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Figure 1: Our model, LOWA, performs open-vocabulary free-text object localization (top row)
and attribute inference for both common and novel classes (bottom row). (1) Most current open-
vocabulary attribute recognition models limit their object classes into COCO pre-defined classes. (2)
However, our model can handle a broader range of object classes in a real open-world setting; (3) We
exemplify a real case of flexible composition of text queries for object localization; (4) Not only our
model can infer object attributes for common COCO object categories; (5) But also transfer general
attribute knowledge to novel classes and infer accurately. Note we only show one detected instance
for each class for better visualization.

Abstract

Existing open-vocabulary object detectors can struggle with uncommon or fine-
grained classes, as the model and users may have different understandings of
object names. Incorporating attributes such as color, shape, and size can help
to reduce this inconsistency and make interactive detection more convenient and
flexible. Motivated by this, we present LOWA, a new method for localizing objects
with attributes effectively in the wild. To train LOWA, we propose a multi-step
vision-language training strategy to learn object detection and recognition with
class names as well as attribute information, which empowers users to flexibly
customize text queries and extend to fine-grained detection with attribute and object
information for a wider range of applications. LOWA is built on top of a two-
tower vision-language architecture and consists of a standard vision transformer
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as the image encoder and a similar transformer as the text encoder. To learn the
alignment between visual and text inputs at the instance level, we train LOWA
with three training steps: object-level training, attribute-aware learning, and free-
text joint training of objects and attributes. This training strategy first ensures
correct object detection, then incorporates instance-level attribute information,
and finally balances the object class and attribute sensitivity. We evaluate our
model performance of attribute classification and attribute localization on the Open-
Vocabulary Attribute Detection (OVAD) benchmark and the Visual Attributes in
the Wild (VAW) dataset, and experiments indicate strong zero-shot performance.
Ablation studies additionally demonstrate the effectiveness of each training step of
our approach.

1 Introduction

Open-Vocabulary Object Detection (OVD) foundation models (Minderer et al., 2022} |Liu et al., |2023;
Li et al.|, [2022)) align the text of object names with their visual features, enabling zero/few-shot object
detection with free-text inputs. However, these models are limited by their reliance on common object
vocabularies, which can make it difficult to use customized text queries, especially in fine-grained
domains. There are two main challenges with existing OVD foundation models: (1) Data bias: The
training datasets typically contain more instances of common objects than rare objects, which leads to
poor performance on text queries with terminologies; (2) Limited expressiveness: Using object names
as detection queries is not always optimal. In many real-world scenarios, users prefer to describe
objects with their attributes (e.g., shape, color, texture) instead of precise terminologies. For example,
using “a black and white bird with red head feather” is more accessible in communication than using
“Antioquia Brushfinc”. To address these issues, a promising direction is to use attributes like color,
shape, texture, pattern, and action as anchors to extend the generalization ability of existing OVD
foundation models. Moreover, the knowledge of seen attributes can transfer to rare/unseen object
categories sharing the same properties. With attributes, users can describe objects with more general
free-text queries and specify the unusual aspects of a familiar object (stacked plate, not just plate),

see Fig.[I]

However, attribute detection at instance-level is challenging due to the high cost of collecting and
annotating datasets. Researchers have proposed various datasets to address this challenge, ranging
from patch-labeled (Isola, Lim, and Adelson, 2015) , partially-labeled (Pham et al.| 2021), sparsely-
labeled (Krishna et al., 2017; Pham et al.| 2022) to densely-labeled (Bravo et al., [2022)). Popular
works on instance-level attribute knowledge learning typically skip the object detection step by
freezing the base object detector (Faster-RCNN (Ren et al., 2015))) and then adding a secondary
attribute classifier (Bravo et al.,[2022; |Chen et al., [ 2023)). This strategy has two drawbacks: (1) it is
complex to design and implement; (2) it is not end-to-end trainable. Additionally, these works often
limit attribute and object name lists to a fixed number of vocabularies, which is not suitable for the
real open-world setting, where new objects and attributes may be encountered at any time.

