Under review as a conference paper at ICLR 2026

GASDU: GAUSS—-SOUTHWELL DYNAMIC UPDATE
FOR EFFICIENT LLM FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter-efficient fine-tuning (PEFT) is crucial for adapting large language
models (LLMs), yet existing methods trade off accuracy, latency, and com-
pute: some add inference-time modules, others fix a static parameter set that can
drift from evolving gradients, and dynamic variants can be costly. We propose
GAuss—Southwell Dynamic Update (GASDU), which performs periodic Gauss—
Southwell-k selection: every M steps it uses the current gradients to select the
k largest-magnitude coordinates and updates only those entries while reusing the
mask until the next refresh. The Top-k selection is implemented in a streaming,
tile-wise way to avoid materializing dense gradients, making the amortized re-
fresh cost negligible. Theoretically, under a local Polyak—t.ojasiewicz condition,
we prove that GASDU enjoys a linear convergence rate scaled by a measurable
gradient-retention factor and show that the factor degrades sublinearly within each
refresh window. This sublinear decay implies that a moderate M can maintain
a high retention factor, which in turn explains GASDU’s near—full-fine-tuning
behavior. Empirically, GASDU sustains high retention between refreshes at an
extreme parameter budget (0.01%) and consistently outperforms strong PEFT
baselines and closely tracks or exceeds full fine-tuning across diverse common-
sense and arithmetic reasoning benchmarks and LLMs (LLaMA-2/3 and GPT-
0OSS-20B).

1 INTRODUCTION

Adapting large pretrained language models (LLMs) to specialized tasks, such as biomedical text
mining, financial analysis, and legal document review, has achieved remarkable success (Ruan et al.,
2025} [Fang et al., [2025; [Lu et al., 2025). This progress relies on fine-tuning, where models are ad-
justed with domain-specific data to bridge the gap between general pretraining and downstream
requirements (Hu et al., [2022; |Sung et al.| 2021} [Dettmers et al., 2024; \Guo et al., 2021} |[Han et al.,
2024 |Liao et al.l 2023). However, as model scale expands into the billions of parameters, con-
ventional full-parameter fine-tuning has become prohibitively expensive. Parameter-Efficient Fine-
Tuning (PEFT) methods have emerged as a solution, enabling adaptation by updating only a small
fraction of the model parameters (Han et al., [2024)).

While PEFT makes adaptation practical at scale, many designs entail trade-offs. Some methods
constrain updates with low-rank adapters, limiting optimization flexibility; some fix a static sparse
subset of weights, which can drift as gradient directions evolve; and some dynamically reallocate pa-
rameters to better follow the optimization geometry, but often rely on dense-gradient materialization
or extra passes that erode efficiency (Han et al.|[2024). These limitations motivate a latency-neutral,
dynamically refreshed update rule that tracks evolving gradient directions without significantly in-
flating computational and memory cost.

We introduce GAuss—Southwell Dynamic Update (GASDU), a novel PEFT strategy that effi-
ciently approximates the ideal dynamic update. GASDU operates by performing periodic Gauss—
Southwell-k selection (Nutini et al.,2015) over the model’s parameters: every M steps, it leverages
the current gradients to identify the & parameters with the largest gradient magnitudes and updates
only those entries until the next refresh. To keep selection cost low, we compute Top-k coordinates
via a streaming, tile-wise reduction with a small O(k)-sized candidate pool, discarding tiles imme-
diately and never materializing the full per-weight gradient matrix in high-bandwidth memory. By

Under review as a conference paper at ICLR 2026

Combine

Output

Output

Output

Output

1. Additive Adapter
Fine-Tuning

i IIL. Fixed Selective
Fine-Tuning

II. Reparameterization
Fine-Tuning

: IV. Dynamic Selective

i Fine-Tuning

! W Frozen [l Trainable

Figure 1: Illustration of additive adapter methods, reparameterization approaches, fixed selective
fine-tuning methods, and dynamic selective method (to which GASDU belongs). Whereas the first
three either attach extra modules, tune reparameterized components, or update a static subset of
parameters, GASDU applies a dynamic sparse linear update directly to the pre-trained parameters.

refreshing periodically, GASDU amortizes the selection cost and dynamically tracks the evolving
optimization direction without extra passes that are common to prior dynamic selection methods.
By design, GASDU preserves the original architecture, adds no inference latency, and sidesteps the
high costs of prior dynamic methods while maintaining training stability.

From a theoretical perspective, we prove that GASDU achieves a linear convergence rate close to
that of full-parameter fine-tuning (Section 4.1}, under the local Polyak—t.ojasiewicz (PL) condition,
which is empirically verified in Section .3] The difference in rate arises only from the fraction
of gradient norm retained by the sparse mask. Our Mask-Reuse Retention Analysis (Section [4.2))
further shows that when the mask is reused for multiple steps, the retention factor decays sublinearly
within each refresh period, ensuring convergence remains close to full fine-tuning. We empirically
confirm that the dynamic mask consistently captures the dominant gradient norm (Section [5.2),
allowing GASDU to closely follow dense optimization while updating only a tiny subset of pa-
rameters. Furthermore, the aforementioned retention-based analysis is readily applicable to other
selective fine-tuning schemes.

We evaluate GASDU on diverse commonsense and arithmetic reasoning tasks under a 0.01% update
budget. Across LLaMA-2-7B/3-8B and GPT-OSS-20B models, GASDU consistently outperforms
leading PEFT baselines at the same sparsity and, on several tasks, surpasses full fine-tuning (Sec-
tion[5.1). In terms of training efficiency, GASDU delivers a 10.64x throughput improvement and
reduces peak GPU memory to 30% of full fine-tuning (Section[5.3). Per-iteration profiling shows the
mask-refresh cost is relatively small and largely insensitive to the update budget since our streaming
Top-k implementation avoids materializing dense gradients. With a modest refresh period M, only
one in M steps incurs this cost, so the amortized overhead becomes negligible (Section[5.3). Over-
all, GASDU preserves the benefits of dynamic mask selection to match or exceed the predictive
performance of full fine-tuning while achieving substantial speedup and memory savings.

2 RELATED WORK

Existing PEFT approaches follow four main paradigms, as demonstrated in Figure[I| Additive meth-
ods (e.g., adapters) introduce new trainable modules while freezing the rest weights, which reduces
the number of updated parameters but can increase memory usage and inference latency (Houlsby
et al.| 2019; Li & Liang| [2021). Reparameterization methods, such as LoRA (Hu et al.| |2022), con-
strain updates to a fixed low-rank subspace, preserving inference speed but restricting optimization
flexibility (Zhang et al.| 2023} [Dettmers et al.l 2024). Fixed Selective methods (e.g., SIFT (Song
et al [2023)) update only a predetermined subset of parameters throughout training (Ben Zaken
et al.} 2022; (Guo et al, [2021; |Sung et al.} |2021)). The reliance on a fixed parameter subspace poses
a common limitation, namely the risk of converging to suboptimal solutions, as the set of optimal
parameters to update can shift during optimization. This limitation has motivated the development
of Dynamic Selective methods, which relaxes a fixed mask by changing which base weights are up-
dated during training. RigL alternates prune/regrow based on magnitude-gradient signals, inserting

Under review as a conference paper at ICLR 2026

m

([]
]]

- ANEEE +
]
EEEE.

w® H0)
Full gradient Apply mask]
calculation Mask refresh
1 selection = e °c
| H_/
0] A®
Mask refresh Mask reuse

iterations N
[)
Y

Figure 2: Workflow of the GASDU fine-tuning algorithm. At each training iteration, the sparse
mask is either reused from the previous step or refreshed every M steps via Top-k selection of the
full gradient. When the mask is reused, the model applies a sparse parameter update restricted to the
current mask without performing dense back-propagation.

periodic extra updates to change the support (Evci et al. 2020). For LLMs, SpIEL scales sparse
fine-tuning by iterating update-prune-regrow cycles, where regrowth uses accumulated gradients or
SM3 momenta; it improves over LoRA at comparable runtime but incurs non-negligible evalua-
tion/selection overheads (Ansell et al.| |2024). Dynamic Subset Tuning (DST) similarly optimizes
a small, moving subset of existing parameters rather than a fixed mask (Stahlberg et al., [2024).
In addition, sampling/structured/hybrid designs (e.g., LISA, S?FT, SLTrain) add implementation
and tuning complexity (Pan et al.| [2024; [Yang et al.| 2024} Han et al., 2024). Among these, S2FT
enforces structured sparsity patterns to improve hardware efficiency and cross-task generalization
in large-scale LLM fine-tuning. SparseLoRA further combines low-rank adapters with contextual
sparsity, activating LoORA modules only on a subset of tokens or positions to reduce both training
and inference cost while remaining in the additive-PEFT paradigm (Khaki et al.}[2025)). Orthogonal
to parameter selection, GaLLore compresses gradients via low-rank projection before the optimizer
update, substantially reducing optimizer and gradient memory while still performing full-parameter
updates rather than selective fine-tuning (Zhao et al.| 2024)).

Despite extensive empirical progress, to the best of our knowledge, general convergence guarantees
for nonconvex LLM fine-tuning with changing sparsity patterns remain scarce. When analyses
do appear, they are restricted to simplified or surrogate settings and do not quantify how design
parameters such as the refresh cadence M and rotation/sampling schedules affect objective decrease.
In particular, prior work does not provide rate statements or monotone-decrease guarantees tied to a
measurable control quantity that explains when and why dynamic selection maintains near—full-fine-
tuning behavior. This gap leaves practitioners without principled guidance on how refresh frequency
and selection granularity should scale with budget and model regime.

