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ABSTRACT

Large-scale multimodal models have achieved remarkable progress in both un-
derstanding and generation. Traditionally, these tasks were studied in isolation,
resulting in separate architectures. Recent efforts instead pursue unified multi-
modal models that combine heterogeneous components to support both capabili-
ties within a single framework. However, such models introduce substantial chal-
lenges related to architectural redundancy, compute allocation, and efficient scal-
ing. In this work, we conduct a systematic analysis of unified multimodal model
components using training-free pruning as a probing methodology, considering
both depth pruning and width reduction. Our study reveals that the understanding
component, although essential for multimodal reasoning, exhibits notable com-
pressibility in generation tasks. In contrast, the generation components are highly
sensitive to compression, with performance degrading sharply even under mod-
erate ratios of depth or width reduction. To address this limitation, we propose
a Mixture-of-Experts (MoE) Adaptation, inspired by the dynamic activation pat-
terns observed in hidden neurons. This approach partitions the generation module
into multiple experts and enables sparse activation to restore generation quality.
We first demonstrate the potential of sparse activation in generation components,
and then show that a fully trainable adaptation further enhances performance. As
a result, the adapted BAGEL model achieves performance comparable to the full
model while activating only about half of the parameters.

1 INTRODUCTION

Large-scale multimodal models have recently achieved remarkable progress in both multimodal un-
derstanding (Liu et al., 2023a; Li et al., 2023; Dai et al., 2023; Lu et al., 2024; 2023) and generation
(Ramesh et al., 2021; Saharia et al., 2022; Peebles & Xie, 2023). Traditionally, these two tasks were
studied in isolation, leading to distinct research trajectories and model families: understanding-
oriented architectures for vision–language reasoning with textual outputs, and generative models
designed for image synthesis. While effective for task-specific purposes, this separation stands in
contrast to the broader pursuit of Artificial General Intelligence (AGI) (Wei et al., 2022; Bubeck
et al., 2023), where a single model is expected to both interpret and generate across modalities in a
unified manner.

Motivated by this vision, recent research has shifted toward Unified multimodal models that unify
multimodal understanding and generation within a single framework (Deng et al., 2025; Liang et al.,
2025; AI et al., 2025). By integrating heterogeneous components such as vision encoders (Doso-
vitskiy et al., 2021), language backbones (Grattafiori et al., 2024; Yang et al., 2024), and image
or audio decoders Peebles & Xie (2023); AI et al. (2025), Unified multimodal models can seam-
lessly support reasoning tasks and generative tasks in the same system. This paradigm promises
more general-purpose multimodal intelligence and has already demonstrated encouraging capabili-
ties across diverse benchmarks.

However, this unification comes at a substantial cost in efficiency. Unlike unimodal or task-specific
multimodal models (Peebles & Xie, 2023; Liu et al., 2023a), Unified multimodal models must sup-
port outputs of different modalities while sharing internal components across tasks. This creates
several inefficiencies: 1) architectural redundancy: shared modules often house parameters that
are only useful for a subset of tasks, leading to under-utilized capacity; 2) compute allocation chal-
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lenges: the same backbone must simultaneously support reasoning-oriented token processing and
high-fidelity generation, yet the compute demands of these tasks differ significantly; and 3) scaling
uncertainty: as models grow larger, it remains unclear how best to distribute depth and width across
understanding versus generation pathways to maximize performance per parameter.

In this work, we conduct a systematic investigation of the components of Unified multimodal models
and uncover substantial redundancy from multiple perspectives. To this end, we employ training-
free pruning as a probing methodology, examining via depth pruning (Gromov et al., 2025) (e.g.,
dropping transformer blocks or attention layers) and neuron partition (e.g., compressing structured
hidden neurons). We begin by analyzing the understanding components, which are the shared mod-
ules responsible for processing inputs across different modalities, since they form the backbone of
multimodal representation learning and often serve as the foundation for downstream reasoning and
generation. Our results show that these understanding components exhibit notable compressibility
in multimodal generation tasks, where pruned models can still sustain competitive performance.
Furthermore, we observe clear task-specific activation patterns: understanding and generation tasks
predominantly activate different model partitions, underscoring the necessity of dynamic pruning
for different testing tasks.

