof.

C.2 Proof of Theorem 4.4

We recall Theorem 4.4 below to keep this section self-contained.

Theorem 4.4. Suppose F : Rd → R is L-Lipschitz and that ∥∇̃F (·)−∇F (·)∥ ≤ α. Then running
Algorithm 3 with D = Θ(δϵ

2

L2), η = Θ(δϵ
3

L4), outputs a point xout such that E[dist(0, ∂δF (xout))] ≤
ϵ+ α, with T = O

(
(F (x0)−inf F)L2

δϵ3

)
calls to ∇̃F (·).

Our analysis is inspired by the reduction from online learning to nonconvex optimization given by
[47]. To that end, we start by proving a seemingly unrelated result, asserting that online gradient
descent minimizes the regret with respect to inexact evaluations. Recalling standard definitions
from online learning, given a sequence of linear losses ℓm(·) = ⟨gm, ·⟩, if an algorithm chooses
∆1, . . . ,∆M we denote the regret with respect to u as

RegM (u) :=

M∑
m=1

⟨gm,∆m − u⟩ .

Consider an update rule according to online projected inexact gradient descent:
∆m+1 := clipD(∆m − ηmg̃m).

Lemma C.3 (Inexact Online Gradient Descent). In the setting above, suppose that (g̃m)Mm=1 are
possibly randomized vectors, such that E ∥g̃m − gm∥ ≤ α and E ∥g̃m∥2 ≤ G̃2 for all m ∈ [M].
Then for any ∥u∥ ≤ D it holds that

E [RegM (u)] ≤ D2

ηM
+ G̃2

M∑
m=1

ηm + αDM ,

where the expectation is with respect to the (possible) randomness of (g̃m)Mm=1. In particular, setting
ηm ≡ D

G̃
√
M

yields

E [RegM (u)] ≲ DG̃
√
M + αDM .

Proof. For any m ∈ [M] :

∥∆m+1 − u∥2 = ∥clipD(∆m − ηmg̃m)− u∥2

≤ ∥∆m − ηmg̃m − u∥2 = ∥∆m − u∥2 + η2m ∥g̃m∥
2 − 2ηm ⟨∆m − u, g̃m⟩ ,

thus

⟨g̃m,∆m − u⟩ ≤ ∥∆m − u∥2 − ∥∆m+1 − u∥2

2ηm
+

ηm
2
∥g̃m∥2 ,

from which we get that
E ⟨gm,∆m − u⟩ = E ⟨g̃m,∆m − u⟩+ E ⟨gm − g̃m,∆m − u⟩

≤ ∥∆m − u∥2 − ∥∆m+1 − u∥2

2ηm
+

ηm
2
E ∥g̃m∥2 + E ∥gm − g̃m∥ · ∥∆m − u∥

≤ ∥∆m − u∥2 − ∥∆m+1 − u∥2

2ηm
+

ηm
2
G̃2 + αD .

26

Summing over m ∈ [M], we see that

E [RegM (u)] ≤
M∑

m=1

∥∆m − u∥2
(

1

ηm
− 1

ηm−1

)
+

G̃2

2

M∑
m=1

ηm +MαD

≤ D2

ηM
+ G̃2

M∑
m=1

ηm + αDM .

The simplification for ηm ≡ D

G̃
√
M

readily follows.

We are now ready to analyze Algorithm 3 in the inexact gradient setting.

Proof of Theorem 4.4. Since Algorithm 3 has xt = xt−1 +∆t, we have

F (xt)− F (xt−1) =

∫ 1

0

⟨∇F (xt−1 + s∆t),∆t⟩ ds

= Est∼Unif[0,1] [⟨∇F (xt−1 + st∆t),∆t⟩]
= E [⟨∇F (zt),∆t⟩] .

By summing over t ∈ [T] = [K ×M], we get for any fixed sequence u1, . . . , uK ∈ Rd :

inf F ≤ F (xT) ≤ F (x0) +

T∑
t=1

E [⟨∇F (zt),∆t⟩]

= F (x0) +

K∑
k=1

M∑
m=1

E
[〈
∇F (z(k−1)M+m),∆(k−1)M+m − uk

〉]
+

K∑
k=1

M∑
m=1

E
[〈
∇F (z(k−1)M+m), uk

〉]
≤ F (x0) +

K∑
k=1

RegM (uk) +

K∑
k=1

M∑
m=1

E
[〈
∇F (z(k−1)M+m), uk

〉]
≤ F (x0) +KDG̃

√
M +KαDM +

K∑
k=1

M∑
m=1

E
[〈
∇F (z(k−1)M+m), uk

〉]
where the last inequality follows from Lemma C.3 for G̃ =

√
L2 + α2, η = D

G̃
√
M

, since
∥g̃t −∇F (zt)∥ ≤ α (deterministically) for all t ∈ [T] by assumption. Letting uk :=

−D
∑M

m=1 ∇F (z(k−1)M+m)

∥∑M
m=1 ∇F (z(k−1)M+m)∥ , rearranging and dividing by DT = DKM , we obtain

1

K

K∑
k=1

E

∥∥∥∥∥ 1

M

M∑
m=1

∇F (z(k−1)M+m)

∥∥∥∥∥ ≤ F (x0)− inf F

DT
+

G̃√
M

+ α

=
F (x0)− inf F

Kδ
+

G̃√
M

+ α . (C.3)

Finally, note that for all k ∈ [K],m ∈ [M] :
∥∥z(k−1)M+m − xk

∥∥ ≤ MD ≤ δ, therefore
∇F (z(k−1)M+m) ∈ ∂δF (xk). Invoking the convexity of the Goldstein subdifferential, we see
that

1

M

M∑
m=1

∇F (z(k−1)M+m) ∈ ∂δF (xk) ,

thus it suffices to bound the first two summands on the right-hand side in (C.3) by ϵ in order to
finish the proof. This happens as long as F (x0)−inf F

Kδ ≤ ϵ
2 and G̃√

M
≤ ϵ

2 . These are equivalent to

K ≥ 2(F (x0)−inf F)
δϵ and M ≥ 4G̃2

ϵ2 , which results in

T = KM = O

(
F (x0)− inf F

δϵ
· L

2 + α2

ϵ2

)
= O

(
(F (x0)− inf F)L2

δϵ3

)
,

27

completing the proof.