Positioning of GASDU. To close this gap, GASDU employs gradient-driven periodic updates that
avoid auxiliary modules and extra passes, preserving inference latency while keeping refresh over-
head amortized and small. More importantly, it provides, to our knowledge, the first retention-based
convergence analysis for selective PEFT under a verifiable local Polyak—}t.ojasiewicz (PL) condition.
The theory makes explicit how M (refresh frequency) and &k (update granularity) influence the con-
vergence rate via the measurable gradient-retention factor «, yielding principled guidance for setting
these hyperparameters across budgets and model regimes. This combination of practical efficiency
and explicit design rules distinguishes GASDU as both effective and theoretically grounded.

Under review as a conference paper at ICLR 2026

3 METHOD

To achieve efficient fine-tuning while preserving convergence speed and task performance, we pro-
pose Gauss-Southwell Dynamic Update (GASDU), a method that dynamically sparsifies parameter
updates. The workflow is illustrated in Figure 2]

We fine-tune a pre-trained parameter matrix W € R™*" by updating only a small, dynamically
chosen subset of its entries. Let A®) € {0,1}™*" be a binary mask that selects exactly k < mn
coordinates at iteration ¢. The masked update on the selected entries is

wi™ = w4V, fW®), forall (i, §) with ALY =1, (1)
while all other coordinates remain frozen. Equivalently, in the unified masked-gradient form used in
our analysis (cf. Sectionf)),

WD — w® _ 5 (A(t) ® Vf(W(t))),

which coincides with full-parameter gradient descent when A(*) = 1 (see Eq. @.

Every M steps we refresh the active set by taking the Top-k coordinates of the current full gradient
magnitude:

1, |gij] is among the k largest in |G|
AY = TopK ®) k here TopK(G,k)y; =<7 7Y ’
°p (Vf(W),)’ where opK(G, k)is 0, otherwise.
()
Between refreshes, the mask is reused, so the update () operates on a fixed set of coordinates for
M iterations. This “periodic Gauss—Southwell-£” rule lets the method follow the dominant descent

directions without introducing any inference-time modules.

Algorithm 1 GASDU: Gauss—Southwell-k Dynamic Update

Require: Pre-trained W, loss f, step size v, sparsity k, refresh period M, total iterations 1’
1: (init) Compute G© < V f(W©); set AV« TopK (G, k)
2: fort =0toT — 1do

3: if (t+1) mod M = 0 then > streaming and tile-wise mask refresh
4: GW ¢ VW®)

5: A® TopK(GW, k) > install the fresh mask immediately
6: else

7: A® — ACD > reuse mask
8: end if

9: GW — AYovF(WW) > masked gradient (computed sparsely)
10: WD —w® _ 4 G®

11: end for

12: return W

Speed and memory optimizations. We reduce computational time and memory of mask refresh
by streaming the per-weight gradient in small bf16 tiles instead of materializing the full m x n
matrix. For each tile, we compute the magnitudes, select the tile’s Top-k entries, merge into an O(k)-
sized candidate pool with £p32 accumulations, and immediately discard the tile. As a result, the full
gradient is never written to or read from high-bandwidth memory (HBM), eliminating © (mn) traffic
and keeping peak working memory proportional to k rather than mn. The refresh is integrated into
the backward pass of the current minibatch, reusing existing gradients and activations for streamed
Top-k selection, thus eliminating the need for an extra forward/backward pass. Because a sweep
occurs only once every M steps, the amortized cost over T iterations is O(%mn + Tk) instead of
O(Tmn). Between refreshes, computation is restricted to the k active coordinates, and updates use
blockwise in-place accumulation over the active index set, avoiding large temporaries and further
reducing memory traffic.

Parallel training compatibility. Because all operations in GASDU (streaming Top-(k), sparse
updates, and commit) act on local linear projections and their gradients, the method naturally ex-
tends to tensor-parallel (TP) setups by selecting and updating Top-(k) entries independently on each

Under review as a conference paper at ICLR 2026

shard. In Fully Sharded Data Parallel (FSDP) training, the sparse update vectors and mask indices
are treated as ordinary trainable parameters that can be sharded or replicated alongside the frozen
backbone, so integration with TP/FSDP requires only standard configuration rather than any algo-
rithmic changes.

4 THEORETICAL ANALYSIS

In this section, we formalize GASDU as masked gradient descent and show that, under a local
Polyak—Ft.ojasiewicz (PL) condition, it enjoys linear convergence with a rate scaled by a measurable
gradient-retention factor (the fraction of /5 gradient energy captured by the active mask). We further
derive a lower bound of the retention factor which shows it decays sublinearly in each refresh period.

4.1 CONVERGENCE ANALYSIS

We first show that full-parameter fine-tuning is a special case of GASDU formally. For the parame-
ter matrix W € R™*" a unified update rule that encompasses both full-parameter gradient descent
(GD) and GASDU (Eq. (1)) at iteration ¢ is:

WD = w® A A® o (VW ®)), ©)

where A®) € {0, 1}™*™ is an iteration-dependent binary mask matrix and ® denotes the Hadamard
(element-wise) product. Note that in applications, we do not need to calculate the gradients of the
parameters corresponding to the zero entries in A(), which leads to significant computational sav-
ings by avoiding unnecessary gradient evaluations. Full-parameter GD is recovered by taking A(*) =
1, for all £, whereas GASDU uses a sparse mask obtained as A(*) = TopK(Vf(W(t)), k) (Eq.

). The gradient norm captured by A®) can be measured by the gradient retention factor oy
A & (VWD) |?
« =
t V(W ®)]2

In the special case of full-parameter GD, i.e., A® = mxn, the mask retains the entire gradient
and a; = 1. For a fixed W), the quantity o, depends on the budget k through the top-k mask:
increasing k enlarges the support of A(*), can only increase the numerator in @), and monotonically
drives oy toward 1 as k approaches the full parameter count. Thus, & controls how much of the
full-gradient norm is preserved at each step, with larger % yielding masked updates that are closer to
full-gradient descent and smaller & trading gradient norm for memory and compute savings.

4)

Polyak-FLojasiewicz (PL) condition. Let f : R? — R be the empirical loss minimized during fine-
tuning (e.g., cross-entropy (Goodfellow et al.|[2016)). We say f is L-smooth if |V f(x)—V f <
L||x — y]|| for all x,y € R% Beyond smoothness, the Polyak—Lojasiewicz (PL) condition (Karimi

asserts that for some p > 0,

IVFOW)IP > 20 (FW) = (W), (5)
where W* is a global minimizer. Together with L-smoothness, (3) guarantees linear convergence of
gradient descent (Karimi et al., 2016} [Liu et al., 2022). For modern LLMs, the global PL condition
rarely holds because the optimization problem is high-dimensional and non-convex, so we adopt a
verifiable local variant.

Condition 4.1 (Local -PL). There exists 1 > 0 and a neighborhood S of W* such that (3] holds
foral W € S.

Empirical results that support the existence of a local PL property during full fine-tuning of LLMs
is provided in Section[d.3] With Condition&.T|and o defined in Eq.[d] we prove that our GASDU
convergence linearly, with full-parameter GD as a special case.

Theorem 4.2 (Local PL Convergence of GASDU). Let f : RY — R be L-smooth and ji-PL on a
set S C R%. Assume W) € S and that the iterations produced by the above update rule remain in
S. Then for any stepsize v < 1/L the sequence {W(t)} satisfies

JWEED) — f(W*) < (1= aguy) [f(WD) = F(W™)],
and consequently, if « = inf; ap > 0,

JWO) = fW*) < (L= ap) [fW®) = fw)].

Under review as a conference paper at ICLR 2026

Proof. See Appendix [A1] O

Corollary 4.1 (Gradient Descent). When A = 1,,,,, forall t (i.e. a; = 1), Theoremreduces
to the classical PL result: f(W®)) — f(W*) < (1 — py)! [f(W©) — f(W*)].

4.2 MASK-REUSE RETENTION ANALYSIS

Let t,of < t be the most recent refresh index and reuse the fixed mask A = Altrer) =
TopK(V f (W (tet)) k) for steps 5 € {tre,...,t}. Write g®) := V(W) and 7 1=t — tr €
{0,..., M — 1}. Assume the iterates remain in the local PL region S.

Theorem 4.3 (Retention Under Mask Reuse). If f is L-smooth and i-PL on S and v < 1/L, then
Jorany t > tyer,

2

L YT [\/ Qtrer — pt]+ L

pti= —= = o0 2) pr < —
V21— L& (1+pe)? Vi
where [z]4 := max{x,0}.

VYTt

Rate with reuse. Combining Theorem [d.3] with Theorem [4.2] gives, for every stale step,

I:\/ atref - pt:li

FOVEED) = FV) < (1= s

) [rw®) = fw)].

Proof. See Appendix [A2] O

Overall Interpretation. Theorem [4.2] shows that the per-iteration convergence rate is cv¢j1y; thus,
larger retained gradient norm (higher o) yields faster linear convergence, while smaller «; slows
convergence in exchange for memory and compute savings. Since Eq. (@) implies that o is non-
decreasing in the budget k, increasing k strengthens the convergence rate but raises cost, whereas
smaller k yields cheaper but slower updates. Theorem 3] further quantifies how mask reuse affects
this picture: the factor p; measures gradient drift since the last refresh and satisfies p; = @(\/ﬁ)
up to problem-dependent constants, so the lower bound on «; degrades only sublinearly in the reuse
length 7,. Halving either the stepsize + or the reuse window 7, shrinks p; by a factor of v/2 and
tightens the bound on «;. In our main experiments, we fix k to update roughly 0.01% of total pa-
rameters and use a moderate refresh period M, under which we empirically observe that a;; remains
high with mild oscillations (Figure [£).