In contrast, we propose a novel method, called LOWA (Localize Objects in the Wild with Attributes),
that is simple, effective and can handle a broader number of object categories and attributes. LOWA
is also the first end-to-end model that can simultaneously perform object bounding box regression,
object name classification, and object attribute classification. LOWA overcomes the challenge of
incomplete annotations by disentangling the learning of object names and attributes. This allows
users to query images using the diverse compositions of object classes and attribute descriptions to
get customized detection results. The architecture of LOWA includes a standard vision transformer as
the image encoder and another transformer as the text encoder. To enhance the attribute-awareness of
the model, we design a three-step strategy for LOWA to align visual features with both object classes
and attributes. We summarize our contributions as follows:

e We propose a novel one-stage model for open-vocabulary object detection with attribute
classification. To the best of our knowledge, this is the first open-vocabulary fine-grained
detection model that is trained in an end-to-end fashion to optimize all the parameters.
Compared with other models such as OvarNet (Chen et al., 2023) or GLIP (Li et al.,2022),
our model is more flexible and has stronger fine-grained attribute-awareness.



e We design a customized three-step training approach to train LOWA following a coarse-to-
detailed learning schema, which enhances the ability to automatically focus on both object
classes and attributes in free-style texts and localize the objects accurately.

e We explore the under-represented attribute localization task based on open-vocabulary
object detection. We evaluate our model on the attribute classification task and attribute
localization task with two benchmarks to show the attribute awareness. On both tasks, our
model outperforms all the baselines.

e We conduct ablation studies to show the effectiveness of our proposed multi-step training
approach. Results indicate that each step provides significant improvements.

2 Method

Problem Definition Given an image I and a set of free-text queries Q@ = {¢1, g2, ..., ¢n } (n defines
the number of input queries) including object names, attributes and composition of both, the goal of
LOWA is to localize target objects O = {01, 09, ..., 0, } (m is the total number of objects) and output
their corresponding bounding boxes B = {b1, b, ..., b,,, } with a score matrix S, . Each object
is assigned with n scores in response to each query. A score threshold 7 helps determine the final
positive predictions. To enable free-text object localization without explicitly separating attributes
and object names, we elaborate on our method LOWA in terms of the model architecture, the instance
attribute learning process, training optimization and user inference.
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proposals is equal to the length of image encoder inputs. We choose the architecture of ViT-L (768
embedding dimensions and 24 layers) with patch size 14 at input size 840 x 840 as the image encoder.
Thus, the number of image embeddings is 3,600. Both the image encoder and text encoder are
initialized from a pre-trained CLIP model (Radford et al,[2021)). As the model architecture only uses
Transformer encoders, all the parameters take advantage of image-level pre-training in CLIP.

Instance Attribute Learning Learning instance-level attribute knowledge is challenging for exist-
ing OVD foundation models with free-text queries as input, as it requires the models to automatically
identify the keywords without additional instruction information. To achieve that, we propose a
multi-step training strategy for LOWA with a customized three-step learning process for a coarse-to-
detailed alignment: (1) object-level training step (Stepo in short), (2) attribute-aware training step
(Step 4 in short) and (3) free-text training step (Step g in short).



(1) Object-level training step trains the model to detect objects by aligning object class names with
visual representations. For each image, we provide the object names as the positive text queries. A
set of non-overlapped object class names is randomly picked from a candidate set as the negative text
queries (We get the object label set by combining the object labels of Objects365 (Shao et al.l|2019)
and LSA (Pham et al.,[2022) datasets.). The objective of this training step is to facilitate the matching
of provided object classes with the corresponding object-level visual embeddings. Through ablation
studies in Sec. 3.4, we have demonstrated that introducing coarse-grained object detection prior to
fine-grained attributes yields a substantial improvement in accuracy for fine-grained object detection.