C.3 An implementation-friendly algorithm and its analysis

Algorithm 7 Perturbed Inexact GD

1: Input: Inexact gradient oracle ∇̃F : Rd → Rd, initialization x0 ∈ Rd, spatial parameter δ > 0,
step size η > 0, iteration budget T ∈ N.

2: for t = 0, . . . , T − 1 do
3: Sample wt ∼ Unif(Sd−1)

4: g̃t = ∇̃F (xt + δ · wt)
5: xt+1 = xt − ηg̃t
6: Output: xout ∼ Unif{x0, . . . , xT−1}.

Theorem C.4. Suppose F : Rd → R is L-Lipschitz, and that ∥∇̃F (·) − ∇F (·)∥ ≤ α. Then

running Algorithm 7 with η = Θ
(

((F (x0)−inf F)+δL)1/2δ1/2

T 1/2L1/2d1/4(α+L)

)
outputs a point xout such that

E[dist(0, ∂δF (xout))] ≤ ϵ+
√
αL, with

T = O

(
(F (x0)− inf F + δL)L3

√
d

δϵ4

)
calls to ∇̃F (·).

Proof. Throughout the proof we denote zt = xt + δ · wt. Since F is L-Lipschitz, Fδ(x) :=

Ew∼Unif(Sd−1)[F (x+ δ · w)] is L-Lipschitz and O(L
√
d/δ)-smooth. By smoothness we get

Fδ(xt+1)− Fδ(xt) ≤ ⟨∇Fδ(xt), xt+1 − xt⟩+O

(
L
√
d

δ

)
· ∥xt+1 − xt∥2

= −η ⟨∇Fδ(xt), g̃t⟩+O

(
η2L
√
d

δ

)
· ∥g̃t∥2

= −η ⟨∇Fδ(xt),∇F (zt)⟩ − η ⟨∇Fδ(xt), g̃t −∇F (zt)⟩+O

(
η2L
√
d

δ

)
· ∥g̃t∥2 .

Noting that E[∇F (zt)] = ∇Fδ(xt) and that ∥g̃t∥ ≤ ∥g̃t −∇F (zt)∥+ ∥∇F (zt)∥ ≤ α+ L, we see
that

E[Fδ(xt+1)− Fδ(xt)] ≤ −ηE ∥∇Fδ(xt)∥2 + ηLα+O

(
η2L
√
d

δ
(α+ L)2

)
,

which implies

E ∥∇Fδ(xt)∥2 ≤
E[Fδ(xt)]− E[Fδ(xt+1)]

η
+ Lα+O

(
ηL
√
d(α+ L)2

δ

)
.

Averaging over t = 0, . . . , T − 1 and noting that Fδ(x0)− inf Fδ ≤ (F (x0)− inf F)+ δL results in

E
∥∥∇Fδ(x

out)
∥∥2 =

1

T

T−1∑
t=0

E ∥∇Fδ(xt)∥2 ≤
(F (x0)− inf F) + δL

ηT
+Lα+O

(
ηL
√
d(α+ L)2

δ

)
.

By Jensen’s inequality and the sub-additivity of the square root,

E
∥∥∇Fδ(x

out)
∥∥ ≤√ (F (x0)− inf F) + δL

ηT
+
√
Lα+O

√ηL
√
d(α+ L)2

δ

 .

28

Setting η =

√
((F (x0)−inf F)+δL)δ√

TL
√
d(α+L)2

yields the final bound

E
∥∥∇Fδ(x

out)
∥∥ ≲

((F (x0)− inf F) + δL)1/4L1/4d1/8(α+ L)1/2

δ1/4T 1/4
+
√
Lα ,

and the first summand is bounded by ϵ for T = O
(

((F (x0)−inf F)+δL)L
√
d(L+α)2

δϵ4

)
.

D Reformulation equivalence

Theorem D.1 (Reformulation equivalence). When λ∗ matches to an optimal dual solution to the lower
level problem y∗ = argminy g(x, y) s.t. h(x, y) ≤ 0, we show that for each x, the reformulation has
the same feasible region of y.

Proof. We first show that lower-level feasibility implies feasibility of the reformulated problem. Let
y∗, λ∗ = min

y
max
β≥0

g(x, y)+β⊤h(x, y) be the primal and the dual solution to the lower level problem

with parameter x. We can verify that y∗ satisfies all the constraints in the reformulation problem. The
feasibility condition h(x, y∗) is automatically satisfied. We just need to check:

g∗(x) := min
θ

g(x, θ) + (λ∗)⊤h(x, θ)

= g(x, y∗) + (λ∗)⊤h(x, y∗). (D.1)

Therefore, x, y∗ is a feasible point to the reformulation problem.

We now show the other direction, i.e., that feasibility of the reformulaed problem implies that of the
lower-level problem. Given λ∗, let us assume y satisfies g(x, y) ≤ g∗λ∗(x) and h(x, y) ≤ 0. On the
other hand, assume y∗, λ∗ = min

y
max
β≥0

g(x, y) + β⊤h(x, y) be the primal and the dual solution. We

can show that:

g(x, y) + (λ∗)⊤h(x, y) ≤ g∗(x) := min
θ

g(x, θ) + (λ∗)⊤h(x, θ). (D.2)

By the strong convexity of g + (λ∗)⊤h, we know that y matches to the unique minimum y∗, which
implies that y = y∗ is also a feasible point to the original bilevel problem.

E Active constraints in differentiable optimization

By computing the derivative of the KKT conditions in Section 2.1, we get:

(∇2
yxg + (λ∗)⊤∇2

yxh) + (∇2
yyg + (λ∗)⊤∇2

yyh)
dy∗

dx
+ (∇yh)

⊤ dλ∗

dx
= 0 (E.1)

diag(λ∗)∇xh+ diag(λ∗)∇yh
dy∗

dx
+ diag(h)

dλ∗

dx
= 0. (E.2)

Let I = {i ∈ [dh]|h(x, y∗)i = 0, λ∗
i > 0} be the set of active constraints with positive dual solution,

and I1 = {i|h(x, y∗)i ̸= 0} be the set of inactive constraints and I2 = {i|h(x, y∗)i = 0, λ∗
i = 0}.