4.3 VERIFICATION OF THE LOCAL PL CONDITION

To evaluate Condition [d.I} we monitor both the loss and the gradient norm of LLaMA-3-8B on the
ARC-C and NumGLUE typel datasets throughout full fine-tuning. At each training iteration, the
empirical loss f(W) is computed on a held-out validation set, while f(7W*) is approximated by
the minimum observed loss during training. The gradient norm ||V f(W)||5 is extracted from the
backpropagated gradients at the corresponding model parameters. To avoid artifacts introduced by
convergence plateaus, we remove the last 50 training points from the analysis. Plotting ||V f(W)||3
against (W) — f(W™) on a log-log scale directly tests the inequality above. Indeed, taking loga-

rithms yields
log [VF(W)|5 ~ log(f(W) — f(W™)) +log(2p),

implying that the points should align along a straight line with slope close to unity when the local
PL condition is satisfied.

Figure[3|reveals a near-linear slope of approximately one, thereby providing strong empirical support
that the optimization trajectory during fine-tuning resides in a region of the parameter space where
the local PL condition holds. Similar patterns are observed in the fine-tuning procedure of other
models as well.

Under review as a conference paper at ICLR 2026

12.5 9.5

v
. ,i’
e 9.0

10.0 . e } ’
& sl o
,E . e i
S o s d
R /.‘ 8.5 /u/a N
B 75 : Lo
= A
s
[H .
= 8.0 = .
oo RO °
50 ,,ea%" d:,.‘f\, o eny
P
7.5 4
.
- .
25 0.0 25 -3.0 25 -2.0 -1.5 -1.0
log(f(W) - {(W)') log(f(W) - {(W)')
« Empirical Data - Linear Fit: slope = 1.06, R2=0.77 « Empirical Data - Linear Fit: slope = 1.07, R2=0.96

Figure 3: Empirical verification of the local PL condition for LLaMA-3-8B on ARC-C (left) and
NumGLUE typel (right). Each log-log plot demonstrates a clear linear relationship between
log(||V £(W)]|3) and log(f(W) — f(W*)), confirming that the gradient norm remains bounded
below by a positive multiple of the excess loss during full fine-tuning of LLaMA-3-8B model.

5 EXPERIMENTS

In this section, we evaluate the proposed GASDU method on a range of language understand-
ing tasks. We compare GASDU with full fine-tuning and several state-of-the-art PEFT methods
across diverse datasets in arithmetic reasoning and commonsense reasoning tasks. We also examine
how dynamically refreshing the sparse mask during fine-tuning, rather than keeping it fixed, affects
performance. To assess the robustness of GASDU, we analyze how its performance varies with
different refresh period M. All experiments are conducted on an NVIDIA H100 GPU with 80 GB
of memory.

Models and Benchmarks. We fine-tune and evaluate three LLMs: LLaMA-2-7B (Touvron et al.,
2023), LLaMA-3-8B (Dubey et al.,2024), and GPT-OSS-20B (OpenAl, 2025). For arithmetic rea-
soning, we use NumGLUE (Mishra et al., |2022), which spans eight task types. We focus on six
(types 1-5 and 8), excluding type6 (implicit reasoning with textual answers) and type7 (quantita-
tive Natural Language Inference), since these require categorical or span-based outputs rather than
explicit numeric predictions. For commonsense reasoning, we adopt eight established benchmarks:
BoolQ, PIQA, SIQA, HellaSwag, Winogrande, ARC-Easy, ARC-Challenge, and OpenBookQA.
Models are trained and evaluated separately on each dataset. More detailed descriptions are pro-
vided in Appendix [B]

Baselines. We compare GASDU with several representative PEFT methods. LoRA (Hu et al.
2022)) serves as a standard low-rank adaptation baseline. We also include recent LoRA variants:
LoRA-One (Zhang et al}|2025]), which uses a one-step full gradient pass to initialize a task-specific
low-rank subspace, and LoRA-GA (Liu et al., 2024])), which allocates non-uniform per-layer ranks
using gradient-approximation statistics instead of a fixed global rank. We also include SpIEL (Ansell
et al., [2024), a dynamic sparse fine-tuning method that alternates pruning and regrowth phases to
adaptively maintain sparsity during training. To isolate the value of dynamic refreshing, we evaluate
a static sparse variant, Fixed Mask, which selects the largest gradient coordinates once on the first
batch and keeps them fixed thereafter. Full fine-tuning (full FT), which fine-tunes all parameters,
serves as a reference upper bound on LLaMA-2-7B and LLaMA-3-8B. For GPT-OSS-20B, full FT
was infeasible on our hardware due to memory limits, so we only report PEFT results.

Training Pipeline. For each PEFT method, we apply the method on the query, key, value, and
output projection matrices of every transformer block and allocate the number of trainable pa-
rameters evenly across these matrices, except LoORA-GA, which uses gradient-based non-uniform
rank allocation. For GASDU, the sparse mask is refreshed every M = 50 steps. All methods
use the same budget (0.01% of total parameters). We adopt this extreme budget to: (i) stress-
test PEFT under scarce capacity, where dynamic reallocation matters most; (ii) avoid extra capac-
ity masking algorithmic differences in apples-to-apples comparisons; and (iii) mirror constrained-
hardware deployments where memory and training cost dominate. Hyperparameters are chosen

Under review as a conference paper at ICLR 2026

Model Method Upd. % typel type2 type3 typed typeS type8 Avg
LoRA 0.01 274 38.4 502 35 284 30.1 363
LoRA-One 0.01 28.4 385 512 450 304 315 375
LoRA-GA 0.01 296 403 512 49.1 279 29.1 379
LLaMA-2-7B SpIEL 0.01 308 402 533 436 335 302 386
Fixed Mask 0.01 274 4.1 502 463 308 30.1 378
GASDU 0.01 314 07 517 478 335 344 402
Full FT 100 296 418 500 45 277 303 375
LoRA 0.01 60.7 479 65.7 563 64.2 459 56.8
LoRA-One 0.01 60.5 436 623 577 66.1 465 57.0
LoRA-GA 0.01 61.7 505 70.4 60.9 614 484 589
LLaMA-3-8B SpIEL 0.01 526 447 613 517 63.9 432 537
Fixed Mask 0.01 632 513 632 585 655 474 582
GASDU 0.01 635 5202 69.0 62.3 67.9 50.1 60.8
Full FT 100 60.7 59.6 737 59.0 703 474 618
LoRA 0.01 66.9 495 613 663 70.1 518 61.0
LoRA-One 0.01 70.4 520 63.0 68.2 701 3.1 63.0
LoRA-GA 0.01 743 50.7 80.5 68.1 672 506 65.2
GPT-08S-208 SpIEL 001 66.0 497 65.0 62.6 674 487 599
Fixed Mask 0.01 69.4 4938 780 645 693 4938 635
GASDU 0.01 733 511 81.4 66.4 69.9 52.9 65.8

Table 1: NumGLUE Arithmetic Reasoning Results (best in bold, second-best underlined).

by a one-epoch grid search for each method—task pair (including baselines) over learning rates
{1 x1076,5x107% 1 x 1075, 5 x 107°, 1 x 10~*} and batch sizes {4, 8}. The best valida-
tion configuration is then used for 3-epoch fine-tuning (see Appendix [C| for per-task setting). For
other method-specific hyperparameters, we strictly follow the authors’ public implementation. Un-
less otherwise noted, all runs use DeepSpeed’s FusedAdam optimizer (Rasley et al.,[2020) and the
median score is reported for each method-task pair.

5.1 MAIN RESULTS

Tables |I| and |Z| report arithmetic (NumGLUE) and commonsense results across the three models.
Under a 0.01% update budget, GASDU attains the strongest average among the PEFT baselines
on every model. On NumGLUE, GASDU outperforms the baselines on most individual tasks. In
terms of averages, it beats the strongest baseline on all backbone models, and it even exceeds full
FT on LLaMA-2-7B by roughly 3% (40.2 vs. 37.5) while closely matching full FT on LLaMA-
3-8B (60.8 vs. 61.8). On commonsense benchmarks, similar patterns holds: GASDU leads the
PEFT baselines and typically comes within a point of full FT on LLaMA-2-7B and LLaMA-3-8B
(83.3 vs. 84.5 and 87.9 vs. 88.7, respectively). Overall, these results show that GASDU combines
the efficiency of extreme sparsity with the effectiveness of full FT. Matching, and in some cases
surpassing, full FT while updating only 0.01% of parameters underscores the promise of gradient-
guided dynamic updates for parameter-efficient adaptation on both specialized (NumGLUE) and
general (commonsense) reasoning tasks.

5.2 EFFECT OF REFRESH PERIOD

Figure] demonstrates that GASDU with moderate refresh intervals (A = 10,50, 100, 200) main-
tains the gradient retention factor «; around 85% throughout training, ensuring stable preservation
of gradient information. When M becomes large (e.g., M = 400 or M = 800), o temporarily
declines until the mask is refreshed, and later stages of fine-tuning still recover to the 85% level
after updates. This behavior is consistent with the “critical learning regime” emphasized in STEP
(Lu et al.| [2023) and the dense-to-sparse warm-up used in SparseL.oRA (Khaki et al.| [2025): early
in training, gradient statistics are changing rapidly, so stale masks with large M quickly lose align-
ment and o drops, whereas later, once the gradients stabilize, refreshed masks remain well aligned
for many steps and long mask reuse becomes both safe and efficient. In contrast, the Fixed Mask
baseline exhibits a steady decline in «; from about 85% to 65%, indicating progressively weaker
gradient signals. Table [3]confirms this behavior in downstream performance: dynamic masks with
moderate M consistently outperform the Fixed Mask baseline, with M = 1 achieving the best
overall average, closely followed by M = 50. Larger M values, such as 400, remain competitive
but show slight degradation. These results suggest that choosing a moderate refresh interval effec-

Under review as a conference paper at ICLR 2026

Model Method Upd.% BoolQ PIQA SIQA HellaSwag WinoG. ARC-E ARC-C OBQA Avg
LoRA 001 720 814 805 90.1 81.2 84.3 02 774 795
LoRA-One 001 753 845 838 93.4 84.8 856 699 803 822
LoRA-GA 001 759 849 835 9.6 85.6 88.1 738 810 830
LLaMA-2-7B SplEL 001 738 824 813 89.6 83.4 812 66.1 705 785
FixedMask 001 740 837 828 922 84.4 84.5 694 776 8L1
GASDU 001 765 856 854 94.1 86.6 86.1 706 8L.6 833
Full FT 100 775 860 835 935 916 878 725 836 845
LoRA 001 746 874 827 926 84.8 920 792 856 849
LoRA-One 001 772 902 855 955 87.0 94.8 824 888 877
LoRA-GA 001 760 90. 854 952 913 047 82.1 87.6 878
LLaMA-3-8B SpIEL 001 712 872 843 922 83.2 920 765 839 838
FixedMask 001 755 89.0 844 947 86.8 938 842 867 869
GASDU 001 772 896 858 953 87.0 952 835 899 879
Full FT 100 780 905 851 953 95.0 938 825 89.5 887
LoRA 001 732 882 823 923 82.1 942 892 900 864
LoRA-One 001 768 912 852 953 85.8 97.1 925 933 896
LoRA-GA 001 760 908 847 949 88.9 %9 925 936 898
GPT-OSS-20B g gy 001 746 906 843 93.1 84.8 959 922 880 879
FixedMask 001 733 897 833 93.4 862 960 9.6 900 879
GASDU 001 771 924 856 955 85.0 988 949 913 901

Table 2: Commonsense Reasoning Results (best in bold, second-best underlined).

