

000 001 SLIM AND SPARSE: TOWARDS EFFICIENT UNIFIED 002 MULTIMODAL MODELS 003

004
005 **Anonymous authors**
006 Paper under double-blind review
007
008

009 ABSTRACT 010

011 Large-scale multimodal models have achieved remarkable progress in both un-
012 derstanding and generation. Traditionally, these tasks were studied in isolation,
013 resulting in separate architectures. Recent efforts instead pursue unified multi-
014 modal models that combine heterogeneous components to support both capabili-
015 ties within a single framework. However, such models introduce substantial chal-
016 lenges related to architectural redundancy, compute allocation, and efficient scal-
017 ing. In this work, we conduct a systematic analysis of unified multimodal model
018 components using training-free pruning as a probing methodology, considering
019 both depth pruning and width reduction. Our study reveals that the understanding
020 component, although essential for multimodal reasoning, exhibits notable com-
021 pressibility in generation tasks. In contrast, the generation components are highly
022 sensitive to compression, with performance degrading sharply even under mod-
023 erate ratios of depth or width reduction. To address this limitation, we propose
024 a Mixture-of-Experts (MoE) Adaptation, inspired by the dynamic activation pat-
025 terns observed in hidden neurons. This approach partitions the generation module
026 into multiple experts and enables sparse activation to restore generation quality.
027 We first demonstrate the potential of sparse activation in generation components,
028 and then show that a fully trainable adaptation further enhances performance. As
029 a result, the adapted BAGEL model achieves performance comparable to the full
030 model while activating only about half of the parameters.

031 1 INTRODUCTION 032

033 Large-scale multimodal models have recently achieved remarkable progress in both multimodal un-
034 derstanding (Liu et al., 2023a; Li et al., 2023; Dai et al., 2023; Lu et al., 2024; 2023) and generation
035 (Ramesh et al., 2021; Saharia et al., 2022; Peebles & Xie, 2023). Traditionally, these two tasks were
036 studied in isolation, leading to distinct research trajectories and model families: *understanding-
037 oriented architectures* for vision–language reasoning with textual outputs, and *generative models*
038 designed for image synthesis. While effective for task-specific purposes, this separation stands in
039 contrast to the broader pursuit of Artificial General Intelligence (AGI) (Wei et al., 2022; Bubeck
040 et al., 2023), where a single model is expected to both interpret and generate across modalities in a
041 unified manner.

042 Motivated by this vision, recent research has shifted toward Unified multimodal models that unify
043 multimodal understanding and generation within a single framework (Deng et al., 2025; Liang et al.,
044 2025; AI et al., 2025). By integrating heterogeneous components such as vision encoders (Doso-
045 vitskiy et al., 2021), language backbones (Grattafiori et al., 2024; Yang et al., 2024), and image
046 or audio decoders Peebles & Xie (2023); AI et al. (2025), Unified multimodal models can seem-
047 lessly support reasoning tasks and generative tasks in the same system. This paradigm promises
048 more general-purpose multimodal intelligence and has already demonstrated encouraging capabili-
049 ties across diverse benchmarks.

050 However, this unification comes at a substantial **cost in efficiency**. Unlike unimodal or task-specific
051 multimodal models (Peebles & Xie, 2023; Liu et al., 2023a), Unified multimodal models must sup-
052 port outputs of different modalities while sharing internal components across tasks. This creates
053 several inefficiencies: 1) **architectural redundancy**: shared modules often house parameters that
are only useful for a subset of tasks, leading to under-utilized capacity; 2) **compute allocation chal-**

054 **lenges:** the same backbone must simultaneously support reasoning-oriented token processing and
 055 high-fidelity generation, yet the compute demands of these tasks differ significantly; and 3) **scaling**
 056 **uncertainty:** as models grow larger, it remains unclear how best to distribute depth and width across
 057 understanding versus generation pathways to maximize performance per parameter.

058 In this work, we conduct a systematic investigation of the components of Unified multimodal models
 059 and uncover substantial redundancy from multiple perspectives. To this end, we employ **training-**
 060 **free pruning** as a probing methodology, examining via depth pruning (Gromov et al., 2025) (e.g.,
 061 dropping transformer blocks or attention layers) and neuron partition (e.g., compressing structured
 062 hidden neurons). We begin by analyzing the understanding components, which are the shared mod-
 063 ules responsible for processing inputs across different modalities, since they form the backbone of
 064 multimodal representation learning and often serve as the foundation for downstream reasoning and
 065 generation. Our results show that these understanding components exhibit notable compressibility
 066 in multimodal generation tasks, where pruned models can still sustain competitive performance.
 067 Furthermore, we observe clear task-specific activation patterns: understanding and generation tasks
 068 predominantly activate different model partitions, underscoring the necessity of dynamic pruning
 069 for different testing tasks.

070 However, when compressing the generation components (e.g., image generators), we observe that
 071 the quality of generated images drops drastically after either depth pruning or neuron partition. To
 072 address this issue, we propose a Mixture-of-Experts (MoE) Adaptation, inspired by the dynamic
 073 activation patterns observed across different prompts and diffusion steps. In this approach, neurons
 074 in the MLP layers are partitioned into experts, allowing the model to selectively activate subsets of
 075 neurons and thereby restore generation quality. We first validate this idea with Expert-Frozen Tuning
 076 (EFT), where experts remain frozen while the router and other parameters are optimized to align with
 077 sparse activation. This stage already recovers a substantial portion of the lost generation capability.
 078 Building on this, we further train the MoE model in a fully end-to-end manner, which delivers
 079 additional improvements. As a result, the adapted BAGEL model (Deng et al., 2025) achieves
 080 performance comparable to the full model while activating only about half of the neurons.