We know that Ī = I1 ∪ I2. For each i ∈ I1, due to complementary slackness, we know that λ∗
i = 0.

For i ∈ I1 in (E.1), we have λ∗
i∇xh(x, y

∗)i+λ∗
i∇yh(x, y

∗)i
dy∗

dx +h(x, y∗)i
dλ∗

i

dx = 0, which implies
h(x, y∗)i

dλ∗
i

dx = 0 because λ∗
i = 0. This in turn implies dλ∗

i

dx = 0 because h(x, y∗)i < 0. That means
the dual variable λ∗

i = 0 and has zero gradient dλ∗
i

dx = 0 for any index i ∈ I1. Therefore, we can
remove row i ∈ I1 in (E.2) and obtain λ∗

i = 0 and dλ∗
i

dx = 0.

For i ∈ I2, the KKT condition in (E.2) is degenerate. Therefore, dλ∗
i

dx can be arbitrary, i.e., non-
differentiable. As a subgradient choice, we can set dλ∗

i

dx = 0 for such i. This choice will also eliminate

29

its impact on the KKT condition in (E.1) because dλ∗
i

dx is set to be 0. By this choice of subgradient,
we can also remove row i ∈ I2 (E.2).

Thus (E.2) can be written as the following set of equations, for hI = [hi]i∈I and λ∗
I = [λ∗

i]i∈I :

diag(λ∗)∇xhI + diag(λ∗
I)∇yhI

dy∗

dx
+ diag(hI)

dλ∗
I

dx
= 0

=⇒ diag(λ∗)∇xhI + diag(λ∗
I)∇yhI

dy∗

dx
= 0 (due to hI(x, y

∗) = 0). (E.3)

In (E.1), due to dλ∗
i

dx = 0 for all i ∈ Ī, we can remove dλ∗
i

dx ∀i ∈ Ī in (E.1) by:

0 = (∇2
yxg + (λ∗)⊤∇2

yxh) + (∇2
yyg + (λ∗)⊤∇2

yyh)
dy∗

dx
+ (∇yh)

⊤ dλ∗

dx

= (∇2
yxg + (λ∗)⊤∇2

yxh) + (∇2
yyg + (λ∗)⊤∇2

yyh)
dy∗

dx
+ (∇yhI)

⊤ dλ∗
I

dx
. (E.4)

Combining (E.4) and (E.3), we get:

(∇2
yxg + (λ∗)⊤∇2

yxh) + (∇2
yyg + (λ∗)⊤∇2

yyh)
dy∗

dx
+ (∇yhI)

⊤ dλ∗
I

dx
= 0

diag(λ∗)∇xhI + diag(λ∗
I)∇yhI

dy∗

dx
= 0,

which can be written in its matrix form:[
∇2

yyg + (λ∗)⊤∇2
yyh ∇yh

⊤
I

diag(λ∗
I)∇yhI 0

][dy∗

dx
dλ∗

I
dx

]
= −

[
∇2

yxg + (λ∗)⊤∇2
yxh

diag(λ∗
I)∇xhI

]
(E.5)

This concludes the derivation of the derivative of constrained optimization in (5.2).

F Inequality case: bounds on primal solution error and constraint violation

Lemma 5.1. Given any x, the corresponding dual solution λ∗(x), primal solution y∗(x) of the lower
optimization problem in Problem 4.1, and y∗λ∗,α(x) as in (5.5), satisfy:∥∥y∗λ∗,α(x)− y∗(x)

∥∥ ≤ O(α−1
1) and

∥∥hI(x, y
∗
λ∗,α(x))

∥∥ ≤ O(α
−1/2
1 α

−1/2
2). (5.6)

Proof. We first provide the claimed bound on ∥y∗α1,α2
− y∗(x)∥.

Part 1: Bound on the convergence of y.

Since y∗λ∗,α minimizes Lα,λ∗(x, y), the first-order condition gives us:

0 = ∇yLα,λ∗(x, y∗λ∗,α).

Similarly, we can compute the gradient of Lα,λ∗(x, y) at y∗:

∇yLα(x, y
∗) = ∇yf(x, y

∗) + α1(∇yg(x, y
∗) + (λ∗)⊤∇yh(x, y

∗)) + α2∇yhI(x, y
∗)⊤hI(x, y

∗)

= ∇yf(x, y
∗),

where the second step is due to the property of the primal and dual solution: ∇yg(x, y
∗) +

(λ∗)⊤∇yh(x, y
∗) = 0 by the stationarity condition in the KKT conditions, and by definition of

the active constraints hI where the optimal y∗ must have hI(x, y
∗) = 0.

Since, for a sufficiently large α1, the penalty function is α1µg − Lf ≥ α1µg

2 strongly convex in y,
we have:

α1µg

2

∥∥y∗ − y∗λ∗,α

∥∥ ≤ ∥∥∇yLα,λ∗(x, y∗)−∇yLα,λ∗(x, y∗λ∗,α)
∥∥ = ∥∇yf(x, y

∗)∥ ≤ Lf .

Therefore, upon rearranging the terms, we obtain the claimed bound:∥∥y∗ − y∗α,λ∗

∥∥ ≤ 2Lf

α1µg
.

30

Part 2: bound on the constraint violation.

When we plug y∗ into (5.4), we get:

Lα,λ∗(x, y∗) = f(x, y∗) + α1(g(x, y
∗) + (λ∗)⊤h(x, y∗)− g∗λ∗(x)) +

α2

2
∥hI(x, y

∗)∥2 = f(x, y∗).