100%

90%

85%

80%

75%

Average Gradient Proportion

70%

65%

= Fixed Mask

500

Steps

GASDU M=10

1000

1500

== GASDU M=200 —— GASDU M=50

—= GASDUM=1 —— GASDU M=100 -

GASDU M=400 == GASDU M=800

Figure 4: Ratio of masked to full gradient ¢2-norms (smoothed with a 25-step moving average) on the ARC-C
dataset for GASDU with various refresh periods (M), alongside a Fixed Mask baseline. At every training step
t, we compute the gradient retention factor v, (Eq. (@) in each selected projection layer and report the mean

value across all layers.

tively balances computational efficiency and task accuracy, while very small or very large M offer

diminishing returns.

Model Refresh Period M Upd. % typel type2 type3 typed type8 ARC-C ARC-E BoolQ OBQA PIQA Avg
1 0.01 74.1 53.8 81.5 67.7 54.3 94.2 98.1 714 9229 926 787
10 0.01 729 50.8 80.9 66.1 524 93.8 98.5 76.7 92.6 92.9 77.8
50 0.01 733 511 814 664 529 94.9 98.8 77.1 91.3 924 780
GPT-0SS-20B 100 0.01 69.1 51.7 82.7 66.4 524 93.7 98.5 76.5 93.1 923 716
400 0.01 71.6 529 79.6 65.9 51.2 93.4 98.4 76.1 922 923 714
Fixed Mask 0.01 69.4 49.8 78.0 64.5 49.8 91.6 96.0 733 90.0 89.7 752

Table 3: Results of GASDU on GPT-OSS-20B with different refresh periods M and update per-
centage (all set to 0.01). Best results are in bold, second-best are underlined, on selected NumGLUE
arithmetic tasks and commonsense reasoning tasks. Averages are computed over all tasks.

Under review as a conference paper at ICLR 2026

5.3 TRAINING EFFICIENCY AND MASK-REFRESH OVERHEAD ANALYSIS

In Table[da] we compare training efficiency of GASDU (M =50) with Full FT, LoRA, Fixed Mask,
and SpIEL on ARC-C using LLaMA-2-7B (sequence length 768, batch size 4 per GPU, 2xH100)
at a 0.01% update budget. All methods run in bf16 with the FusedAdam optimizer and CPU
offloading for Full FT; results are averaged over 10 runs (50 warm-up, 500 measured iterations).
GASDU attains a 10.64x throughput gain over Full FT and reduces peak memory from 52.2 GB
to 15.7GB (70% less). Its throughput closely matches the Fixed Mask variant, within about 3%
(16,140 vs. 16,601 tokens/s), which supports our claim in Section |3| that periodic mask refresh
adds negligible overhead when amortized over M, while remaining competitive with leading PEFT
baselines in both speed and memory.

To quantify refresh overhead, we split the training step with mask refresh into a Top-k Refresh Block
and a Base Block and measure the wall clock time of each block under the same setting in previous
training efficiency analysis. The Refresh Block identifies the &k largest-magnitude gradient entries
by streaming small tiles of the full gradient matrix, merges candidates, and installs the new mask
(see implementation details in Section E]); the Base Block performs the standard forward, backward,
and masked parameter update. As shown in Table [4b] the Refresh Block time changes only mildly
as the update percentage spans several orders of magnitude. The Base Block dominates runtime at
high update percentage and is required by all mask-based methods. With a modest refresh period M,
only one in M steps pays the refresh cost, so the amortized overhead is negligible. Hence, GASDU
can achieve throughput on par with static-mask methods across sparsity levels while retaining the
benefits of dynamic mask selection.

LLaMA-2-7B on ARC-C LLaMA-2-7B on ARC-C
Throughput Speedup Ppeak GPU Top-k Refresh Base

Method (tokens/s) (X) (GB) Upd. (%) Block (ms) Block (ms)
Full FT 1516.45 1.00 52.17 0.001 516.72 410.19
LoRA 17372.06 11.46 15.73 0.01 531.37 642.54
SpIEL 16139.60 10.64 15.77 0.10 558.90 2222.84
Fixed Mask 16601.21 10.95 15.71 1.00 694.49 17319.04
GASDU (M =50) 16140.20 10.64 15.74

(b) Single-iteration mask-refresh overhead break-
(a) Training efficiency comparison. down.

Table 4: Side-by-side summary of GASDU efficiency (left) and mask-refresh overhead profiling (right).

6 CONCLUSION

We presented GASDU, an inference-neutral PEFT method that periodically applies
Gauss—Southwell-k selection using the current gradient signal, implemented via a streaming,
tile-wise Top-k that maintains an O(k) candidate pool and never materializes dense gradients.
Under a local Polyak—}t.ojasiewicz condition, we prove linear convergence with a retention-based
rate and derive a lower bound that quantifies the effect of mask reuse across the M-step window. A
natural extension is an adaptive refresh period M: use a small M early to track rapidly changing
gradients, then increase M later as masks stabilize to further amortize refresh cost. Empirically,
across diverse LLMs and benchmarks, GASDU with only 0.01% trainable parameters consistently
outperforms strong PEFT baselines and often matches or exceeds full fine-tuning, while achieving
up to 10.64x higher training throughput and about 70% lower peak memory, with no added
inference latency.

10

Under review as a conference paper at ICLR 2026

Reproducibility Statement. We have taken several steps to facilitate reproduction of our re-
sults. The GASDU algorithm is specified precisely in Section [3] (Algorithm [I)), including the peri-
odic Gauss—Southwell-% rule and the streaming Top-k refresh; implementation choices needed to
match our runtimes are described in the “Speed and memory optimizations™ paragraph of Sec-
tion [3] and the efficiency/overhead study in Section [5.3] All theoretical assumptions (e.g., lo-
cal PL) and guarantees are stated in Section 4} with complete proofs provided in Appendix [A.T]
and Appendix [A2] Empirical verification of the local PL condition appears in Section 4.3
Datasets, task definitions, and any filtering/exclusions (e.g., NumGLUE types used) are detailed
in Section [5] and Appendix [B] Training/evaluation protocols, LLMs, selection of baselines, grid-
search ranges, and per-task hyperparameters are documented in Section [5] and Appendix [C| (Ta-
bles[BHI0); main results and ablations are in Sections[5.1|and[5.2] We provide an anonymous repos-
itory (https://anonymous.4open.science/r/GASDU-B86D/) containing source code
for GASDU, configuration files, seeds, and scripts to reproduce all tables and figures, along with
instructions to fetch the datasets used. Finally, we include example logs and environment files to
pin library versions and hardware settings needed to reproduce throughput and memory numbers
reported in Section[5.3]

REFERENCES

Alan Ansell, Xiaotian Li, Rahul Jha, Ivan Vuli¢, Henrik Sterz, Anna Korhonen, and Edoardo M.
Ponti. Scaling sparse fine-tuning to large language models. arXiv preprint arXiv:2401.16405,
2024.

Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3:463-482, 2002.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language models. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pp. 1-9, 2022.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning about physical
commonsense in natural language. In Proceedings of AAAI, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of NAACL, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try ARC, the AI2 reasoning chal-
lenge. In Proceedings of ACL, 2018.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient finetuning
of quantized LLMs. arXiv preprint arXiv:2305.14314, 2024.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
Proceedings of NAACL, 2019.

Abhimanyu Dubey, Aarohi Jauhri, Anurag Pandey, et al. The LLaMA 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In Proceedings of the 37th International Conference on Machine
Learning (ICML), volume 119 of Proceedings of Machine Learning Research, pp. 29432952,
2020.

Luyang Fang, Xiaowei Yu, Jiazhang Cai, Yongkai Chen, Shushan Wu, Zhengliang Liu, Zhenyuan
Yang, Haoran Lu, Xilin Gong, Yufang Liu, et al. Knowledge distillation and dataset distillation
of large language models: Emerging trends, challenges, and future directions. arXiv preprint
arXiv:2504.14772, 2025.

11

https://anonymous.4open.science/r/GASDU-B86D/

Under review as a conference paper at ICLR 2026

Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive Sensing. Springer,
2013.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, Cambridge, MA,
2016.

Daniel Guo, Alexander M. Rush, and Yoon Kim. Parameter-efficient transfer learning with diff prun-
ing. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics,
pp- 4884-4896, 2021.