081 2 RELATED WORKS

082 **Unification of Understanding and Generation** Traditionally, multimodal understanding and
 083 generation were studied as separate tasks, which in turn gave rise to two distinct streams of mul-
 084 timodal model architectures (Li et al., 2023; Dai et al., 2023). On the one hand, multimodal large
 085 language models (MLLMs) extend language models to handle input tokens from multiple modal-
 086 ities. For instance, LLaVA (Liu et al., 2023a) builds upon the LLaMA backbone (Touvron et al.,
 087 2023a) by incorporating both text and image tokens, and subsequent multimodal training substan-
 088 tially enhances its ability to perform vision–language understanding tasks such as visual question
 089 answering. On the other hand, multimodal generative models typically employ a text encoder to
 090 convert natural language into embeddings, which then serve as conditional signals for image gen-
 091 erators. Recent advances in diffusion-based architectures, such as DiT (Diffusion Transformers)
 092 (Peebles & Xie, 2023), demonstrate that transformer backbones can effectively model the denois-
 093 ing process, while techniques like classifier-free guidance (CFG) (Ho & Salimans, 2022) further
 094 improve controllability and fidelity in conditional image synthesis. Despite their separate origins,
 095 more recent research has increasingly aimed to unify these two paradigms within a single architec-
 096 ture, enabling models to seamlessly perform both multimodal understanding and generation. For
 097 instance, BAGEL (Deng et al., 2025) adopts an interleaved multimodal training paradigm coupled
 098 with a mixture-of-transformers design (Liang et al., 2025) that separates understanding and gener-
 099 ation modules, while Ming-Omni (AI et al., 2025) employs a Mixture-of-Experts (MoE) backbone
 100 with dedicated routing mechanisms and modality-specific decoders to integrate text, vision, audio,
 101 and video within a single unified framework.

102 **Model Compression toward Parameter Efficiency** Despite the remarkable advances of large
 103 language models, the continual growth in their size has introduced substantial redundancy and raised
 104 critical challenges for scalability. Network pruning (Cheng et al., 2024) has emerged as an effec-
 105 tive technique to identify and alleviate architectural redundancy. For instance, Gromov et al. (2025)
 106 demonstrated that many deep layers in large language models are relatively unimportant, and that
 107 comparable performance can still be maintained after removing these redundant layers. He et al.

(2024) identified redundancy within attention layers, showing that a large proportion of them can be removed without significantly affecting performance on textual question answering tasks. While the uni-modal compression techniques can be transferred to Vision-Language models that take multi-modal inputs and output the language responses via language models (Sung et al., 2024; He et al., 2025), it is unclear whether such methods still work in Unified models. We take the prior efforts to systematically explore and exploit redundancy in multimodal models, where heterogeneous components play distinct roles. This perspective enables us to design compression strategies better aligned with the unified nature of multimodal understanding and generation.

3 OMNI MODELS UNIFYING UNDERSTANDING AND GENERATION

Unified models are large-scale multimodal architectures that aim to unify understanding and generation within a single framework. Unlike traditional multimodal systems, which either focus on reasoning (e.g., vision–language question answering) or on generation (e.g., text-to-image or text-to-speech synthesis), Unified models are designed to support both modalities simultaneously, thereby moving closer to the goal of Artificial General Intelligence (AGI).

Given an Unified model, let \mathbf{x} denote the multimodal input tokens (e.g., text, image, or audio), and \mathbf{y} the target output (e.g., text or image).

Understanding. For *understanding tasks*, the model predicts textual outputs in an auto-regressive manner:

$$p(\mathbf{y}_{\text{und}} \mid \mathbf{x}; \theta_{\text{und}}) = \prod_{t=1}^T p(y_t \mid y_{<t}, \mathbf{x}; \theta_{\text{und}}), \quad (1)$$

where θ_{und} denotes the parameters of the understanding component, responsible for both multimodal feature extraction and language modeling.

Generation. For *generation tasks*, the Unified model leverages the understanding component to process an instructional input \mathbf{x}_{inst} (e.g., text prompt and reference images), producing conditional features $f_{\text{und}}(\mathbf{x}_{\text{inst}}; \theta_{\text{und}})$. The generative component then synthesizes the output \mathbf{y}_{gen} , typically conditioned on both this representation and an additional generative input (e.g., random noise \mathbf{z} in diffusion models or initial tokens in auto-regressive decoding):

$$\mathbf{y}_{\text{gen}} \sim p(\mathbf{y} \mid f_{\text{und}}(\mathbf{x}_{\text{inst}}; \theta_{\text{und}}), \mathbf{z}; \theta_{\text{gen}}), \quad (2)$$

where θ_{gen} are the parameters of the generative component.

Overall, Unified models unify multimodal understanding and generation through a shared understanding component θ_{und} , whose outputs serve either as predictions for understanding tasks or as instructional signals for non-text generation. For modalities such as images or audio, this shared component is further coupled with modality-specific generators. Given that this unification integrates heterogeneous components with distinct functional roles, we next conduct a detailed analysis of the understanding and generation parts separately.

4 METHODOLOGY

4.1 TRAINING-FREE COMPRESSION STRATEGIES

Large language models, a cornerstone of Unified model architectures, have been widely observed to contain significant redundancy across both depth (Gromov et al., 2025) and width dimensions (Ma et al., 2023). We next investigate how such redundancy manifests within Unified models.

Layer Dropping for Depth Pruning Transformer based large language models are stacked by multiple layers and scaling the depth of layers serves an effective way to enhance the performance. However, the depth also reflect the redundancy. Following Gromov et al. (2025); He et al. (2024), we measure the layer-wise importance via:

$$S_l = \text{Cosine_Sim}(\mathbf{x}_l, \mathbf{y}_l), \quad (3)$$

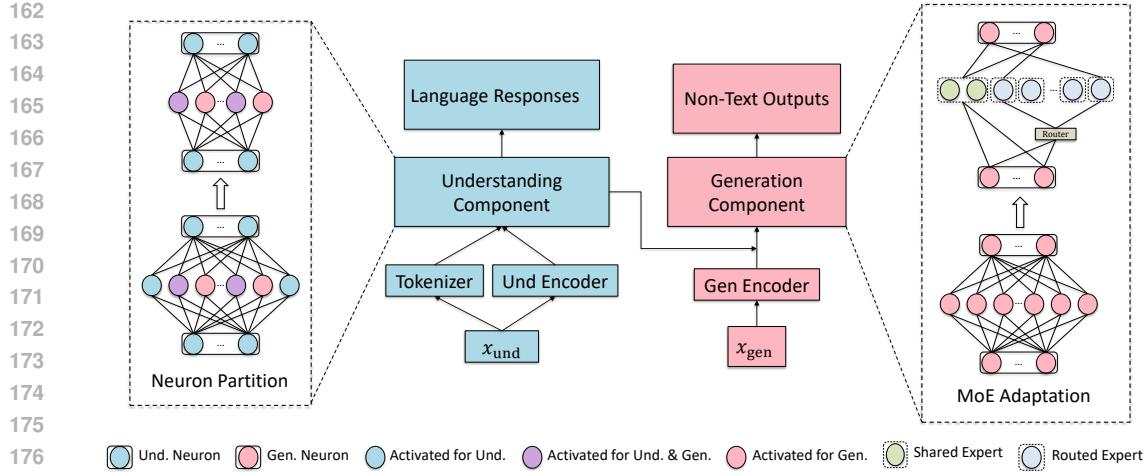


Figure 1: Overview of the proposed framework for unified multimodal model compression. The model is composed of an **understanding component** that processes multimodal inputs into embeddings and language responses, and a **generation component** that produces non-text outputs. We introduce two complementary strategies: **Neuron Partition**, which separates neurons into subsets and filter the neurons activated for the given task (Gen. in the figure); and **MoE Adaptation**, which dynamic activate neurons which have been partitioned into shared and routed experts managed by a router.