However, when compressing the generation components (e.g., image generators), we observe that
the quality of generated images drops drastically after either depth pruning or neuron partition. To
address this issue, we propose a Mixture-of-Experts (MoE) Adaptation, inspired by the dynamic
activation patterns observed across different prompts and diffusion steps. In this approach, neurons
in the MLP layers are partitioned into experts, allowing the model to selectively activate subsets of
neurons and thereby restore generation quality. We first validate this idea with Expert-Frozen Tuning
(EFT), where experts remain frozen while the router and other parameters are optimized to align with
sparse activation. This stage already recovers a substantial portion of the lost generation capability.
Building on this, we further train the MoE model in a fully end-to-end manner, which delivers
additional improvements. As a result, the adapted BAGEL model (Deng et al., 2025) achieves
performance comparable to the full model while activating only about half of the neurons.

2 RELATED WORKS

Unification of Understanding and Generation Traditionally, multimodal understanding and
generation were studied as separate tasks, which in turn gave rise to two distinct streams of mul-
timodal model architectures (Li et al., 2023; Dai et al., 2023). On the one hand, multimodal large
language models (MLLMs) extend language models to handle input tokens from multiple modal-
ities. For instance, LLaVA (Liu et al., 2023a) builds upon the LLaMA backbone (Touvron et al.,
2023a) by incorporating both text and image tokens, and subsequent multimodal training substan-
tially enhances its ability to perform vision–language understanding tasks such as visual question
answering. On the other hand, multimodal generative models typically employ a text encoder to
convert natural language into embeddings, which then serve as conditional signals for image gen-
erators. Recent advances in diffusion-based architectures, such as DiT (Diffusion Transformers)
(Peebles & Xie, 2023), demonstrate that transformer backbones can effectively model the denois-
ing process, while techniques like classifier-free guidance (CFG) (Ho & Salimans, 2022) further
improve controllability and fidelity in conditional image synthesis. Despite their separate origins,
more recent research has increasingly aimed to unify these two paradigms within a single architec-
ture, enabling models to seamlessly perform both multimodal understanding and generation. For
instance, BAGEL (Deng et al., 2025) adopts an interleaved multimodal training paradigm coupled
with a mixture-of-transformers design (Liang et al., 2025) that separates understanding and gener-
ation modules, while Ming-Omni (AI et al., 2025) employs a Mixture-of-Experts (MoE) backbone
with dedicated routing mechanisms and modality-specific decoders to integrate text, vision, audio,
and video within a single unified framework.

Model Compression toward Parameter Efficiency Despite the remarkable advances of large
language models, the continual growth in their size has introduced substantial redundancy and raised
critical challenges for scalability. Network pruning (Cheng et al., 2024) has emerged as an effec-
tive technique to identify and alleviate architectural redundancy. For instance, Gromov et al. (2025)
demonstrated that many deep layers in large language models are relatively unimportant, and that
comparable performance can still be maintained after removing these redundant layers. He et al.
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(2024) identified redundancy within attention layers, showing that a large proportion of them can be
removed without significantly affecting performance on textual question answering tasks. While the
uni-modal compression techniques can be transferred to Vision-Language models that take multi-
modal inputs and output the language responses via language models (Sung et al., 2024; He et al.,
2025), it is unclear whether such methods still work in Unified models, We take the prior efforts to
systematically explore and exploit redundancy in multimodal models, where heterogeneous compo-
nents play distinct roles. This perspective enables us to design compression strategies better aligned
with the unified nature of multimodal understanding and generation.

3 OMNI MODELS UNIFYING UNDERSTANDING AND GENERATION

Unified models are large-scale multimodal architectures that aim to unify understanding and gen-
eration within a single framework. Unlike traditional multimodal systems, which either focus on
reasoning (e.g., vision–language question answering) or on generation (e.g., text-to-image or text-to-
speech synthesis), Unified models are designed to support both modalities simultaneously, thereby
moving closer to the goal of Artificial General Intelligence (AGI).

Given an Unified model, let x denote the multimodal input tokens (e.g., text, image, or audio), and
y the target output (e.g., text or image).

Understanding. For understanding tasks, the model predicts textual outputs in an auto-regressive
manner:

p(yund | x; θund) =

T∏
t=1

p(yt | y<t,x; θund) , (1)

where θund denotes the parameters of the understanding component, responsible for both multimodal
feature extraction and language modeling.