Zhisheng Han, Cong Gao, Jun Liu, Jiong Zhang, and Shouqiang Zhang. Parameter-efficient fine-
tuning for large models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. In Proceedings of the 33rd International Conference on Machine
Learning (ICML), 2016.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Proceedings of the 36th International Conference on Machine Learning (ICML), vol-
ume 97, pp. 2790-2799, 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations (ICLR), 2022.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-Lojasiewicz condition. arXiv preprint arXiv:1608.04636,
2016.

Samir Khaki, Xiuyu Li, Junxian Guo, Ligeng Zhu, Chenfeng Xu, Konstantinos N. Plataniotis, Amir
Yazdanbakhsh, Kurt Keutzer, Song Han, and Zhijian Liu. SparseLoRA: Accelerating LLM fine-
tuning with contextual sparsity. In Proceedings of the 42nd International Conference on Machine
Learning, volume 267 of Proceedings of Machine Learning Research, pp. 29768-29783. PMLR,
2025. URL https://proceedings.mlr.press/v267/khaki25a.html.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi.
MAWPS: A math word problem repository. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, pp. 1152-1157, 2016.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and Regina Barzilay. Learning to automatically solve
algebra word problems. In Proceedings of ACL, 2014.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics, pp.
4582-4597, 2021.

Boyang Liao, Yihong Meng, and Christof Monz. Parameter-efficient fine-tuning without introducing
new latency. arXiv preprint arXiv:2305.16742, 2023.

C. Liu, L. Zhu, and M. Belkin. Loss landscapes and optimization in over-parameterized non-linear
systems and neural networks. Applied and Computational Harmonic Analysis, 59:85-116, 2022.

Yi Liu et al. Lora-ga: Gradient allocation for parameter-efficient fine-tuning. arXiv preprint
arXiv:2407.05000, 2024.

Haoran Lu, Luyang Fang, Ruidong Zhang, Xinliang Li, Jiazhang Cai, Huimin Cheng, Lin Tang,
Ziyu Liu, Zeliang Sun, Tao Wang, et al. Alignment and safety in large language models: Safety
mechanisms, training paradigms, and emerging challenges. arXiv preprint arXiv:2507.19672,
2025.

12

https://proceedings.mlr.press/v267/khaki25a.html

Under review as a conference paper at ICLR 2026

Yucheng Lu, Shivani Agrawal, Suvinay Subramanian, Oleg Rybakov, Christopher De Sa, and Amir
Yazdanbakhsh. Step: learning n: M structured sparsity masks from scratch with precondition. In
International Conference on Machine Learning, pp. 22812-22824. PMLR, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of EMNLP, 2018.

Swaroop Mishra, Arindam Mitra, Neeraj Varshney, Bhavdeep Sachdeva, Peter Clark, Chitta Baral,
and Ashwin Kalyan. NumGLUE: A suite of fundamental yet challenging mathematical reasoning
tasks. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Long Papers), pp. 3505-3523, 2022.

Julie Nutini, Mark Schmidt, Issam Laradji, Michael P. Friedlander, and Hoyt Koepke. Coordinate
descent converges faster with the gauss—southwell rule. In Proceedings of the 32nd International
Conference on Machine Learning (ICML), 2015.

OpenAl gpt-0ss-120b & gpt-0ss-20b model card, 2025.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. LISA:
Layerwise importance sampling for memory-efficient large language model fine-tuning. NeurIPS
2024 Workshop / Poster; arXiv:2403.17919, 2024.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp- 3505-3506, 2020.

Abhilasha Ravichander, Aakanksha Naik, Carolyn Rose, and Eduard Hovy. Equate: A benchmark
evaluation framework for quantitative reasoning in natural language inference. In Proceedings of
ACL, 2019.

Wei Ruan, Yanjun Lyu, Jing Zhang, Jiazhang Cai, Peng Shu, Yang Ge, Yao Lu, Shang Gao,
Yue Wang, Peilong Wang, et al. Large language models for bioinformatics. arXiv preprint
arXiv:2501.06271, 2025.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. In Proceedings of AAAI, 2020.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. SociallQa: A bench-
mark for commonsense reasoning about social interactions. In Proceedings of EMNLP, 2019.

W. Song, Z. Li, L. Zhang, H. Zhao, and B. Du. Sparse is enough in fine-tuning pre-trained large
language models. arXiv preprint arXiv:2312.11875, 2023.

Felix Stahlberg, Jared Lichtarge, and Shankar Kumar. Dynamic subset tuning: Expanding the
operational range of parameter-efficient training for large language models. arXiv preprint
arXiv:2411.08610, 2024.

Yi-Lin Sung, Varun Nair, and Colin A. Raffel. Training neural networks with fixed sparse masks. In
Advances in Neural Information Processing Systems, volume 34, pp. 24193-24205, 2021.

Hugo Touvron, Louis Martin, Kevin Stone, et al. LLaMA 2: Open foundation and fine-tuned chat
models. arXiv preprint arXiv:2307.09288, 2023.

Joel A. Tropp and Anna C. Gilbert. Signal recovery from random measurements via orthogonal
matching pursuit. I[EEE Transactions on Information Theory, 53(12):4655-4666, 2007.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Sci-
ence. Cambridge University Press, 2018.

Xinyu Yang, Jixuan Leng, Geyang Guo, Jiawei Zhao, Ryumei Nakada, Linjun Zhang, Huaxiu Yao,
and Beidi Chen. S2ft: Efficient, scalable and generalizable LLM fine-tuning by structured sparsity.
In Advances in Neural Information Processing Systems 37 (NeurIPS 2024), 2024.

13

Under review as a conference paper at ICLR 2026

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of ACL, 2019.

Haohan Zhang, Hongyan Zhou, Rui Shao, Yijia Zhang, Sicong Liang, Xiangyu Du, Yue Zheng,
Kenneth Church, Teli Ma, and Yanyan Lan. Lora-one: One-step low-rank adaptation for large
language models. In Proceedings of the 42nd International Conference on Machine Learning,
2025. ICML 2025.

Q. Zhang, M. Chen, A. Bukharin, P. He, Y. Cheng, W. Chen, and T. Zhao. Adaptive budget allocation
for parameter-efficient fine-tuning. In International Conference on Learning Representations
(ICLR), 2023.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. GaLore: Memory-efficient LLM training by gradient low-rank projection. In Proceedings of
the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 61121-61143. PMLR, 2024. URL https://proceedings.mlr.
press/v235/zhao24s.htmll

14

https://proceedings.mlr.press/v235/zhao24s.html
https://proceedings.mlr.press/v235/zhao24s.html

Under review as a conference paper at ICLR 2026

The Use of Large Language Models. We used large language models (LLMs) as general-purpose
assist tools in two limited ways. (i) Writing polish: we employed an LLM to improve clarity, gram-
mar, and concision of author-written passages and captions; any suggested text was reviewed, edited,
and verified by the authors, and no passages were accepted verbatim without manual revision. (ii)
Retrieval & discovery: we used an LLM to surface potentially relevant references and related key-
words; all citations included in the paper were independently checked by the authors for accuracy
and relevance using the original sources. The conceptual contributions, algorithmic design, theo-
retical results (assumptions, statements, and proofs), experimental protocols, implementations, and
analysis are solely by the authors. The LLM was not used to generate data, results, code, or proofs,
and it is not an author or contributor.

A DEFINITIONS AND PROOFS

A.1 CONVERGENCE ANALYSIS

Definition A.1 (L-smoothness). A differentiable function f : R* — R is L-smooth on a set S C R¢
if its gradient is Lipschitz continuous with constant L > 0 over S; that is,

IVf(x) =ViWlz < Liz—yl2, Va,yes.
Equivalently, for all z,y € S,
L
Fy) < f@)+(VF(@),y =)+ 5 ly = =[5
Theorem 4.2 (Local PL Convergence of GASDU). Let f : R? — R be L-smooth and -PL on a
set S C RY. Assume WO € S and that the iterations produced by the above update rule remain in

S. Then for any stepsize y < 1/L the sequence {W)} satisfies

JWE) = fw) < (1=) [FW0) = F),

and consequently, if « = inf; ap > 0,
FWO) = f) < (1= apy) [AWD) = For)].

Proof of Theorem@2] Let G®) == Vf(W®). By L-smoothness (with (4, B) := tr(A" B) the
Frobenius inner product and || - || its induced norm),

L 2
f(W(t+1)) < f(Wm) + (GO, WD w0y 4 5 [D — o2,
Using the masked update WD — W = —(A® © G®)), we obtain
Ly? 2
f(W<t+1)) < f<W<t>) — A {(GY, A o 1Y 4 = A® & GW|%.
Since (G, A © GV = ||A(t) ®GW H2, it follows that
F(wen) < (W) = 5(1- L) a0 0 GO

For any v < 1/L the factor in parentheses is at least 1/2, so

1)) < ®) _ YIA® o O
f(W) < f(W) 5 A7 oG (A.1)
By the local 4-PL condition, |G®[|2 > 24 [f(W®) — f(W*)]. By definition of oy, [|[A®) ©
G® H2 = ay |G ||2. Substituting into (A.T) gives

FWED) = p7) < (1= au) [FOVO) - F77)],
and the geometric rate follows by recursion. O

15

Under review as a conference paper at ICLR 2026

A.2 MASK-REUSE RETENTION ANALYSIS

Between refreshes the update is masked: W+ = W) — 4 A ¢(9) with ¢®) = Vf(W(s)) and
fixed A = Alter) Let b := ||g{=) |3 and @ := |[Agt<t) ||y = | /o, b.

Step 1: Gradient drift. By L-smoothness,

t—1 t—1 1/2
l9® = g0l < LIWO — WD) < Ly 3 Jag) < Lyva(3 Iag),
S=tref s=tret

where the last step uses Cauchy—Schwarz and 7y 1=t — t¢f.

Step 2: Bounding the masked-gradient energy. L-smoothness and the masked update give the
standard descent estimate

FOVED) < fw) =y (1= 51 ag).

