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Abstract
We consider layerwise function-space learning
rates, which measure the magnitude of the change
in a neural network’s output function in response
to an update to a parameter tensor. This con-
trasts with traditional learning rates, which de-
scribe the magnitude of changes in parameter
space. We develop efficient methods to measure
and set function-space learning rates in arbitrary
neural networks, requiring only minimal compu-
tational overhead through a few additional back-
ward passes that can be performed at the start
of, or periodically during, training. We demon-
strate two key applications: (1) analysing the dy-
namics of standard neural network optimisers in
function space, rather than parameter space, and
(2) introducing FLeRM (Function-space Learn-
ing Rate Matching), a novel approach to hyper-
parameter transfer across model scales. FLeRM
records function-space learning rates while train-
ing a small, cheap base model, then automatically
adjusts parameter-space layerwise learning rates
when training larger models to maintain consistent
function-space updates. FLeRM gives hyperpa-
rameter transfer across model width, depth, initial-
isation scale, and LoRA rank in various architec-
tures including MLPs with residual connections
and transformers with different layer normalisa-
tion schemes.

1. Introduction
The fundamental purpose of neural network training is to
learn a function that maps inputs to desired outputs. How-
ever, we typically understand optimisation methods as act-
ing in parameter space, e.g. traditional learning rates tell us
how much the parameters change during each step rather
than the functional impact of those changes. This raises
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an important question: can we meaningfully quantify and
control learning in function space?

We consider the concept of layerwise function-space learn-
ing rates which measure the magnitude of change in network
output induced by updates to individual parameter tensors.
Unfortunately, naive approaches to measuring function-
space learning rates would be computationally prohibitive.
We solve this problem by developing a Monte-Carlo esti-
mate to measure function-space learning rates using only a
single additional backward pass, which can be performed a
handful of times at the start of training (e.g. 40), or periodi-
cally during training (e.g., once every 100 steps), resulting
in negligible computational overhead. We then consider two
immediate applications of function-space learning rates.

First, function-space learning rates provide a novel lens
for analysing the behavior of standard neural network op-
timisers (e.g. Adam, Kingma, 2014), giving important in-
sights into how different parts of the network contribute to
functional changes during training. Second, function-space
learning rates enable a new approach to hyperparameter
transfer (for previous work see e.g. Yang & Hu, 2022; Borde-
lon et al., 2023; Large et al., 2024). As large language model
pre-training can cost millions of dollars in compute (Cottier
et al., 2024), running extensive hyperparameter sweeps at
full scale is impractical. Instead, one might hope to opti-
mise hyperparameters on smaller models and transfer them
to larger ones. However, this is complicated by the fact that
optimal learning rates change with model width and depth
(Yang & Hu, 2022; Noci et al., 2024; Yang et al., 2023; Bor-
delon et al., 2023). We address this challenge with FLeRM
(Function-space Learning Rate Matching), which maintains
consistent function-space learning rates as models are scaled
up by automatically adjusting the parameter-space learning
rates, thereby keeping the optimal value of the user-defined
learning rate hyperparameter stable.

A key advantage of our approach is its flexibility: our meth-
ods for measuring and controlling function-space learning
rates work with any network architecture and at any point
during training. This contrasts with traditional approaches to
hyperparameter transfer that often make restrictive assump-
tions about architectures or initialisation schemes (Everett
et al., 2024; Yang & Hu, 2022; Bordelon et al., 2023; Large
et al., 2024). We demonstrate FLeRM’s utility across a
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range of scenarios, including model width scaling, depth
scaling, initialisation scale variation, and even LoRA rank
adjustment.

2. Related work
As far as we are aware, this work is unique in proposing
methods to measure and set function-space learning rates in
arbitrary neural networks far from initialisation, and using
this approach to study the dynamics of optimizers.

There is an existing body of literature on hyperparameter
transfer (e.g. Yang & Hu, 2022; Bordelon et al., 2023; Large
et al., 2024; Yaida, 2022). Broadly speaking, these works
analytically derive scaling laws for e.g. the initialisations
and parameter-space learning rates, such that the function-
space learning rates do not change as e.g. width is increased.
This is radically different from our approach to hyperparam-
eter scaling. In particular, none of these works provide a
mechanism to empirically measure the function-space learn-
ing rates in an arbitrary neural network. Furthermore, prior
works tend to rely on rigid assumptions such as being close
to a specific random initialisation, which we do not make.

Perhaps the earliest and best-known work on hyperparam-
eter scaling is µP (Yang & Hu, 2022). µP derives how to
scale random initialisations and learning rates as you in-
crease model width, such that the function-space learning
rates remain asymptotically constant (i.e. the magnitude of
the activations does not blow up to infinity or shrink to zero
as the model gets wider). µP has since been extended to
depth-scaling (Yang et al., 2023; Bordelon et al., 2023) and
networks trained with sharpness-aware minimisation (Haas
et al., 2024), and is closely related to the mean-field analysis
of neural networks grounded in statistical mechanics (Mei
et al., 2018; Rotskoff & Vanden-Eijnden, 2022; Sirignano
& Spiliopoulos, 2019; Chizat & Bach, 2018; Geiger et al.,
2020; Bordelon & Pehlevan, 2022). Because this approach
derives the function-space learning rates analytically, (in
contrast to our approach of measuring them), it requires
restrictive assumptions, including that the network is wide,
and close to a random initialisation. Extending these results
to more general cases is made complicated by the fact that
they typically rely on heavy-duty mathematical machinery
such as Tensor-Programs (Yang, 2021b; 2020; 2021a; Yang
& Hu, 2022; Yang et al., 2022; 2023) or dynamical mean-
field theory (Bordelon & Pehlevan, 2022; 2023; Bordelon
et al., 2023; 2024).

The full µP scheme can be complex to apply in practice,
because it e.g. requires distinct treatment of the initialisation
and learning rates for the embedding weights and output
heads. Later work (Large et al., 2024) sought to address this
issue, by providing a library (Modula) of modules, such that
when the modules are combined, the overall network nat-

urally exhibits hyperparameter scaling. Rather than study-
ing scaling asymptotically, Modula follows a metrisation-
based approach (for other metrisation works, see e.g. Yang
et al., 2024; Bernstein et al., 2021; Bernstein & Newhouse,
2024a;b). Its carefully designed modules allow the com-
putation of the network’s Lipschitz constant, which can be
used to normalise updates to enable hyperparameter scaling.
However, one important difficulty with Modula is that it
requires setting the “mass” of each parameter. This mass
can be seen as analagous to the layerwise function-space
learning rate in our work, for the first step of the optimiser
(i.e. at initialisation). This introduces a large number of
new hyperparameters that must be tuned. In contrast, our
approach to hyperparameter transfer, FLeRM, does not re-
quire the user to specify masses / function-space learning
rates for each parameter, because it directly measures the
function-space learning rates in a base model, and then uses
them in a scaled model. We show in Section 4.2.5 that us-
ing function-space learning rates measured directly from a
base model leads to better training loss than simplistic user-
defined function-space learning rates. Furthermore, FLeRM
can be applied to any existing neural network in Pytorch,
whereas Modula requires the user to rewrite their network
architecture using the library’s modules.

Chizat & Netrapalli (2024) quantify feature learning in
neural networks as the angle between feature updates and
backward passes, enabling analysis of hyperparameter scal-
ing laws and development of improved scaling rules for
deep networks. By contrast, our work directly measures the
function-space learning rates using autodiff and a Monte-
Carlo approximation.