Plugging in y∗α,λ∗ , we may obtain:

Lα,λ∗(x, y∗λ∗,α) = f(x, y∗λ∗,α) + α1(g(x, y
∗
λ∗,α) + (λ∗)⊤h(x, y∗λ∗,α)− g∗(x)) +

α2

2

∥∥hI(x, y
∗
λ∗,α)

∥∥2
= f(x, y∗λ∗,α) + α1(g(x, y

∗
λ∗,α) + (λ∗)⊤h(x, y∗λ∗,α)− g(x, y∗)− (λ∗)⊤h(x, y∗))

+
α2

2

∥∥hI(x, y
∗
λ∗,α)

∥∥2
≥ f(x, y∗λ∗,α) + α1

µg

2

∥∥y∗ − y∗λ∗,α

∥∥2 + α2

2

∥∥hI(x, y
∗
λ∗,α)

∥∥2 ,
where we used the strong convexity (with respect to y) of g(x, y) + (λ∗)⊤h(x, y) and the optimality
of y∗ for g(x, y) + (λ∗)⊤h(x, y). By the optimality of y∗λ∗,α for Lα,λ∗ , we know that

f(x, y∗) = Lα,λ∗(x, y∗) ≥ Lα,λ∗(x, y∗λ∗,α) ≥ f(x, y∗λ∗,α) + α1
µg

2

∥∥y∗ − y∗λ∗,α

∥∥2 + α2

2

∥∥hI(x, y
∗
λ∗,α)

∥∥2 .
Therefore, by the Lipschitzness of the function f in terms of y, and the bound ∥y∗ − y∗λ∗,α∥ ≤

2Lf

α1µg
,

we know that:

α2

2

∥∥hI(x, y
∗
λ∗,α)

∥∥2 ≤ f(x, y∗)− f(x, y∗λ∗,α)− α1
µg

2

∥∥y∗ − y∗λ∗,α

∥∥2
≤ Lf

∥∥y∗ − y∗λ∗,α

∥∥− α1
µg

2

∥∥y∗ − y∗λ∗,α

∥∥2
≤ Lf

∥∥y∗ − y∗λ∗,α

∥∥
= O(α−1

1).

Rearranging terms then gives the claimed bound.

The bound on the constraint violation in Lemma 5.1 is an important step in the following theorem.

G Proof of Lemma 5.2: gradient approximation for inequality constraints

Lemma 5.2. Consider F as in Problem 4.1, L as in (5.4), a fixed x, and y∗λ∗,α as in (5.5). Then
under Assumptions 2.2 and 2.5, we have:∥∥∇F (x)−∇xLλ∗,α(x, y

∗
λ∗,α)

∥∥ ≤ O(α−1
1) +O(α

−1/2
1 α

−1/2
2) +O(α

1/2
1 α

−1/2
2) +O(α

−3/2
1 α

1/2
2).

Proof. First, we recall (5.4) here:

Lλ∗,α(x, y) = f(x, y) + α1

(
g(x, y) + (λ∗)⊤h(x, y)− g∗(x)

)
+

α2

2
∥hI(x, y)∥2 .

Next, recall from Equation D.1, we can express g∗(x) = g(x, y∗) + (λ∗)⊤h(x, y∗), which we use in
the first step below:

31

∇xF (x)− d

dx
Lλ∗,α(x, y

∗
λ∗,α)

=

(
∇xf(x, y

∗) +
dy∗

dx

⊤
∇yf(x, y

∗)

)
−

(
∇xf(x, y

∗
λ∗,α) + α1(∇xg(x, y

∗
λ∗,α) +∇xh(x, y

∗
λ∗,α)

⊤λ∗

− α1(∇xg(x, y
∗) +∇xh(x, y

∗)⊤λ∗) + α2∇xhI(x, y
∗
λ∗,α)

⊤hI(x, y
∗
λ∗,α)

)
=∇xf(x, y

∗)−∇xf(x, y
∗
λ∗,α) (G.1)

+
dy∗

dx

⊤
∇yf(x, y

∗)− dy∗

dx

⊤
∇yf(x, y

∗
λ∗,α) (G.2)

+
dy∗

dx

⊤
∇yf(x, y

∗
λ∗,α)− α1

[
∇2

yxg + (λ∗)⊤∇2
yxh

diag(λ∗
I)∇xhI

]⊤ [
y∗λ∗,α − y∗

0

]
︸ ︷︷ ︸

added term 1

− α2

[
∇2

yxg + (λ∗)⊤∇2
yxhλ

∗

diag(λ∗
I)∇xhI

]⊤ [
0

diag(1/λ∗
I)hI(x, y

∗
λ∗,α)

]
︸ ︷︷ ︸

added term 2

(G.3)

+ α1

(
∇xg(x, y

∗)−∇xg(x, y
∗
λ∗,α) +∇xh(x, y

∗)⊤λ∗ −∇xh(x, y
∗
λ∗,α)

⊤λ∗

+

[
∇2

yxg + (λ∗)⊤∇2
yxh

diag(λ∗
I)∇xhI

]⊤ [
y∗λ∗,α − y∗

0

]
︸ ︷︷ ︸

added term 1

)
(G.4)

− α2∇xhI(x, y
∗
λ∗,α)

⊤hI(x, y
∗
λ∗,α) + α2

[
∇2

yxg + (λ∗)⊤∇2
yxhλ

∗

diag(λ∗
I)∇xhI

]⊤ [
0

diag(1/λ∗
I)hI(x, y

∗
λ∗,α)

]
︸ ︷︷ ︸

added term 2

.

(G.5)

According to (5.2) and (E.5), we let

H =

[
∇2

yyg + (λ∗)⊤∇2
yyh ∇yh

⊤
I

diag((λ∗)∗I)∇yhI 0

]
,

which is invertible by Assumption 2.2(iii) and by the fact that we remove all the inactive constraints.
We now bound the terms in (G.1), (G.2), (G.3), (G.4), and (G.5).

Bounding (G.1) and (G.2): (G.1) can be easily bounded by the smoothness of f in terms of x and y,
and the bound on ∥y∗ − y∗(λ∗)∗,α∥ ≤ O(α−1

1) from Lemma 5.1. Therefore, we know:

∥∥∥∇xf(x, y
∗)−∇xf(x, y

∗
(λ∗)∗,α)

∥∥∥ ≤ Cf

∥∥∥y∗ − y∗(λ∗)∗,α

∥∥∥ ≤ Cf ·O(α−1
1).