Summing from s = t,¢ to t — 1 and using f(W®) > f(W*),

=1 (tref) — *
Z HAg(s)H2 < f(W) Lj(W)
S=trer Y (1 - 7)
By the local y-PL condition at T (tret) | 92 = || g(tret) |2 > 24 [f (W (tret)) — £(TW*)], hence
t—1
b2
IAg)? <
:Zt:f 2uy (1- %)

Step 3: Explicit drift bound. Combining Steps 1-2 yields

L VTt
A, = lg® — gltret) || <« = b =: p; b,
e= g =gl = e 7T o Pr

which proves the stated form of p;, and since v < 1/L implies (1— %)‘1 < 2,also py < ﬁ, /Y T

Step 4: Retention under reuse. By the triangle inequality,

1AM = Agt]| = Jlg® — gl > (a = A) = (Vg —p), b,
and also ||| < b+ A, = (14 p;)b. Therefore
1Ag® 2 [V o]}

[g®1> = (1 +p)?
which is the claimed lower bound. O

apr =

A.3 ADDITIONAL THEORETICAL ANALYSIS

Theorem A.1 (Bias—variance for GASDU in the linearized regime). Assume the linearized data
model

y = fwo () + ¢(x) 0" +e, e~ N(0,0%).
Let fT be the predictor after T iterations of , and suppose (within the linearized model) it attains
the least-squares solution in the subspace spanned by St = Uz:ol supp(A®Y), with sy = |St|. If
l[p(2)||2 < B for test x, then

|(Fr(@) = fwo @) = 6(@)T0%)?] = [T @07 |3, + o* tr((@F, ®s,) 'S,) /.
~————

bias? variance

where X5, = s, (2)ps, (x)). In particular, l'f)\min(q)gT‘I‘sT /n) > Ao > 0and ||¢p(x)|2 < B,
then

2
BST

[(Fr(@) = fiwn @) = () T0%)7] < s, @0°[, + 0> .
on

16

Under review as a conference paper at ICLR 2026

Proof. Standard linear-regression bias—variance on the feature-restricted design ®s,.. The inequal-
ity uses tr(A"1B) < Apin(A4) " 1tr(B) and tr(Xs,.) < B2s7. O

Theorem A.2 (Uniform stability of under PL with retention). Let (W; 2) be -smooth and -Lipschitz
in W, and suppose the empirical loss f(W) = L i (W 2;) satisfies a local Polyak—Lojasiewicz

n

(PL) inequality ||V f(W)|3 > (f(W) — f*) on a set containing all iterates. Run with steps

v: < 1/ and masks A, and define

A® oV F(WD)Y|2
;= H © fgt) 2)“2 c [0’1]
IVFWO)]I3

Then is e-uniformly stable with

g2 T=1 T-1

GSZ Ve H(l—as%)~

t=0 s=t+1
In particular, for constant v < 1/ and o = inf; iy > 0,
< 2 1-(1-ay)”
n o}
Proof. Couple two runs on neighboring datasets and apply the Hardt—Recht—Singer SGD-stability
recursion (Hardt et al.,[2016). PL with masked descent yields a per-step contraction factor (1 — ;)

in function value (cf. |[Karimi et all 2016). Unroll and sum the sensitivities as in (Hardt et al.,
2016). O

Theorem A.3 (Complexity of sparse linearized hypotheses). Let Hs p = {x — fiyo(z) +
d(x)T0: ||0]lo < s, ||0]|2 < R}, and assume ||¢(x)||2 < B. Then

BR ed
n\7ls < —1/2slog—.
Rn(Hs,r) \/ﬁ\/ sogs

Hence, for -Lipschitz losses, the expected generalization gap is O(% v/ slog(ed/ s))

Proof. Apply standard sparse linear class bounds via Maurey sparsification / covering arguments
(e.g.,/Bartlett & Mendelson, 2002). The baseline fy; (o) is fixed and does not affect complexity. [

Theorem A.4 (Compressible gradients preserve energy). Let g € R? with nonincreasing magni-
tudes |g|(1y = -+ > |gl(a), and suppose g € L, oo With ||g|lp,co := sUP;>1 i'/?|g| ;) < C for some
p € (0,2). Let g1., be the Top-k truncation. Then

2 2 2
lowelf o, _, € 412
g1l lgll3
with ¢, = 2. Consequently, if A keeps the Top-Fk, the retention o = ||A ® g||3/]|g|13 satisfies

2
a>1-c(C?/|gl3) k' =2/,

2%})02/@1*2/” (see, e.g., Foucart & Rauhut, [2013, Section 1.3). Conclude by decomposing ||g||3
into head-+tail. O

Proof. Tail bound for weak-C,: |gliy < Ci~'/7 gives 3,0, (gt < C?X,., 727 <

Theorem A.5 (Top-k recovery under sub-Gaussian perturbations). Let g € R? be the true gradient
and g = g + &, where & has independent mean-zero o*-sub-Gaussian coordinates. Let Ti.(g) be the
Top-k index set and Ay = |g|)y — |g|(k+1) > 0. If

A > 204/2log(d/d),
then with probability at least 1 — 6, Ti.(9) = Tr(g) and thus a(g) = a(g). Generally, [a(9)] >
a(g) — Pr(T(9) # Tr(9)).

17

Under review as a conference paper at ICLR 2026

Proof. Control order-statistic flips by a union bound and sub-Gaussian tails; see, e.g., |Vershynin
(2018 Ch. 2). If no pairwise swap occurs across the k-th threshold, the two Top-k sets coincide. [

Theorem A.6 (Support recovery under mutual coherence). In the linearized model with design

. DD .
® € R4, suppose 0* is s-sparse and the mutual coherence ji(®) := max;; H‘I’l : quvl satisfies

gll2 *
w(®) < ﬁ Run with periodic refreshes that add k new coordinates by selecting the k largest
correlations with the residual (equivalently, Top-k gradient magnitudes in the LS subproblem), and
perform least squares on the active set between refreshes. Then after R > [s/k| refreshes, the
active set contains supp(0*). With sub-Gaussian noise of variance o*, the LS estimator over the
recovered support satisfies

i

~ log d
16— 6% S o) 25,

n

with constants depending only on p(®).

Proof. Batch-k variant of standard OMP/Stagewise analyses (e.g., [Tropp & Gilbert, 2007 [Nutini
et al., [2013): coherence ensures each refresh includes a true index; after [s/k| refreshes the true
support is included. Noisy rates follow from restricted eigenvalue/coherence arguments.

Theorem A.7 (Excess risk via retention and sparsity). Under the assumptions of Theorems [A.]|
and run with stepsizes vy, < 1/ for T steps and define o := info<icr y > 0. Let Ry =

Z?:?)l Y IAD @& V(W D)|o. Then for any § € (0, 1), with probability at least 1 — 6,

E(Fr) = (P[] S Mg ®0% 2, + 02 5T + % srlog(ed/sr) + (1-a7)" Ao,
— \VT_L./ n —_—

bias variance

) - opt. error
estimation

where 4 = min; v and Ao = f(W©) — f(W*).

Proof. Combine Theorems and to control approximation and estimation terms (see
also Bartlett & Mendelson, [2002). Optimization error follows from PL with retained energy:

FOVED) — 7 < (1= apyn) (FIWO) = £) . -

[Within-window retention decay] Let ¢ be a refresh step where the mask is fixed for ¢t = tg,...,to+
M — 1, and suppose f is -smooth. Define oy = ||[At0) @ Vf(W®)|12/|V (WD) ||2 for tg < t <
to + M. Then for any ¢ in this window,

Ao (s+1)) — ()
w0 >y - 23 AW O TIOVCD) T)]s

Z MGRIE
In particular, with updates and v < v,
t—1
ar = iy = 29 A O VAWD)a 2 ag, — O(M7) - max [AC) © T F(W D).
s=to
Proof. Let P = diag(A®“)) and g, = Vf(W®). Then |Pgl3 — ||Pg:l}? =
Zi;io 2Pg,P(gsi1 — gs) + ||P(gs+1 — gs)||3. Drop the nonnegative quadratic term and apply

Cauchy—-Schwarz. Smoothness gives ||gs11 — gsllo < [[WETD — WG|y = ~,|AG) © g4as
completing the bound. O

18

Under review as a conference paper at ICLR 2026

B DATASET DESCRIPTIONS

NumGLUE Sub-datasets. The NumGLUE benchmark consists of eight arithmetic reasoning
tasks, four of which are newly curated and four adapted from existing datasets (Mishra et al.|[2022).
Type 1 (Commonsense + Arithmetic Reasoning) combines everyday numerical facts with simple
calculations. For example, it requires knowing that a human has two hands and multiplying this
fact by the number of people in a scenario. Type 2 (Domain-specific + Arithmetic Reasoning) re-
quires scientific knowledge, such as chemical reaction stoichiometry or physical laws, combined
with arithmetic operations. Type3 (Commonsense + Quantitative Comparison) asks models to com-
pare quantities in everyday contexts, such as which object experiences greater gravitational force
given their respective masses. Type 4 (Fill-in-the-blank Arithmetic) presents arithmetic word prob-
lems reformatted into completion-style questions, where a key value must be inferred and filled
in. Type 5 (Reading Comprehension with Explicit Numerical Reasoning) is drawn from DROP
(Dua et al., [2019), where the answer must be a number following arithmetic operations over tex-
tual spans. Type 6 (Reading Comprehension with Implicit Numerical Reasoning) also originates
from DROP, but its answers are textual entities rather than numbers. Type 7 (Quantitative Natural
Language Inference) comes from EQUATE (Ravichander et al.| 2019), where the task is to classify
a premise—hypothesis pair as entailment, contradiction, or neutral based on numerical reasoning.
Finally, Type 8 (Arithmetic Word Problems) collects classic math problems from sources such as
MAWPS (Koncel-Kedziorski et al., |2016) and earlier algebra problem datasets (Kushman et al.,
2014), focusing squarely on direct arithmetic manipulation. We train and evaluate on the official
training and test splits released by the authors of NumGLUE.