Finally, Everett et al. (2024) recently showed empirically
that alignment (concerning the size of dot products between
activations and updates across different layers) in real mod-
els is highly dynamic and complex throughout training. This
can make choosing the correct alignment assumptions in
µP and mean-field parametrisations (Yang & Hu, 2022; Mei
et al., 2018; Bordelon & Pehlevan, 2022), a very difficult
task. By contrast, we propose methods that can directly mea-
sure the function-space learning rates throughout training,
avoiding the need for such assumptions and analysis.

3. Methods
In Section 3.1 we describe how we can empirically measure
the layerwise function-space learning rates using a Monte-
Carlo estimate. Then, in Section 3.2, we propose using
Kronecker factorisation to reduce the variance of our esti-
mates. Finally, in Section 3.3, we introduce FLeRM, which
modifies the parameter-space learning rates of scaled mod-
els so their function-space learning rates match a small base
model, thereby enabling hyperparameter transfer.
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3.1. Monte-Carlo estimation of the layerwise
function-space learning rate

At the core of our contributions is the estimation of the lay-
erwise function-space learning rates, i.e. the magnitude of
the change in output logits arising from a particular change
in the ℓth parameter tensor. We begin by considering the
full change in the function output, fnk. Here, n indexes the
N datapoints in the minibatch, and k indexes the K output
features. We use ∆ℓfnk to denote a first-order Taylor ap-
proximation of the change in the outputs due to a particular
change, ∆Wℓ, in the ℓth parameter, Wℓ ∈ RNℓ×Nℓ−1 ,

∆ℓfnk =
∑
ij

∆W ℓ
ij

dfnk
dW ℓ

ij

. (1)

Here, W ℓ
ij is the ijth element of Wℓ and dfnk

dW ℓ
ij

is the gradi-

ent of the output w.r.t. W ℓ
ij . Note that for ease of notation

we assume Wℓ is a matrix, but Wℓ can be a tensor of any
rank. We are interested in the layerwise function-space
learning rate, i.e. the RMS norm of ∆ℓf ,

∥∆ℓf∥2RMS = 1
NK

∑
nk(∆ℓfnk)

2, (2)

(L2-norm can be used if preferred, the only difference is
the term 1

NK ). Naı̈vely computing Eq. (2) via Eq. (1) is
intractable as it requires NK backward passes, one for each
dfnk

dW ℓ
ij

. Instead, we exploit the fact that we only need the

magnitude ∥∆ℓf∥2RMS, not the full change ∆f . Specifically,
we use a Monte-Carlo approach. Consider the following
scaled random combination of outputs,

ϕ = 1√
NK

∑
nkωnkfnk ωnk ∼ N (0, 1). (3)

As in Eq. (1) we can write the change in ϕ arising from a
change in the ℓth parameter,

∆ℓϕ =
∑
ij

∆W ℓ
ij

dϕ

dW ℓ
ij

. (4)

Importantly, note that we can compute ∆ℓϕ in a single back-
ward pass. To see how ∆ℓϕ helps us compute ∥∆ℓf∥RMS,
we substitute the definition of ϕ (Eq. 3) into Eq. (4),

∆ℓϕ =
∑
nk

ωnk
1√
NK

∑
ij

∆W ℓ
ij

dfnk
dW ℓ

ij

(5)

and note that the inner sum is ∆ℓfnk (Eq. 1), so simplifying,

∆ℓϕ =
∑
nk

ωnk
1√
NK

∆ℓfnk, (6)

and since ωnk are IID standard Gaussian (Eq. 3), we have

∆ℓϕ ∼ N
(
0, ∥∆ℓf∥2RMS

)
. (7)

Hence we can estimate ∥∆ℓf∥2RMS by computing ∆ℓϕ with
multiple samples of ωnk, and estimating the variance.

Algorithm 1 Recording (red) or setting (FLeRM, blue)
function-space learning rates in a training loop.

Input: ∥∆ℓf∥(base,:)
RMS Base model function-space LRs

EMA Z2[ℓ], EMA ZZT[ℓ], EMA ZTZ[ℓ] = 0
for t = 1 to T do
f ← f(X) Std. forward pass
L ← loss(targets, f) Std. loss
gℓij ← dL/dW ℓ

ij Std. backward pass
Wℓ

buffer ←Wℓ Save weights before update
Wℓ ← optimiser(η0,Wℓ, gℓ) Std. update (base LR)
Wℓ ← optimiser(

{
ηℓ
}L
ℓ=1

,Wℓ, gℓ) (or FLeRM LR)
EMA warmup: run below code for a few different X′

if t % 100 == 0 then
ωnk ∼ N (0, 1)
f ′ = f(X′) Fresh batch of data for ϕ
ϕ← 1√

NK

∑
nkωnkf

′
nk Compute ϕ (Eq. 3)

gℓij ← dϕ/dW ℓ
ij Backward pass for ϕ.

∆Wℓ ← 1
ηℓ

(
Wℓ −Wℓ

buffer

)
LR=1 update

Zℓ
ij ← gℓij∆W ℓ

ij Compute Zij as in Eq. (8)
Update EMAs
EMA Z2[ℓ]← (1−β)EMA Z2[ℓ]+β

∑
ij Z

2
ij

EMA ZZT[ℓ]←(1−β)EMA ZZT[ℓ]+β
∑

k(
∑

i Zik)
2

EMA ZTZ[ℓ]←(1−β)EMA ZTZ[ℓ]+β
∑

k(
∑

j Zkj)
2

Function-space LR (EMA bias correction hidden)
∥∆ℓf∥(t)RMS ←

√
EMA ZZT[ℓ]EMA ZTZ[ℓ]/EMA Z2[ℓ]

Set parameter-space learning rates (FLeRM)
ηℓ ← η0 ∥∆ℓf∥(base,t)

RMS / ∥∆ℓf∥(t)
RMS

end if
end for
Output: ∥∆ℓf∥(:)

RMS Recorded function-space LRs

3.2. More efficient function-space learning rate
estimates using Kronecker factorisation

The approach in Sec. 3.1 requires one backward pass per
sample, which could still be inefficient if we need multiple
samples for a good estimate. We remedy this by exploit-
ing the structure of ϕ. Noting that i, j index the rows and
columns of Wℓ, we rewrite Eq. (4) using Z ∈ RNℓ×Nℓ−1 ,

∆ℓϕ =
∑
ij

Zij Zij = ∆W ℓ
ij

dϕ

dW ℓ
ij

(8)

Hence the function-space learning rate can be written as

∥∆ℓf∥2RMS = Var [∆ℓϕ] =
∑
ij,i′j′

Cov [Zij , Zi′j′ ] . (9)

Also note that, substituting the definition of ϕ (Eq. 3) into
the definition of Zij (Eq. 8), we see that the Zij’s are zero-
mean Gaussian, as they are a linear combination of zero-
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Figure 1. Function-space learning rates over time, measured using
our approach, for the ResMLP model (top) and the Transformer
(PostNorm) model (bottom). “QK Weights” refers to WQ or WK

(query and key weight matrices), whilst “VO Weights” refers to
WV or WO (values and head-concatenation projection weight ma-
trices).

mean Gaussian terms ωnk (we will use this fact later),

Zij =
∑
nk

ωnk
1√
NK

∆W ℓ
ij

dfnk
dW ℓ

ij

. (10)