Generation. For generation tasks, the Unified model leverages the understanding component to
process an instructional input xinst (e.g., text prompt and reference images) , producing conditional
features fund(xinst; θund). The generative component then synthesizes the output ygen, typically con-
ditioned on both this representation and an additional generative input (e.g., random noise z in
diffusion models or initial tokens in auto-regressive decoding):

ygen ∼ p(y | fund(xinst; θund), z; θgen) , (2)

where θgen are the parameters of the generative component.

Overall, Unified models unify multimodal understanding and generation through a shared under-
standing component θund, whose outputs serve either as predictions for understanding tasks or as
instructional signals for non-text generation. For modalities such as images or audio, this shared
component is further coupled with modality-specific generators. Given that this unification inte-
grates heterogeneous components with distinct functional roles, we next conduct a detailed analysis
of the understanding and generation parts separately.

4 METHODOLOGY

4.1 TRAINING-FREE COMPRESSION STRATEGIES

Large language models, a cornerstone of Unified model architectures, have been widely observed to
contain significant redundancy across both depth (Gromov et al., 2025) and width dimensions (Ma
et al., 2023). We next investigate how such redundancy manifests within Unified models.

Layer Dropping for Depth Pruning Transformer based large language models are stacked by
multiple layers and scaling the depth of layers serves an effective way to enhance the performance.
However, the depth also reflect the redundancy. Following Gromov et al. (2025); He et al. (2024),
we measure the layer-wise importance via:

Sl = Cosine Sim(xl,yl), (3)
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Figure 1: Overview of the proposed framework for unified multimodal model compression. The model is
composed of an understanding component that processes multimodal inputs into embeddings and language
responses, and a generation component that produces non-text outputs. We introduce two complementary
strategies: Neuron Partition, which separates neurons into subsets and filter the neurons activated for the given
task (Gen. in the figure); and MoE Adaptation, which dynamic activate neurons which have been partitioned
into shared and routed experts managed by a router.

where xl and yl correspond to the input and output of the l-th layer, respectively. The similarity pro-
vides a measure of redundancy, with higher values implying that the layer contributes only marginal
transformation. The metric has been shown to perform effectively in unimodal LLMs such as Mis-
tral (Jiang et al., 2023) and LLaMA (Touvron et al., 2023b; Grattafiori et al., 2024). We next extend
this evaluation to Unified models.

Width Reduction via Neuron Partition In addition to depth, scaling the width, particularly
within MLP layers, has become a prevalent strategy for enhancing model capability. In general,
an MLP layer expands the input from dimension d to dm through an up-projection and a gated
projection, applies a nonlinear transformation, and then projects it back to dimension d via a down-
projection. Here, m denotes the expansion multiplier, which increases hidden dimensionality to
enhance model capacity but simultaneously introduces a substantial number of parameters. Given
that MLP layers are expanded to dm hidden neurons, we further decompose them at the neuron level
into important and less important counterparts.

To measure neuron importance, we draw inspiration from Wanda (Sun et al., 2024), which leverages
both weights and activations as pruning metrics, and extend it from an unstructured to a structured
neuron-level criterion. Given an input x ∈ Rs×d, in a Gate-Up-Down MLP, the hidden activations
h ∈ Rs×dm and output y ∈ Rs×d can be written as:

h =
(
SiLU(xW⊤

g )
)
⊙ (xW⊤

u ), y = hW⊤
d , (4)

where Wg,Wu ∈ Rmd×d are the up-projection matrix and gate-projection-matrix, h ∈ Rn×md is
the gated activation, Wd ∈ Rd×md is the down-projection matrix. The hidden activations consist of
md neurons, and the contribution of the i-th neuron to the final output is:

∆yi = hiW
⊤
d,i, (5)

with Wd,i being the i-th column vector of Wd. If the i-th neuron is pruned, the induced output error
norm can be approximated by:

∥∆y∥2 ≈ ∥hiW
⊤
d,i∥2. (6)

Given all inputs from the calibration dataset D, the accumulated error of each neuron is used as its
importance metric:

si = Ex∼D
[
|hi| · ∥W⊤

d,i∥2
]
, (7)

where |hi| measures the average activation magnitude of the neuron, and ∥Wd,i∥2 quantifies its am-
plification effect on the output. Therefore, neurons with larger scores play more critical roles, while
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those with smaller scores can be safely removed. Unlike unstructured pruning that zeroes individ-
ual weights, our approach enforces structured pruning by removing entire neurons, Concretely, this
corresponds to removing column i from Wd and row i from both Wu and Wg , thereby ensuring
hardware-friendly efficiency.
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Figure 2: Statistical analysis of high-
importance neurons, quantifying those pre-
dominantly activated in understanding tasks,
in generation tasks, and jointly across both.