where \mathbf{x}_l and \mathbf{y}_l correspond to the input and output of the l -th layer, respectively. The similarity provides a measure of redundancy, with higher values implying that the layer contributes only marginal transformation. The metric has been shown to perform effectively in unimodal LLMs such as Mistral (Jiang et al., 2023) and LLaMA (Touvron et al., 2023b; Grattafiori et al., 2024). We next extend this evaluation to Unified models.

Width Reduction via Neuron Partition In addition to depth, scaling the width, particularly within MLP layers, has become a prevalent strategy for enhancing model capability. In general, an MLP layer expands the input from dimension d to dm through an up-projection and a gated projection, applies a nonlinear transformation, and then projects it back to dimension d via a down-projection. Here, m denotes the expansion multiplier, which increases hidden dimensionality to enhance model capacity but simultaneously introduces a substantial number of parameters. Given that MLP layers are expanded to dm hidden neurons, we further decompose them at the neuron level into important and less important counterparts.

To measure neuron importance, we draw inspiration from Wanda (Sun et al., 2024), which leverages both weights and activations as pruning metrics, and extend it from an unstructured to a structured neuron-level criterion. Given an input $x \in \mathbb{R}^{s \times d}$, in a Gate-Up-Down MLP, the hidden activations $h \in \mathbb{R}^{s \times dm}$ and output $y \in \mathbb{R}^{s \times d}$ can be written as:

$$h = (\text{SiLU}(xW_g^\top)) \odot (xW_u^\top), \quad y = hW_d^\top, \quad (4)$$

where $W_g, W_u \in \mathbb{R}^{md \times d}$ are the up-projection matrix and gate-projection-matrix, $h \in \mathbb{R}^{s \times md}$ is the gated activation, $W_d \in \mathbb{R}^{d \times md}$ is the down-projection matrix. The hidden activations consist of md neurons, and the contribution of the i -th neuron to the final output is:

$$\Delta y_i = h_i W_{d,i}^\top, \quad (5)$$

with $W_{d,i}$ being the i -th column vector of W_d . If the i -th neuron is pruned, the induced output error norm can be approximated by:

$$\|\Delta y\|_2 \approx \|h_i W_{d,i}^\top\|_2. \quad (6)$$

Given all inputs from the calibration dataset \mathcal{D} , the accumulated error of each neuron is used as its importance metric:

$$s_i = \mathbb{E}_{x \sim \mathcal{D}} [|h_i| \cdot \|W_{d,i}^\top\|_2], \quad (7)$$

where $|h_i|$ measures the average activation magnitude of the neuron, and $\|W_{d,i}^\top\|_2$ quantifies its amplification effect on the output. Therefore, neurons with larger scores play more critical roles, while

216 those with smaller scores can be safely removed. Unlike unstructured pruning that zeroes individual weights, our approach enforces structured pruning by removing entire neurons. Concretely, this
 217 corresponds to removing column i from W_d and row i from both W_u and W_g , thereby ensuring
 218 hardware-friendly efficiency.
 219

220 Unified models unify diverse tasks within a single architecture, and different tasks naturally activate different
 221 subsets of neurons. Figure 2 illustrates the distinct partitions activated by different tasks: the top 50% of
 222 important neurons identified from understanding and generation tasks overlap by only about 50%. This task-
 223 dependent variation reveals that redundancy is unevenly distributed: some neurons are indispensable for under-
 224 standing but less relevant for generation, while others are critical for conditioning generative processes. To
 225 account for this heterogeneity, we apply the neuron-level importance metric across tasks to more accurately
 226 identify the principal neurons.
 227

228 **4.2 TRAINING-AWARE MOE ADAPTATION**

229 **Dynamic Activation** Recognizing that the principal components vary across tasks, we next investi-
 230 giate activation patterns across different input samples. Figure 3 illustrates the activated neurons
 231 within a single layer of the generation component across multiple time steps (eight inputs, each with
 232 30 denoising steps). This reveals a dynamic activation phenomenon, where the set of active parame-
 233 ters depends on the input, consistent with the intuition behind Mixture-of-Experts (MoE). To exploit
 234 this property, we integrate an MoE mechanism into Unified models through three key steps: Expert
 235 Partition, Expert-frozen Tuning, and MoE Adaptation.
 236

237 **Expert Partition** To separate universal and task-
 238 specific capacity, we partition MLP neurons into *shared*
 239 and *routed* experts using cumulative importance across
 240 tasks. For each neuron i , let $s_i^{(t)}$ be its importance under
 241 task $t \in \mathcal{T}$. We compute the cumulative score:
 242

$$S_i = \sum_{t \in \mathcal{T}} s_i^{(t)}. \quad (8)$$

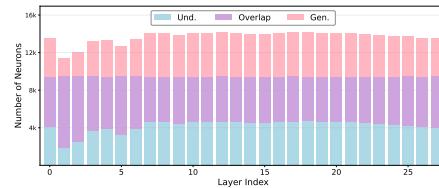
243 The neurons with the highest S_i are selected as shared
 244 experts E_s , preserving features that consistently bene-
 245 fit multiple tasks (e.g., vision–language reasoning, im-
 246 age generation, or editing). The remaining neurons
 247 $\mathcal{R} = \{i \mid i \notin E_s\}$, which are more task-dependent,
 248 are evenly allocated to routed experts $\{E_r^{(1)}, \dots, E_r^k\}$
 249 by ranked importance to ensure balanced capacity.
 250

251 **MoE Adaptation** After expert partition, we insert a router per layer to dynamically select routed
 252 experts for each input. In this case, the output of an MoE layer is formulated as follows:
 253