From Eq. (9) we can see that instead of directly estimating
the variance of samples of ∆ℓϕ, we could instead first esti-
mate the covariance of the Zij’s and sum over them. This
opens up the possibility of assuming some covariance struc-
ture over the Zij’s to reduce the variance of our estimate
for Var [∆ℓϕ], at the expense of some bias. One possibly
restrictive example is to assume that all the Zij’s are IID, in
which case Var [∆ℓϕ] =

∑
ijVar [Zij ]. Instead, we assume

a Kronecker-factored covariance matrix (Martens & Grosse,
2015). Specifically, we assume that we have a covariance
matrix U ∈ RNℓ×Nℓ over rows and V ∈ RNℓ−1×Nℓ−1 over
columns, giving

Cov [Zij , Zi′j′ ] = Uii′Vjj′ . (11)

Under this assumption, Eq. (9) becomes

∥∆ℓf∥2RMS =
∑

ij,i′j′Cov [Zij , Zi′,j′ ]

=
∑

ij,i′j′Uii′Vjj′

= (
∑

ii′Uii′)
(∑

jj′Vjj′

)
. (12)

We will now show how to compute this efficiently from Z,
which itself can be computed with a single backwards pass
(Eq. 8). Since the Zij’s are zero-mean Gaussian, and we
have assumed Cov [Zij , Zi′j′ ] = Uii′Vjj′ , Z is zero-mean
Matrix-Normal distributed, and so (Gupta & Nagar, 1999)

E[ZZT ] = Utr(V) (13a)

E[ZTZ] = Vtr(U). (13b)

Dividing Eq. (13a) by tr(V) and Eq. (13b) by tr(U), we
obtain U and V and can substitute them into Eq. (12),

∥∆ℓf∥2RMS =

(∑
ii′E[ZZ

T ]ii′
)(∑

jj′E[ZTZ]jj′
)

tr(U)tr(V)
(14)

To obtain the denominator, we take the trace of both sides
of Eq. (13a) or Eq. (13b), giving us

tr(U)tr(V) = tr
(
E[ZZT ]

)
(15)

= E
[∑

ijZ
2
ij

]
= E

[
∥Z∥2F

]
.

Substituting this into Eq. (14), we obtain

∥∆ℓf∥2RMS = =
E
(∑

ii′ [ZZ
T ]ii′

)
E
(∑

jj′ [Z
TZ]jj′

)
E[||Z||2F ]

(16)

and we note that the sums in the numerator can be computed
in quadratic time (not cubic as ZZT or ZTZ suggests), e.g.∑

ii′ [ZZ
T ]ii′ =

∑
ii′kZikZi′k

=
∑

k (
∑

iZik) (
∑

i′Zi′k)

=
∑

k (
∑

iZik)
2
. (17)

Hence to compute the layerwise function-space learning rate
∥∆ℓf∥2RMS, we only need to estimate 3 scalar expectations.

E[||Z||2F ], E[
∑

k(
∑

iZik)
2], E[

∑
k(
∑

jZkj)
2] (18)

Since we usually measure ∥∆ℓf∥2RMS as it changes over time,
we estimate these expectations using exponential moving
averages (EMAs) to further reduce the variance.

This approach can be generalised to tensor-valued param-
eters (see Appendix B); the resulting algorithm has very
similar computational cost and memory; in particular, we
only need to store R + 1 scalar EMAs for each parameter
tensor, where R is the rank of the tensor (e.g. 2 for a matrix).
In summary (see Algorithm 1, red text), estimating the lay-
erwise function-space learning rates involves computing a
sample Z (Eq. 8), which requires a single forward pass and
backward pass using a fresh batch of data to compute dϕ

dW ℓ
ij

(in addition to the usual training step which gives ∆W ℓ
ij),

and updating 3 scalar EMAs (for matrix parameters). We
warm up the EMAs by computing several samples of Z at
the start of training, and only use one sample of Z every e.g.
100th iteration thereafter.
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Figure 2. FLeRM dramatically improves optimal learning rate transfer across widths. Top: standard practice. Bottom: FLeRM.

3.3. Function-space learning rate matching (FLeRM)

FLeRM uses the machinery developed above to record the
function-space learning rates ∥∆ℓf∥(base,t)

RMS at iteration t
in a small, cheap base model. Then, in the larger, more
expensive model, FLeRM uses the ratio between the cur-
rent function-space learning rates ∥∆ℓf∥(t)RMS and the base
model function-space learning rates ∥∆ℓf∥(base,t)

RMS to set
the parameter-space learning rates at time t, such that the
function-space learning rates match those in the base model
(see Alg. 1, blue text, for details). Note that for efficiency
reasons, this is usually done at regular intervals or once at
the start of training, rather than at every iteration.

There are two extra details worth discussing. First, re-
call that we use EMAs for the three scalars in Eq. (18).
These EMA estimates will have considerable bias if the
parameter-space learning rates vary (e.g. due to schedul-
ing, or FLeRM), as previous updates of the EMA may have
used a very different learning rate. Hence, in Algorithm (1),
we always consider a learning rate of 1 when computing
∥∆ℓf∥RMS, rather than the actual learning rates. Computing
the ∆Wℓ implied by a learning rate of 1 ensures that the
learning rate seen by the EMA is always consistent. This
also applies when recording the base function-space learn-
ing rates ∥∆ℓf∥base

RMS, so the modified layerwise learning rate
ηℓ becomes

ηℓ =
η0 ∥∆ℓf∥base

RMS

∥∆ℓf∥RMS
(19)

where η0 is the learning rate of the base model.

Second, if the scaled model has more layers than the base
model, it is not possible to “match” the layerwise function-
space learning rates one-to-one. Since we scale depth by in-
creasing the number of “residual blocks” in our experiments,

we use the heuristic of sharing the base model’s function-
space learning rates between the new blocks. For example,
if a parameter in the first residual block has ∥∆ℓf∥(base)

RMS = 1
in the base model, and the scaled model has 4× as many
blocks, the corresponding parameters in the first 4 blocks
of the scaled model will use a base function-space learning
rate of ∥∆ℓf∥(base)

RMS = 1
4 .

4. Experiments
In this section we analyse function-space learning rates
for concrete neural networks (Section 4.1), and investigate
the use of FLeRM to enable hyperparameter transfer when
scaling model width, depth, initialisation scale, and LoRA
rank (Section 4.2).

Full details of the models1 used in the experiments can be
found in Appendix A. The base ResMLP is an MLP with 4
hidden layers, each with residual connections, trained for 50
epochs on flattened CIFAR-10 images (Krizhevsky & Hin-
ton, 2009). The base transformer is decoder-only, has two
self-attention + feedforward blocks (Vaswani et al., 2017),
and is trained on a subset of the Wikitext-103 dataset (Mer-
ity et al., 2016). The widest transformer has roughly 814M
parameters. We compare 3 different types of Layernorm
(Ba et al., 2016) in the transformers, with affine transforma-
tions disabled: PostNorm is Norm(x+ f(x)) , PreNorm is
x+f(Norm(x)), and PreNormPostMod is x+Norm(f(x)).
In the ResMLP, scaling width increases the hidden dimen-
sion, whilst in the transformers, we scale the embedding
dimension, the feedforward hidden dimension, and the num-

1We provide our code at https:
//github.com/edwardmilsom/
function-space-learning-rates-paper
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Figure 3. FLeRM improves or maintains optimal learning rate transfer across depth. Top: standard practice. Bottom: (FLeRM).

ber of heads. In all models, depth scaling increases the
number of “residual blocks” that form the hidden layers of
the model. Both ResMLP and the transformers used the
Adam optimiser (Kingma, 2014) with a constant learning
rate schedule. In all plots, train loss is averaged over the last
200 batches of training.