Unified models unify diverse tasks within a single ar-
chitecture, and different tasks naturally activate differ-
ent subsets of neurons. Figure 2 illustrates the distinct
partitions activated by different tasks: the top 50% of
important neurons identified from understanding and
generation tasks overlap by only about 50%. This task-
dependent variation reveals that redundancy is unevenly
distributed: some neurons are indispensable for under-
standing but less relevant for generation, while others
are critical for conditioning generative processes. To
account for this heterogeneity, we apply the neuron-
level importance metric across tasks to more accurately
identify the principal neurons.

4.2 TRAINING-AWARE MOE ADAPTATION

Dynamic Activation Recognizing that the principal components vary across tasks, we next inves-
tigate activation patterns across different input samples. Figure 3 illustrates the activated neurons
within a single layer of the generation component across multiple time steps (eight inputs, each with
30 denoising steps). This reveals a dynamic activation phenomenon, where the set of active parame-
ters depends on the input, consistent with the intuition behind Mixture-of-Experts (MoE). To exploit
this property, we integrate an MoE mechanism into Unified models through three key steps: Expert
Partition, Expert-frozen Tuning, and MoE Adaptation.
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Figure 3: Visualization of dynamic activation
patterns within a single layer of the generation
component, evaluated on 8 input prompts over
30 denoising steps each.

Expert Partition To separate universal and task-
specific capacity, we partition MLP neurons into shared
and routed experts using cumulative importance across
tasks. For each neuron i, let s(t)i be its importance under
task t ∈ T . We compute the cumulative score:

Si =
∑
t∈T

s
(t)
i . (8)

The neurons with the highest Si are selected as shared
experts Es, preserving features that consistently bene-
fit multiple tasks (e.g., vision–language reasoning, im-
age generation, or editing). The remaining neurons
R = {i | i /∈ Es}, which are more task-dependent,
are evenly allocated to routed experts {E(1)

r , . . . , Ek
r }

by ranked importance to ensure balanced capacity.

MoE Adaptation After expert partition, we insert a router per layer to dynamically select routed
experts for each input. In this case, the output of an MoE layer is formulated as follows:

MoE(x) = fS(x) +
∑

j∈Top-k(G)

Gj · fRj (x), (9)

where G denotes the gating function, and fS and fR represent the transformations of shared and
routed experts, respectively. The original MLP layer can be viewed as a special case of Equation 9,
where all experts are selected. MoE adaptation adjusts the model to optimize performance with only
a subset of activated parameters. To initialize this mechanism, we adopt a lightweight expert-frozen
tuning stage as a cold start.

During expert-frozen tuning, the experts remain fixed and the remaining parameters are trainable.
On the one hand, expert-frozen tuning leverages the capacity of existing experts without altering
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their pretrained knowledge. On the other hand, this enables the model to establish a preliminary
routing policy, ensuring that experts acquire meaningful specialization before joint training. After
this, we release the constraint of freezing experts to further optimize the performance.

5 EXPERIMENTS

In this section, we present experiments on training-free compression and MoE adaptation for unified
multimodal models.

5.1 EXPERIMENTAL SETUP

Table 1: Summary of evaluated unified models.

Model Und. Component Und. Param. Gen. Component Gen. Param.

Qwen-Image VLM 7.62B MMDiT 20.42B
Ming-Omni MLP 17.12B MMDiT 2.51B
BAGEL VLM 7.62B LLM 7.62B

Models We focus on several mainstream
open-source Unified models, including BAGEL
(Deng et al., 2025), Ming-Omni (AI et al.,
2025), and Qwen-Image (Wu et al., 2025). All
three adopt Qwen-Instruct (Yang et al., 2024)
as the backbone for multimodal understand-
ing. The key differences arise in their generation components: BAGEL employs a Mixture-of-
Transformers (MoT) (Liang et al., 2025) design and reuses the Qwen-Instruct backbone for gener-
ation; Qwen-Image incorporates an MMDiT-based generator (Esser et al., 2024) and Ming-Omni
adopts a multi-scale DiT block architecture. Table 1 presents a detailed comparison of these models.