In our evaluation, we exclude Type 6 and Type 7. Both tasks differ from the others in that they do not
require numeric outputs. Type 6 expects entity-level answers extracted from passages, while Type 7
is a natural language inference classification task. Since our study emphasizes arithmetic reasoning
with explicit numeric predictions, we restrict our NumGLUE subset to Types 1-5 and Type 8, which
directly measure numerical accuracy.

Commonsense Reasoning Benchmarks. Beyond arithmetic reasoning, we also evaluate on a
suite of established commonsense reasoning datasets. BoolQ (Clark et al., 2019) tests yes/no
question answering against passages. PIQA (Bisk et al.l 2020) centers on physical commonsense
by asking models to choose the more plausible of two candidate actions. SociallQA (Sap et al.|
2019) probes understanding of social interactions and motivations. HellaSwag (Zellers et al., [2019)
presents adversarially filtered sentence completion problems. Winogrande (Sakaguchi et al.,[2020) is
a large-scale coreference resolution benchmark requiring commonsense disambiguation. ARC-Easy
and ARC-Challenge (Clark et al.l [2018) are multiple-choice science exams of varying difficulty.
OpenBookQA (Mihaylov et al., 2018)) blends scientific knowledge with commonsense inference.

Together, these sub-datasets provide a comprehensive test bed. NumGLUE targets fine-grained
arithmetic reasoning skills, while the commonsense suite evaluates broader physical, social, and
scientific inference abilities. This combination allows us to assess whether parameter-efficient fine-
tuning methods such as GASDU can adapt large language models to diverse reasoning domains.

19

Under review as a conference paper at ICLR 2026

C BATCH SIZE AND LEARNING RATE

Method Task LR Batch
BoolQ le-05 4
PIQA le-05 4
SociallQA 5e-05 4
HellaSwag le-05 4
SpIEL WinoGrande le-05 4
ARC-Easy le-05 4
ARC-Challenge 5e-05 4
OBQA 5e-05 4
BoolQ le-05 4
PIQA le-05 4
SociallQA 1e-05 4
Full HellaSwag le-04 4
WinoGrande le-05 4
ARC-Easy le-05 4
ARC-Challenge 1e-05 4
OBQA le-05 4
BoolQ le-04 4
PIQA le-04 4
SociallQA le-04 4
HellaSwag le-04 4
LoRA WinoGrande le-04 4
ARC-Easy le-04 4
ARC-Challenge le-04 4
OBQA le-04 4
BoolQ 5e-05 4
PIQA le-04 8
SociallQA le-04 4
. HellaSwag le-04 8
Fixed Mask WinoGrande le-04 4
ARC-Easy le-04 4
ARC-Challenge le-04 4
OBQA le-04 4
BoolQ le-04 8
PIQA le-04 8
SociallQA le-04 8
HellaSwag le-04 4
GASDU WinoGrande le-04 8
ARC-Easy le-04 8
ARC-Challenge le-04 4
OBQA le-04 8

Table 5: Training hyperparameters for LLaMA-2-7B of Commonsense Reasoning dataset.

20

Under review as a conference paper at ICLR 2026

Method Task LR Batch
BoolQ 5e-06 4
PIQA 5e-06 4
SociallQA 5e-06 4
HellaSwag le-06 4
SpIEL WinoGrande ~ 5e-06 4
ARC-Easy le-06 4
ARC-Challenge le-05 4
OBQA 5e-06 4
BoolQ 5e-06 4
PIQA 5e-06 4
SociallQA 5e-06 4
Full HellaSwag 5e-06 8
WinoGrande le-05 4
ARC-Easy 5e-06 4
ARC-Challenge 5e-06 4
OBQA 5e-06 4
BoolQ le-04 4
PIQA le-04 4
SociallQA le-04 8
HellaSwag le-04 8
LoRA WinoGrande le-04 8
ARC-Easy le-04 4
ARC-Challenge 1le-04 4
OBQA le-04 8
BoolQ 5e-05 8
PIQA 5e-05 4
SociallQA le-04 4
. HellaSwag le-04 8
Fixed Mask WinoGrande le-04 8
ARC-Easy 5e-05 8
ARC-Challenge 5e-05 4
OBQA le-04 8
BoolQ 5e-05 8
PIQA 5e-05 8
SociallQA 5e-05 8
HellaSwag 5e-05 8
GASDU WinoGrande 5e-05 8
ARC-Easy 5e-05 4
ARC-Challenge 5e-05 4
OBQA 5e-05 8

Table 6: Training hyperparameters for LLaMA-3-8B of Commonsense Reasoning dataset.

21

Under review as a conference paper at ICLR 2026

Method Task LR Batch
BoolQ 5e-06 4
PIQA le-06 4
SociallQA 1e-06 4
HellaSwag le-06 4
SpIEL WinoGrande 5e-06 8
ARC-Easy 5e-06 4
ARC-Challenge 5e-06 8
OBQA le-05 8
BoolQ le-04 8
PIQA le-04 4
SociallQA le-04 4
HellaSwag le-04 8
LoRA WinoGrande le-04 4
ARC-Easy 5e-05 8
ARC-Challenge 5e-05 4
OBQA le-04 4
BoolQ le-05 8
PIQA le-05 8
SociallQA 1e-05 4
. HellaSwag le-05 4
Fixed Mask WinoGrande 5e-05 8
ARC-Easy le-05 8
ARC-Challenge 5e-06 4
OBQA le-05 4
BoolQ 1e-05 8
PIQA 5e-06 8
SociallQA 1e-05 4
HellaSwag le-05 8
GASDU WinoGrande le-05 8
ARC-Easy le-05 4
ARC-Challenge 1e-05 4
OBQA 5e-06 8

Table 7: Training hyperparameters for GPT-OSS-20B of Commonsense Reasoning dataset.

22

Under review as a conference paper at ICLR 2026

Method Task LR Batch

Typel 1le-06 8
Type2 1e-05
Type3 le-05
Type4 5e-05
Type5 5e-06
Type8 1le-05

Typel 5e-06
Type2 1e-05
Type3 1e-06
Type4 1le-05
Type5 1le-06
Type8 Se-06

Typel 5e-05
Type2 5Se-05
Type3 1le-05
Typed 1le-04
TypeS Se-05
Type8 le-04

Typel 5e-05
Type2 5e-05
Type3 1le-06
Typed le-04
TypeS Se-05
Type8 5e-05

Typel 1le-04
Type2 5e-05
Type3 1le-06
Type4 Se-05
Type5 5e-6
Type8 5e-05

Typel 5e-05
Type2 le-04
Type3 1le-06
Typed le-04
TypeS 1le-05
Type8 5e-05

Typel 5e-05
Type2 5e-05
Type3 1e-06
Type4 5e-05
Type5 1e-05
Type8 Se-05

SpIEL

Full

LoRA

LoRA-One

LoRA-GA

Fixed Mask

GASDU

o eI N e e e R S S T TR S N S S S e S S e R S e S e i i i T B ool oI S S

Table 8: Training hyperparameters for LLaMA-2-7B on the NumGLUE dataset.

23

Under review as a conference paper at ICLR 2026

Method Task LR Batch
Typel 5e-06 4

Type2 5e-05 4

Type3 le-05 4

SpIEL Typed 1e-04 8
Type5 5e-06 8

Type8 Se-06 4

Typel 5e-06 4

Type2 5e-06 4

Type3 Se-06 4

Full Typed 5e-06 4
Type5 5e-06 4

Type8 1e-06 4

Typel 1le-04 4

Type2 le-04 4

Type3 le-04 4

LoRA Typed 1e-04 8
TypeS le-04 8

Type8 le-04 4

Typel 1le-04 4

Type2 le-04 4

Type3 5e-05 4

LoRA-One {red le-04 4
TypeS le-04 8

Type8 1le-04 8

Typel 1le-04 4

Type2 le-04 8

Type3 le-04 4

LoRA-GA {ned 104 4
Type5 1le-05 4

Type8 1e-05 4

Typel 5e-05 4

Type2 5e-05 8

. Type3 5e-05 4
Fixed Mask Typed le-04 3
TypeS 5e-05 8

Type8 5e-05 8

Typel 1le-04 4

Type2 5e-05 8

Type3 Se-05 4

GASDU o4 le-04 8
Type5 5e-05 8

Type8 Se-05 8

Table 9: Training hyperparameters for LLaMA-3-8B on the NumGLUE dataset.

24

Under review as a conference paper at ICLR 2026

Method Task LR Batch

Typel 1e-06 8

Type2 5Se-06 8

Type3 1le-05 8

SpIEL Typed 1e-06 4
TypeS 1le-06 8

Type8 1le-05 8

Typel 1le-04 4

Type2 1le-04 4

Type3 5e-05 8

LoRA Typed le-04 4
Type5 5e-05 8

Type8 le-04 4

Typel 1le-04 4

Type2 le-04 4

Type3 Se-05 8

LoRA-One " 1ypea le-04 4
Type5 5e-05 4

Type8 le-04 4

Typel 1le-04 4

Type2 le-04 4

Type3 le-04 4

LoRAGA " Typed 1e-04 4
Type5 5Se-06 4

Type8 Se-05 4

Typel 1e-05 4

Type2 1le-05 4

. Type3 le-04 8
Fixed Mask Typed 1e-05]
TypeS le-05 8

Type8 1le-05 8

Typel 1e-05 4

Type2 Se-06 4

Type3 5e-05 4

GASDU ppe4 1e-05 8
TypeS Se-06 8

Type8 1le-05 8

Table 10: Training hyperparameters for GPT-OSS-20B on the NumGLUE dataset.