4.1. Analysing function-space learning rates

In Figure 1 we measure the function-space learning rates
using the techniques presented in Sections 3.1 and 3.2 for the
ResMLP and PostNorm transformer models. Plots for the
PreNorm and PreNormPostMod transformer can be found
in Figure 6, though they are very similar. We use 40 batches
of data to warm up the EMAs as suggested in Section 3.2,
then measure the function-space learning rate every 100
iterations. We use an EMA decay rate of β = 0.9.

In Figure 1 we see that in both models, the function-space
learning rates change over time, despite the parameter-space
learning rates being fixed. The most obvious pattern is that
the function space learning rates fall monotonically for all
parameters, except the input embedding layer, revealing
an implicit scheduling of the function-space learning rates
under standard Adam training. Interestingly, in the ResMLP,
whilst the function-space learning rates initially decay, the
hidden layers and input layer eventually start increasing
again, whilst the output layer plateaus. In the transformer,
the embedding layer’s function-space learning rate actually
increases over time. One possible explanation is that the
noisy initialisation in hidden and output layers effectively
scrambles the signal from the input layer, but as these layers
are trained, the input embedding can have a clearer, stronger
effect on the output.

We also observe that the different types of layers, such
as feedforward weights or QK weights, form very clear
“groups” or “bands” in these plots. From this, we can see
that the second feedforward weight matrices in self-attention
have the strongest influence over the transformer’s learned
function, with function-space learning rates an order of
magnitude larger than those of the readout layer. This is
a surprising discovery, since one might naively expect the
readout layer, whose weights directly project to the output
logits, to have the largest effect on the learned function.

4.2. FLeRM hyperparameter transfer experiments

We evaluated the effect of FLeRM on hyperparameter trans-
fer when scaling model width, depth, parameter initialisa-
tion scale, and LoRA rank. We ensure width invariance
at initialisation by using Kaiming initialisation (He et al.,
2015), and depth invariance at initialisation by introducing
a factor of 1√

L
into the residual stream (Hayou et al., 2021;

Hayou & Yang, 2023), using FLeRM to achieve invariance
throughout training. We first record the function-space learn-
ing rates of the base models as in Section 4.1 using 8 random
seeds, and then average over these seeds. This process is
repeated for every learning rate used in our plots. When
running the “scaled” models, i.e. those with altered width,
depth, initialisation scale, or LoRA rank, use 40 batches
of data to warm up the EMAs, and then modify the initial
learning rate as specified in Algorithm (1).

We then have a choice. We can either use these learning
rates for the rest of training, or we can periodically update
them every 100 iterations with a single batch of data as in
Algorithm (1). We found these approaches to give very sim-
ilar results, so we present the results for the fixed learning
rates here, and provide plots for the periodically updated
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Figure 4. FLeRM allows us to train initialisation scale invariant
networks. Top: standard practice. Bottom: FLeRM.

learning rates in Appendix C.2.

4.2.1. MODEL WIDTH

Figure 2 shows the effect of scaling the width on the opti-
mal learning rate for the ResMLP and transformer models.
In agreement with e.g. Yang & Hu (2022), we find that in
standard practice, there is a significant shift in the optimal
learning rate for all models as width increases, but when
using FLeRM to normalise the layerwise parameter-space
learning rates, this shift is either entirely removed or dra-
matically reduced. Additionally, in the transformer models,
the use of FLeRM does seem to improve the loss at high
widths, compared to standard practice.

4.2.2. MODEL DEPTH

Figure 3 shows the effect of scaling depth on the optimal
learning rate for the ResMLP and transformer models. Un-
der standard practice, the behaviour of the optimal learning
rate as we increase depth varies by model. In the ResMLP,
there is a significant shift in the optimal learning rate, and
we observe that FLeRM brings the optimal learning rates
much closer together, though for higher depths there is a
slight shift towards towards larger values.

The PostNorm transformer is relatively unstable, with the
loss shooting up once a certain learning rate threshold is
passed. In standard practice, the location of this instability
shifts to lower learning rates as depth is increased, meaning
that deeper models actually have a worse optimal loss. How-
ever, with FLeRM, these instabilities all occur around the
same place as the base model (either at the same learning
rate or the one before it, suggesting the “true” location of
the instability could be somewhere in between, at a learning
rate we did not evaluate). Thus, in this setting, FLeRM
gives dramatic improvements in performance for the deeper
models.

In standard practice, the PreNorm transformer shows a
small shift in the optimal learning rate, which is rectified by
FLeRM.

The PreNormPostMod transformer is an interesting case.
When scaling depth, the optimal learning rate in the standard
setting is already depth-invariant, so in this setting, there is
arguably no reason to apply FLeRM. Reassuringly, when
we do apply FLeRM, the location of the optimal learning
rate is preserved. In practice, we will usually be scaling
width and depth together, so FLeRM is likely useful overall.

4.2.3. PARAMETER INITIALISATION SCALE

FLeRM’s uses are not constrained to width and depth scal-
ing. In the PreNormPostMod transformer, which uses resid-
ual connections of the form x + Norm(f(x)) and, like all
3 transformer variants, uses QK normalisation (layernorms
applied after WQX and WKX), all learnable functions in
the network (with the exception of the input embedding and
the readout layer) are followed by a layernorm. The network
should be invariant to the magnitude of these parameters, in
the sense that multiplying such a weight matrix by a con-
stant does not change the output of the network. However,
as shown in Figure 4, the loss of networks trained in the
standard setting varies wildly with initialisation scale, and
the optimal learning rate even shifts. With FLeRM, however,
we ensure that the updates are invariant in function-space,
and so the loss vs. learning rate curves line up very closely
for all initialisation scales, removing the need to tune this
hyperparameter.

4.2.4. LORA ADAPTER RANK

We also investigated the use of FLeRM in a fine-tuning
setting. For this, we trained autoregressively using LoRA
adapters (Hu et al., 2021) on two LLMs, GPT-2 (Radford
et al., 2019) and Llama-3.2-1B (Dubey et al., 2024). We
experimented with∼4M token subsets of two datasets: Cold
French Law (Harvard Library Innovation Lab, 2024) and
Mathpile (Wang et al., 2023). For LoRA experiments, we
used Adam as our base optimiser with a constant learning
rate schedule, sweeping over adapter rank and the learning
rate of each of the two LoRA parameters separately. We
measure the base function-space learning rates for a single
seed and use these with FLeRM in the scaled models. As
before, we run 40 EMA warm-up iterations and then nor-
malise the learning rates using FLeRM at the first iteration,
fixing those learning rates for the rest of training. Figure 5
shows results after sweeping over the learning rate of the B
parameter in LoRA (∆W = BA), and in Appendix C.5 we
show results for sweeping over the learning rate of A. See
Appendix A.3 for further experimental details.

We find that in the standard setting, the optimal learning
rate increases as we increase the LoRA rank (Figure 5); for
example, the optimal learning rate for the Llama model in-
creases by more than an order of magnitude on both datasets
as we increase the LoRA rank from 2 to 32. There is also a
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varying the learning rate of B and LoRA rank for two continual pretraining tasks. Top: standard AdamW optimiser. Bottom: (FLeRM).
Some lines end abruptly for larger learning rates, indicating a numerical instability.

corresponding shift in learning rate instabilities (i.e. where
the learning rate is too high). However, when using FLeRM
with r (Rank) equal to 2 as the “base model”, the shift is
either eliminated or greatly reduced, and the instabilities
mostly align. Note that some data points are missing when
learning rates are too high (for example for = 24 and r = 25

in the learning rate ⪆ 10−2 range in the bottom left plot),
but this is expected because this instability is inherited from
the base model.

