
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GASDU: GAUSS–SOUTHWELL DYNAMIC UPDATE
FOR EFFICIENT LLM FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter-efficient fine-tuning (PEFT) is crucial for adapting large language
models (LLMs), yet existing methods trade off accuracy, latency, and com-
pute: some add inference-time modules, others fix a static parameter set that can
drift from evolving gradients, and dynamic variants can be costly. We propose
GAuss–Southwell Dynamic Update (GASDU), which performs periodic Gauss–
Southwell-k selection: every M steps it uses the current gradients to select the
k largest-magnitude coordinates and updates only those entries while reusing the
mask until the next refresh. The Top-k selection is implemented in a streaming,
tile-wise way to avoid materializing dense gradients, making the amortized re-
fresh cost negligible. Theoretically, under a local Polyak–Łojasiewicz condition,
we prove that GASDU enjoys a linear convergence rate scaled by a measurable
gradient-retention factor and show that the factor degrades sublinearly within each
refresh window. This sublinear decay implies that a moderate M can maintain
a high retention factor, which in turn explains GASDU’s near–full–fine-tuning
behavior. Empirically, GASDU sustains high retention between refreshes at an
extreme parameter budget (0.01%) and consistently outperforms strong PEFT
baselines and closely tracks or exceeds full fine-tuning across diverse common-
sense and arithmetic reasoning benchmarks and LLMs (LLaMA-2/3 and GPT-
OSS-20B).

1 INTRODUCTION

Adapting large pretrained language models (LLMs) to specialized tasks, such as biomedical text
mining, financial analysis, and legal document review, has achieved remarkable success (Ruan et al.,
2025; Fang et al., 2025; Lu et al., 2025). This progress relies on fine-tuning, where models are ad-
justed with domain-specific data to bridge the gap between general pretraining and downstream
requirements (Hu et al., 2022; Sung et al., 2021; Dettmers et al., 2024; Guo et al., 2021; Han et al.,
2024; Liao et al., 2023). However, as model scale expands into the billions of parameters, con-
ventional full-parameter fine-tuning has become prohibitively expensive. Parameter-Efficient Fine-
Tuning (PEFT) methods have emerged as a solution, enabling adaptation by updating only a small
fraction of the model parameters (Han et al., 2024).

While PEFT makes adaptation practical at scale, many designs entail trade-offs. Some methods
constrain updates with low-rank adapters, limiting optimization flexibility; some fix a static sparse
subset of weights, which can drift as gradient directions evolve; and some dynamically reallocate pa-
rameters to better follow the optimization geometry, but often rely on dense-gradient materialization
or extra passes that erode efficiency (Han et al., 2024). These limitations motivate a latency-neutral,
dynamically refreshed update rule that tracks evolving gradient directions without significantly in-
flating computational and memory cost.

We introduce GAuss–Southwell Dynamic Update (GASDU), a novel PEFT strategy that effi-
ciently approximates the ideal dynamic update. GASDU operates by performing periodic Gauss–
Southwell-k selection (Nutini et al., 2015) over the model’s parameters: every M steps, it leverages
the current gradients to identify the k parameters with the largest gradient magnitudes and updates
only those entries until the next refresh. To keep selection cost low, we compute Top-k coordinates
via a streaming, tile-wise reduction with a small O(k)-sized candidate pool, discarding tiles imme-
diately and never materializing the full per-weight gradient matrix in high-bandwidth memory. By

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

×

Frozen Trainable

Combine

Input Input Input

Output Output Output

Input

Output

I. Additive Adapter

Fine-Tuning

II. Reparameterization

 Fine-Tuning

III. Fixed Selective

 Fine-Tuning

IV. Dynamic Selective

Fine-Tuning

×

×

Figure 1: Illustration of additive adapter methods, reparameterization approaches, fixed selective
fine-tuning methods, and dynamic selective method (to which GASDU belongs). Whereas the first
three either attach extra modules, tune reparameterized components, or update a static subset of
parameters, GASDU applies a dynamic sparse linear update directly to the pre-trained parameters.

refreshing periodically, GASDU amortizes the selection cost and dynamically tracks the evolving
optimization direction without extra passes that are common to prior dynamic selection methods.
By design, GASDU preserves the original architecture, adds no inference latency, and sidesteps the
high costs of prior dynamic methods while maintaining training stability.

From a theoretical perspective, we prove that GASDU achieves a linear convergence rate close to
that of full-parameter fine-tuning (Section 4.1), under the local Polyak–Łojasiewicz (PL) condition,
which is empirically verified in Section 4.3. The difference in rate arises only from the fraction
of gradient norm retained by the sparse mask. Our Mask-Reuse Retention Analysis (Section 4.2)
further shows that when the mask is reused for multiple steps, the retention factor decays sublinearly
within each refresh period, ensuring convergence remains close to full fine-tuning. We empirically
confirm that the dynamic mask consistently captures the dominant gradient norm (Section 5.2),
allowing GASDU to closely follow dense optimization while updating only a tiny subset of pa-
rameters. Furthermore, the aforementioned retention-based analysis is readily applicable to other
selective fine-tuning schemes.

We evaluate GASDU on diverse commonsense and arithmetic reasoning tasks under a 0.01% update
budget. Across LLaMA-2-7B/3-8B and GPT-OSS-20B models, GASDU consistently outperforms
leading PEFT baselines at the same sparsity and, on several tasks, surpasses full fine-tuning (Sec-
tion 5.1). In terms of training efficiency, GASDU delivers a 10.64× throughput improvement and
reduces peak GPU memory to 30% of full fine-tuning (Section 5.3). Per-iteration profiling shows the
mask-refresh cost is relatively small and largely insensitive to the update budget since our streaming
Top-k implementation avoids materializing dense gradients. With a modest refresh period M , only
one in M steps incurs this cost, so the amortized overhead becomes negligible (Section 5.3). Over-
all, GASDU preserves the benefits of dynamic mask selection to match or exceed the predictive
performance of full fine-tuning while achieving substantial speedup and memory savings.

2 RELATED WORK

Existing PEFT approaches follow four main paradigms, as demonstrated in Figure 1. Additive meth-
ods (e.g., adapters) introduce new trainable modules while freezing the rest weights, which reduces
the number of updated parameters but can increase memory usage and inference latency (Houlsby
et al., 2019; Li & Liang, 2021). Reparameterization methods, such as LoRA (Hu et al., 2022), con-
strain updates to a fixed low-rank subspace, preserving inference speed but restricting optimization
flexibility (Zhang et al., 2023; Dettmers et al., 2024). Fixed Selective methods (e.g., SIFT (Song
et al., 2023)) update only a predetermined subset of parameters throughout training (Ben Zaken
et al., 2022; Guo et al., 2021; Sung et al., 2021). The reliance on a fixed parameter subspace poses
a common limitation, namely the risk of converging to suboptimal solutions, as the set of optimal
parameters to update can shift during optimization. This limitation has motivated the development
of Dynamic Selective methods, which relaxes a fixed mask by changing which base weights are up-
dated during training. RigL alternates prune/regrow based on magnitude-gradient signals, inserting

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

෨𝐺(𝑡)𝑊(𝑡)

𝐺(𝑡)

Top-k

selection

Λ(𝑡)

…

Mask reuse

…

Apply maskFull gradient

calculation

𝑀− 1 steps

…

…
Mask refresh

Mask refreshiterations

…

Figure 2: Workflow of the GASDU fine-tuning algorithm. At each training iteration, the sparse
mask is either reused from the previous step or refreshed every M steps via Top-k selection of the
full gradient. When the mask is reused, the model applies a sparse parameter update restricted to the
current mask without performing dense back-propagation.

periodic extra updates to change the support (Evci et al., 2020). For LLMs, SpIEL scales sparse
fine-tuning by iterating update-prune-regrow cycles, where regrowth uses accumulated gradients or
SM3 momenta; it improves over LoRA at comparable runtime but incurs non-negligible evalua-
tion/selection overheads (Ansell et al., 2024). Dynamic Subset Tuning (DST) similarly optimizes
a small, moving subset of existing parameters rather than a fixed mask (Stahlberg et al., 2024).
In addition, sampling/structured/hybrid designs (e.g., LISA, S2FT, SLTrain) add implementation
and tuning complexity (Pan et al., 2024; Yang et al., 2024; Han et al., 2024). Among these, S2FT
enforces structured sparsity patterns to improve hardware efficiency and cross-task generalization
in large-scale LLM fine-tuning. SparseLoRA further combines low-rank adapters with contextual
sparsity, activating LoRA modules only on a subset of tokens or positions to reduce both training
and inference cost while remaining in the additive-PEFT paradigm (Khaki et al., 2025). Orthogonal
to parameter selection, GaLore compresses gradients via low-rank projection before the optimizer
update, substantially reducing optimizer and gradient memory while still performing full-parameter
updates rather than selective fine-tuning (Zhao et al., 2024).

Despite extensive empirical progress, to the best of our knowledge, general convergence guarantees
for nonconvex LLM fine-tuning with changing sparsity patterns remain scarce. When analyses
do appear, they are restricted to simplified or surrogate settings and do not quantify how design
parameters such as the refresh cadence M and rotation/sampling schedules affect objective decrease.
In particular, prior work does not provide rate statements or monotone-decrease guarantees tied to a
measurable control quantity that explains when and why dynamic selection maintains near–full-fine-
tuning behavior. This gap leaves practitioners without principled guidance on how refresh frequency
and selection granularity should scale with budget and model regime.