Similarly, given Assumption 2.5 by which y∗(x) is Ly-Lipschitz in x, we have the bound
∥∥∥dy∗

dx

∥∥∥ ≤ Ly .
Therefore, (G.2) can be bounded by:∥∥∥∥∥dy∗dx

⊤
∇yf(x, y

∗)− dy∗

dx

⊤
∇yf(x, y

∗
(λ∗)∗,α)

∥∥∥∥∥ ≤ Cf

∥∥∥∥dy∗dx

∥∥∥∥∥∥∥y∗ − y∗(λ∗)∗,α

∥∥∥ ≤ CfLy ·O(α−1
1).

Bounding (G.3):

32

Using (5.2) to solve

[
dy∗

dx
d(λ∗)∗

dx

]
= −H−1

[
∇2

yxg + ((λ∗)∗)⊤∇2
yxh

diag((λ∗)∗I)∇xhI

]
, we can write:

dy∗

dx

⊤
∇yf(x, y

∗
(λ∗)∗,α) =

[
∇2

yxg + ((λ∗)∗)⊤∇2
yxh

diag((λ∗)∗I)∇xhI

]⊤
(H−1)⊤

[
−∇yf(x, y

∗
(λ∗)∗,α)

0

]
= −dy∗

dx

⊤
(
α1

[
∇yg(x, y

∗
(λ∗)∗,α) +∇yh(x, y

∗
(λ∗)∗,α)

⊤(λ∗)∗

0

]

+ α2

[
∇yhI(x, y

∗
(λ∗)∗,α)

⊤hI(x, y
∗
(λ∗)∗,α)

0

])
, (G.6)

where we use the optimality of y∗(λ∗)∗,α from (5.5):

∇yf(x, y
∗
(λ∗)∗,α) + α1

(
∇yg(x, y

∗
(λ∗)∗,α) +∇yh(x, y

∗
(λ∗)∗,α)

⊤(λ∗)∗
)

(G.7)

+ α2∇yhI(x, y
∗
(λ∗)∗,α)

⊤hI(x, y
∗
(λ∗)∗,α) = 0.

Further, recall that H is non-degenerate by Assumption 2.2, as a result of which, the added term 1 in
(G.3) can be modified as follows:[

∇2
yxg + ((λ∗)∗)⊤∇2

yxh
diag((λ∗)∗I)∇xhI

]⊤ [
α1(y

∗
(λ∗)∗,α − y∗)

0

]
=

[
∇2

yxg + ((λ∗)∗)⊤∇2
yxh

diag((λ∗)∗I)∇xhI

]⊤
(H−1)⊤H⊤

[
α1(y

∗
(λ∗)∗,α − y∗)

0

]
=α1

[
∇2

yxg + ((λ∗)∗)⊤∇2
yxh

diag((λ∗)∗I)∇xhI

]⊤
(H−1)⊤

[
(∇2

yyg + ((λ∗)∗)⊤∇2
yyh)

⊤(y∗(λ∗)∗,α − y∗)

∇yhI(x, y
∗)(y∗(λ∗)∗,α − y∗)

]
. (G.8)

The added term 2 in (G.3) can be expanded to:

α2

[
∇2

yxg + ((λ∗)∗)⊤∇2
yxh(λ

∗)∗

diag((λ∗)∗I)∇xhI

]⊤ [
0

diag(1/(λ∗)∗I)hI(x, y
∗
(λ∗)∗,α)

]
=α2

[
∇2

yxg + ((λ∗)∗)⊤∇2
yxh(λ

∗)∗

diag((λ∗)∗I)∇xhI

]⊤
(H−1)⊤H⊤

[
0

diag(1/(λ∗)∗I)hI(x, y
∗
(λ∗)∗,α)

]
=α2

[
∇2

yxg + ((λ∗)∗)⊤∇2
yxh(λ

∗)∗

diag((λ∗)∗I)∇xhI

]⊤
(H−1)⊤

[
∇yhI(x, y

∗)⊤hI(x, y
∗
(λ∗)∗,α)

0

]
(G.9)

Therefore, we can compute the difference between (G.6), (G.8), and (G.9) to bound (G.3), and use
the fact that∇yg(x, y

∗) + (λ∗)⊤∇yh(x, y
∗) = 0:

dy∗

dx

⊤
∇yf(x, y

∗
λ∗,α)− added term 1 − added term 2

=

[
∇2

yxg + (λ∗)⊤∇2
yxh

diag(λ∗
I)∇xhI

]⊤
(H−1)⊤

(
α1

[
∇yg(x, y

∗
λ∗,α)−∇yg(x, y

∗)−∇2
yyg(x, y

∗)(y∗λ∗,α − y∗)
0

]
(G.10)

+ α1

[
∇yh(x, y

∗
λ∗,α)

⊤λ∗ −∇yh(x, y
∗)⊤λ∗ −∇2

yyh(x, y
∗)⊤λ∗(y∗λ∗,α − y∗)

0

]
(G.11)

− α1

[
0

∇yhI(x, y
∗)(y∗λ∗,α − y∗)

]
(G.12)

+ α2

[
∇yhI(x, y

∗
λ∗,α)

⊤hI(x, y
∗
λ∗,α)

0

]
−
[
∇yhI(x, y

∗)⊤hI(x, y
∗
λ∗,α)

0

])
(G.13)

The terms in (G.10) and (G.11) can both be bounded by α1CgLy∥y∗λ∗,α − y∗∥2 and
α1RChLy∥y∗λ∗,α − y∗∥2 by the smoothness of g and h⊤λ∗. Further, plugging in ∥y∗ − y∗λ∗,α∥ ≤
O(α−1

1) from Lemma 5.1 bounds both these terms by O(α−1
1).

33

To bound the term in (G.12), we use:∥∥hI(x, y
∗
λ∗,α)− hI(x, y

∗)−∇yhI(x, y
∗)(y∗λ∗,α − y∗)

∥∥ ≤ Ch

∥∥y∗λ∗,α − y∗
∥∥2 .