4.2.5. COMPARISON TO NAÏVELY CHOSEN
FUNCTION-SPACE LEARNING RATES

One might ask whether the matching the function-space
learning rates of a base model is important, or if we could re-
place them with something simpler. To test this, we repeated
the width, depth, and initialisation scale experiments from
earlier, but replaced the base model’s recorded function-
space learning rates with uniform vectors that sum to 1. The
results are shown in Figures 10, 11, and 12 (in Appendix
C.3). Whilst hyperparameter transfer is still retained, the
training loss is slightly worse than the equivalent experi-
ments in Section 4.2, suggesting that the function-space
learning rates induced by the Adam optimiser give ben-
efits to performance. This ablation still shares the base
function-space learning rates across new hidden blocks as
depth is scaled (Section 3.3). Importantly, this means that
the function-space learning rates for the embedding and
readout layers are held constant even as we scale depth, be-
cause these layers are not replicated. We also ran a further
ablation where all function-space learning rates are com-
pletely equal at all depths (Figure 13, Appendix C.4). In
this case, the PreNormPostMod transformer no longer ex-

hibits depthwise hyperparameter transfer, which matches the
findings of Large et al. (2024), who observed that the “im-
portance” of the input and output layers must be retained as
depth is scaled to achieve hyperparameter transfer. Interest-
ingly, although hyperparameter transfer is lost, performance
in the deepest PreNormPostMod model in this setting is
slightly better than the standard setting, suggesting that with
a more complex heuristic for matching function-space learn-
ing rates to models with new layers, it might be possible to
achieve greater performance with FLeRM.

5. Conclusion
In this paper, we developed an efficient way to estimate the
magnitude of changes in function-space caused by an update
to a neural network’s parameters. We used this method to
analyse the dynamics of existing models, and then to mod-
ify layerwise parameter-space learning rates (FLeRM) for
scaled models so that updates in function-space are scale in-
variant, enabling transfer of the optimal learning rate across
width, depth, initialisation scale, and LoRA rank. Such a
method could very useful for training very large founda-
tion models, where scaling laws are currently derived on a
case-by-case basis (e.g. see the LLama 3 technical report
Dubey et al., 2024). In terms of future work, it was noted in
Section 4.2.5 that a more sophisticated scheme for matching
function-space learning rates to models with more layers
than the base model could further enhance the performance
of FLeRM. One possible approach would be to use the meth-
ods presented in this paper to study the relationship between
function-space learning rates in models of various depth.
However, this is beyond the scope of this work.
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A. Model Details
A.1. ResMLP

The base residual MLP model has 4 residual blocks, each containing a single linear layer. Every hidden layer has dimension
128, which is multiplied by the width multiplier in width-scaling experiments. In depth-scaling experiments, the number of
residual blocks is multiplied by the depth multiplier. We do not use Layernorms or Batchnorms in the ResMLP (Ba et al.,
2016; Ioffe & Szegedy, 2015).

We initialise all weight matrices using Kaiming / He initialisation (He et al., 2015), that is, IID Gaussian weights with
1

fan in variance, multiplied by an activation-function-specific scalar (2 in the case of ReLU, 1 for no activation). Biases are
initialised to 0.

To ensure depth invariance at initialisation, we introduce a factor of 1√
L

into each layer’s weight matrix. At initialisation,
this is equivalent to multiplying by 1√

L
in the forward pass as in Bordelon et al. (2023), but does not continue to affect the

forward passes during training, allowing us to better isolate the effect of FLeRM.

We optimise the model using Adam with default settings (other than the learning rate which we set using the methods
detailed in this paper). We train for 50 epochs on the CIFAR-10 dataset (Krizhevsky & Hinton, 2009).

A.2. Transformer

The base transformer model is a decoder-only transformer with 2 self-attention + feedforward layers, query-key normalisation
(Dehghani et al., 2023, applying layernorm to the queries and keys before using them in multihead attention), and layernorms
with affine transformations disabled. We compare 3 different types of layernorm in our experiments: PostNorm is
Norm(x+ f(x)) , PreNorm is x+ f(Norm(x), and PreNormPostMod is x+ Norm(f(x)).

When scaling width, we multiply the number of heads, the embedding dimension dmodel, and the feedforward hidden
dimension dff by the width multiplier. The base model has dmodel = 128, dff = 512, and 2 attention heads per layer. When
scaling depth, we multiply the number of transformer “blocks”, consisting of self-attention and a feedforward network, as
detailed in Vaswani et al. (2017), by the depth multiplier.

We initialise all weight matrices using Kaiming / He initialisation (He et al., 2015), that is, IID Gaussian weights with
1

fan in variance, multiplied by an activation-function-specific scalar (2 in the case of ReLU, 1 for no activation). Biases are
initialised to 0.

To ensure the model is invariant to depth at initialisation, we multiply the residual branch by 1√
L

during the forward pass, as
in Bordelon et al. (2023). More specifically, PostNorm becomes Norm(x+ 1√

L
f(x)), PreNorm becomes x+ 1√

L
f(Norm(x),

and PreNormPostMod becomes x+ 1√
L

Norm(f(x)). Note that with PostNorm and PreNorm we could have absorbed this
factor into the weights of the module f and therefore avoided altering the forward pass computation, because f is at the end
of the residual stream. However, in PreNormPostMod, the layernorm is at the end of the residual stream, so its initialisation
will always have unit size no matter how we initialise f , therefore requiring us to use the factor 1√

L
during the forward pass.

We therefore decided to treat all transformer variants the same in this regard.

We train the transformer on roughly 1
10 of the Wikitext-103 dataset (Merity et al., 2016), using a batch size of 20 and a

sequence length of 256. We tokenise the dataset using the GPT2 tokeniser from the HuggingFace transformer library (Wolf
et al., 2020). We optimise the model using Adam with default settings (other than the learning rate which we set using the
methods detailed in this paper). We train for 1 epoch (i.e. we only observe each token once).

A.3. LoRA adapters

For the LoRA experiments in Section 4.2.4, we trained LoRA adapters on continual pretraining tasks. The LoRA adapters
were initialized using the gaussian initialization provided by Hugging Face’s peft library (Mangrulkar et al., 2022).
We experimented with two models, GPT2 and Llama-3.2-1B. We added LoRA adapters to the default modules of GPT2,
and the q/v/k/o proj modules of Llama-3.2-1B. We trained for 500 iterations with a batchsize of 8 and sequence
length 512. The datasets used were ∼4M token subsets of Cold French Law (Harvard Library Innovation Lab, 2024) and
Mathpile (Wang et al., 2023).
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A LoRA adapter is formed of two parameters B and A, with ∆W = BA. When sweeping learning rates, we vary the
learning rates of each parameter (A/B) separately, while keeping the learning rate of the other parameter fixed. When
sweeping for B, we used a fixed learning rate of 10−4 for A. When sweeping for A, we fixed the learning rate of B as
follows: 10−3 for GPT-2, 10−4 for Llama-3.2-1B / Cold French Law, and 5× 10−5 for Llama-3.2-1B/Mathpile .