25

Under review as a conference paper at ICLR 2026

D PEFT MODULARITY AND ADAPTER STORAGE

A practical requirement for parameter-efficient fine-tuning is that task-specific updates can be stored,
swapped, and reloaded as lightweight adapters rather than full model copies. In GASDU, this is
achieved by wrapping each trainable layer with a small “delta” parameter block and enabling an
explicit adapter export mechanism. After fine-tuning, each wrapped layer emits a compact index—
value sparse diff relative to a frozen backbone snapshot, and these diffs can be saved, reloaded, or
combined in exactly the same modular way as standard PEFT adapters.

To quantify the footprint of these exported adapters, Table[I3|reports the number of trainable param-
eters and on-disk size for LLaMA-2-7B on NumGLUE Type 1 under a 0.10% update budget. The
GASDU diff occupies only a small fraction of the full model (8.4M parameters and 161 MB versus
6.7B parameters and 13,500 MB), making it suitable for multi-task deployment. Although the diff is
larger than a minimal LoRA adapter, it reflects the additional flexibility of dynamic sparse updates
while preserving the key PEFT advantage of sharing a single backbone across many tasks.

Model Method Upd.% #params Disk size (MB)
Full model 100.0 6.7B 13,500

LLaMA-2-7B LoRA 0.10 6.3M 24
GASDU (M =50) 0.10 8.4M 161

Table 11: Adapter size comparison on NumGLUE Type 1 with LLaMA-2-7B under a 0.10% update
budget after 3-epoch fine-tuning. For GASDU (M =50), we report the number of nonzero entries in
the exported sparse diff (including their indices) and the resulting on-disk size. For LoRA, we report
the total number of trainable adapter parameters along with its on-disk size. The full LLaMA-2-7B
backbone is shown for reference.

E ADDITIONAL EXPERIMENTS

E.1 EFFECT OF THE SPARSITY BUDGET

In the main text we focused on an extreme update regime with 0.01% of parameters updated per
wrapped projection, in order to highlight that GASDU can already match or closely approach full
fine-tuning while using a very small fraction of weights. To study how performance scales with
the sparsity budget k, we conduct an additional sweep over three update levels: 0.01%, 0.10%, and
0.50%.

We evaluate LLaMA-3-8B with GASDU (M =50) on NumGLUE Types 1-3, using the same train-
ing setup as in the main paper (optimizer, number of epochs, and data splits). For each configuration
we report the median Exact Match (EM) over three seeds per type, and the average across Types
1-3.

Model Method Update .% Typel Type2 Typed Avg
0.01 63.5 522 69.0 61.6
LLaMA-3-8B GASDU (M = 50) 0.10 64.2 52.5 69.5 62.1
0.50 65.4 53.5 68.7 62.5

Table 12: Validation Exact Match (EM, %) on NumGLUE Types 1-3 with LLaMA-3-8B using
GASDU (M =50) under different update budgets. Avg denotes the mean EM across Types 1-3.

The results show that increasing k yields small but consistent gains in EM, which aligns with our
theoretical view: a larger budget increases the gradient-retention factor a4, strengthening the PL
contraction and improving the robustness of mask reuse as gradients stabilize.

E.2 GASDU AS PLUG-IN SPARSE ADAPTERS

Although GASDU updates entries in the original weight matrices during training, it does not require
storing a separate full model per downstream task. Instead, we implement an explicit adapter ex-

26

Under review as a conference paper at ICLR 2026

port mechanism that turns each fine-tuned run into a lightweight, swappable sparse adapter without
slowing down the training speed:

* The backbone weights are kept as a frozen reference snapshot.

* Each GASDU-wrapped layer maintains a sparse “delta” parameterization over a budget of
k coordinates per update step.

 After training, each layer exports an index—value sparse difference (nonzero coordinates
and their values) relative to the frozen backbone.

These diffs can be saved, reloaded, and composed in the same way as standard PEFT
adapters, allowing users to switch tasks without duplicating the full model.

We profile adapter footprints for LLaMA-2-7B under a 0.10% per-step update budget on three tasks
of increasing size: NumGLUE Type 1 (~ 400 samples), OBQA (~ 5K samples), and WinoGrande
(~ 58K samples). All adapters (LoRA and GASDU) are exported in bf1 6 for a fair comparison.

Model Method Upd.% #params Disk size (MB)
Full model 100.0 6.7B 13,500
LoRA (all tasks) 0.10 6.3M 12.1

LLaMA-2-7B. GASDU (NumGLUE Type 1, ~ 400 samples) 0.10 8.4M 48.0
GASDU (OBQA, ~ 5K samples) 0.10 26.2M 150.1
GASDU (WinoGrande, ~ 58K samples) 0.10 52.7M 301.6

Table 13: Adapter footprint for LLaMA-2-7B under a 0.10% per-step update budget. For LoRA, “#
params” is the number of trainable adapter parameters in the dense low-rank matrices; the resulting
bf16 checkpoint is essentially task-independent (12.1 MB). For GASDU, “# params” is the number
of nonzeros in the exported sparse diff (the union of coordinates updated over training), and the on-
disk size grows with dataset size because we store both bf1 6 values and integer indices.

Although the GASDU adapters are larger than the minimal LoRA adapters, even on the largest
benchmark the ~ 302 MB checkpoint is less than 3% of the 13.5 GB backbone, so maintaining many
task-specific adapters is still far cheaper than duplicating the base model. Because these sparse diffs
reside on CPU/disk and can be loaded or swapped in small chunks, adapter size never becomes
a GPU-memory bottleneck, and GASDU preserves the practical plug-in modularity expected of
PEFT-style adapters.

E.3 HUMANEvVAL CODE GENERATION RESULTS

To directly address concerns about longer-context and multi-step generation, we additionally evalu-
ate GASDU on the HumanEval code generation benchmark. In this experiment:

¢ We fine-tune LLaMA-3-8B on the Code-Feedback dataset.

* We evaluate on HumanEval and report PASS@ 1, computed by executing generated code
against the official test cases.

* Due to time and computational constraints, we include full fine-tuning and standard LoRA
as baselines.

» For fairness, all methods share a single hyperparameter setting: learning rate 1 x 10~5 and
batch size 4, without grid search.

Model Method Upd. % PASS@1 (HumanEval)
Full FT 100.0 26.22

LLaMA-3-8B LoRA 0.10 24.80
GASDU 0.10 25.61

Table 14: PASS@1 (%) on HumanEval for LLaMA-3-8B fine-tuned on Code-Feedback. All meth-
ods use the same learning rate (1 x 10~5) and batch size (4).

Under this controlled setting, GASDU with a 0.10% update budget closely matches full fine-tuning
and slightly outperforms LoRA on HumanEval, indicating that the proposed dynamic sparse update

27

Under review as a conference paper at ICLR 2026

mechanism extends beyond short-form reasoning tasks to longer-context, multi-step code genera-
tion.

F ADAM OPTIMIZER AND MOMENTUM HANDLING IN GASDU

Our theory is stated for masked gradient descent with a scalar stepsize to isolate the role of the gradi-
ent—retention factor, but all reported GASDU experiments use an adaptive optimizer (DeepSpeed’s
FusedAdam). Importantly, Adam is applied only to a small adapter vector per wrapped layer, not to
the full dense backbone, so optimizer memory scales with the sparse budget % instead of the model
size.

For each wrapped layer we maintain a fixed adapter vector § € R (implemented as delta_vals)
and keep the dense weight matrix W frozen during the optimizer step. Let j € {1,...,k} index
slots of J, and let 7, () denote the dense weight coordinate assigned to slot j at step ¢ by the current

Top-k mask. Adam is run in the usual way on the slot gradients gﬁj),

, , , . , Ly

mii)l = 51mij) +(1- [31)%@), /Ut(i)l = 52’0?) +(1- 52)(9@))
()

_ 5751) _ mtil

)

5(j)
Ug-l te

t+1

where (m%j), vt(j)) are Adam’s first and second moments for slot j. After each optimizer step we

commit the adapter updates to the backbone and reset the slots:
Wen[m()] = We[m(i)] +6%, 6h <0 vj

while keeping (m,gr)17 vgi)l) intact.

When the mask is refreshed every M steps (including M = 1), the assignment 7; changes and a
slot 7 may be reassigned from a coordinate u at step ¢ to a new coordinate v at step ¢+1. In that
case, the first update to v uses a “warm-start” state (mgi)l, vt(i)l) inherited from w. Empirically,
this slot-based momentum trains stably and M =1 consistently matches or outperforms larger M,

indicating that such warm starts do not create optimization pathologies in practice.

Conceptually, Adam is attached to the k adapter slots rather than to fixed dense coordinates, so it
is best viewed as providing an adaptive step-size schedule in a k-dimensional adapter space, not as
exact per-coordinate momentum on all weights. The optimizer state tensors (1, v;) therefore have
the same fixed shape as § (two length-k vectors per wrapped layer), so the optimizer memory is
O(k) and does not grow with the number of distinct dense coordinates visited by the Top-k selector.
This differs fundamentally from “fused SGD,” which still computes dense gradients and updates
all coordinates, whereas GASDU changes which coordinates are ever updated and stores optimizer
state only for that sparse subset.

28

	Introduction
	Related Work
	Method
	Theoretical Analysis
	Convergence Analysis
	Mask-Reuse Retention Analysis
	Verification of the Local PL Condition

	Experiments
	Main Results
	Effect of Refresh Period
	Training Efficiency and Mask-refresh overhead analysis

	Conclusion
	Definitions and Proofs
	Convergence Analysis
	Mask-Reuse Retention Analysis
	Additional Theoretical Analysis

	Dataset Descriptions
	Batch Size and Learning Rate
	PEFT Modularity and Adapter Storage
	Additional Experiments
	Effect of the Sparsity Budget
	GASDU as Plug-In Sparse Adapters
	HumanEval Code Generation Results

	Adam Optimizer and Momentum Handling in GASDU