Therefore, we have:∥∥∇yhI(x, y
∗)(y∗λ∗,α − y∗)

∥∥ ≤ ∥∥hI(x, y
∗
λ∗,α)

∥∥+ ∥hI(x, y
∗)∥+ ChO(

∥∥y∗λ∗,α − y∗
∥∥2)

≤ O(α
−1/2
1 α

−1/2
2) + 0 +O(α−2

1)

= O(α
−1/2
1 α

−1/2
2 + α−2

1),

which upon scaling by α1 gives us the following bound on the term in (G.12):

α1

∥∥∇yhI(x, y
∗)(y∗λ∗,α − y∗)

∥∥ ≤ O(α
1/2
1 α

−1/2
2 + α−1

1) .

The term in (G.13) can be bounded by:

α2

∥∥∇xhI(x, y
∗
λ∗,α)

⊤hI(x, y
∗
λ∗,α)−∇xhI(x, y

∗)⊤hI(x, y
∗
λ∗,α)

∥∥
=α2

∥∥∇xhI(x, y
∗
λ∗,α)−∇xhI(x, y

∗)
∥∥O(

∥∥hI(x, y
∗
α,λ∗)

∥∥)
=α2 ·O(α−1

1)O(α
−1/2
1 α

−1/2
2)

=O(α
−3/2
1 α

1/2
2) (G.14)

Bounding (G.4): This can be easily bounded by the smoothness of g and h, and the bound on the
dual solution ∥λ∗∥ ≤ R. Thus (G.4) can be bounded by R ·O(α−1

1) = O(α−1
1).

Bounding (G.5): By the same argument in (G.14), we get:

α2

∥∥∇yhI(x, y
∗
λ∗,α)

⊤hI(x, y
∗
λ∗,α)−∇yhI(x, y

∗)⊤hI(x, y
∗
λ∗,α)

∥∥
≤α2

∥∥∇yhI(x, y
∗
λ∗,α)−∇yhI(x, y

∗)
∥∥∥∥hI(x, y

∗
λ∗,α)

∥∥
=α2 ·O(α−1

1)O(α
−1/2
1 α

−1/2
2)

=O(α
−3/2
1 α

1/2
2) .

Combining all upper bounds gives the claimed bound.

H Proof of the main result (Theorem 5.3): convergence and computation cost

Theorem 5.3. Given any accuracy parameter α > 0, Algorithm 4 outputs ∇̃xF (x) such that
∥∇̃F (x)−∇F (x)∥ ≤ α within Õ(α−1) gradient oracle evaluations.

Proof. First, given the bound in Lemma 5.2, we choose α1 = α−2 and α2 = α−4 to ensure the
inexactness of the gradient oracle is bounded by α. In the later analysis, we will still use α1 and α2

in the penalty function for clarity.

Now we estimate the computation cost of the inexact gradient oracle:

Lower-level problem. Given the oracle access to the optimal dual solution λ∗(x), we can recover the
primal solution y∗(x) efficiently (e.g, by [45]). Therefore, we can use the primal and dual solutions
to construct the penalty function Lλ∗,α(x, y) in (5.4).

Penalty function minimization problem. The second main optimization problem is the penalty
minimization problem in Line 4 of Algorithm 4. Recall from (5.4) that

Lλ,α(x, y) = f(x, y) + α1

(
g(x, y) + λ⊤h(x, y)− g∗(x)

)
+

α2

2
∥hI(x, y)∥2 , (H.1)

where we use the approximate dual solution λ as opposed to the optimal dual solution λ∗.

Given (H.1), we solve the penalty minimization problem:
y′λ,α(x) := argmin

y
Lλ,α(x, y).

The penalty minimization is a unconstrained strongly convex optimization problem, which is known
to have linear convergence rate. We further analyze its convexity and smoothness below to precisely
estimate the computation cost:

34

• The strong convexity of Lλ,α(x, y) is lower bounded by α1µg

2 = O(α1).

• The smoothness of Lλ,α(x, y) is dominated by the smoothness of α2 ∥hI(x, y)∥2 since
α2 ≫ α1. By Lemma 5.2, we know that the optimal solution must lie in an open ball
B(y∗, O(1/α1)) with center y∗ (inner optimization primal solution) and a radius of the
order of O(1

α1
). This implies that we just need to search over a bounded feasible set of

y, which we can bound ∥∇yh(x, y)∥ ≤ Lh and h(x, y) ≤ H within the bounded region
y ∈ B(y∗, O(1/α1)). We can show that h2 is smooth (gradient Lipschitz) within the
bounded region by the following:∥∥∇2

yyh
2
∥∥ =

∥∥h∇2
yyh+∇yh

⊤∇yh
∥∥ ≤ ∥∥h∇2

yyh
∥∥+ ∥∥∇yh

⊤∇yh
∥∥ ≤ HCh + L2

h

which also implies h2
I is also smooth (gradient Lipschitz). Therefore, αh2

I is (HCh +
L2
h)α2 = O(α2) smooth.

Choosing α1 = 1
α2 and α2 = 1

α4 , the condition number of Lα,λ(x, y) becomes κ = O(α2/α1) =

O(1
α2). Therefore, by the linear convergence of gradient descent in strongly convex smooth optimiza-

tion, the number of iterations needed to get to α accuracy is O(
√
α−2 × log(1

α)) = O(1
α log(1

α)).
Therefore, we can get a near optimal solution y′λ,α with inexactness α in O(1

α) oracle calls.

Computation cost and results. Overall, for the inner optimization, we can invoke the efficient
optimal dual solution oracle to get the optimal dual solution λ∗(x) and recover the optimal primal
solution y∗(x) from there. For the penalty minimization, we need O(1

α) oracle calls to solve an
unconstrained strongly convex smooth optimization problem to get to α accuracy. In conclusion,
combining everything in Appendix H, we run O(1

α) oracle calls to obtain an α accurate gradient oracle
to approximate the hyperobjective gradient∇xF (x). This concludes the proof of Theorem 5.3.

Remark H.1. The following analysis quantifies how the error in the optimal dual solution propagates
to the inexact gradient estimate. This is not needed if such a dual solution oracle exists. But in
practice, the oracle may come with some error, for which we bound the error.