As in the transformer and ResMLP experiments, we wish to warm-up the EMAs of FLeRM with 40 batches of data, and
then use FLeRM to normalise the learning rates at the initial iteration, fixing these learning rates for the rest of training.
However, we cannot immediately use our method FLeRM when using LoRA adapters. This is due to the way LoRA adapters
(following the original work of Hu et al. (2021)) are initialized. Since the parameter B is initialized to zero (to ensure that
∆W = 0 at the beginning of training), the gradient of A is 0 for the first iteration. This is problematic because it implies
∥∆ℓf∥RMS = 0, leading to a division by zero in Algorithm 1. As a workaround, we warm-up FLeRM on the fifth iteration,
and record / set the learning rates on the 6th iteration. We find that in practice, this still gives adequate hyperparameter
transfer. In the LoRA experiments, we measure the base function-space learning rates for a single seed and use these
with FLeRM in the scaled models. This is because the base model is a lot more expensive than in the other experimental
setups. Only using one seed for the base function-space learning rates did not appear to hinder FLeRM’s ability to enabled
LoRA-rank transfer.

B. Kronecker factored covariance approximation for tensor-valued parameters
Previous work has extended the matrix-normal distribution to tensors, with one covariance matrix per dimension (e.g.
Manceur & Dutilleul, 2013; Hoff, 2010). We can use this to extend the methods in Section 3.2 to tensor-valued parameters.

Suppose we have a D-dimensional tensor X ∈ Rn1×···×nD , where we will use Xi1,...,iD to denote the (i1, . . . , iD)th

element. Extend the vec(·) operation to tensors in the obvious way, i.e. form a vector by taking elements (1, 1, . . . , 1, 1) to
(n1, 1, . . . , 1, 1), then (1, 2, . . . , 1, 1) to (n1, 2, . . . , 1, 1) etc. systematically iterating along the dimensions until you reach
the final element (n1, . . . , nD). We say the vector X is tensor-normal distributed if

vec(X) ∼ N (vec(M),U(D) ⊗ · · · ⊗U(1)) (20)

where M ∈ Rn1,...,nD is the mean tensor, and U(1) ∈ Rn1×n1 , . . . ,U(D) ∈ RnD×nD are covariance matrices for the D
different dimensions. In other words, assuming M = 0, the second-order moments / covariance of any two elements in the
tensor factorises across dimensions:

E(Xi1,...,iDXj1,...,jD ) =

D∏
d=1

U
(d)
id,jd

. (21)

For matrix-normal distributions, we had identities for the second order matrix products E[XXT ] = Utr(V) and E[XTX] =
Vtr(U), which we used in Section 3.2 to figure out how to estimate the covariance matrices (or more specifically, the sum
over all pairs of elements). Do similar identities hold for the tensor normal distribution? It turns out yes (e.g. Proposition 2.1
of Hoff, 2010).

Consider the following shorthand for “contracting” two tensors over all but one of their dimensions d, kind of like a
generalisation of matrix multiplication

(A×d B)ij =
∑

k1...kd−1kd+1...kD

Ak1...kd−1ikd+1...kD
Bk1...kd−1jkd+1...kD

(22)

i.e. assuming A and B have conformable shapes, you take “dot products” over all dimensions except d. Then for a
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tensor-normal distributed X we have the “second-order moments”

E(X×d X)ij =
∑

k1...kd−1kd+1...kD

E(Xk1...kd−1ikd+1...kD
Xk1...kd−1jkd+1...kD

) (23a)

=
∑

k1...kd−1kd+1...kD

U
(d)
ij

∏
d′ ̸=d

U
(d′)
kd′ ,kd′

(23b)

= U
(d)
ij

∏
d′ ̸=d

∑
kd′

U
(d′)
kd′ ,kd′

 (23c)

= U
(d)
ij

∏
d′ ̸=d

tr(U(d′)) (23d)

and so we have
E(X×d X) = U(d)

∏
d′ ̸=d

tr(U(d′)). (24)

As before, we want to compute the sum over all elements of the covariance matrix. The covariance matrix for the vectorised
tensor is U(D) ⊗ · · · ⊗U(1), which means it contains precisely all the possible products of D elements, one from each U(d).
Hence we wish to compute

D∏
d=1

∑
id,jd

U
(d)
idjd

 =

D∏
d=1

∑
id,jd

E(X×d X)idjd∏
d′ ̸=d tr(U(d′))

(25a)

=

∏D
d=1

∑
id,jd

E(X×d X)idjd∏D
d=1 tr(U(d))D−1

. (25b)

As before, we can express the denominator in terms of X. Note that

D∏
d=1

tr(U(d)) = tr

(
U(1)

D∏
d=2

tr(U(d))

)
(26a)

= tr (E(X×1 X)) (26b)

=
∑
i

E(X×1 X)ii (26c)

=
∑
i

∑
k2...kD

E(Xik2...kD
Xik2...kD

) (26d)

= E
∑

k1...kD

X2
k1...kD

(26e)

= E||X||2F (26f)

where we have used the Frobenius norm to represent the sum of all squared elements of the tensor. So the denominator will
be E(||X||2F )D−1.

Also similar to the matrix-normal case, the numerator is very cheap to compute. Observe that∑
id,jd

E(X×d X)idjd = E
∑
id,jd

∑
k1...kd−1kd+1...kD

Xk1...kd−1idkd+1...kD
Xk1...kd−1jdkd+1...kD

(27a)

= E
∑

k1...kd−1kd+1...kD

∑
id,jd

Xk1...kd−1idkd+1...kD
Xk1...kd−1jdkd+1...kD

(27b)

= E
∑

k1...kd−1kd+1...kD

(∑
id

Xk1...kd−1idkd+1...kD

)2

(27c)
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which in pseudocode can be written as E(X.sum(d).square().sum()).

Hence, using pseudocode to make things clearer, our normaliser can be estimated as

||∆ℓf ||RMS ≈
√∏D

d=1 E(Z.sum(d).square().sum())
E(Z.square().sum())D−1

(28)

where Z is our tensor of updates times phi-gradients, and the expectation symbols E tell us what we’re taking EMAs of.
Remarkably, we can see that we only have to track D + 1 scalar EMAs, and updating these EMAs only requires simple
sum() and square() operations. For numerical stability, it is wise to compute this quotient in log-domain.

C. Extra Plots
C.1. Full function-space learning rate vs time plot

Figure 6 shows the function-space learning rates over time as in Figure 1 in the main text, but also with the Transformer
(PreNorm) and Transformer (PreNormPostMod) models. The plots for the three transformer layernorm variants all show
very similar behaviour.

C.2. FLeRM with periodic updates to the learning rate

In the FLeRM experiments in the main text (Section 4.2) we only used FLeRM to modify the learning rate during the
first step of training, and then used that learning rate for the rest of training. There is nothing to stop us from periodically
updating the learning rate throughout training using FLeRM if necessary, e.g. if we think the dynamics of training might be
affected by width or depth in a time-dependent manner. Here we present plots similar to Figures 2, 3, and 4 from the main
text, but in addition to using FLeRM to compute the learning rate at the start, we also update the learning rate every 100
iterations using a single batch of data and an EMA decay rate β = 0.9. The resultant width, depth, and initialisation scale
transfer plots are given in Figures 7, 8, and 9. The plots are very similar to those using the static learning rate, suggesting that
the effects of increasing width, depth, or initialisation scale can be effectively cancelled-out using a learning rate computed
purely at the start of training. This agrees with prior work like µP (Yang & Hu, 2022) and Module (Large et al., 2024),
which both achieve hyperparameter transfer in width and depth scaling settings using static learning rates.