Positioning of GASDU. To close this gap, GASDU employs gradient-driven periodic updates that
avoid auxiliary modules and extra passes, preserving inference latency while keeping refresh over-
head amortized and small. More importantly, it provides, to our knowledge, the first retention-based
convergence analysis for selective PEFT under a verifiable local Polyak–Łojasiewicz (PL) condition.
The theory makes explicit how M (refresh frequency) and k (update granularity) influence the con-
vergence rate via the measurable gradient-retention factor α, yielding principled guidance for setting
these hyperparameters across budgets and model regimes. This combination of practical efficiency
and explicit design rules distinguishes GASDU as both effective and theoretically grounded.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHOD

To achieve efficient fine-tuning while preserving convergence speed and task performance, we pro-
pose Gauss-Southwell Dynamic Update (GASDU), a method that dynamically sparsifies parameter
updates. The workflow is illustrated in Figure 2.

We fine-tune a pre-trained parameter matrix W ∈ Rm×n by updating only a small, dynamically
chosen subset of its entries. Let Λ(t) ∈ {0, 1}m×n be a binary mask that selects exactly k ≪ mn
coordinates at iteration t. The masked update on the selected entries is

w
(t+1)
ij = w

(t)
ij − γ∇wij

f
(
W (t)

)
, for all (i, j) with Λ

(t)
ij = 1, (1)

while all other coordinates remain frozen. Equivalently, in the unified masked-gradient form used in
our analysis (cf. Section 4),

W (t+1) = W (t) − γ
(
Λ(t) ⊙∇f(W (t))

)
,

which coincides with full-parameter gradient descent when Λ(t) ≡ 1 (see Eq. (3)).

Every M steps we refresh the active set by taking the Top-k coordinates of the current full gradient
magnitude:

Λ(t) = TopK
(
∇f(W (t)), k

)
, where TopK(G, k)ij =

{
1, |gij | is among the k largest in |G|,
0, otherwise.

(2)
Between refreshes, the mask is reused, so the update (1) operates on a fixed set of coordinates for
M iterations. This “periodic Gauss–Southwell-k” rule lets the method follow the dominant descent
directions without introducing any inference-time modules.

Algorithm 1 GASDU: Gauss–Southwell-k Dynamic Update

Require: Pre-trained W (0), loss f , step size γ, sparsity k, refresh period M , total iterations T
1: (init) Compute G(0)← ∇f(W (0)); set Λ(0)← TopK(G(0), k)
2: for t = 0 to T − 1 do
3: if (t+1) mod M = 0 then ▷ streaming and tile-wise mask refresh
4: G(t)← ∇f(W (t))

5: Λ(t)← TopK(G(t), k) ▷ install the fresh mask immediately
6: else
7: Λ(t) ← Λ(t−1) ▷ reuse mask
8: end if
9: G̃(t) ← Λ(t) ⊙∇f(W (t)) ▷ masked gradient (computed sparsely)

10: W (t+1) ←W (t) − γ G̃(t)

11: end for
12: return W (T)

Speed and memory optimizations. We reduce computational time and memory of mask refresh
by streaming the per-weight gradient in small bf16 tiles instead of materializing the full m × n
matrix. For each tile, we compute the magnitudes, select the tile’s Top-k entries, merge into an O(k)-
sized candidate pool with fp32 accumulations, and immediately discard the tile. As a result, the full
gradient is never written to or read from high-bandwidth memory (HBM), eliminating Θ(mn) traffic
and keeping peak working memory proportional to k rather than mn. The refresh is integrated into
the backward pass of the current minibatch, reusing existing gradients and activations for streamed
Top-k selection, thus eliminating the need for an extra forward/backward pass. Because a sweep
occurs only once every M steps, the amortized cost over T iterations is O

(
T
Mmn+ Tk

)
instead of

O(Tmn). Between refreshes, computation is restricted to the k active coordinates, and updates use
blockwise in-place accumulation over the active index set, avoiding large temporaries and further
reducing memory traffic.

Parallel training compatibility. Because all operations in GASDU (streaming Top-(k), sparse
updates, and commit) act on local linear projections and their gradients, the method naturally ex-
tends to tensor-parallel (TP) setups by selecting and updating Top-(k) entries independently on each

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

shard. In Fully Sharded Data Parallel (FSDP) training, the sparse update vectors and mask indices
are treated as ordinary trainable parameters that can be sharded or replicated alongside the frozen
backbone, so integration with TP/FSDP requires only standard configuration rather than any algo-
rithmic changes.

4 THEORETICAL ANALYSIS

In this section, we formalize GASDU as masked gradient descent and show that, under a local
Polyak–Łojasiewicz (PL) condition, it enjoys linear convergence with a rate scaled by a measurable
gradient-retention factor (the fraction of ℓ2 gradient energy captured by the active mask). We further
derive a lower bound of the retention factor which shows it decays sublinearly in each refresh period.

4.1 CONVERGENCE ANALYSIS

We first show that full-parameter fine-tuning is a special case of GASDU formally. For the parame-
ter matrix W ∈ Rm×n, a unified update rule that encompasses both full-parameter gradient descent
(GD) and GASDU (Eq. (1)) at iteration t is:

W (t+1) = W (t) − γΛ(t) ⊙
(
∇f(W (t))

)
, (3)

where Λ(t) ∈ {0, 1}m×n is an iteration-dependent binary mask matrix and⊙ denotes the Hadamard
(element-wise) product. Note that in applications, we do not need to calculate the gradients of the
parameters corresponding to the zero entries in Λ(t), which leads to significant computational sav-
ings by avoiding unnecessary gradient evaluations. Full-parameter GD is recovered by taking Λ(t) =
1m×n for all t, whereas GASDU uses a sparse mask obtained as Λ(t) = TopK

(
∇f(W (t)), k

)
(Eq.

(2)). The gradient norm captured by Λ(t) can be measured by the gradient retention factor αt:

αt =
∥Λ(t) ⊙

(
∇f(W (t))

)
∥2

∥∇f(W (t))∥2
. (4)

In the special case of full-parameter GD, i.e., Λ(t) = 1m×n, the mask retains the entire gradient
and αt = 1. For a fixed W (t), the quantity αt depends on the budget k through the top-k mask:
increasing k enlarges the support of Λ(t), can only increase the numerator in (4), and monotonically
drives αt toward 1 as k approaches the full parameter count. Thus, k controls how much of the
full-gradient norm is preserved at each step, with larger k yielding masked updates that are closer to
full-gradient descent and smaller k trading gradient norm for memory and compute savings.

Polyak–Łojasiewicz (PL) condition. Let f : Rd→R be the empirical loss minimized during fine-
tuning (e.g., cross-entropy (Goodfellow et al., 2016)). We say f is L-smooth if ∥∇f(x)−∇f(y)∥ ≤
L∥x − y∥ for all x,y ∈ Rd. Beyond smoothness, the Polyak–Łojasiewicz (PL) condition (Karimi
et al., 2016) asserts that for some µ > 0,

∥∇f(W)∥2 ≥ 2µ
(
f(W)− f(W ∗)

)
, (5)

where W ∗ is a global minimizer. Together with L-smoothness, (5) guarantees linear convergence of
gradient descent (Karimi et al., 2016; Liu et al., 2022). For modern LLMs, the global PL condition
rarely holds because the optimization problem is high-dimensional and non-convex, so we adopt a
verifiable local variant.
Condition 4.1 (Local µ-PL). There exists µ > 0 and a neighborhood S of W ∗ such that (5) holds
for all W ∈ S.

Empirical results that support the existence of a local PL property during full fine-tuning of LLMs
is provided in Section 4.3. With Condition 4.1 and αt defined in Eq. 4, we prove that our GASDU
convergence linearly, with full-parameter GD as a special case.
Theorem 4.2 (Local PL Convergence of GASDU). Let f : Rd → R be L-smooth and µ-PL on a
set S ⊆ Rd. Assume W (0) ∈ S and that the iterations produced by the above update rule remain in
S. Then for any stepsize γ ≤ 1/L the sequence {W (t)} satisfies

f
(
W (t+1)

)
− f(W ∗) ≤

(
1− αt µγ

)[
f
(
W (t)

)
− f(W ∗)

]
,

and consequently, if α = inft αt > 0,

f
(
W (t)

)
− f(W ∗) ≤

(
1− αµγ

)t[
f
(
W (0)

)
− f(W ∗)

]
.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Proof. See Appendix A.1.

Corollary 4.1 (Gradient Descent). When Λ(t) = 1m×n for all t (i.e. αt ≡ 1), Theorem 4.2 reduces
to the classical PL result: f

(
W (t)

)
− f(W ∗) ≤ (1− µγ)t [f

(
W (0)

)
− f(W ∗)].

4.2 MASK-REUSE RETENTION ANALYSIS

Let tref ≤ t be the most recent refresh index and reuse the fixed mask Λ = Λ(tref) =
TopK(∇f(W (tref)), k) for steps s ∈ {tref , . . . , t}. Write g(s) := ∇f(W (s)) and τt := t − tref ∈
{0, . . . ,M − 1}. Assume the iterates remain in the local PL region S.
Theorem 4.3 (Retention Under Mask Reuse). If f is L-smooth and µ-PL on S and γ ≤ 1/L, then
for any t ≥ tref ,

ρt :=
L√
2µ

√
γ τt

1− Lγ
2

⇒ αt ≥
[√

αtref − ρt
]2
+

(1 + ρt)2
, ρt ≤

L
√
µ

√
γ τt,

where [x]+ := max{x, 0}.

Rate with reuse. Combining Theorem 4.3 with Theorem 4.2 gives, for every stale step,

f(W (t+1))− f(W ∗) ≤
(
1− µγ

[√
αtref − ρt

]2
+

(1 + ρt)2

) [
f(W (t))− f(W ∗)

]
.

Proof. See Appendix A.2.

Overall Interpretation. Theorem 4.2 shows that the per-iteration convergence rate is αtµγ; thus,
larger retained gradient norm (higher αt) yields faster linear convergence, while smaller αt slows
convergence in exchange for memory and compute savings. Since Eq. (4) implies that αt is non-
decreasing in the budget k, increasing k strengthens the convergence rate but raises cost, whereas
smaller k yields cheaper but slower updates. Theorem 4.3 further quantifies how mask reuse affects
this picture: the factor ρt measures gradient drift since the last refresh and satisfies ρt = Θ

(√
γ τt

)
up to problem-dependent constants, so the lower bound on αt degrades only sublinearly in the reuse
length τt. Halving either the stepsize γ or the reuse window τt shrinks ρt by a factor of

√
2 and

tightens the bound on αt. In our main experiments, we fix k to update roughly 0.01% of total pa-
rameters and use a moderate refresh period M , under which we empirically observe that αt remains
high with mild oscillations (Figure 4).