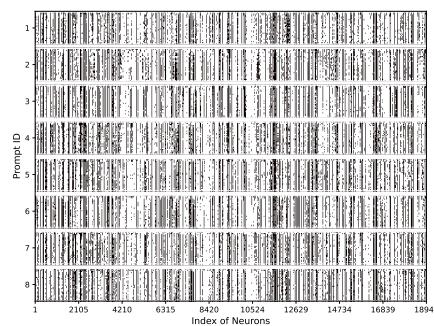
$$\text{MoE}(x) = f_{\mathcal{S}}(x) + \sum_{j \in \text{Top-}k(\mathcal{G})} \mathcal{G}_j \cdot f_{\mathcal{R}_j}(x), \quad (9)$$

254 where \mathcal{G} denotes the gating function, and $f_{\mathcal{S}}$ and $f_{\mathcal{R}}$ represent the transformations of shared and
 255 routed experts, respectively. The original MLP layer can be viewed as a special case of Equation 9,
 256 where all experts are selected. MoE adaptation adjusts the model to optimize performance with only
 257 a subset of activated parameters. To initialize this mechanism, we adopt a lightweight *expert-frozen*
 258 *tuning* stage as a cold start.
 259

260 During expert-frozen tuning, the experts remain fixed and the remaining parameters are trainable.
 261 On the one hand, expert-frozen tuning leverages the capacity of existing experts without altering
 262



263 **Figure 2: Statistical analysis of high-
 264 importance neurons**, quantifying those pre-
 265 dominantly activated in understanding tasks,
 266 in generation tasks, and jointly across both.



267 **Figure 3: Visualization of dynamic activation**
 268 **patterns within a single layer of the generation**
 269 **component, evaluated on 8 input prompts over**
 270 **30 denoising steps each.**

270 their pretrained knowledge. On the other hand, this enables the model to establish a preliminary
 271 routing policy, ensuring that experts acquire meaningful specialization before joint training. After
 272 this, we release the constraint of freezing experts to further optimize the performance.
 273

274 5 EXPERIMENTS

277 In this section, we present experiments on training-free compression and MoE adaptation for unified
 278 multimodal models.
 279

280 5.1 EXPERIMENTAL SETUP

282 **Models** We focus on several mainstream
 283 open-source Unified models, including BAGEL
 284 (Deng et al., 2025), Ming-Omni (AI et al.,
 285 2025), and Qwen-Image (Wu et al., 2025). All
 286 three adopt Qwen-Instruct (Yang et al., 2024)
 287 as the backbone for multimodal understand-
 288 ing. The key differences arise in their generation components: BAGEL employs a Mixture-of-
 289 Transformers (MoT) (Liang et al., 2025) design and reuses the Qwen-Instruct backbone for gener-
 290 ation; Qwen-Image incorporates an MMDiT-based generator (Esser et al., 2024) and Ming-Omni
 291 adopts a multi-scale DiT block architecture. Table 1 presents a detailed comparison of these models.
 292

293 For flexible expert selection, each MoE layer is configured with 64 experts, including 8 shared
 294 experts following the design choices in Dai et al. (2024); DeepSeek-AI et al. (2025). The overall
 295 activation ratio is set to 50% per layer. All intermediate layers, except the first and the last, are
 296 converted into MoE layers.
 297

298 **Datasets** For the calibration datasets used in training-free compression, we draw from multimodal
 299 understanding benchmarks (MME (Liu et al., 2023b), MMBench (Liu et al., 2023b), MMMU (Yue
 300 et al., 2023), MMVP (Tong et al., 2024)), image generation datasets (GenEval (Ghosh et al., 2023)
 301 and Wise (Niu et al., 2025)). For calibration in depth pruning or neuron partition, we use 128 training
 302 examples drawn from the same task type. For MoE adaptation, we additionally incorporate high-
 303 quality image–text pairs, complemented by a small amount of synthetic data generated by existing
 304 text-to-image models.
 305

306 5.2 UNDERSTANDING COMPONENTS ARE ROBUST THAN EXPECTED

307 Depth Reduction works in Generation Tasks but 308 Fails in Understanding

309 We begin by evaluating the
 310 impact of depth reduction. Since understanding
 311 components are less directly tied to image generation than
 312 generation components, we first examine this relatively
 313 less critical component and assess its effect on genera-
 314 tion performance. Specifically, we remove transformer
 315 blocks, MLP layers, and attention layers, respectively.
 316 As shown in Figure 4, removing entire layers in the
 317 understanding component proves effective for BAGEL
 318 and Qwen-Image, but is less effective for Ming-Omni.
 319 We attribute this difference to architectural design: Ming-Omni’s generation component is relatively
 320 smaller and thus depends more heavily on precise features encoded by the understanding component.
 321

322 On the other hand, such compression substantially deteriorates the model’s understanding capabili-
 323 ty. As shown in Table 6, removing half of the MLP layers causes performance on MME (Fu et al.,
 324 2023) to drop from 1684.8 to 304.5 in perception and from 696.7 to 127.1 in cognition. These results
 325 suggest that depth reduction fails to preserve the performance of the Unified model in both genera-
 326 tion and understanding tasks. It is also worth noting that auto-regression is an error accumulation
 327 process, leading the model to collapse within only a few steps, as illustrated in Figure 9.
 328

Table 1: Summary of evaluated unified models.

Model	Und. Component	Und. Param.	Gen. Component	Gen. Param.
Qwen-Image	VLM	7.62B	MMDiT	20.42B
Ming-Omni	MLP	17.12B	MMDiT	2.51B
BAGEL	VLM	7.62B	LLM	7.62B

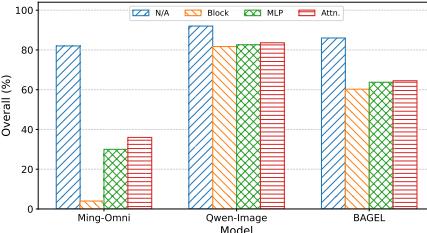


Figure 4: Comparison of the overall performance of depth reduction on the GenEval.

324
 325
 326
 Table 2: Performance on GenEval when applying Neuron Partition to the understanding component. Since only
 the **understanding component** is compressed, the reported parameter counts correspond to this part rather than
 the full model size.