(2) Attribute-aware training step ensures that the correct objects are localized for Step 4 and thus
the corresponding attribute details associated with a specific object can be learned. Specifically, as
each object could have multiple attributes, we regard each attribute as an additional label to the object.
The model is trained to align each visual embedding with multiple text queries. For example, “a red
peeled apple” corresponds to three positive text queries: “red”, “peeled”, and “apple”. To create
negative samples, the object classes and attributes are merged together to construct a label candidate
set. For each object, we randomly sample some objects or attributes from the union set as the negative
text queries. With these multi-label settings, the image encoder is optimized to disentangle the
semantic meaning of attributes and classes.

(3) Free-text training step aims to enhance the vision-language alignment on more free-styled text
queries containing attributes and class names. For each object, we randomly pick one attribute from
its attribute lists and concatenate it with the object class to construct a positive text query. For negative
queries, the positive text queries are broken by replacing either the object class or the attribute. We
randomly picked either an object class or an attribute without overlaps. After this, LOWA learns to
match text queries with fine-grained descriptions and instance-level visual embeddings.

Training Optimization and Inference All the training steps use the same bipartite matching loss
L, introduced by DETR (Carion et al.,[2020) for object classification and bounding box prediction.
We use the L1 loss £ and the GIOU loss £, for bounding box prediction. We also use the focal loss
L. as the classification loss for text labels, as each single object could correspond to multiple text
labels. Instead of predicting the logits in a fixed global label space as closed-vocabulary detectors,
the classification projection head outputs logits over the per-image label space defined by the queries.
The matching loss L., is formally defined as: £,,, = £ + £, + L. During inference, LOWA predicts
the bounding boxes of objects in an image based on the provided text queries. Each text query could
be a fine-grained description of an object with certain attributes.

3 Experiments
3.1 Experimental Settings

Baselines Since our model is designed to localize objects in the open-vocabulary environment, we
choose two SOTA open-vocabulary detection models as the baselines: OWL-ViT (Minderer et al.,
2022)) and GroundingDINO (Liu et al.}2023)). Both models have impressive open-vocabulary object
detection ability and have shown attribute-awareness.

Evaluation Tasks Our model can perform multiple tasks, but we focus on its most significant feature:
object localization with attributes. Therefore, we evaluate our model primarily on tasks that involve
this capability: attribute classification and attribute localization. Attribute classification is the
task of identifying the attributes of an object given its class name. The current attribute evaluation
benchmarks are generally for this task. In contrast, attribute localization is the task of identifying the
localization of an object given its attributes. Additionally, we report object detection performance on
OVAD dataset following the previous works.

Evaluation Datasets and Protocol We use two attribute-annotated datasets, VAW (Pham et al.,
2021) and OVAD (Bravo et al.,[2022) for evaluation. VAW contains 620 attributes covering object
color, material, shape, size, texture and action. OVAD is a densely annotated objects and attributes
benchmark with 117 attribute classes for over 14,300 object instances (no training set is provided).
We tested the two baselines under the box-free setting. Without target bounding boxes provided, we
obtain predictions of bounding boxes and probabilities for a given image with a list of candidate
attributes and object names. Under the box-free setting, we first find the predicted box that has the
largest Intersection over Union (IoU) with the ground truth box among all the predicted bounding
boxes, and then use the corresponding object feature for attribute classification. We follow the same



workflow for evaluating GroundingDINO and OWL-ViT. We calculate the mean average precision
(mAP) over all the attributes as the metric to compare all the methods.

Evaluation Metrics For attribute recognition, we follow VAW and OVAD to measure attribute
prediction from a different perspective: mAP, mean average precision over all classes; mR@K, mean
recall over all classes at top K predictions in each image; and F1 @K, F1 scores over all classes at top
K predictions in each image. K is selected as 8 for OVAD and 10 for VAW following the previous
works’ default settings. For attribute localization, we report mAR @ 10 results, which is the mean
average recall at top 10 predictions.