4.3 VERIFICATION OF THE LOCAL PL CONDITION

To evaluate Condition 4.1, we monitor both the loss and the gradient norm of LLaMA-3-8B on the
ARC-C and NumGLUE type1 datasets throughout full fine-tuning. At each training iteration, the
empirical loss f(W) is computed on a held-out validation set, while f(W ⋆) is approximated by
the minimum observed loss during training. The gradient norm ∥∇f(W)∥2 is extracted from the
backpropagated gradients at the corresponding model parameters. To avoid artifacts introduced by
convergence plateaus, we remove the last 50 training points from the analysis. Plotting ∥∇f(W)∥22
against f(W) − f(W ⋆) on a log–log scale directly tests the inequality above. Indeed, taking loga-
rithms yields

log ∥∇f(W)∥22 ≈ log
(
f(W)− f(W ⋆)

)
+ log(2µ),

implying that the points should align along a straight line with slope close to unity when the local
PL condition is satisfied.

Figure 3 reveals a near-linear slope of approximately one, thereby providing strong empirical support
that the optimization trajectory during fine-tuning resides in a region of the parameter space where
the local PL condition holds. Similar patterns are observed in the fine-tuning procedure of other
models as well.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Empirical verification of the local PL condition for LLaMA-3-8B on ARC-C (left) and
NumGLUE type1 (right). Each log–log plot demonstrates a clear linear relationship between
log(∥∇f(W)∥22) and log(f(W) − f(W ⋆)), confirming that the gradient norm remains bounded
below by a positive multiple of the excess loss during full fine-tuning of LLaMA-3-8B model.

5 EXPERIMENTS

In this section, we evaluate the proposed GASDU method on a range of language understand-
ing tasks. We compare GASDU with full fine-tuning and several state-of-the-art PEFT methods
across diverse datasets in arithmetic reasoning and commonsense reasoning tasks. We also examine
how dynamically refreshing the sparse mask during fine-tuning, rather than keeping it fixed, affects
performance. To assess the robustness of GASDU, we analyze how its performance varies with
different refresh period M . All experiments are conducted on an NVIDIA H100 GPU with 80 GB
of memory.

Models and Benchmarks. We fine-tune and evaluate three LLMs: LLaMA-2-7B (Touvron et al.,
2023), LLaMA-3-8B (Dubey et al., 2024), and GPT-OSS-20B (OpenAI, 2025). For arithmetic rea-
soning, we use NumGLUE (Mishra et al., 2022), which spans eight task types. We focus on six
(types 1–5 and 8), excluding type6 (implicit reasoning with textual answers) and type7 (quantita-
tive Natural Language Inference), since these require categorical or span-based outputs rather than
explicit numeric predictions. For commonsense reasoning, we adopt eight established benchmarks:
BoolQ, PIQA, SIQA, HellaSwag, Winogrande, ARC-Easy, ARC-Challenge, and OpenBookQA.
Models are trained and evaluated separately on each dataset. More detailed descriptions are pro-
vided in Appendix B.

Baselines. We compare GASDU with several representative PEFT methods. LoRA (Hu et al.,
2022) serves as a standard low-rank adaptation baseline. We also include recent LoRA variants:
LoRA-One (Zhang et al., 2025), which uses a one-step full gradient pass to initialize a task-specific
low-rank subspace, and LoRA-GA (Liu et al., 2024), which allocates non-uniform per-layer ranks
using gradient-approximation statistics instead of a fixed global rank. We also include SpIEL (Ansell
et al., 2024), a dynamic sparse fine-tuning method that alternates pruning and regrowth phases to
adaptively maintain sparsity during training. To isolate the value of dynamic refreshing, we evaluate
a static sparse variant, Fixed Mask, which selects the largest gradient coordinates once on the first
batch and keeps them fixed thereafter. Full fine-tuning (full FT), which fine-tunes all parameters,
serves as a reference upper bound on LLaMA-2-7B and LLaMA-3-8B. For GPT-OSS-20B, full FT
was infeasible on our hardware due to memory limits, so we only report PEFT results.

Training Pipeline. For each PEFT method, we apply the method on the query, key, value, and
output projection matrices of every transformer block and allocate the number of trainable pa-
rameters evenly across these matrices, except LoRA-GA, which uses gradient-based non-uniform
rank allocation. For GASDU, the sparse mask is refreshed every M = 50 steps. All methods
use the same budget (0.01% of total parameters). We adopt this extreme budget to: (i) stress-
test PEFT under scarce capacity, where dynamic reallocation matters most; (ii) avoid extra capac-
ity masking algorithmic differences in apples-to-apples comparisons; and (iii) mirror constrained-
hardware deployments where memory and training cost dominate. Hyperparameters are chosen

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model Method Upd.% type1 type2 type3 type4 type5 type8 Avg

LLaMA-2-7B

LoRA 0.01 27.4 38.4 50.2 43.5 28.4 30.1 36.3
LoRA-One 0.01 28.4 38.5 51.2 45.0 30.4 31.5 37.5
LoRA-GA 0.01 29.6 40.3 51.2 49.1 27.9 29.1 37.9
SpIEL 0.01 30.8 40.2 53.3 43.6 33.5 30.2 38.6
Fixed Mask 0.01 27.4 42.1 50.2 46.3 30.8 30.1 37.8
GASDU 0.01 31.4 42.7 51.7 47.8 33.5 34.4 40.2
Full FT 100 29.6 41.8 50.0 45.5 27.7 30.3 37.5

LLaMA-3-8B

LoRA 0.01 60.7 47.9 65.7 56.3 64.2 45.9 56.8
LoRA-One 0.01 60.5 48.6 62.3 57.7 66.1 46.5 57.0
LoRA-GA 0.01 61.7 50.5 70.4 60.9 61.4 48.4 58.9
SpIEL 0.01 52.6 44.7 61.3 51.7 63.9 48.2 53.7
Fixed Mask 0.01 63.2 51.3 63.2 58.5 65.5 47.4 58.2
GASDU 0.01 63.5 52.2 69.0 62.3 67.9 50.1 60.8
Full FT 100 60.7 59.6 73.7 59.0 70.3 47.4 61.8

GPT-OSS-20B

LoRA 0.01 66.9 49.5 61.3 66.3 70.1 51.8 61.0
LoRA-One 0.01 70.4 52.0 63.0 68.2 71.1 53.1 63.0
LoRA-GA 0.01 74.3 50.7 80.5 68.1 67.2 50.6 65.2
SpIEL 0.01 66.0 49.7 65.0 62.6 67.4 48.7 59.9
Fixed Mask 0.01 69.4 49.8 78.0 64.5 69.3 49.8 63.5
GASDU 0.01 73.3 51.1 81.4 66.4 69.9 52.9 65.8

Table 1: NumGLUE Arithmetic Reasoning Results (best in bold, second-best underlined).

by a one-epoch grid search for each method–task pair (including baselines) over learning rates
{1 × 10−6, 5 × 10−6, 1 × 10−5, 5 × 10−5, 1 × 10−4} and batch sizes {4, 8}. The best valida-
tion configuration is then used for 3-epoch fine-tuning (see Appendix C for per-task setting). For
other method-specific hyperparameters, we strictly follow the authors’ public implementation. Un-
less otherwise noted, all runs use DeepSpeed’s FusedAdam optimizer (Rasley et al., 2020) and the
median score is reported for each method–task pair.

5.1 MAIN RESULTS

Tables 1 and 2 report arithmetic (NumGLUE) and commonsense results across the three models.
Under a 0.01% update budget, GASDU attains the strongest average among the PEFT baselines
on every model. On NumGLUE, GASDU outperforms the baselines on most individual tasks. In
terms of averages, it beats the strongest baseline on all backbone models, and it even exceeds full
FT on LLaMA-2-7B by roughly 3% (40.2 vs. 37.5) while closely matching full FT on LLaMA-
3-8B (60.8 vs. 61.8). On commonsense benchmarks, similar patterns holds: GASDU leads the
PEFT baselines and typically comes within a point of full FT on LLaMA-2-7B and LLaMA-3-8B
(83.3 vs. 84.5 and 87.9 vs. 88.7, respectively). Overall, these results show that GASDU combines
the efficiency of extreme sparsity with the effectiveness of full FT. Matching, and in some cases
surpassing, full FT while updating only 0.01% of parameters underscores the promise of gradient-
guided dynamic updates for parameter-efficient adaptation on both specialized (NumGLUE) and
general (commonsense) reasoning tasks.