Model	Sparsity	Params.	Single Obj.	Two Obj.	Counting	Colors	Position ⁺	Color Attri.	Overall↑
BAGEL	0%	7.62B	0.99	0.94	0.81	0.95	0.72	0.77	0.86
	50%	4.76B	0.94	0.63	0.62	0.77	0.47	0.34	0.63
Qwen-Image	0%	7.62B	0.99	0.98	0.91	0.94	0.80	0.89	0.92
	50%	4.76B	0.99	0.94	0.94	0.93	0.76	0.87	0.90
	70%	3.62B	0.97	0.88	0.85	0.91	0.60	0.71	0.82
Ming-Omni	0%	17.12B	0.97	0.95	0.67	0.92	0.71	0.71	0.82
	50%	8.55B	0.97	0.92	0.66	0.89	0.61	0.70	0.79
	70%	5.61B	0.96	0.81	0.58	0.86	0.49	0.56	0.71

335
 336
 337 **Neuron Partition on Understanding Components: Effective in Both Understanding and Generation** In contrast to depth reduction, we propose Neuron Reduction, which prunes channels
 338 within the MLP layers. We first evaluate the effectiveness of this approach on the understanding
 339 components. Specifically, we compress the MLP layers to the target ratios (e.g., 50%) using a small
 340 set of calibration samples. As shown in Table 2, Ming-Omni and Qwen-Image largely maintain their
 341 performance even under aggressive compression ratios (i.e., 50% and 75%), whereas BAGEL ex-
 342 hibits a greater loss in capability, likely due to its mixture-of-transformers architecture (Liang et al.,
 343 2025), in which components interact more frequently through cross-attention at every layer. Simi-
 344 larly, neuron partition can be extended to attention heads, and it remains effective for compressing
 345 understanding components in generation tasks in Appendix A.

346 Similarly, understanding components are more com-
 347 pressible for neuron partition in generation tasks
 348 than in multimodal understanding. As shown in Ta-
 349 ble 3, neuron partition consistently achieves substan-
 350 tially better performance than depth reduction across
 351 all tasks. However, because understanding com-
 352 ponents directly affect the textual outputs in these
 353 tasks, their compression ratios should be kept more
 354 moderate than for generation tasks.

355
 356 Table 3: Performance of neuron partition on un-
 357 derstanding tasks.
 358

Model	Sparse Ratio	MME-P	MME-C	MMMU	MMBench	MMVP
Ming-Omni	—	1584.3	670.4	66.7	86.73	54.6
	25%	1578.5	560.4	56.7	81.2	51.3
	50%	1269.0	317.9	51.7	81.0	46.0
BAGEL	—	1684.8	696.7	65.0	88.1	69.6
	25%	1558.1	681.7	60.1	85.7	68.7
	50%	916.5	276.1	56.7	79.21	56.0

360
 361 (a) A realistic broccoli sits upright on a plain surface.
 362 (d) A cow stands on a grassy field.

363 Figure 5: Impact of calibration data selection on multimodal generation. Each triplet shows outputs from the
 364 **unmodified model (left)**, the model after neuron partition with **image generation calibration (middle)**, and
 365 with **understanding calibration (right)**.

366 **Calibration Data affects the Activated Parameters** Neuron partition leverages calibration sam-
 367 ples to estimate neuron importance and prunes those deemed less critical, as different tasks activate
 368 different subsets of neurons. To examine how the choice of calibration samples influences the re-
 369 tained parameters and the resulting performance, we conduct an ablation study using samples from
 370 understanding tasks (i.e., MME) and generation tasks (i.e., GenEval), respectively.

371 We find the alignment between calibration data and target tasks contributes to the performance. For
 372 instance, using samples from image generation would degrade the MMbench from 79.2 to 74.8.
 373 This trend also highlights in generation results shown in Figure 5. When calibrated with image gen-
 374 eration samples (middle), the outputs remain faithful to the prompts, producing broccoli, scissors,
 375 skateboards, and cows with correct structures. In contrast, calibration with understanding samples
 376 (right) introduces distortions and mismatches.

377 This demonstrates that task-aligned calibration data yields better performance, while mismatched
 378 data degrades generation quality. The effect is particularly critical for unified models, where both
 379 input and output types vary in different combination of modalities.

378
379

5.3 DILEMMA IN COMPRESSING GENERATION COMPONENT

380
381
382
383
384
385
386

We next investigate how compression influences generation quality by applying neuron partition or depth reduction to the generation components. While neuron partition yields promising efficiency gains, compressing the generation experts introduces a clear dilemma. As illustrated in Figure 6, aggressive compression severely compromises the fidelity and coherence of generated outputs. For instance, compressed models often produce distorted shapes and unrealistic textures, deviating from the intended semantics. This is consistent with observations from depth reduction and attention head reduction in Appendix C.

387
388
389
390
391392
393
394
395

Figure 6: Qualitative comparison of baseline and compressed models. **The baseline model (left)** is tested without compression, while **the compressed model (right)** reduces the generator width by 50%. Results are shown for the prompts: “The word START” Compression leads to noticeable degradation in fine details and semantic consistency.

396
397
398

This highlights the contrasting compressibility between understanding and generation components: whereas understanding tasks remain robust under compression, generation quality is highly sensitive, limiting the extent of feasible compression.

399
400

5.4 MOE ADAPTATION

401
402
403
404
405

Given the potential performance degradation of compression (especially in the generation component) and the dynamic nature of principal activated components across tasks, static parameter partitioning fails to accurately capture the neurons required for activation. To address this limitation, we next explore MoE-based adaptation as a means to enhance performance.

406
407
408
409
410
411
412
413
414
415
416
417

Effectiveness of Expert-frozen Tuning After partitioning the experts, we first investigate the potential of existing experts by freezing them and training only the remaining parameters. This strategy mitigates catastrophic forgetting and encourages the model to learn effective expert selection while preserving pretrained knowledge. Specifically, we examine scenarios with different numbers of experts, comparing three configurations (16, 32, and 64) in Figure 7. The results show that finer-grained expert partitioning allows for more flexible activation combinations, leading to substantially lower training loss.

418
419
420
421
422
423

Prior to tuning, the model produces noisy, low-detail images that fail to capture fine-grained semantics. With expert-frozen tuning, however, we observe a steady decline in loss values in Figure 7, indicating stable convergence, and a substantial recovery in generation quality. For example, the overall GenEval score improves from 0.62 to 0.78, reflecting more coherent and visually faithful outputs. As illustrated in Figure 8, expert not only enhances image fidelity but also improves alignment between the generated content and the given instructions.

424
425
426
427
428
429

On the one hand, this demonstrates that certain subsets of parameters within the generation components, though difficult to compress, still retain the potential to produce high-quality images. On the other hand, adapting the routing mechanism alone can effectively unlock latent capacity within the experts, providing a lightweight yet powerful means of enhancing model performance under compression.