Bounding the error propagation in error in dual solution and the penalty minimization. First,
if we do not get an exact optimal dual solution, the error in the dual solution λ with ∥λ− λ∗∥ ≤ α
will slightly impact the analysis in Lemma 5.2. Specifically, in Appendix G, the approximate λ will
impact the inexact gradient ∇xLλ,α(x, y

′
λ,α) computation and the analysis in (G.4) and (G.7). In

(G.4), to change λ to λ∗, we get an additional error:

α1

(
∇xh(x, y

′)⊤(λ− λ∗)−∇xh(x, y
′
λ,α)

⊤(λ− λ∗)

)
(H.2)

=α1(∇xh(x, y
′)−∇xh(x, y

′
λ,α))

⊤(λ− λ∗)

≤α1Ch

∥∥y′ − y′λ,α
∥∥ (λ− λ∗)

≤O(α1α
−1
1 α) = O(α),

where the last inequality is due to
∥∥∥y′ − y′λ,α

∥∥∥ ≤ O(α−1
1) that is based on a similar analysis in

Lemma 5.1 with a near-optimal y′λ,α under α2 = α1 accuracy.

Therefore, the error incurred by inexact λ in (G.4) is at most O(α), which is of the same rate as the
current gradient inexactness O(α).

In (G.7), the optimality holds approximately for the approximate λ. Therefore, by the near optimality
of y′λ,α (strongly convex optimization), we know that the following gradient is also α-close to 0, i.e.,

∥∇yf(x, y
′
λ,α) + α1

(
∇yg(x, y

′
λ,α) +∇yh(x, y

′
λ,α)

⊤λ
)

(H.3)

+ α2∇yhI(x, y
′
λ,α)

⊤hI(x, y
′
λ,α)∥ ≤ α,

whose inexactness matches the inexactness of the gradient oracle α, and thus we do not incur
additional order of inexactness here.

35

Moreover, there is an additional error because we need λ∗ as opposed to a near-optimal λ to make
the analysis in Appendix G work. The error between using λ and λ∗ in (H.3) can be bounded by:∥∥∇yh(x, y

′
λ,α)

⊤(λ− λ∗)
∥∥ ≤ Lhα, (H.4)

where we use the local Lipschitzness of the function h in an open ball near y∗. Therefore, the
additional error is also O(α), which matches the inexactness of the inexact gradient oracle.

Therefore, we conclude that in order to bound the inexactness of the gradient oracle, we just need an
efficient inexact dual solution with α accuracy.

I Practical oracle to optimal (approximate) dual solution

Here we discuss how practical the assumption on the oracle access to the optimal dual solution is.

For linear inequality constraint h(x, y) = Ax−By − b, the LL problem is a constrained strongly
convex smooth optimization problem. To show that we can compute an approximate solution to the
optimal dual solution for linear inequality constraints, we apply the result from [93]:
Corollary I.1 (Application of Corollary 3.1 in [93]). When h(x, y) = Ax−By + b is linear in y,
the primal and dual solutions can be written as:

y∗, λ∗ = argmin
y

max
λ

g(x, y) + (λ∗)⊤h(x, y) = g(x, y)− (λ∗)⊤By +R(x)

⇐⇒ y∗, λ∗ = argmin
y

max
λ

g(x, y)− (λ∗)⊤By (I.1)

where g is strongly convex in y and B is of full rank by Assumption 2.2. According to Corollary 3.1
from [93], the primal-dual gradient method guarantees a linear convergence. More precisely, in
t = O(log 1

α) iterations, we get:∥∥yt − y∗
∥∥ ≤ α and

∥∥λt − λ∗∥∥ ≤ α. (I.2)

Given Corollary I.1, we can efficiently approximate the primal and dual solutions up to high accuracy
with O(log 1

α) oracle calls when the inequality constraints are linear. This gives us an efficient
approximate oracle access to the dual solution.
Remark I.2. Under the assumption of an optimal dual solution oracle, all the analyses mentioned in
Section 5 hold for the general convex inequality constraints. However, the main technical challenge is
that the dual solution oracle for general convex inequality cannot be guaranteed in practice. In fact,
to the best of our knowledge, there is no iterate convergence in the dual solution λ for general convex
inequality constraints. Most of the literature in strongly-convex-concave saddle point convergence
only guarantees dual solution convergence in terms of its duality gap or some other merit functions.
We are not aware of any successful bound on the dual solution iterate convergence, which is an
important research question to answer by itself. This is the main technical bottleneck for general
convex inequality constraints as well.
Remark I.3. On the other hand, we need the dual solution iterate convergence with rate O(1/α)
to ensure the error to be bounded. But this is not a necessary condition. To ensure a bound on the
error propagation, we just need to bound some forms of merit functions ((H.2) and (H.4)) of the dual
solutions, which we believe that this is much more tractable than the actual iterate dual solution
convergence. We leave this as a future direction and this will generalize the analysis from linear
inequality constraints to general convex inequality constraints.

J The role of λ∗(x) in the derivative of Equation (5.4)

Notice that Equation (5.4), we treat the dual solution λ∗(x) as a constant to define the penalty function
derivative. Yet, the dual solution λ∗(x) is in fact also a function of x. Therefore, in theory, we should
also compute its derivative with respect to x.

However, notice that the following:

∇x(λ
∗(x))⊤h(x, y) = ∇xh(x, y)

⊤λ∗ +
dλ(x)

dx

⊤
h(x, y) (J.1)

The later term in Equation (J.1) can be divided into two cases:

36

• For active constraint i ∈ I with h(x, y∗) = 0, we know that y∗λ,α is close to y∗ by

Lemma 5.1. Therefore, the derivative
∥∥∥dλ(x)

dx

⊤
h(x, y∗λ,α)

∥∥∥ ≤ LhLλα1 = O(α1) = O(α2)

by the local smoothness of h near y∗ and the Lipschitzness assumption of λ∗ in Assump-
tion 2.5.

• For inactive constraint i ∈ Ī and λ∗
i > 0, we can solve the KKT conditions and get

dλ(x)
dx = 0. Therefore, the second term becomes 0.