5.2 EFFECT OF REFRESH PERIOD

Figure 4 demonstrates that GASDU with moderate refresh intervals (M = 10, 50, 100, 200) main-
tains the gradient retention factor αt around 85% throughout training, ensuring stable preservation
of gradient information. When M becomes large (e.g., M = 400 or M = 800), αt temporarily
declines until the mask is refreshed, and later stages of fine-tuning still recover to the 85% level
after updates. This behavior is consistent with the “critical learning regime” emphasized in STEP
(Lu et al., 2023) and the dense-to-sparse warm-up used in SparseLoRA (Khaki et al., 2025): early
in training, gradient statistics are changing rapidly, so stale masks with large M quickly lose align-
ment and αt drops, whereas later, once the gradients stabilize, refreshed masks remain well aligned
for many steps and long mask reuse becomes both safe and efficient. In contrast, the Fixed Mask
baseline exhibits a steady decline in αt from about 85% to 65%, indicating progressively weaker
gradient signals. Table 3 confirms this behavior in downstream performance: dynamic masks with
moderate M consistently outperform the Fixed Mask baseline, with M = 1 achieving the best
overall average, closely followed by M = 50. Larger M values, such as 400, remain competitive
but show slight degradation. These results suggest that choosing a moderate refresh interval effec-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Model Method Upd.% BoolQ PIQA SIQA HellaSwag WinoG. ARC-E ARC-C OBQA Avg

LLaMA-2-7B

LoRA 0.01 72.0 81.4 80.5 90.1 81.2 84.3 69.2 77.4 79.5
LoRA-One 0.01 75.3 84.5 83.8 93.4 84.8 85.6 69.9 80.3 82.2
LoRA-GA 0.01 75.9 84.9 83.5 93.6 85.6 88.1 73.8 81.0 83.0
SpIEL 0.01 73.8 82.4 81.3 89.6 83.4 81.2 66.1 70.5 78.5
Fixed Mask 0.01 74.0 83.7 82.8 92.2 84.4 84.5 69.4 77.6 81.1
GASDU 0.01 76.5 85.6 85.4 94.1 86.6 86.1 70.6 81.6 83.3
Full FT 100 77.5 86.0 83.5 93.5 91.6 87.8 72.5 83.6 84.5

LLaMA-3-8B

LoRA 0.01 74.6 87.4 82.7 92.6 84.8 92.0 79.2 85.6 84.9
LoRA-One 0.01 77.2 90.2 85.5 95.5 87.0 94.8 82.4 88.8 87.7
LoRA-GA 0.01 76.0 90.1 85.4 95.2 91.3 94.7 82.1 87.6 87.8
SpIEL 0.01 71.2 87.2 84.3 92.2 83.2 92.0 76.5 83.9 83.8
Fixed Mask 0.01 75.5 89.0 84.4 94.7 86.8 93.8 84.2 86.7 86.9
GASDU 0.01 77.2 89.6 85.8 95.3 87.0 95.2 83.5 89.9 87.9
Full FT 100 78.0 90.5 85.1 95.3 95.0 93.8 82.5 89.5 88.7

GPT-OSS-20B

LoRA 0.01 73.2 88.2 82.3 92.3 82.1 94.2 89.2 90.0 86.4
LoRA-One 0.01 76.8 91.2 85.2 95.3 85.8 97.1 92.5 93.3 89.6
LoRA-GA 0.01 76.0 90.8 84.7 94.9 88.9 96.9 92.5 93.6 89.8
SpIEL 0.01 74.6 90.6 84.3 93.1 84.8 95.9 92.2 88.0 87.9
Fixed Mask 0.01 73.3 89.7 83.3 93.4 86.2 96.0 91.6 90.0 87.9
GASDU 0.01 77.1 92.4 85.6 95.5 85.0 98.8 94.9 91.3 90.1

Table 2: Commonsense Reasoning Results (best in bold, second-best underlined).

Figure 4: Ratio of masked to full gradient ℓ2-norms (smoothed with a 25-step moving average) on the ARC-C
dataset for GASDU with various refresh periods (M), alongside a Fixed Mask baseline. At every training step
t, we compute the gradient retention factor αt (Eq. (4)) in each selected projection layer and report the mean
value across all layers.

tively balances computational efficiency and task accuracy, while very small or very large M offer
diminishing returns.

Model Refresh Period M Upd. % type1 type2 type3 type4 type8 ARC-C ARC-E BoolQ OBQA PIQA Avg

GPT-OSS-20B

1 0.01 74.1 53.8 81.5 67.7 54.3 94.2 98.1 77.4 92.9 92.6 78.7
10 0.01 72.9 50.8 80.9 66.1 52.4 93.8 98.5 76.7 92.6 92.9 77.8
50 0.01 73.3 51.1 81.4 66.4 52.9 94.9 98.8 77.1 91.3 92.4 78.0
100 0.01 69.1 51.7 82.7 66.4 52.4 93.7 98.5 76.5 93.1 92.3 77.6
400 0.01 71.6 52.9 79.6 65.9 51.2 93.4 98.4 76.1 92.2 92.3 77.4
Fixed Mask 0.01 69.4 49.8 78.0 64.5 49.8 91.6 96.0 73.3 90.0 89.7 75.2

Table 3: Results of GASDU on GPT-OSS-20B with different refresh periods M and update per-
centage (all set to 0.01). Best results are in bold, second-best are underlined, on selected NumGLUE
arithmetic tasks and commonsense reasoning tasks. Averages are computed over all tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5.3 TRAINING EFFICIENCY AND MASK-REFRESH OVERHEAD ANALYSIS

In Table 4a, we compare training efficiency of GASDU (M=50) with Full FT, LoRA, Fixed Mask,
and SpIEL on ARC-C using LLaMA-2-7B (sequence length 768, batch size 4 per GPU, 2×H100)
at a 0.01% update budget. All methods run in bf16 with the FusedAdam optimizer and CPU
offloading for Full FT; results are averaged over 10 runs (50 warm-up, 500 measured iterations).
GASDU attains a 10.64× throughput gain over Full FT and reduces peak memory from 52.2 GB
to 15.7 GB (70% less). Its throughput closely matches the Fixed Mask variant, within about 3%
(16,140 vs. 16,601 tokens/s), which supports our claim in Section 3 that periodic mask refresh
adds negligible overhead when amortized over M , while remaining competitive with leading PEFT
baselines in both speed and memory.

To quantify refresh overhead, we split the training step with mask refresh into a Top-k Refresh Block
and a Base Block and measure the wall clock time of each block under the same setting in previous
training efficiency analysis. The Refresh Block identifies the k largest-magnitude gradient entries
by streaming small tiles of the full gradient matrix, merges candidates, and installs the new mask
(see implementation details in Section 3); the Base Block performs the standard forward, backward,
and masked parameter update. As shown in Table 4b, the Refresh Block time changes only mildly
as the update percentage spans several orders of magnitude. The Base Block dominates runtime at
high update percentage and is required by all mask-based methods. With a modest refresh period M ,
only one in M steps pays the refresh cost, so the amortized overhead is negligible. Hence, GASDU
can achieve throughput on par with static-mask methods across sparsity levels while retaining the
benefits of dynamic mask selection.

LLaMA-2-7B on ARC-C

Method
Throughput

(tokens/s)
Speedup

(×)
Peak GPU

(GB)

Full FT 1516.45 1.00 52.17
LoRA 17372.06 11.46 15.73
SpIEL 16139.60 10.64 15.77
Fixed Mask 16601.21 10.95 15.71
GASDU (M = 50) 16140.20 10.64 15.74

(a) Training efficiency comparison.

LLaMA-2-7B on ARC-C

Upd. (%)
Top-k Refresh

Block (ms)
Base

Block (ms)

0.001 516.72 410.19
0.01 531.37 642.54
0.10 558.90 2222.84
1.00 694.49 17319.04

(b) Single-iteration mask-refresh overhead break-
down.

Table 4: Side-by-side summary of GASDU efficiency (left) and mask-refresh overhead profiling (right).

6 CONCLUSION

We presented GASDU, an inference-neutral PEFT method that periodically applies
Gauss–Southwell–k selection using the current gradient signal, implemented via a streaming,
tile-wise Top-k that maintains an O(k) candidate pool and never materializes dense gradients.
Under a local Polyak–Łojasiewicz condition, we prove linear convergence with a retention-based
rate and derive a lower bound that quantifies the effect of mask reuse across the M -step window. A
natural extension is an adaptive refresh period M : use a small M early to track rapidly changing
gradients, then increase M later as masks stabilize to further amortize refresh cost. Empirically,
across diverse LLMs and benchmarks, GASDU with only 0.01% trainable parameters consistently
outperforms strong PEFT baselines and often matches or exceeds full fine-tuning, while achieving
up to 10.64× higher training throughput and about 70% lower peak memory, with no added
inference latency.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Reproducibility Statement. We have taken several steps to facilitate reproduction of our re-
sults. The GASDU algorithm is specified precisely in Section 3 (Algorithm 1), including the peri-
odic Gauss–Southwell-k rule and the streaming Top-k refresh; implementation choices needed to
match our runtimes are described in the “Speed and memory optimizations” paragraph of Sec-
tion 3 and the efficiency/overhead study in Section 5.3. All theoretical assumptions (e.g., lo-
cal PL) and guarantees are stated in Section 4, with complete proofs provided in Appendix A.1
and Appendix A.2. Empirical verification of the local PL condition appears in Section 4.3.
Datasets, task definitions, and any filtering/exclusions (e.g., NumGLUE types used) are detailed
in Section 5 and Appendix B. Training/evaluation protocols, LLMs, selection of baselines, grid-
search ranges, and per-task hyperparameters are documented in Section 5 and Appendix C (Ta-
bles 8–10); main results and ablations are in Sections 5.1 and 5.2. We provide an anonymous repos-
itory (https://anonymous.4open.science/r/GASDU-B86D/) containing source code
for GASDU, configuration files, seeds, and scripts to reproduce all tables and figures, along with
instructions to fetch the datasets used. Finally, we include example logs and environment files to
pin library versions and hardware settings needed to reproduce throughput and memory numbers
reported in Section 5.3.

REFERENCES

Alan Ansell, Xiaotian Li, Rahul Jha, Ivan Vulić, Henrik Sterz, Anna Korhonen, and Edoardo M.
Ponti. Scaling sparse fine-tuning to large language models. arXiv preprint arXiv:2401.16405,
2024.

Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3:463–482, 2002.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language models. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pp. 1–9, 2022.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning about physical
commonsense in natural language. In Proceedings of AAAI, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of NAACL, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try ARC, the AI2 reasoning chal-
lenge. In Proceedings of ACL, 2018.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient finetuning
of quantized LLMs. arXiv preprint arXiv:2305.14314, 2024.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
Proceedings of NAACL, 2019.