430
431

MoE Adaptation for Parameter Efficiency After the model learns to effectively select experts through Expert-frozen Tuning, we release the constraint of frozen expert parameters to further enhance performance. Beyond applying MoE adaptation solely to the generation component, we also

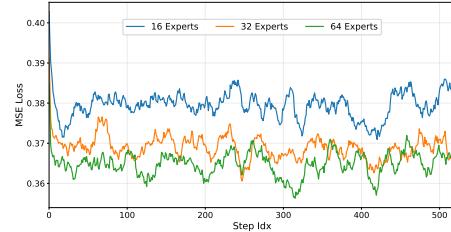


Figure 7: Expert-frozen training under different numbers of total experts.

Figure 8: Comparison of models, including baseline without modification, zero-shot from expert partition with/without shared experts (Zero w/o S and Zero w/S), trained model after Expert-Frozen Tuning (EFT) and MoE Adaptation (MoE Adapt.). The test prompts are sampled from WISE Niu et al. (2025).

explore transforming the understanding expert into an MoE structure, aiming to reduce the budget of activated parameters while preserving task effectiveness. To preserve fidelity on understanding tasks, we freeze the corresponding experts. Generation tasks, however, are more tolerant to sparsity, which enables us to apply sparse activation to the understanding experts for generation while keeping dense activation for understanding. In this case, we propose two versions of MoE adaptation: (1) applying expert partitioning and adaptation only to the generation experts, and (2) applying expert partitioning to both understanding and generation experts while keeping the understanding experts frozen and adapting generation experts only.

Unlike Expert-frozen Tuning, which only updates the router while keeping experts frozen, MoE adaptation additionally enables training of the experts themselves. This extra training step allows the experts to refine their parameters based on the routing decisions, leading to better specialization and more accurate representations. As a result, in Table 4, the model achieves higher generation quality, demonstrating that fine-tuning both the router and experts is more effective than adjusting the router alone.

Table 4: Comparative performance across progressive stages of MoE adaptation, including Expert Partition without additional training, Expert-frozen Tuning, and full MoE Adaptation. For reference, results from the dense model with neuron partition under an equivalent budget of activated parameters are also reported.

Method	Adapt. Comp.	Activated Params.	Single Obj.	Two Obj.	Counting	Colors	Position	Color Attri.	Overall \uparrow
Baseline	N/A	7.62B + 7.62B	0.99	0.94	0.81	0.95	0.72	0.77	0.86
Expert Partition			0.90	0.70	0.49	0.74	0.53	0.34	0.62
Dense Finetuning			0.97	0.88	0.75	0.91	0.67	0.71	0.82
Expert-frozen Tuning	Gen.	7.42B + 4.96B	0.99	0.94	0.62	0.93	0.69	0.54	0.78
MoE Adaptation			0.99	0.95	0.81	0.94	0.69	0.76	0.86
Expert Partition			0.69	0.18	0.23	0.45	0.10	0.05	0.28
Dense Finetuning			0.97	0.89	0.76	0.91	0.70	0.64	0.81
Expert-frozen Tuning	Und & Gen	4.96B + 4.96B	0.94	0.63	0.62	0.77	0.47	0.34	0.63
MoE Adaptation			0.99	0.96	0.78	0.95	0.70	0.72	0.85

6 CONCLUSION

Given the efficiency-oriented design of Omni-models that unify understanding and generation, we build on prior work in both training-free and training-aware compression. For training-free compression, we propose width reduction, demonstrating the high compressibility of understanding components when applied to generation tasks. Although compressing generation components presents greater challenges, our proposed MoE adaptation substantially recovers performance, enabling the trained model to match that of fully activated models. Together, these findings in training-free and training-aware compression offer valuable insights for the multimodal community.

486 ETHICS STATEMENT
487488 Our work focuses on developing efficient architectures and compression methods for multimodal
489 Omni-models. The techniques proposed are general-purpose and model-centric, without involving
490 sensitive or personally identifiable information. We intend the released code and models to be
491 used strictly for research and educational purposes, and will provide appropriate licensing terms to
492 discourage potential misuse in harmful applications such as surveillance, disinformation, or other
493 privacy-intrusive scenarios.494
495 REPRODUCIBILITY STATEMENT
496497 We ensure reproducibility through comprehensive documentation and code release. Specifically, we
498 will provide: (1) source code implementing our pruning and MoE adaptation methods; (2) scripts
499 and configuration files for replicating all main experiments; (3) fixed random seeds and hyperpa-
500 rameter settings; and (4) clear instructions for environment setup and evaluation.501 Ablation studies and multiple-seed experiments reported in the paper further demonstrate the ro-
502 bustness and reproducibility of our findings.
503504 REFERENCES
505506 Inclusion AI, Biao Gong, Cheng Zou, Chuanyang Zheng, Chunluan Zhou, Canxiang Yan, Chunx-
507 iang Jin, Chunjie Shen, Dandan Zheng, Fudong Wang, Furong Xu, GuangMing Yao, Jun Zhou,
508 Jingdong Chen, Jianxin Sun, Jiajia Liu, Jianjiang Zhu, Jun Peng, Kaixiang Ji, Kaiyou Song,
509 Kaimeng Ren, Libin Wang, Lixiang Ru, Lele Xie, Longhua Tan, Lyuxin Xue, Lan Wang, Mochen
510 Bai, Ning Gao, Pei Chen, Qingpei Guo, Qinglong Zhang, Qiang Xu, Rui Liu, Ruijie Xiong, Sirui
511 Gao, Tinghao Liu, Taisong Li, Weilong Chai, Xinyu Xiao, Xiaomei Wang, Xiaoxue Chen, Xiao
512 Lu, Xiaoyu Li, Xingning Dong, Xuzheng Yu, Yi Yuan, Yuting Gao, Yunxiao Sun, Yipeng Chen,
513 Yifei Wu, Yongjie Lyu, Zipeng Feng, Zhijiang Fang, Zhihao Qiu, Ziyuan Huang, and
514 Zhengyu He. Ming-omni: A unified multimodal model for perception and generation, 2025. URL
515 <https://arxiv.org/abs/2506.09344>.516 Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
517 Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi,
518 Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
519 with gpt-4, 2023. URL <https://arxiv.org/abs/2303.12712>.520 Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
521 Taxonomy, comparison, analysis, and recommendations. *IEEE Transactions on Pattern Analysis
522 and Machine Intelligence*, 2024.523 Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li,
524 Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong
525 Ruan, Zhifang Sui, and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specializa-
526 tion in mixture-of-experts language models, 2024. URL <https://arxiv.org/abs/2401.06066>.527 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,
528 Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models
529 with instruction tuning. *Advances in neural information processing systems*, 36:49250–49267,
530 2023.531 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
532 gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
533 Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
534 Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
535 Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
536 Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
537 Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
538 Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
539

540 Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
 541 Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
 542 Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
 543 Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shaoqing Wu, Shengfeng
 544 Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
 545 ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanja Zhao,
 546 Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue
 547 Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xi-
 548 aokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
 549 Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
 550 Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang
 551 Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
 552 Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
 553 Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu,
 554 Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
 555 Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.
 556 Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda
 557 Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao,
 558 Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
 559 Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025. URL
 560 <https://arxiv.org/abs/2412.19437>.