For flexible expert selection, each MoE layer is configured with 64 experts, including 8 shared
experts following the design choices in Dai et al. (2024); DeepSeek-AI et al. (2025). The overall
activation ratio is set to 50% per layer. All intermediate layers, except the first and the last, are
converted into MoE layers.

Datasets For the calibration datasets used in training-free compression, we draw from multimodal
understanding benchmarks (MME (Liu et al., 2023b), MMBench (Liu et al., 2023b), MMMU (Yue
et al., 2023), MMVP (Tong et al., 2024)), image generation datasets (GenEval (Ghosh et al., 2023)
and Wise (Niu et al., 2025)). For calibration in depth pruning or neuron partition, we use 128 training
examples drawn from the same task type. For MoE adaptation, we additionally incorporate high-
quality image–text pairs, complemented by a small amount of synthetic data generated by existing
text-to-image models.

5.2 UNDERSTANDING COMPONENTS ARE ROBUST THAN EXPECTED

Ming-Omni Qwen-Image BAGEL
Model
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20
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80

100
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)

N/A Block MLP Attn.

Figure 4: Comparison of the overall perfor-
mance of depth reduction on the GenEval.

Depth Reduction works in Generation Tasks but
Fails in Understanding We begin by evaluating the
impact of depth reduction. Since understanding com-
ponents are less directly tied to image generation than
generation components, we first examine this relatively
less critical component and assess its effect on genera-
tion performance. Specifically, we remove transformer
blocks, MLP layers, and attention layers, respectively.
As shown in Figure 4, removing entire layers in the
understanding component proves effective for BAGEL
and Qwen-Image, but is less effective for Ming-Omni.
We attribute this difference to architectural design: Ming-Omni’s generation component is relatively
smaller and thus depends more heavily on precise features encoded by the understanding component.

On the other hand, such compression substantially deteriorates the model’s understanding capabil-
ity. As shown in Table 6, removing half of the MLP layers causes performance on MME (Fu et al.,
2023) to drop from 1684.8 to 304.5 in perception and from 696.7 to 127.1 in cognition. These results
suggest that depth reduction fails to preserve the performance of the Unified model in both gener-
ation and understanding tasks. It is also worth noting that auto-regression is an error accumulation
process, leading the model to collapse within only a few steps, as illustrated in Figure 9.
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Table 2: Performance on GenEval when applying Neuron Partition to the understanding component. Since only
the understanding component is compressed, the reported parameter counts correspond to this part rather than
the full model size.

Model Sparsity Params. Single Obj. Two Obj. Counting Colors Position‘ Color Attri. Overall↑

BAGEL 0% 7.62B 0.99 0.94 0.81 0.95 0.72 0.77 0.86
50% 4.76B 0.94 0.63 0.62 0.77 0.47 0.34 0.63

Qwen-Image
0% 7.62B 0.99 0.98 0.91 0.94 0.80 0.89 0.92
50% 4.76B 0.99 0.94 0.94 0.93 0.76 0.87 0.90
70% 3.62B 0.97 0.88 0.85 0.91 0.60 0.71 0.82

Ming-Omni
0% 17.12B 0.97 0.95 0.67 0.92 0.71 0.71 0.82
50% 8.55B 0.97 0.92 0.66 0.89 0.61 0.70 0.79
70% 5.61B 0.96 0.81 0.58 0.86 0.49 0.56 0.71

Neuron Partition on Understanding Components: Effective in Both Understanding and Gen-
eration In contrast to depth reduction, we propose Neuron Reduction, which prunes channels
within the MLP layers. We first evaluate the effectiveness of this approach on the understanding
components. Specifically, we compress the MLP layers to the target ratios (e.g., 50%) using a small
set of calibration samples. As shown in Table 2, Ming-Omni and Qwen-Image largely maintain their
performance even under aggressive compression ratios (i.e., 50% and 75%), whereas BAGEL ex-
hibits a greater loss in capability, likely due to its mixture-of-transformers architecture (Liang et al.,
2025), in which components interact more frequently through cross-attention at every layer. Simi-
larly, neuron partition can be extended to attention heads, and it remains effective for compressing
understanding components in generation tasks in Appendix A.