Abhimanyu Dubey, Aarohi Jauhri, Anurag Pandey, et al. The LLaMA 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In Proceedings of the 37th International Conference on Machine
Learning (ICML), volume 119 of Proceedings of Machine Learning Research, pp. 2943–2952,
2020.

Luyang Fang, Xiaowei Yu, Jiazhang Cai, Yongkai Chen, Shushan Wu, Zhengliang Liu, Zhenyuan
Yang, Haoran Lu, Xilin Gong, Yufang Liu, et al. Knowledge distillation and dataset distillation
of large language models: Emerging trends, challenges, and future directions. arXiv preprint
arXiv:2504.14772, 2025.

11

https://anonymous.4open.science/r/GASDU-B86D/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive Sensing. Springer,
2013.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, Cambridge, MA,
2016.

Daniel Guo, Alexander M. Rush, and Yoon Kim. Parameter-efficient transfer learning with diff prun-
ing. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics,
pp. 4884–4896, 2021.

Zhisheng Han, Cong Gao, Jun Liu, Jiong Zhang, and Shouqiang Zhang. Parameter-efficient fine-
tuning for large models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. In Proceedings of the 33rd International Conference on Machine
Learning (ICML), 2016.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Proceedings of the 36th International Conference on Machine Learning (ICML), vol-
ume 97, pp. 2790–2799, 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations (ICLR), 2022.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-Łojasiewicz condition. arXiv preprint arXiv:1608.04636,
2016.

Samir Khaki, Xiuyu Li, Junxian Guo, Ligeng Zhu, Chenfeng Xu, Konstantinos N. Plataniotis, Amir
Yazdanbakhsh, Kurt Keutzer, Song Han, and Zhijian Liu. SparseLoRA: Accelerating LLM fine-
tuning with contextual sparsity. In Proceedings of the 42nd International Conference on Machine
Learning, volume 267 of Proceedings of Machine Learning Research, pp. 29768–29783. PMLR,
2025. URL https://proceedings.mlr.press/v267/khaki25a.html.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi.
MAWPS: A math word problem repository. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, pp. 1152–1157, 2016.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and Regina Barzilay. Learning to automatically solve
algebra word problems. In Proceedings of ACL, 2014.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics, pp.
4582–4597, 2021.

Boyang Liao, Yihong Meng, and Christof Monz. Parameter-efficient fine-tuning without introducing
new latency. arXiv preprint arXiv:2305.16742, 2023.

C. Liu, L. Zhu, and M. Belkin. Loss landscapes and optimization in over-parameterized non-linear
systems and neural networks. Applied and Computational Harmonic Analysis, 59:85–116, 2022.

Yi Liu et al. Lora-ga: Gradient allocation for parameter-efficient fine-tuning. arXiv preprint
arXiv:2407.05000, 2024.

Haoran Lu, Luyang Fang, Ruidong Zhang, Xinliang Li, Jiazhang Cai, Huimin Cheng, Lin Tang,
Ziyu Liu, Zeliang Sun, Tao Wang, et al. Alignment and safety in large language models: Safety
mechanisms, training paradigms, and emerging challenges. arXiv preprint arXiv:2507.19672,
2025.

12

https://proceedings.mlr.press/v267/khaki25a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yucheng Lu, Shivani Agrawal, Suvinay Subramanian, Oleg Rybakov, Christopher De Sa, and Amir
Yazdanbakhsh. Step: learning n: M structured sparsity masks from scratch with precondition. In
International Conference on Machine Learning, pp. 22812–22824. PMLR, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of EMNLP, 2018.

Swaroop Mishra, Arindam Mitra, Neeraj Varshney, Bhavdeep Sachdeva, Peter Clark, Chitta Baral,
and Ashwin Kalyan. NumGLUE: A suite of fundamental yet challenging mathematical reasoning
tasks. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Long Papers), pp. 3505–3523, 2022.

Julie Nutini, Mark Schmidt, Issam Laradji, Michael P. Friedlander, and Hoyt Koepke. Coordinate
descent converges faster with the gauss–southwell rule. In Proceedings of the 32nd International
Conference on Machine Learning (ICML), 2015.

OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. LISA:
Layerwise importance sampling for memory-efficient large language model fine-tuning. NeurIPS
2024 Workshop / Poster; arXiv:2403.17919, 2024.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 3505–3506, 2020.

Abhilasha Ravichander, Aakanksha Naik, Carolyn Rose, and Eduard Hovy. Equate: A benchmark
evaluation framework for quantitative reasoning in natural language inference. In Proceedings of
ACL, 2019.

Wei Ruan, Yanjun Lyu, Jing Zhang, Jiazhang Cai, Peng Shu, Yang Ge, Yao Lu, Shang Gao,
Yue Wang, Peilong Wang, et al. Large language models for bioinformatics. arXiv preprint
arXiv:2501.06271, 2025.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. In Proceedings of AAAI, 2020.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. SocialIQa: A bench-
mark for commonsense reasoning about social interactions. In Proceedings of EMNLP, 2019.

W. Song, Z. Li, L. Zhang, H. Zhao, and B. Du. Sparse is enough in fine-tuning pre-trained large
language models. arXiv preprint arXiv:2312.11875, 2023.

Felix Stahlberg, Jared Lichtarge, and Shankar Kumar. Dynamic subset tuning: Expanding the
operational range of parameter-efficient training for large language models. arXiv preprint
arXiv:2411.08610, 2024.

Yi-Lin Sung, Varun Nair, and Colin A. Raffel. Training neural networks with fixed sparse masks. In
Advances in Neural Information Processing Systems, volume 34, pp. 24193–24205, 2021.

Hugo Touvron, Louis Martin, Kevin Stone, et al. LLaMA 2: Open foundation and fine-tuned chat
models. arXiv preprint arXiv:2307.09288, 2023.

Joel A. Tropp and Anna C. Gilbert. Signal recovery from random measurements via orthogonal
matching pursuit. IEEE Transactions on Information Theory, 53(12):4655–4666, 2007.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Sci-
ence. Cambridge University Press, 2018.

Xinyu Yang, Jixuan Leng, Geyang Guo, Jiawei Zhao, Ryumei Nakada, Linjun Zhang, Huaxiu Yao,
and Beidi Chen. S2ft: Efficient, scalable and generalizable LLM fine-tuning by structured sparsity.
In Advances in Neural Information Processing Systems 37 (NeurIPS 2024), 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of ACL, 2019.

Haohan Zhang, Hongyan Zhou, Rui Shao, Yijia Zhang, Sicong Liang, Xiangyu Du, Yue Zheng,
Kenneth Church, Teli Ma, and Yanyan Lan. Lora-one: One-step low-rank adaptation for large
language models. In Proceedings of the 42nd International Conference on Machine Learning,
2025. ICML 2025.

Q. Zhang, M. Chen, A. Bukharin, P. He, Y. Cheng, W. Chen, and T. Zhao. Adaptive budget allocation
for parameter-efficient fine-tuning. In International Conference on Learning Representations
(ICLR), 2023.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. GaLore: Memory-efficient LLM training by gradient low-rank projection. In Proceedings of
the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 61121–61143. PMLR, 2024. URL https://proceedings.mlr.
press/v235/zhao24s.html.

14

https://proceedings.mlr.press/v235/zhao24s.html
https://proceedings.mlr.press/v235/zhao24s.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The Use of Large Language Models. We used large language models (LLMs) as general-purpose
assist tools in two limited ways. (i) Writing polish: we employed an LLM to improve clarity, gram-
mar, and concision of author-written passages and captions; any suggested text was reviewed, edited,
and verified by the authors, and no passages were accepted verbatim without manual revision. (ii)
Retrieval & discovery: we used an LLM to surface potentially relevant references and related key-
words; all citations included in the paper were independently checked by the authors for accuracy
and relevance using the original sources. The conceptual contributions, algorithmic design, theo-
retical results (assumptions, statements, and proofs), experimental protocols, implementations, and
analysis are solely by the authors. The LLM was not used to generate data, results, code, or proofs,
and it is not an author or contributor.

A DEFINITIONS AND PROOFS

A.1 CONVERGENCE ANALYSIS

Definition A.1 (L-smoothness). A differentiable function f : Rd→ R is L-smooth on a set S ⊆ Rd

if its gradient is Lipschitz continuous with constant L > 0 over S; that is,

∥∇f(x)−∇f(y)∥2 ≤ L ∥x− y∥2, ∀x, y ∈ S.

Equivalently, for all x, y ∈ S,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥22.

Theorem 4.2 (Local PL Convergence of GASDU). Let f : Rd → R be L-smooth and µ-PL on a
set S ⊆ Rd. Assume W (0) ∈ S and that the iterations produced by the above update rule remain in
S. Then for any stepsize γ ≤ 1/L the sequence {W (t)} satisfies

f
(
W (t+1)

)
− f(W ∗) ≤

(
1− αt µγ

)[
f
(
W (t)

)
− f(W ∗)

]
,

and consequently, if α = inft αt > 0,

f
(
W (t)

)
− f(W ∗) ≤

(
1− αµγ

)t[
f
(
W (0)

)
− f(W ∗)

]
.

Proof of Theorem 4.2. Let G(t) := ∇f(W (t)). By L-smoothness (with ⟨A,B⟩ := tr(A⊤B) the
Frobenius inner product and ∥ · ∥ its induced norm),

f
(
W (t+1)

)
≤ f

(
W (t)

)
+

〈
G(t), W (t+1) −W (t)

〉
+

L

2

∥∥W (t+1) −W (t)
∥∥2.

Using the masked update W (t+1) −W (t) = −γ
(
Λ(t) ⊙G(t)

)
, we obtain

f
(
W (t+1)

)
≤ f

(
W (t)

)
− γ

〈
G(t), Λ(t) ⊙G(t)

〉
+

Lγ2

2

∥∥Λ(t) ⊙G(t)
∥∥2.