561 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Wei-
 562 hao Yu, Xiaonan Nie, Ziang Song, Guang Shi, and Haoqi Fan. Emerging properties in unified
 563 multimodal pretraining, 2025. URL <https://arxiv.org/abs/2505.14683>.

564 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 565 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 566 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
 567 tion at scale. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

568 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 569 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
 570 and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis. In
 571 *ICML*, 2024. URL <https://openreview.net/forum?id=FPnUhsQJ5B>.

572 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei
 573 Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, and Rongrong Ji. Mme: A comprehensive
 574 evaluation benchmark for multimodal large language models. *ArXiv*, abs/2306.13394, 2023. URL
 575 <https://api.semanticscholar.org/CorpusID:259243928>.

576 Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
 577 for evaluating text-to-image alignment. In *Thirty-seventh Conference on Neural Information Pro-
 578 cessing Systems Datasets and Benchmarks Track*, 2023. URL [m?id=Wbr51vK331](https://openreview.net/foru

 579 m?id=Wbr51vK331).

580 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 581 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 582 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
 583 renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
 584 Spataru, Baptiste Roziere, Bethany Biron, Bin Tang, Bobbie Chern, Charlotte Caucheteux,
 585 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
 586 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
 587 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
 588 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
 589 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
 590 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 591 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 592 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 593

594 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 595 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 596 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 597 so Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala,
 598 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 599 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
 600 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 601 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 602 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 603 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 604 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 605 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 606 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 607 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 608 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 609 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 610 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 611 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparth, Sheng
 612 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 613 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 614 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 615 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 616 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
 617 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 618 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuwei Wang, Yaelle Gold-
 619 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 620 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 621 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 622 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
 623 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 624 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 625 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 626 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 627 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 628 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
 629 talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 630 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
 631 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 632 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 633 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 634 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smo-
 635 thers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 636 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 637 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
 638 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 639 son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 640 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 641 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 642 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 643 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 644 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 645 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 646 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 647 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan

648 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 649 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 650 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 651 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 652 driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 653 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 654 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 655 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 656 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 657 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 658 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 659 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
 660 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 661 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 662 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
 663 mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
 664 Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
 665 jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
 666 Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
 667 Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
 668 duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
 669 <https://arxiv.org/abs/2407.21783>.

670 Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Dan Roberts. The
 671 unreasonable ineffectiveness of the deeper layers. In *The Thirteenth International Confer-
 672 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=ngmEcEer8a>.

673 Shuai He, Guoheng Sun, Zheyu Shen, and Ang Li. What matters in transformers? not all attention
 674 is needed, 2024. URL <https://arxiv.org/abs/2406.15786>.

675 Shuai He, Ang Li, and Tianlong Chen. Rethinking pruning for vision-language models: Strategies
 676 for effective sparsity. *SIGMETRICS Perform. Eval. Rev.*, 53(2):9–14, August 2025. ISSN 0163-
 677 5999. doi: 10.1145/3764944.3764948. URL <https://doi.org/10.1145/3764944.3764948>.

678 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022. URL <https://arxiv.org/abs/2207.12598>.

679 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 680 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 681 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
 682 Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

683 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 684 pre-training with frozen image encoders and large language models. In *International conference
 685 on machine learning*, pp. 19730–19742. PMLR, 2023.

686 Weixin Liang, LILI YU, Liang Luo, Srini Iyer, Ning Dong, Chunting Zhou, Gargi Ghosh, Mike
 687 Lewis, Wen tau Yih, Luke Zettlemoyer, and Xi Victoria Lin. Mixture-of-transformers: A sparse
 688 and scalable architecture for multi-modal foundation models. *Transactions on Machine Learn-
 689 ing Research*, 2025. ISSN 2835-8856. URL <https://openreview.net/forum?id=Nu6N69i8SB>.

690 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
 691 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023a. URL <https://openreview.net/forum?id=w0H2xGH1kw>.

692 Yuanzhan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike
 693 Yuan, Jiaqi Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahu Lin. Mmbench: Is your

702 multi-modal model an all-around player? *ArXiv*, abs/2307.06281, 2023b. URL <https://api.semanticscholar.org/CorpusID:259837088>.

703

704 Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng
705 Ren, Zhusu Li, Hao Yang, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, and Chong
706 Ruan. Deepseek-vl: Towards real-world vision-language understanding, 2024.

707

708 Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun
709 Zhu, and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language
710 models. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL
711 <https://openreview.net/forum?id=HtqnVSCj3q>.

712 Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
713 language models. In *Advances in Neural Information Processing Systems*, 2023.

714

715 Yuwei Niu, Munan Ning, Mengren Zheng, Weiyang Jin, Bin Lin, Peng Jin, Jiaqi Liao, Kunpeng
716 Ning, Chaoran Feng, Bin Zhu, and Li Yuan. Wise: A world knowledge-informed semantic eval-
717 uation for text-to-image generation. *arXiv preprint arXiv:2503.07265*, 2025.

718 William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023. URL <https://arxiv.org/abs/2212.09748>.

719

720 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
721 Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In Marina Meila and Tong Zhang
722 (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of
723 *Proceedings of Machine Learning Research*, pp. 8821–8831. PMLR, 18–24 Jul 2021. URL
724 <https://proceedings.mlr.press/v139/ramesh21a.html>.

725

726 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kam-
727 yar Seyed Ghasemipour, Raphael Gontijo-Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan
728 Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion mod-
729 els with deep language understanding. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
730 and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL
731 <https://openreview.net/forum?id=08Yk-n512A1>.

732

733 Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
734 for large language models. In *The Twelfth International Conference on Learning Representations*,
735 2024. URL <https://openreview.net/forum?id=PxoFut3dWW>.