Table 3: Performance of neuron partition on un-
derstanding tasks.

Model Sparse Ratio MME-P MME-C MMMU MMBench MMVP

Ming-Omni
– 1584.3 670.4 66.7 86.73 54.6

25% 1578.5 560.4 56.7 81.2 51.3
50% 1269.0 317.9 51.7 81.0 46.0

BAGEL
– 1684.8 696.7 65.0 88.1 69.6

25% 1558.1 681.7 60.1 85.7 68.7
50% 916.5 276.1 56.7 79.21 56.0

Similarly, understanding components are more com-
pressible for neuron partition in generation tasks
than in multimodal understanding. As shown in Ta-
ble 3, neuron partition consistently achieves substan-
tially better performance than depth reduction across
all tasks. However, because understanding com-
ponents directly affect the textual outputs in these
tasks, their compression ratios should be kept more
moderate than for generation tasks.

(a) A realistic broccoli sits upright on a plain surface. (d) A cow stands on a grassy field.

Figure 5: Impact of calibration data selection on multimodal generation. Each triplet shows outputs from the
unmodified model (left), the model after neuron partition with image generation calibration (middle), and
with understanding calibration (right).

Calibration Data affects the Activated Parameters Neuron partition leverages calibration sam-
ples to estimate neuron importance and prunes those deemed less critical, as different tasks activate
different subsets of neurons. To examine how the choice of calibration samples influences the re-
tained parameters and the resulting performance, we conduct an ablation study using samples from
understanding tasks (i.e., MME) and generation tasks (i.e., GenEval), respectively.

We find the alignment between calibration data and target tasks contributes to the performance. For
instance, using samples from image generation would degrade the MMbench from 79.2 to 74.8.
This trend also highlights in generation results shown in Figure 5. When calibrated with image gen-
eration samples (middle), the outputs remain faithful to the prompts, producing broccoli, scissors,
skateboards, and cows with correct structures. In contrast, calibration with understanding samples
(right) introduces distortions and mismatches.

This demonstrates that task-aligned calibration data yields better performance, while mismatched
data degrades generation quality. The effect is particularly critical for unified models, where both
input and output types vary in different combination of modalities.
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5.3 DILEMMA IN COMPRESSING GENERATION COMPONENT

We next investigate how compression influences generation quality by applying neuron partition or
depth reduction to the generation components. While neuron partition yields promising efficiency
gains, compressing the generation experts introduces a clear dilemma. As illustrated in Figure 6,
aggressive compression severely compromises the fidelity and coherence of generated outputs. For
instance, compressed models often produce distorted shapes and unrealistic textures, deviating from
the intended semantics. This is consistent with observations from depth reduction and attention head
reduction in Appendix C.

Figure 6: Qualitative comparison of baseline and compressed models. The baseline model (left) is tested
without compression, while the compressed model (right) reduces the generator width by 50%. Results are
shown for the prompts: “The word START” Compression leads to noticeable degradation in fine details and
semantic consistency.

This highlights the contrasting compressibility between understanding and generation components:
whereas understanding tasks remain robust under compression, generation quality is highly sensi-
tive, limiting the extent of feasible compression.

5.4 MOE ADAPTATION

Given the potential performance degradation of compression (especially in the generation compo-
nent) and the dynamic nature of principal activated components across tasks, static parameter parti-
tioning fails to accurately capture the neurons required for activation. To address this limitation, we
next explore MoE-based adaptation as a means to enhance performance.
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Figure 7: Expert-frozen training under differ-
ent numbers of total experts.

Effectiveness of Expert-frozen Tuning After parti-
tioning the experts, we first investigate the potential of
existing experts by freezing them and training only the
remaining parameters. This strategy mitigates catas-
trophic forgetting and encourages the model to learn
effective expert selection while preserving pretrained
knowledge. Specifically, we examine scenarios with
different numbers of experts, comparing three config-
urations (16, 32, and 64) in Figure 7. The results
show that finer-grained expert partitioning allows for
more flexible activation combinations, leading to sub-
stantially lower training loss.