Since
〈
G(t), Λ(t) ⊙G(t)

〉
=

∥∥Λ(t) ⊙G(t)
∥∥2, it follows that

f
(
W (t+1)

)
≤ f

(
W (t)

)
− γ

(
1− Lγ

2

)∥∥Λ(t) ⊙G(t)
∥∥2.

For any γ ≤ 1/L the factor in parentheses is at least 1/2, so

f
(
W (t+1)

)
≤ f

(
W (t)

)
− γ

2

∥∥Λ(t) ⊙G(t)
∥∥2. (A.1)

By the local µ-PL condition, ∥G(t)∥2 ≥ 2µ
[
f(W (t)) − f(W ∗)

]
. By definition of αt,

∥∥Λ(t) ⊙
G(t)

∥∥2 = αt ∥G(t)∥2. Substituting into (A.1) gives

f
(
W (t+1)

)
− f(W ∗) ≤

(
1− αtµγ

) [
f(W (t))− f(W ∗)

]
,

and the geometric rate follows by recursion.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2 MASK-REUSE RETENTION ANALYSIS

Between refreshes the update is masked: W (s+1) = W (s) − γ Λ g(s) with g(s) := ∇f(W (s)) and
fixed Λ = Λ(tref). Let b := ∥g(tref)∥2 and a := ∥Λg(tref)∥2 =

√
αtref b.

Step 1: Gradient drift. By L-smoothness,

∥g(t) − g(tref)∥ ≤ L ∥W (t) −W (tref)∥ ≤ Lγ

t−1∑
s=tref

∥Λg(s)∥ ≤ Lγ
√
τt

(t−1∑
s=tref

∥Λg(s)∥2
)1/2

,

where the last step uses Cauchy–Schwarz and τt := t− tref .

Step 2: Bounding the masked-gradient energy. L-smoothness and the masked update give the
standard descent estimate

f(W (s+1)) ≤ f(W (s))− γ
(
1− Lγ

2

)
∥Λg(s)∥2.

Summing from s = tref to t− 1 and using f(W (t)) ≥ f(W ∗),
t−1∑

s=tref

∥Λg(s)∥2 ≤ f(W (tref))− f(W ∗)

γ (1− Lγ
2)

.

By the local µ-PL condition at W (tref), b2 = ∥g(tref)∥2 ≥ 2µ [f(W (tref))− f(W ∗)], hence
t−1∑

s=tref

∥Λg(s)∥2 ≤ b2

2µγ (1− Lγ
2)

.

Step 3: Explicit drift bound. Combining Steps 1–2 yields

∆t := ∥g(t) − g(tref)∥ ≤ L√
2µ

√
γ τt

1− Lγ
2

b =: ρt b,

which proves the stated form of ρt, and since γ ≤ 1/L implies (1− Lγ
2)−1 ≤ 2, also ρt ≤ L√

µ

√
γ τt.

Step 4: Retention under reuse. By the triangle inequality,

∥Λg(t)∥ ≥ ∥Λg(tref)∥ − ∥g(t) − g(tref)∥ ≥ (a−∆t) =
(√

αtref − ρt
)
+
b,

and also ∥g(t)∥ ≤ b+∆t = (1 + ρt)b. Therefore

αt =
∥Λg(t)∥2

∥g(t)∥2
≥

[√
αtref − ρt

]2
+

(1 + ρt)2
,

which is the claimed lower bound.

A.3 ADDITIONAL THEORETICAL ANALYSIS

Theorem A.1 (Bias–variance for GASDU in the linearized regime). Assume the linearized data
model

y = fW (0)(x) + ϕ(x)⊤θ⋆ + ε, ε ∼ N (0, σ2).

Let f̂T be the predictor after T iterations of , and suppose (within the linearized model) it attains
the least-squares solution in the subspace spanned by ST :=

⋃T−1
t=0 supp(Λ(t)), with sT = |ST |. If

∥ϕ(x)∥2 ≤ B for test x, then[(
f̂T (x)− fW (0)(x)− ϕ(x)⊤θ⋆

)2]
= ∥ΠS⊥

T
Φθ⋆∥2L2︸ ︷︷ ︸

bias2

+ σ2 tr
(
(Φ⊤

ST
ΦST

)−1ΣST

)
/n︸ ︷︷ ︸

variance

,

where ΣST
= [ϕST

(x)ϕST
(x)⊤]. In particular, if λmin(Φ

⊤
ST

ΦST
/n) ≥ λ0 > 0 and ∥ϕ(x)∥2 ≤ B,

then [(
f̂T (x)− fW (0)(x)− ϕ(x)⊤θ⋆

)2] ≤ ∥ΠS⊥
T
Φθ⋆∥2L2

+ σ2 B2 sT
λ0 n

.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. Standard linear-regression bias–variance on the feature-restricted design ΦST
. The inequal-

ity uses tr(A−1B) ≤ λmin(A)−1tr(B) and tr(ΣST
) ≤ B2sT .

Theorem A.2 (Uniform stability of under PL with retention). Let (W ; z) be -smooth and -Lipschitz
in W , and suppose the empirical loss f(W) = 1

n

∑n
i=1(W ; zi) satisfies a local Polyak–Łojasiewicz

(PL) inequality 1
2∥∇f(W)∥22 ≥

(
f(W) − f⋆

)
on a set containing all iterates. Run with steps

γt ≤ 1/ and masks Λ(t), and define

αt :=
∥Λ(t) ⊙∇f(W (t))∥22
∥∇f(W (t))∥22

∈ [0, 1].

Then is ϵ-uniformly stable with

ϵ ≤ 22

n

T−1∑
t=0

γt

T−1∏
s=t+1

(
1− αs γs

)
.

In particular, for constant γ ≤ 1/ and α = inft αt > 0,

ϵ ≤ 22

n
· 1− (1− αγ)T

α
.

Proof. Couple two runs on neighboring datasets and apply the Hardt–Recht–Singer SGD-stability
recursion (Hardt et al., 2016). PL with masked descent yields a per-step contraction factor (1−αtγt)
in function value (cf. Karimi et al., 2016). Unroll and sum the sensitivities as in (Hardt et al.,
2016).

Theorem A.3 (Complexity of sparse linearized hypotheses). Let Hs,R = {x 7→ fW (0)(x) +
ϕ(x)⊤θ : ∥θ∥0 ≤ s, ∥θ∥2 ≤ R}, and assume ∥ϕ(x)∥2 ≤ B. Then

Rn(Hs,R) ≤
BR√
n

√
2s log

ed

s
.

Hence, for -Lipschitz losses, the expected generalization gap is O
(

BR√
n

√
s log(ed/s)

)
.

Proof. Apply standard sparse linear class bounds via Maurey sparsification / covering arguments
(e.g., Bartlett & Mendelson, 2002). The baseline fW (0) is fixed and does not affect complexity.

Theorem A.4 (Compressible gradients preserve energy). Let g ∈ Rd with nonincreasing magni-
tudes |g|(1) ≥ · · · ≥ |g|(d), and suppose g ∈ ℓp,∞ with ∥g∥p,∞ := supi≥1 i

1/p|g|(i) ≤ C for some
p ∈ (0, 2). Let g1:k be the Top-k truncation. Then

∥g1:k∥22
∥g∥22

≥ 1− cp
C2

∥g∥22
k
1− 2

p ,

with cp = p
2−p . Consequently, if Λ keeps the Top-k, the retention α = ∥Λ ⊙ g∥22/∥g∥22 satisfies

α ≥ 1− cp (C
2/∥g∥22) k1−2/p.

Proof. Tail bound for weak-ℓp: |g|(i) ≤ C i−1/p gives
∑

i>k |g|2(i) ≤ C2
∑

i>k i
−2/p ≤

p
2−pC

2k1−2/p (see, e.g., Foucart & Rauhut, 2013, Section 1.3). Conclude by decomposing ∥g∥22
into head+tail.

Theorem A.5 (Top-k recovery under sub-Gaussian perturbations). Let g ∈ Rd be the true gradient
and ĝ = g + ξ, where ξ has independent mean-zero σ2-sub-Gaussian coordinates. Let Tk(g) be the
Top-k index set and ∆k := |g|(k) − |g|(k+1) > 0. If

∆k ≥ 2σ
√
2 log(d/δ),

then with probability at least 1 − δ, Tk(ĝ) = Tk(g) and thus α(ĝ) = α(g). Generally, [α(ĝ)] ≥
α(g)− Pr(Tk(ĝ) ̸= Tk(g)).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proof. Control order-statistic flips by a union bound and sub-Gaussian tails; see, e.g., Vershynin
(2018, Ch. 2). If no pairwise swap occurs across the k-th threshold, the two Top-k sets coincide.

Theorem A.6 (Support recovery under mutual coherence). In the linearized model with design
Φ ∈ Rn×d, suppose θ⋆ is s-sparse and the mutual coherence µ(Φ) := maxi̸=j

|Φ·iΦ·j |
∥Φ·i∥2∥Φ·j∥2

satisfies
µ(Φ) < 1

2s−1 . Run with periodic refreshes that add k new coordinates by selecting the k largest
correlations with the residual (equivalently, Top-k gradient magnitudes in the LS subproblem), and
perform least squares on the active set between refreshes. Then after R ≥ ⌈s/k⌉ refreshes, the
active set contains supp(θ⋆). With sub-Gaussian noise of variance σ2, the LS estimator over the
recovered support satisfies

∥θ̂ − θ⋆∥2 ≲ σ

√
s log d

n
,

with constants depending only on µ(Φ).

Proof. Batch-k variant of standard OMP/Stagewise analyses (e.g., Tropp & Gilbert, 2007; Nutini
et al., 2015): coherence ensures each refresh includes a true index; after ⌈s/k⌉ refreshes the true
support is included. Noisy rates follow from restricted eigenvalue/coherence arguments.