C.3. FLeRM with equal base model function-space learning rates (but still splitting them in the same way as depth
scales

Here we replace the recorded base model function-space learning rates with equal values for each layer, that add up to 1. As
depth is increased, with still split the function-space learning rates up between the new hidden blocks (described in Section
3.3) as we did in the main experiments. See Figures (10), (11), and (12).

C.4. FLeRM with equal base function-space learning rates that are ALWAYS equally divided across layers, even with
scaled depth

This ablation is similar to the equal base function-space learning rates ablation in Appendix C.3, but instead of sharing the
values across the new hidden layer blocks as described in Section 3.3, we simply set all the “base” function-space learning
rates for the deeper model to be equal and sum to 1. Note that a key difference in this approach is that the input embedding
and readout layer’s base function-space learning rate is going to shrink as the model gets deeper, whereas in the ablation in
Appendix C.3, the base function-space learning rates for the input embedding and readout layer remained constant, whilst
only the hidden layers got diluted when scaling depth. As suggested in previous work (Large et al., 2024), ensuring input
embeddings and readout layers retain their “importance” during training in deeper models is critical for achieving depth
transfer, and we observe in this ablation (Figure 13, only depth scaling is changed from the other equal function-space
learning rate ablation) that we no longer have hyperparameter transfer across depth. Interestingly, however, the performance
of the deepest PreNormPostMod model is better in this ablation than in the other FLeRM experiments, actually marginally
beating the standard practice model too, suggesting further refine of the scheme for splitting base FSLRs as depth increases
could be beneficial. However, performance in this ablation is also far worse on other models like PostNorm at high depths.
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C.5. LoRA

In Section 4.2.4, we showed results for sweeping over the learning rate of the LoRA adapters’ B parameter, with a fixed
learning rate for A. Here, we show results for the reverse: sweeping over the learning rate of A with a fixed learning rate for
B. Figure 14 shows the results. Interestingly, we achieve learning rate transfer with the Standard AdamW optimiser, mainly
because varying the learning rate of A does not change the performance of the model (until it becomes too large). This
suggests that selecting the learning rate of A is not very important compared to selecting the learning rate of B. We find that
with FLeRM, we mostly preserve the learning rate transfer, and we also observe an instability shift to the left.

C.6. Bias and variance of estimator under difference covariance assumptions

In Figure 15 we show that our proposed Kronecker-factored assumption in Section 3.2 greatly reduces the variance of
the function-space learning rate estimator whilst avoiding the large bias an oversimplifying assumption such as an IID
covariance structure would introduce. Here the “no assumption” estimator is used as the “true” value for computing the
biases, as it is an unbiased estimator.

C.7. Test loss

In Figure 16 we show the width transfer plot from the main text but with test losses instead of train losses. As expected, the
test loss plots for the Transformer models look very similar to the main text, since we are only training for 1 epoch and
therefore expect test loss to look like train loss. However, the ResMLP is trained for multiple epochs on CIFAR-10, and so
complex overfitting patterns occur, which probably explains why the test loss curves do not line up perfectly, though the
optima are closer together with FLeRM than with standard practice.

C.8. Cosine Annealing Scheduler

For simplicity we used a constant LR scheduler in the main text. To verify that our method works with LR schedulers, we
reran the width transfer experiments using a cosine annealing scheduler. Since FLeRM modifies the layerwise learning rates,
we record the ratio of the current scheduled learning rate with the starting learning rate in the base model, then apply these
ratios as the scheduler in the scaled model. This is equivalent to scheduling the ”target” function-space learning rate for each
layer. The results are shown in Figure 17.

C.9. Elementwise Affine Transformations

For simplicity in prototyping, elementwise affine transformations in layernorms were disabled in the main experiments.
To verify our method still works with these enabled, we reran the width transfer experiment for the PreNormPostMod
transformer, and, as seen in Figure 18, found no issues.

C.10. Simultaneous Width + Depth Scaling

To test whether our method still works when simultaneously scaling width and depth, we ran the PreNormPostMod
transformer experiment again, scaling the width+depth, and found that hyperparameter transfer still holds in this setting.
The results are shown in Figure 19

C.11. Other optimisers

To test whether our method still works when using optimisers with Adam, we repeated the Transformer (PreNormPostMod)
width transfer experiments for a range of different optimisers.

In Figure 20 we used SGD with momentum. In Figure 21 we used SignSGD. In Figure 22 we used AdamW. In Figure 23,
we used Adamax. In Figure 24, we used Adagrad. We can see that FLeRM improves hyperparameter transfer in all cases.
In SGD, the curves are very noisy both with and without FLeRM, matching the common practice of not using SGD for
transformers. However, even though the curves are less neat than the other optimisers, we still see that FLeRM aligns the
curves better.

To demonstrate this is a problem with using SGD with transformers and not FLeRM, in Figure 25 we ran the ResMLP
width transfer experiment with SGD + momentum, where we observely that FLeRM very cleanly improves hyperparameter
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transfer.

D. Exploiting known structure for lower variance function-space learning rate estimation
A typical neural network ends in a “readout” layer {WL,bL}, mapping from the hidden dimension dmodel to the number of
output classes / vocab size K via the transformation

fn = WLhL−1
n + bL (29)

where hL−1
n is the output of the previous layer for the nth datapoint.

This layer can be very large if K is large (the vocab size of an LLM), and can have large effects on the training dynamics of
the neural network (Fig. 1). It is therefore important to ensure its function-space learning rate estimate is as accurate as
possible. Luckily, it turns out that by nature of being the final layer, there is extra independence structure in the function-space
learning rate estimation procedure we can exploit to lower the variance.

Subbing Eq. 29 into Eq. 3, we have

ϕ =
1√
NK

∑
nk

ωnk

(
bk +

∑
α

WL
kαh

L−1
nα

)
(30)

and subsequently subbing Eq. 3 into Eq. 8, considering the function-space learning rate for the readout weight matrix
WL ∈ RK×dmodel , we obtain

Z
(WL)
ij = ∆WL

ij

1√
NK

∑
n

ωnih
L−1
ni . (31)

Note that this only includes a single random variable ωni. This means the random variables {Z(WL)
ij }ij are independent for

different values of i (i.e. between different rows), but dependent for different values for j (i.e. between different columns).
Hence we can assume independence between the rows of Z(WL)

ij , drastically reducing the variance of our estimator.