Prior to tuning, the model produces noisy, low-detail images that fail to capture fine-grained se-
mantics. With expert-fronzen tuning, however, we observe a steady decline in loss values in Figure
7, indicating stable convergence, and a substantial recovery in generation quality. For example, the
overall GenEval score improves from 0.62 to 0.78, reflecting more coherent and visually faithful out-
puts. As illustrated in Figure 8, expert not only enhances image fidelity but also improves alignment
between the generated content and the given instructions.

On the one hand, this demonstrates that certain subsets of parameters within the generation com-
ponents, though difficult to compress, still retain the potential to produce high-quality images. On
the other hand, adapting the routing mechanism alone can effectively unlock latent capacity within
the experts, providing a lightweight yet powerful means of enhancing model performance under
compression.

MoE Adaptation for Parameter Efficiency After the model learns to effectively select experts
through Expert-fronzen Tuning, we release the constraint of frozen expert parameters to further en-
hance performance. Beyond applying MoE adaptation solely to the generation component, we also
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Prompts Baseline Zero w/o S Zero w/ S EFT MoE Adapt.

Traditional activity
during Easter in
Western countries.

A string of
decorative lights
hanging from a
balcony.

A famous flower
that symbolizes
wealth in China.

Figure 8: Comparison of models, including baseline without modification, zeroshot from expert partition
with/without shared experts (Zero w/o S and Zero w/S), trained model after Expert-Frozen Tuning (EFT) and
MoE Adapation (MoE Adapt.). The test prompts are sampled from WISE Niu et al. (2025).
explore transforming the understanding expert into an MoE structure, aiming to reduce the budget
of activated parameters while preserving task effectiveness. To preserve fidelity on understanding
tasks, we freeze the corresponding experts. Generation tasks, however, are more tolerant to sparsity,
which enables us to apply sparse activation to the understanding experts for generation while keep-
ing dense activation for understanding. In this case, we propose two versions of MoE adaptation: (1)
applying expert partitioning and adaptation only to the generation experts, and (2) applying expert
partitioning to both understanding and generation experts while keeping the understanding experts
frozen and adapting generation experts only.

Unlike Expert-fronzen Tuning, which only updates the router while keeping experts frozen, MoE
adaptation additionally enables training of the experts themselves. This extra training step allows
the experts to refine their parameters based on the routing decisions, leading to better specialization
and more accurate representations. As a result, in Table 4, the model achieves higher generation
quality, demonstrating that fine-tuning both the router and experts is more effective than adjusting
the router alone.
Table 4: Comparative performance across progressive stages of MoE adaptation, including Expert Partition
without additional training, Expert-frozen Tuning, and full MoE Adaptation. For reference, results from the
dense model with neuron partition under an equivalent budget of activated parameters are also reported.

Method Adapt. Comp. Activated Params. Single Obj. Two Obj. Counting Colors Position Color Attri. Overall↑
Baseline N/A 7.62B + 7.62B 0.99 0.94 0.81 0.95 0.72 0.77 0.86

Expert Partition

Gen. 7.42B + 4.96B

0.90 0.70 0.49 0.74 0.53 0.34 0.62
Dense Finetuning 0.97 0.88 0.75 0.91 0.67 0.71 0.82
Expert-frozen Tuning 0.99 0.94 0.62 0.93 0.69 0.54 0.78
MoE Adaptation 0.99 0.95 0.81 0.94 0.69 0.76 0.86

Expert Partition

Und & Gen 4.96B + 4.96B

0.69 0.18 0.23 0.45 0.10 0.05 0.28
Dense Finetuning 0.97 0.89 0.76 0.91 0.70 0.64 0.81
Expert-frozen Tuning 0.94 0.63 0.62 0.77 0.47 0.34 0.63
MoE Adaptation 0.99 0.96 0.78 0.95 0.70 0.72 0.85

6 CONCLUSION

Given the efficiency-oriented design of Omni-models that unify understanding and generation, we
build on prior work in both training-free and training-aware compression. For training-free compres-
sion, we propose width reduction, demonstrating the high compressibility of understanding compo-
nents when applied to generation tasks. Although compressing generation components presents
greater challenges, our proposed MoE adaptation substantially recovers performance, enabling the
trained model to match that of fully activated models. Together, these findings in training-free and
training-aware compression offer valuable insights for the multimodal community.
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ETHICS STATEMENT

Our work focuses on developing efficient architectures and compression methods for multimodal
Omni-models. The techniques proposed are general-purpose and model-centric, without involv-
ing sensitive or personally identifiable information. We intend the released code and models to be
used strictly for research and educational purposes, and will provide appropriate licensing terms to
discourage potential misuse in harmful applications such as surveillance, disinformation, or other
privacy-intrusive scenarios.