Theorem A.7 (Excess risk via retention and sparsity). Under the assumptions of Theorems A.1
and A.3, run with stepsizes γt ≤ 1/ for T steps and define α := inf0≤t<T αt > 0. Let RT :=∑T−1

t=0 γt ∥Λ(t) ⊙∇f(W (t))∥2. Then for any δ ∈ (0, 1), with probability at least 1− δ,

E(f̂T) := [(f̂T)]−[(f⋆)] ≲ ∥ΠS⊥
T
Φθ⋆∥2L2︸ ︷︷ ︸

bias

+ σ2 sT
n︸ ︷︷ ︸

variance

+
BRT√

n

√
sT log(ed/sT)︸ ︷︷ ︸

estimation

+
(
1− α γ̄

)T
∆0︸ ︷︷ ︸

opt. error

,

where γ̄ = mint γt and ∆0 = f(W (0))− f(W ⋆).

Proof. Combine Theorems A.1 and A.3 to control approximation and estimation terms (see
also Bartlett & Mendelson, 2002). Optimization error follows from PL with retained energy:
f(W (t+1))− f⋆ ≤ (1− αtγt)

(
f(W (t))− f⋆

)
(?).

[Within-window retention decay] Let t0 be a refresh step where the mask is fixed for t = t0, . . . , t0+
M − 1, and suppose f is -smooth. Define αt = ∥Λ(t0) ⊙∇f(W (t))∥22/∥∇f(W (t))∥22 for t0 ≤ t <
t0 +M . Then for any t in this window,

αt ≥ αt0 − 2

t−1∑
s=t0

∥Λ(t0) ⊙ (∇f(W (s+1))−∇f(W (s)))∥2
∥∇f(W (t))∥2

.

In particular, with updates and γs ≤ γ,

αt ≥ αt0 − 2 γ

t−1∑
s=t0

∥Λ(s) ⊙∇f(W (s))∥2 ≥ αt0 −O(Mγ) ·max
s
∥Λ(s) ⊙∇f(W (s))∥2.

Proof. Let P = diag(Λ(t0)) and gt = ∇f(W (t)). Then ∥Pgt∥22 − ∥Pgt0∥22 =∑t−1
s=t0

2PgsP (gs+1 − gs) + ∥P (gs+1 − gs)∥22. Drop the nonnegative quadratic term and apply
Cauchy–Schwarz. Smoothness gives ∥gs+1 − gs∥2 ≤ ∥W (s+1) − W (s)∥2 = γs∥Λ(s) ⊙ gs∥2,
completing the bound.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B DATASET DESCRIPTIONS

NumGLUE Sub-datasets. The NumGLUE benchmark consists of eight arithmetic reasoning
tasks, four of which are newly curated and four adapted from existing datasets (Mishra et al., 2022).
Type 1 (Commonsense + Arithmetic Reasoning) combines everyday numerical facts with simple
calculations. For example, it requires knowing that a human has two hands and multiplying this
fact by the number of people in a scenario. Type 2 (Domain-specific + Arithmetic Reasoning) re-
quires scientific knowledge, such as chemical reaction stoichiometry or physical laws, combined
with arithmetic operations. Type3 (Commonsense + Quantitative Comparison) asks models to com-
pare quantities in everyday contexts, such as which object experiences greater gravitational force
given their respective masses. Type 4 (Fill-in-the-blank Arithmetic) presents arithmetic word prob-
lems reformatted into completion-style questions, where a key value must be inferred and filled
in. Type 5 (Reading Comprehension with Explicit Numerical Reasoning) is drawn from DROP
(Dua et al., 2019), where the answer must be a number following arithmetic operations over tex-
tual spans. Type 6 (Reading Comprehension with Implicit Numerical Reasoning) also originates
from DROP, but its answers are textual entities rather than numbers. Type 7 (Quantitative Natural
Language Inference) comes from EQUATE (Ravichander et al., 2019), where the task is to classify
a premise–hypothesis pair as entailment, contradiction, or neutral based on numerical reasoning.
Finally, Type 8 (Arithmetic Word Problems) collects classic math problems from sources such as
MAWPS (Koncel-Kedziorski et al., 2016) and earlier algebra problem datasets (Kushman et al.,
2014), focusing squarely on direct arithmetic manipulation. We train and evaluate on the official
training and test splits released by the authors of NumGLUE.

In our evaluation, we exclude Type 6 and Type 7. Both tasks differ from the others in that they do not
require numeric outputs. Type 6 expects entity-level answers extracted from passages, while Type 7
is a natural language inference classification task. Since our study emphasizes arithmetic reasoning
with explicit numeric predictions, we restrict our NumGLUE subset to Types 1–5 and Type 8, which
directly measure numerical accuracy.

Commonsense Reasoning Benchmarks. Beyond arithmetic reasoning, we also evaluate on a
suite of established commonsense reasoning datasets. BoolQ (Clark et al., 2019) tests yes/no
question answering against passages. PIQA (Bisk et al., 2020) centers on physical commonsense
by asking models to choose the more plausible of two candidate actions. SocialIQA (Sap et al.,
2019) probes understanding of social interactions and motivations. HellaSwag (Zellers et al., 2019)
presents adversarially filtered sentence completion problems. Winogrande (Sakaguchi et al., 2020) is
a large-scale coreference resolution benchmark requiring commonsense disambiguation. ARC-Easy
and ARC-Challenge (Clark et al., 2018) are multiple-choice science exams of varying difficulty.
OpenBookQA (Mihaylov et al., 2018) blends scientific knowledge with commonsense inference.

Together, these sub-datasets provide a comprehensive test bed. NumGLUE targets fine-grained
arithmetic reasoning skills, while the commonsense suite evaluates broader physical, social, and
scientific inference abilities. This combination allows us to assess whether parameter-efficient fine-
tuning methods such as GASDU can adapt large language models to diverse reasoning domains.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C BATCH SIZE AND LEARNING RATE

Method Task LR Batch

SpIEL

BoolQ 1e-05 4
PIQA 1e-05 4
SocialIQA 5e-05 4
HellaSwag 1e-05 4
WinoGrande 1e-05 4
ARC-Easy 1e-05 4
ARC-Challenge 5e-05 4
OBQA 5e-05 4

Full

BoolQ 1e-05 4
PIQA 1e-05 4
SocialIQA 1e-05 4
HellaSwag 1e-04 4
WinoGrande 1e-05 4
ARC-Easy 1e-05 4
ARC-Challenge 1e-05 4
OBQA 1e-05 4

LoRA

BoolQ 1e-04 4
PIQA 1e-04 4
SocialIQA 1e-04 4
HellaSwag 1e-04 4
WinoGrande 1e-04 4
ARC-Easy 1e-04 4
ARC-Challenge 1e-04 4
OBQA 1e-04 4

Fixed Mask

BoolQ 5e-05 4
PIQA 1e-04 8
SocialIQA 1e-04 4
HellaSwag 1e-04 8
WinoGrande 1e-04 4
ARC-Easy 1e-04 4
ARC-Challenge 1e-04 4
OBQA 1e-04 4

GASDU

BoolQ 1e-04 8
PIQA 1e-04 8
SocialIQA 1e-04 8
HellaSwag 1e-04 4
WinoGrande 1e-04 8
ARC-Easy 1e-04 8
ARC-Challenge 1e-04 4
OBQA 1e-04 8

Table 5: Training hyperparameters for LLaMA-2-7B of Commonsense Reasoning dataset.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Method Task LR Batch

SpIEL

BoolQ 5e-06 4
PIQA 5e-06 4
SocialIQA 5e-06 4
HellaSwag 1e-06 4
WinoGrande 5e-06 4
ARC-Easy 1e-06 4
ARC-Challenge 1e-05 4
OBQA 5e-06 4

Full

BoolQ 5e-06 4
PIQA 5e-06 4
SocialIQA 5e-06 4
HellaSwag 5e-06 8
WinoGrande 1e-05 4
ARC-Easy 5e-06 4
ARC-Challenge 5e-06 4
OBQA 5e-06 4

LoRA

BoolQ 1e-04 4
PIQA 1e-04 4
SocialIQA 1e-04 8
HellaSwag 1e-04 8
WinoGrande 1e-04 8
ARC-Easy 1e-04 4
ARC-Challenge 1e-04 4
OBQA 1e-04 8

Fixed Mask

BoolQ 5e-05 8
PIQA 5e-05 4
SocialIQA 1e-04 4
HellaSwag 1e-04 8
WinoGrande 1e-04 8
ARC-Easy 5e-05 8
ARC-Challenge 5e-05 4
OBQA 1e-04 8

GASDU

BoolQ 5e-05 8
PIQA 5e-05 8
SocialIQA 5e-05 8
HellaSwag 5e-05 8
WinoGrande 5e-05 8
ARC-Easy 5e-05 4
ARC-Challenge 5e-05 4
OBQA 5e-05 8

Table 6: Training hyperparameters for LLaMA-3-8B of Commonsense Reasoning dataset.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Method Task LR Batch

SpIEL

BoolQ 5e-06 4
PIQA 1e-06 4
SocialIQA 1e-06 4
HellaSwag 1e-06 4
WinoGrande 5e-06 8
ARC-Easy 5e-06 4
ARC-Challenge 5e-06 8
OBQA 1e-05 8

LoRA

BoolQ 1e-04 8
PIQA 1e-04 4
SocialIQA 1e-04 4
HellaSwag 1e-04 8
WinoGrande 1e-04 4
ARC-Easy 5e-05 8
ARC-Challenge 5e-05 4
OBQA 1e-04 4

Fixed Mask

BoolQ 1e-05 8
PIQA 1e-05 8
SocialIQA 1e-05 4
HellaSwag 1e-05 4
WinoGrande 5e-05 8
ARC-Easy 1e-05 8
ARC-Challenge 5e-06 4
OBQA 1e-05 4

GASDU

BoolQ 1e-05 8
PIQA 5e-06 8
SocialIQA 1e-05 4
HellaSwag 1e-05 8
WinoGrande 1e-05 8
ARC-Easy 1e-05 4
ARC-Challenge 1e-05 4
OBQA 5e-06 8