• For inactive constraint i ∈ Ī and λ∗
i = 0, the KKT system degenerates and we need to use

subgradient. By solving the KKT system, we find that dλ(x)
dx = 0 is a valid subgradient.

Therefore, by choosing this subgradient, the second term also vanishes.

Therefore, we do not need to compute the derivative of λ∗ as the terms involved its derivative is
negligible compared to other major terms.

K Experimental setup

All experiments were run on a computing cluster with Dual Intel Xeon Gold 6226 CPUs @ 2.7
GHz and DDR4-2933 MHz DRAM. No GPU was used, and we used 1 core with 8GB RAM per
instance of the experiment. The cutoff time for running the algorithms is set to be 6 hours. All
experiments were run and averaged over 10 different random seeds. All parameters in the constrained
bilevel optimization in Section 6, including the objective parameters and the constrain parameters,
are randomly generated from a normal distribution with 0-mean and standard deviation 1.

For our fully first-order algorithm, we implement Algorithm 3, where the inexact gradient oracle
subroutine is provided by implementing Algorithm 4. All algorithms are implemented in PyTorch [94]
to compute gradients, and using Cvxpy [95] to solve the LL problem and the penalty minimization
problem. We implement our fully first-order method based on the solutions returned by Cvxpy
with certain accuracy requirement, and use PyTorch to compute the inexact gradient discussed in
Section 5. We implement the non-fully first-order method using the CvxpyLayer [18], which is a
Cvxpy compatible library that can differentiate through the LL convex optimization problem.

L Additional Experimental Results

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600 700 800 900
Iteration

0.0

0.5

1.0

1.5

2.0

Op
tim

al
ity

 g
ap

cvxpylayer
F2CBA (Algorithm 3)

(a) Convergence and gradient er-
ror of Fully First-order Constrained
Bilevel Algorithms (F2CBA). We
set dx = 20

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950

Iteration
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Op
tim

al
ity

 g
ap

F2CBA 2=0.0001
F2CBA 2=0.001
F2CBA 2=0.01
F2CBA 2=0.1
F2CBA 2=1.0

(b) Convergence analysis with vary-
ing gradient inexactness α. We set
dx = 100 to measure the tradeoff
of accuracy and convergence.

100 200 300 400 500 600 700 800 900 1000
Inner level dimension

0

10

20

30

Ti
m

e
(s

)

cvxpylayer
F2CBA

(c) Computation cost per gradient
step of varying problem size dy . We
set dx = 100 to measure large-scale
computation cost.

Figure 2: We run Algorithm 3 using Algorithm 4 on the bilevel optimization in the toy example in Problem L.1
with varying upper-level variable dimensions dx, a fixed lower-level variable dimension dy = 200, and the
number of constraints nconst = dy/5 = 40, and accuracy α = 0.1. Figure 2a, Figure 2b, Figure 2c vary # of
iterations, gradient exactness α, and dy , respectively, to compare the performance under different settings.

We generate instances of the following constrained bilevel optimization problem:

minimizex c⊤y∗ + 0.01 ∥x∥2 + 0.01 ∥y∗∥2 subject to y∗ = argmin
y:h(x,y)≤0

1

2
y⊤Qy + x⊤Py, (L.1)

where hi(x, y) = x⊤Aiy − b⊤i x ∀i ∈ [dh] is a dh-dim bilinear constraint, where the constraint
bilinear matrix Ai ∈ Rdx×dy , bi ∈ Rdx for all i ∈ [dh] are randomly generated from normal

37

distributions. The bilinear (nonlinear) constraint of the lower-level problem is the major difference
compared to the experiment in Section 6. We are interested in whether our algorithms work beyond
the linear constraints where our theory guarantees.

The rest of the parameters are the same as in Section 6. The PSD matrix Q ∈ Rdy×dy , c ∈ Rdy ,
P ∈ Rdx×dy . We compare our Algorithm 3 with a non-fully first-order method implemented using
cvxpyLayer [18]. Both algorithms use Adam [90] to control the learning rate in gradient descent.
All the experiments are averaged over ten random seeds.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide algorithms and corresponding theoretical guarantees for all our
claims in the abstract. We provide experiments (and relevant code) as claimed.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: This is discussed in Section 7

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

38

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The assumptions, theorem statements, and proof sketches are included in the
main paper. The full proofs are included in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide our full code in the supplemental material, and it can be used to
reproduce the experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.

39

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is included in the supplemental material and can be used to reproduce
the experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide this information in Appendix K.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

40

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: We provide this in Section 6
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide this information in Appendix K.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, the research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

41

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]
Justification: There is no societal impact of this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

42

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or research with human subjects is involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

43

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

44

	Introduction
	Our contributions
	Related work

	Preliminaries
	Assumptions

	Lower-level problem with linear equality constraint
	Main technical ideas

	Nonsmooth nonconvex optimization with inexact oracle
	Nonsmooth nonconvex optimization with inexact zeroth-order oracle
	Nonsmooth nonconvex optimization with inexact gradient oracle

	Inequality constraints: constructing the inexact gradient oracle
	Reformulation via the penalty method
	Main result: approximating the hypergradient

	Experiments
	Limitations and future directions
	Notation
	Proofs from sec:equality-bilevel
	Construction of the inexact gradient oracle
	Cost of linear equality constrained bilevel program
	The cost of inexact projected gradient descent method
	The cost of generating approximate solutions to the linearly constrained LL problem

	Proofs for sec:nonsmooth
	Faster algorithm for low upper-level dimensions
	Proof of thm: Lipschitz-min-with-inexact-zero-oracle

	Proof of thm:Lipschitz-min-with-inexact-grad-oracle
	An implementation-friendly algorithm and its analysis

	Reformulation equivalence
	Active constraints in differentiable optimization
	Inequality case: bounds on primal solution error and constraint violation
	Proof of thm:diffinhypergradandgradLagr: gradient approximation for inequality constraints
	Proof of the main result (thm:costofcomputingystargammastarinequality): convergence and computation cost
	Practical oracle to optimal (approximate) dual solution
	The role of *(x) in the derivative of Equation eqn:penalty-lagrangian
	Experimental setup
	Additional Experimental Results