3.2 Attribute Classification Results and Analysis

Comparison with baseline models (/) OVAD Benchmark: We report the overall attribute recognition
performance in Tab. [Tjusing the metrics mAP, mR@15 and F1@15. As the occurrence of attributes is
long-tailed, we use the provided standard splits (Head, Medium and Tail) of the attributes and present
the model mAP performance for each of them. This helps us to inspect model’s generalization ability
in handling common attributes and rare attributes. Additionally, we evaluate mAP at 0.5 IoU for the
open-vocabulary object detection task on the 80 class object set, called OVD-80. As we can see, our
model LOWA exhibits the best performance overall and is able to recognize attributes with different
frequencies, especially the rare attributes. In contrast, GroundingDINO and OWLVIiT are not good at
attribute classification, despite their decent performance on object detection tasks, as shown in the
OVD-80 results. For a fair comparison, we also continued training OWL-ViT for 100K steps using
the same training data. We report this model’s performance with the model as OWL-ViT (ViTL/14,
Cont.). However, the attribute classification ability drops compared to the original OWL-ViT model.

(2) VAW Benchmark: Similar to the OVAD dataset, we evaluate models using the zero-shot attribute
classification task on the VAW validation set under a box-free setting. Table 2| shows the performance
comparison between all the baseline models and our model. Based on the results, our model
outperforms all the baseline models on the attribute classification task and thus shows enhanced
attribute-awareness.

Table 1: Performance comparison with baseline models on the OVAD benchmark for attribute

classification and object detection. (Bold indicates the optimal performance.)
Method OVAD Generalized OVD-80 (AP5)
mAP(@al) mR@8 FI@8 | Head Medium Tail | Novel3,) Baseys) Allgg
64.6 67.0

GroundingDINO (Swin-B) 8.9 8.0 9.0 36.0 7.6 0.7 70.5

GroundingDINO (Swin-T) 8.9 7.8 8.1 34.4 8.1 0.8 56.1 54.8 55.3
OWL-ViT (ViTL/14) 11.1 13.9 15.8 42.8 10.0 1.3 58.6 56.4 57.3
OWL-ViT (ViTL/14, Cont.) 10.2 12.3 14.0 40.3 9.0 0.9 69.3 67.4 68.2
LOWA (Ours) 18.7 35.3 394 58.0 204 2.6 68.2 67.0 67.5

Table 2: Performance comparison on attribute classification with baseline models on VAW validation
set. (Bold indicates the best performance.)

Model mAP(alll mR@15 F1@15 | Head Medium Tail
GroundingDINO (Swin-B) 30.2 2.0 37 338 28.7 20.8
GroundingDINO (Swin-T) 30.0 2.7 5.0 339 28.4 20.2
OWL-VIiT (ViTL/14) 37.4 12.3 20.4 41.8 359 253
OWL-VIiT (ViTL/14, Cont.) 36.1 9.4 16.1 40.3 344 25.6
LOWA (Ours) 50.0 36.9 45.5 54.4 47.8 394

Table 3: Additional performance comparison of attribute classification models with public OVAD
benchmark

Method Box OVAD Generalized OVD-80 (AP5()
mAP(all mR@8 FI@8 | Head Medium Tail | Novel3,) Baseys) Allg)
OV-Faster-RCNN (Bravo et al.|[2022) given 11.7 - 344 13.1 1.9 0.3 533 32.1
VL-PLM (Zhao et al.[[2022) given 13.2 - - 32.6 16.3 2.6 19.7 58.8 432
Detic (Zhou et al.|[2022) given 13.3 — - 44.4 134 2.3 20.0 49.2 37.5
LocOv (Bravo, Mittal, and Brox|[2022) | given 149 - - 42.8 17.2 2.2 22.5 52.5 40.5
OVR (Zareian et al.[[2021) given 15.1 - - 46.3 16.7 2.1 17.9 51.8 38.2
OVAD (Bravo et al.|[2022) given 18.8 — - 47.7 22.0 4.6 24.7 49.1 39.3
OvarNet(ViT-B16) (Chen et al.][2023) free 27.2 — - 56.8 33.6 8.9 352 60.4 542
LOWA (Ours) i free 18.7 35.3 39.4 58.0 20.4 2.6 68.2 67.0 67.5