736

737 Yi-Lin Sung, Jaehong Yoon, and Mohit Bansal. ECoFLap: Efficient coarse-to-fine layer-wise prun-
738 ing for vision-language models. In *The Twelfth International Conference on Learning Represen-
739 tations*, 2024. URL <https://openreview.net/forum?id=iIT02bAKzv>.

740

741 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
742 shut? exploring the visual shortcomings of multimodal llms, 2024.

743

744 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
745 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
746 mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
747 language models, 2023a. URL <https://arxiv.org/abs/2302.13971>.

748

749 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
750 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
751 Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
752 Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
753 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
754 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
755 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b. URL <https://arxiv.org/abs/2307.09288>.

756 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
 757 Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
 758 Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large lan-
 759 guage models. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL
 760 <https://openreview.net/forum?id=yzkSU5zdwD>. Survey Certification.

761 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng ming Yin, Shuai
 762 Bai, Xiao Xu, Yilei Chen, Yuxiang Chen, Zecheng Tang, Zekai Zhang, Zhengyi Wang, An Yang,
 763 Bowen Yu, Chen Cheng, Dayiheng Liu, Deqing Li, Hang Zhang, Hao Meng, Hu Wei, Jingyuan
 764 Ni, Kai Chen, Kuan Cao, Liang Peng, Lin Qu, Minggang Wu, Peng Wang, Shuting Yu, Tingkun
 765 Wen, Wensen Feng, Xiaoxiao Xu, Yi Wang, Yichang Zhang, Yongqiang Zhu, Yujia Wu, Yuxuan
 766 Cai, and Zenan Liu. Qwen-image technical report, 2025. URL <https://arxiv.org/abs/2508.02324>.

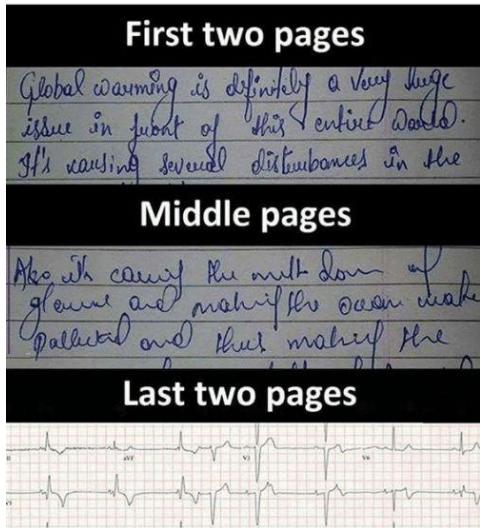
767 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 768 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
 769 Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
 770 Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
 771 Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
 772 Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
 773 Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
 774 Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
 775 technical report. *arXiv preprint arXiv:2407.10671*, 2024.

776 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
 777 Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun,
 778 Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and
 779 Wenhui Chen. Mmmu: A massive multi-discipline multimodal understanding and reasoning
 780 benchmark for expert agi. *2024 IEEE/CVF Conference on Computer Vision and Pattern Recog-
 781 nition (CVPR)*, pp. 9556–9567, 2023. URL <https://api.semanticscholar.org/CorpusID:265466525>.

782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

My Handwriting In Exams



Meme: "My Handwriting In Exams"

Figure 9: Comparison of neuron partition and depth reduction on a toy example under a 50% compression ratio. The model with fewer neurons per layer still answers the question reasonably well, whereas the model with reduced depth collapses and degenerates into repeating a single word.

A ATTENTION HEAD PARTITION

While our main focus is width reduction in MLP layers, since they account for most of the parameters, our compression metric can be seamlessly extended to attention by computing the importance scores of attention heads. Attention Head Partition still works for understanding components as shown in Table 5.

Table 5: Performance of attention head partition at a sparsity ratio of 50% per layer.

Model	Compressed Layers	Single Obj.	Two Obj.	Counting	Colors	Position	Color Attri.	Overall↑
BAGEL	N/A	0.99	0.94	0.81	0.95	0.72	0.77	0.86
	3-27	0.97	0.87	0.66	0.88	0.33	0.31	0.67
	4-27	0.98	0.91	0.72	0.89	0.41	0.40	0.72

B DILEMMA OF DEPTH REDUCTION ON UNDERSTANDING TASKS

While depth reduction has limited impact on generation tasks when applied to the understanding component, it fails on multimodal understanding tasks. Figure 9 shows that the reduced-depth model cannot generate continuous tokens in the answer. Nevertheless, the initial tokens remain reasonable, consistent with the role of the understanding component in generation tasks, which primarily performs prefilling and provides embeddings rather than full autoregressive decoding.

Question: Can someone explain what's funny about this meme?

Neuron Partition:

The humor in this meme comes from the exaggerated change in handwriting style as the exam progresses. At the beginning, the handwriting is clear and legible, indicating a confident and well-prepared student. However, as the exam continues, the handwriting becomes increasingly difficult to read, suggesting that the student is becoming more anxious and less focused.

Depth Reduction:

The comedic resurgence biting meme portrays a comedic portrayal portraying a trope portraying idioms exposing exposing exposing exposing injuring injuring injuring injuring injuring injuring injuring injuring injuring.....

Table 6: Performance of depth reduction on understanding tasks.

Model	Sparsity	MME-P	MME-C	MMMU	MMBench	MMVP
Ming-Omni	—	1584.3	670.4	66.7	86.7	54.6
	50%	1197.2	308.2	51.7	81.2	46.0
BAGEL	—	1684.8	696.7	65.0	88.1	69.6
	50%	304.5	127.1	16.7	18.6	23.1

864 C MORE RESULTS OF COMPRESSING GENERATION COMPONENT
865

866 Generation components are more sensitive to compression than understanding components. In addition
867 to the results in Figure 6, we conduct experiments with depth reduction (Figure 10) and find that
868 removing entire layers has a catastrophic effect on the output images. This suggests that preserving
869 depth while compressing in width is a more effective strategy.
870

871 On the other hand, compressing the attention layers
872 leads to substantial degradation in both depth and width settings. As shown in Figure 11, applying
873 more than a 10% reduction results in noticeable performance drops.
874

875 Figure 10: Depth reduction applied to MLP layers
876 in the generation component. Figures are shown
877 with decreasing numbers of removed layers: 14
878 (50%), 7 (25%), 4 (14%), and 0.
879

880 Depth reduction achieved by removing 7, 4, 2, or 0 layers.
881

882 Figure 11: Compression of generation components through pruning of attention layers and heads.
883

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917