REPRODUCIBILITY STATEMENT

We ensure reproducibility through comprehensive documentation and code release. Specifically, we
will provide: (1) source code implementing our pruning and MoE adaptation methods; (2) scripts
and configuration files for replicating all main experiments; (3) fixed random seeds and hyperpa-
rameter settings; and (4) clear instructions for environment setup and evaluation.

Ablation studies and multiple-seed experiments reported in the paper further demonstrate the ro-
bustness and reproducibility of our findings.
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Meme: “My Handwriting In Exams”

Question: Can someone explain what’s funny
about this meme?

Neuron Partition:
The humor in this meme comes from the
exaggerated change in handwriting style as the
exam progresses. At the beginning, the
handwriting is clear and legible, indicating a
confident and well-prepared student. However, as
the exam continues, the handwriting becomes
increasingly difficult to read, suggesting that the
student is becoming more anxious and less
focused.

Depth Reduction:
The comedic resurgence biting meme portrays a
comedic portrayal portraying a trope portraying
idioms portraying idioms portraying idioms
portraying idioms portraying idioms portraying
idioms portraying exposes exposing exposing
injuring injuring injuring injuring injuring
injuring injuring injuring injuring injuring......

Figure 9: Comparison of neuron partition and depth reduction on a toy example under a 50% compression
ratio. The model with fewer neurons per layer still answers the question reasonably well, whereas the model
with reduced depth collapses and degenerates into repeating a single word.

A ATTENTION HEAD PARTITION

While our main focus is width reduction in MLP layers, since they account for most of the parame-
ters, our compression metric can be seamlessly extended to attention by computing the importance
scores of attention heads. Attention Head Parttion still works for understanding components as
shown in Table 5.

Table 5: Performance of attention head partition at a sparsity ratio of 50% per layer.

Model Compressed Layers Single Obj. Two Obj. Counting Colors Position Color Attri. Overall↑

BAGEL
N/A 0.99 0.94 0.81 0.95 0.72 0.77 0.86
3-27 0.97 0.87 0.66 0.88 0.33 0.31 0.67
4-27 0.98 0.91 0.72 0.89 0.41 0.40 0.72

B DILEMMA OF DEPTH REDUCTION ON UNDERSTANDING TASKS

Table 6: Performance of depth reduction on understand-
ing tasks.

Model Sparsity MME-P MME-C MMMU MMBench MMVP

Ming-Omni – 1584.3 670.4 66.7 86.7 54.6
50% 1197.2 308.2 51.7 81.2 46.0

BAGEL – 1684.8 696.7 65.0 88.1 69.6
50% 304.5 127.1 16.7 18.6 23.1

While depth reduction has limited impact on
generation tasks when applied to the under-
standing component, it fails on multimodal un-
derstanding tasks. Figure 9 shows that the
reduced-depth model cannot generate continu-
ous tokens in the answer. Nevertheless, the ini-
tial tokens remain reasonable, consistent with
the role of the understanding component in gen-
eration tasks, which primarily performs prefill-
ing and provides embeddings rather than full
autoregressive decoding.
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C MORE RESULTS OF COMPRESSING GENERATION COMPONENT

Figure 10: Depth reduction applied to MLP layers
in the generation component. Figures are shown
with decreasing numbers of removed layers: 14
(50%), 7 (25%), 4 (14%), and 0.

Generation components are more sensitive to com-
pression than understanding components. In addi-
tion to the results in Figure 6, we conduct experi-
ments with depth reduction (Figure 10) and find that
removing entire layers has a catastrophic effect on
the output images. This suggests that preserving
depth while compressing in width is a more effec-
tive strategy.

On the other hand, compressing the attention layers
leads to substantial degradation in both depth and width settings. As shown in Figure 11, applying
more than a 10% reduction results in noticeable performance drops.

Depth reduction achieved by removing 7, 4, 2, or 0 layers.

Figure 11: Compression of generation components through pruning of attention layers and heads.
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