Additional comparison with other relevant models We also put the comparison results between
our model and recent traditional attribute classification models in Tab. 3l Most of the models in this



Table 4: Performance (AR@10) of Attribute Localization on OVAD dataset

Model li Pattern State Type Material Size Texture Length Tone
OWL-VIT 20.1 24.4 199 1238 29.7 23.8 12.9 10.8 8.8

OWL-VIiT (ViTL/14. Cont.) 25.0 37.3 21.5 154 28.6 22.3 16.4 20.2 10.7
LOWA (Ours) 233 379 21.8  29.6 322 26.6 22.5 27.4 153

Table 5: Ablation studles on OVAD benchmark.

Generalized OVD-80 (AP;)
Method Training Steps | 4 mR@s F1@8 | Novels, Baseus) Allgy
Stepo+4 (Ours) 250K 170 277 317 754 718 733
Step+r (Ours) 250K 163 273 305 459 40.1 424
Stepo+ (Ours) 250K 181 324 363 66.4 66.1 72.1
Stepo+atr (Ours) 350K 185 344 385 702 63.7 69.3
Stepo+ -+ (Ours) 250K 187 353 394 68.2 670 675

table lack the object detection components, and thus they are evaluated under a simpler box-given
setting. The ground truth locations of objects are provided and the models only perform attribute
classification on each given object. Based on the results, our model achieves competitive results
even compared with these traditional attribute classification models. The OvarNet is also a box-free
model designed for open-vocabulary attribute classification and achieves impressive performance.
However, OvarNet is trained via a teacher-student process to learn attribute detection. Our model
uses a one-stage detection process, which is more efficient and general to adapt to multiple visual
tasks. Also, our model significantly outperforms OvarNet on object detection results (improved by
24.5% on all objects). Results from Tab. [T|and Tab. [3| provide promising evidence to show that our
model has better attribute-awareness compared to other OVD baselines while keeping strong object
detection ability.

3.3 Attribute Localization Results and Analysis

We further evaluate the effectiveness of our model on attribute localization. To this end, we reuse the
OVAD dataset and only use attributes as queries to localize the target objects such as “red” or “smooth”
object. Specifically, we evaluate the attribute awareness for each attribute category. Table ] reports
nine representative categories. From the table, LOWA significantly outperforms all the baselines
across various attribute perspectives, which further demonstrates its attribute-awareness.

3.4 Ablation Study

To investigate the effectiveness of our training strategy, we conduct ablation studies by removing
each training step. We increase the training steps in each ablation study to keep the same number
of total training steps for a fair comparison. We increase the Stepp or Stepr to 200K steps for
setting Stepo+r and Step 4+ . By removing Stepr, we increase 25K steps for each previous step.
Furthermore, as we mentioned in Section [2] the goal of Stepr is to enhance vision and language
matching instead of improving attribute and object detection. We also investigate whether Step
follows our assumption by increasing the training steps in Stepr to 150K steps. Table [5] shows
the performance comparison of all the studies. Results show that the model trained with three
steps outperforms all the other designs that miss one training step. These studies convince us that
our training framework is effective in enhancing the fine-grained object detection of OVD models.
Training the model to learn open-vocabulary object detection from coarse-grained to fine-grained
features is necessary to disentangle classes and attributes. Also, we prove our assumption that longer
Stepr does not help attribute and object detection.

4 Conclusion

In this work, we introduce LOWA, a new open-vocabulary object detection model with fine-grained
attribute-awareness. We present a novel training framework to incorporate attribute information,
which is fully compatible with existing OVD models. Our model trained on large-scale data can
perform open-vocabulary object detection with free-text inputs in a one-stage manner. We also
compare our model with several SOTA open-vocabulary detection models and observe a significant
improvement on two popular benchmarks. Results show that LOWA has strong zero-shot detection
performance and can disentangle object classes and attributes. Ablation studies indicate that each
step of our training framework is effective and important. We believe that this work could improve
the bottleneck of existing OVD models on fine-grained domain adaption. The novel ideas and
observations could provide valuable insights to researchers in this field.
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