In particular, this corresponds to assuming that U is diagonal in Section 3.2, which results in ||∆ℓf ||2RMS =

(
∑

i Uii)
(∑

jj′ Vjj′

)
= tr(U)

(∑
jj′ Vjj′

)
and therefore our estimate becomes

∥∆WLf∥2RMS = tr(U)
E
(∑

jj′ [Z
TZ]jj′

)
tr(U)

= E

∑
jj′

[ZTZ]jj′

 . (32)

Similarly for the biases bL ∈ RK we have

Z
(bL)
i = ∆bLi

1√
NK

∑
n

ωni (33)

and so Z
(bL)
i are independent for different i, and so we can assume the covariance matrix is diagonal. If we assume a

diagonal covariance structure over Z(bL)
i , i.e. Σ := diag(σ2), then

||∆ℓf ||2RMS =
∑
ii′

Σii′ =

n∑
i=1

σ2
i =

K∑
i=1

E
(
z
(bL)
i

)2
= E

[
K∑
i=1

(
z
(bL)
i

)2]
. (34)

One might ask at this point how this differs from an IID assumption, i.e. Σ := σ2I. With an IID assumption, we would have

||∆ℓf ||2RMS =
∑
ii′

Σii′ = nσ2 = nE
(
z
(bL)
1

)2
= nE

[
1

n

K∑
i=1

(
z
(bL)
i

)2]
= E

[
K∑
i=1

(
z
(bL)
i

)2]
(35)
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which is exactly the same! It turns out that, because we only care about estimating the sum over the variances, assuming that
Z

(bL)
i are IID or just independent are equivalent. Intuitively, consider the difference between making “no assumption” on

the covariance matrix versus a diagonal assumption, if we care about the sum over all covariance elements. The diagonal
assumption allows us to remove cross-terms from our estimate, since we know their true values are all zero, and hence we
remove the variance from the randomness in those cross-terms, giving us a lower variance estimator. But if we consider the
remaining positive sum over the variance (diagonal) terms, knowing they’re all equal (an IID assumption) doesn’t provide us
with any more useful information, because it doesn’t tell us any more about the value of the total sum, and it doesn’t tell us
any more about which values we should pay more attention to (in fact, it tells us to treat them all equally, which is what we
already did when we only knew that the covariance was diagonal). If we had more specific information, such as ”the last
element’s variance forms 90% of the total variance” then we could use more sophisticated weighted averages to get a lower
variance estimate.

In Figure 26, we repeat the width transfer experiments from the main paper but using the tricks we just described, and find
that some of the instability / noise in the ResMLP FLeRM plot is now gone.
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Figure 6. Function-space learning rates over time, measured using our approach, for the ResMLP model (row 1) and the transformer
models with different layernorm strategies (rows 2, 3, and 4).
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Figure 7. Normalising function-space learning rates periodically using FLeRM gives very similar width transfer to normalising using
FLeRM at the first iteration only (see Figure 2). Top: standard practice. Bottom: our scheme (FLeRM). PreNorm, PostNorm, and
PreNormPostMod are different Layernorm configurations described in Section A
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Figure 8. Normalising function-space learning rates periodically using FLeRM gives very similar depth transfer to normalising using
FLeRM at the first iteration only (see Figure 3). Top: standard practice. Bottom: our scheme (FLeRM).
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Figure 9. Normalising function-space learning rates periodically using FLeRM gives very similar initialisation scale transfer to normalising
using FLeRM at the first iteration only (see Figure 4). Top: standard practice. Bottom: our scheme (FLeRM).
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Figure 10. Equal base FSLR ablation (width): Using equal base model function-space learning rates results in a degradation in performance
in some of the models, compared to the main experiments. Top: standard practice. Bottom: our scheme (FLeRM) with equal base model
function-space learning rates.
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Figure 11. Equal base FSLR ablation (depth): Using equal base model function-space learning rates results in a degradation in performance
in some of the models, compared to the main experiments. Top: standard practice. Bottom: our scheme (FLeRM) with equal base model
function-space learning rates.
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Figure 12. Equal base FSLR ablation (init. scale): Using equal base model function-space learning rates results in a degradation in
performance in some of the models, compared to the main experiments. Top: standard practice. Bottom: our scheme (FLeRM) with equal
base model function-space learning rates.
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Figure 13. Equal base FSLR ablation where we don’t carefully retain the importance of the input embedding and readout layers (depth):
Just setting the base model FSLRs to be equal and sum to one, no matter what the depth is, means that we no longer have depthwise
hyperparameter transfer in the PreNormPostMod model. Top: standard practice. Bottom: our scheme (FLeRM) with equal base model
function-space learning rates that don’t try to account for depth increase.

10−4 10−3 10−2 10−1
2.4

2.6

2.8

3.0

Tr
ai

n
Lo

ss

MathPile, GPT2

Rank = 21

Rank = 22

Rank = 23

Rank = 24

Rank = 25

10−4 10−3 10−2 10−1

3.00

3.25

3.50

3.75

4.00
French, GPT2

10−6 10−5 10−4 10−3 10−2
1.48

1.49

1.50

1.51

1.52
MathPile, Llama-3.2-1B

10−6 10−5 10−4 10−3 10−2

1.6

1.8

2.0

2.2

French, Llama-3.2-1B

10−4 10−3 10−2 10−1

Learning Rate

2.4

2.6

2.8

3.0

Tr
ai

n
Lo

ss

10−4 10−3 10−2 10−1

Learning Rate

3.00

3.25

3.50

3.75

4.00

10−6 10−5 10−4 10−3 10−2

Learning Rate

1.48

1.49

1.50

1.51

1.52

10−6 10−5 10−4 10−3 10−2

Learning Rate

1.6

1.8

2.0

2.2

S
tandard

FLeR
M

Figure 14. Behaviour of training log likelihood loss under varying the learning rate of A and LoRA rank for two continual pretraining
tasks. The top row shows results from a standard setup with AdamW, the bottom row shows our method, FLeRM.
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Figure 15. Comparison of bias and variance of the function-space learning rate estimator when using different covariance matrix /
dependence assumptions in Section 3.1 / 3.2. Computed over 10,000 batches to estimate the FSLRs at the first step of training for a
feedforward layer in the network. Bias is taken as the absolute difference from “No assumption”, since no assumption (i.e. ignoring
Section 3.2 and estimating the quantity directly) is an unbiased estimator. We see that an IID assumption has extremely low variance (not
even visible on the plot), but very high bias, whilst the unbiased “no assumption” estimator has very high variance. The KFAC estimator
proposed in Section 3.2 has a small amount of bias and much smaller variance than the “no assumption” estimator.
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Figure 16. Width transfer plot for plotting test loss instead of train loss.
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Figure 17. Width transfer plot for Transformer (PreNormPostMod) using a CosineAnnealingLR scheduler.
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Figure 18. Width transfer plot for Transformer (PreNormPostMod) with elementwise affine transformations enabled in the Layernorms.
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Figure 19. Width + Depth simultaneous scaling transfer plot for Transformer (PreNormPostMod).
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Figure 20. Width transfer plot for Transformer (PreNormPostMod) using SGD instead of Adam. Momentum 0.9.
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Figure 21. Width transfer plot for Transformer (PreNormPostMod) using SignSGD / Signum instead of Adam. Momentum 0.9.

10−5 10−4 10−3 10−2 10−1

Learning Rate

4.50

4.75

5.00

5.25

5.50

5.75

6.00

6.25

6.50

Tr
ai

n
Lo

ss

Standard

Width × 20

Width × 21

Width × 22

Width × 23

Width × 24

Width × 25

10−5 10−4 10−3 10−2 10−1

Learning Rate

4.50

4.75

5.00

5.25

5.50

5.75

6.00

6.25

6.50
FLeRM

Transform
er(P

reN
orm

PostM
od)

Figure 22. Width transfer plot for Transformer (PreNormPostMod) using AdamW instead of Adam. Weight decay 0.1.
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Figure 23. Width transfer plot for Transformer (PreNormPostMod) using Adamax instead of Adam.
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Figure 24. Width transfer plot for Transformer (PreNormPostMod) using Adagrad instead of Adam.
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Figure 25. Width transfer plot for ResMLP using SGD instead of Adam. Momentum 0.9.
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Figure 26. Width transfer experiments as in main paper, but using output independence tricks given in Section D
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