Table 7: Training hyperparameters for GPT-OSS-20B of Commonsense Reasoning dataset.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Method Task LR Batch

SpIEL

Type1 1e-06 8
Type2 1e-05 4
Type3 1e-05 4
Type4 5e-05 8
Type5 5e-06 8
Type8 1e-05 4

Full

Type1 5e-06 4
Type2 1e-05 4
Type3 1e-06 4
Type4 1e-05 4
Type5 1e-06 4
Type8 5e-06 4

LoRA

Type1 5e-05 4
Type2 5e-05 4
Type3 1e-05 8
Type4 1e-04 4
Type5 5e-05 4
Type8 1e-04 8

LoRA-One

Type1 5e-05 4
Type2 5e-05 8
Type3 1e-06 4
Type4 1e-04 4
Type5 5e-05 4
Type8 5e-05 4

LoRA-GA

Type1 1e-04 4
Type2 5e-05 4
Type3 1e-06 8
Type4 5e-05 4
Type5 5e-6 4
Type8 5e-05 4

Fixed Mask

Type1 5e-05 4
Type2 1e-04 4
Type3 1e-06 4
Type4 1e-04 8
Type5 1e-05 8
Type8 5e-05 8

GASDU

Type1 5e-05 4
Type2 5e-05 8
Type3 1e-06 8
Type4 5e-05 4
Type5 1e-05 4
Type8 5e-05 8

Table 8: Training hyperparameters for LLaMA-2-7B on the NumGLUE dataset.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Method Task LR Batch

SpIEL

Type1 5e-06 4
Type2 5e-05 4
Type3 1e-05 4
Type4 1e-04 8
Type5 5e-06 8
Type8 5e-06 4

Full

Type1 5e-06 4
Type2 5e-06 4
Type3 5e-06 4
Type4 5e-06 4
Type5 5e-06 4
Type8 1e-06 4

LoRA

Type1 1e-04 4
Type2 1e-04 4
Type3 1e-04 4
Type4 1e-04 8
Type5 1e-04 8
Type8 1e-04 4

LoRA-One

Type1 1e-04 4
Type2 1e-04 4
Type3 5e-05 4
Type4 1e-04 4
Type5 1e-04 8
Type8 1e-04 8

LoRA-GA

Type1 1e-04 4
Type2 1e-04 8
Type3 1e-04 4
Type4 1e-04 4
Type5 1e-05 4
Type8 1e-05 4

Fixed Mask

Type1 5e-05 4
Type2 5e-05 8
Type3 5e-05 4
Type4 1e-04 8
Type5 5e-05 8
Type8 5e-05 8

GASDU

Type1 1e-04 4
Type2 5e-05 8
Type3 5e-05 4
Type4 1e-04 8
Type5 5e-05 8
Type8 5e-05 8

Table 9: Training hyperparameters for LLaMA-3-8B on the NumGLUE dataset.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Method Task LR Batch

SpIEL

Type1 1e-06 8
Type2 5e-06 8
Type3 1e-05 8
Type4 1e-06 4
Type5 1e-06 8
Type8 1e-05 8

LoRA

Type1 1e-04 4
Type2 1e-04 4
Type3 5e-05 8
Type4 1e-04 4
Type5 5e-05 8
Type8 1e-04 4

LoRA-One

Type1 1e-04 4
Type2 1e-04 4
Type3 5e-05 8
Type4 1e-04 4
Type5 5e-05 4
Type8 1e-04 4

LoRA-GA

Type1 1e-04 4
Type2 1e-04 4
Type3 1e-04 4
Type4 1e-04 4
Type5 5e-06 4
Type8 5e-05 4

Fixed Mask

Type1 1e-05 4
Type2 1e-05 4
Type3 1e-04 8
Type4 1e-05 8
Type5 1e-05 8
Type8 1e-05 8

GASDU

Type1 1e-05 4
Type2 5e-06 4
Type3 5e-05 4
Type4 1e-05 8
Type5 5e-06 8
Type8 1e-05 8

Table 10: Training hyperparameters for GPT-OSS-20B on the NumGLUE dataset.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D PEFT MODULARITY AND ADAPTER STORAGE

A practical requirement for parameter-efficient fine-tuning is that task-specific updates can be stored,
swapped, and reloaded as lightweight adapters rather than full model copies. In GASDU, this is
achieved by wrapping each trainable layer with a small “delta” parameter block and enabling an
explicit adapter export mechanism. After fine-tuning, each wrapped layer emits a compact index–
value sparse diff relative to a frozen backbone snapshot, and these diffs can be saved, reloaded, or
combined in exactly the same modular way as standard PEFT adapters.

To quantify the footprint of these exported adapters, Table 13 reports the number of trainable param-
eters and on-disk size for LLaMA-2-7B on NumGLUE Type 1 under a 0.10% update budget. The
GASDU diff occupies only a small fraction of the full model (8.4M parameters and 161 MB versus
6.7B parameters and 13,500 MB), making it suitable for multi-task deployment. Although the diff is
larger than a minimal LoRA adapter, it reflects the additional flexibility of dynamic sparse updates
while preserving the key PEFT advantage of sharing a single backbone across many tasks.

Model Method Upd.% # params Disk size (MB)

LLaMA-2-7B
Full model 100.0 6.7B 13,500
LoRA 0.10 6.3M 24
GASDU (M=50) 0.10 8.4M 161

Table 11: Adapter size comparison on NumGLUE Type 1 with LLaMA-2-7B under a 0.10% update
budget after 3-epoch fine-tuning. For GASDU (M=50), we report the number of nonzero entries in
the exported sparse diff (including their indices) and the resulting on-disk size. For LoRA, we report
the total number of trainable adapter parameters along with its on-disk size. The full LLaMA-2-7B
backbone is shown for reference.

E ADDITIONAL EXPERIMENTS

E.1 EFFECT OF THE SPARSITY BUDGET

In the main text we focused on an extreme update regime with 0.01% of parameters updated per
wrapped projection, in order to highlight that GASDU can already match or closely approach full
fine-tuning while using a very small fraction of weights. To study how performance scales with
the sparsity budget k, we conduct an additional sweep over three update levels: 0.01%, 0.10%, and
0.50%.

We evaluate LLaMA-3-8B with GASDU (M=50) on NumGLUE Types 1–3, using the same train-
ing setup as in the main paper (optimizer, number of epochs, and data splits). For each configuration
we report the median Exact Match (EM) over three seeds per type, and the average across Types
1–3.

Model Method Update .% Type1 Type2 Type3 Avg

LLaMA-3-8B GASDU (M = 50)
0.01 63.5 52.2 69.0 61.6
0.10 64.2 52.5 69.5 62.1
0.50 65.4 53.5 68.7 62.5

Table 12: Validation Exact Match (EM, %) on NumGLUE Types 1–3 with LLaMA-3-8B using
GASDU (M=50) under different update budgets. Avg denotes the mean EM across Types 1–3.

The results show that increasing k yields small but consistent gains in EM, which aligns with our
theoretical view: a larger budget increases the gradient-retention factor αt, strengthening the PL
contraction and improving the robustness of mask reuse as gradients stabilize.

E.2 GASDU AS PLUG-IN SPARSE ADAPTERS

Although GASDU updates entries in the original weight matrices during training, it does not require
storing a separate full model per downstream task. Instead, we implement an explicit adapter ex-

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

port mechanism that turns each fine-tuned run into a lightweight, swappable sparse adapter without
slowing down the training speed:

• The backbone weights are kept as a frozen reference snapshot.
• Each GASDU-wrapped layer maintains a sparse “delta” parameterization over a budget of
k coordinates per update step.

• After training, each layer exports an index–value sparse difference (nonzero coordinates
and their values) relative to the frozen backbone.

• These diffs can be saved, reloaded, and composed in the same way as standard PEFT
adapters, allowing users to switch tasks without duplicating the full model.

We profile adapter footprints for LLaMA-2-7B under a 0.10% per-step update budget on three tasks
of increasing size: NumGLUE Type 1 (∼ 400 samples), OBQA (∼ 5K samples), and WinoGrande
(∼ 58K samples). All adapters (LoRA and GASDU) are exported in bf16 for a fair comparison.

Model Method Upd.% # params Disk size (MB)

LLaMA-2-7B

Full model 100.0 6.7B 13,500
LoRA (all tasks) 0.10 6.3M 12.1
GASDU (NumGLUE Type 1, ∼ 400 samples) 0.10 8.4M 48.0
GASDU (OBQA, ∼ 5K samples) 0.10 26.2M 150.1
GASDU (WinoGrande, ∼ 58K samples) 0.10 52.7M 301.6

Table 13: Adapter footprint for LLaMA-2-7B under a 0.10% per-step update budget. For LoRA, “#
params” is the number of trainable adapter parameters in the dense low-rank matrices; the resulting
bf16 checkpoint is essentially task-independent (12.1 MB). For GASDU, “# params” is the number
of nonzeros in the exported sparse diff (the union of coordinates updated over training), and the on-
disk size grows with dataset size because we store both bf16 values and integer indices.

Although the GASDU adapters are larger than the minimal LoRA adapters, even on the largest
benchmark the≈ 302MB checkpoint is less than 3% of the 13.5 GB backbone, so maintaining many
task-specific adapters is still far cheaper than duplicating the base model. Because these sparse diffs
reside on CPU/disk and can be loaded or swapped in small chunks, adapter size never becomes
a GPU-memory bottleneck, and GASDU preserves the practical plug-in modularity expected of
PEFT-style adapters.

E.3 HUMANEVAL CODE GENERATION RESULTS

To directly address concerns about longer-context and multi-step generation, we additionally evalu-
ate GASDU on the HumanEval code generation benchmark. In this experiment:

• We fine-tune LLaMA-3-8B on the Code-Feedback dataset.
• We evaluate on HumanEval and report PASS@1, computed by executing generated code

against the official test cases.
• Due to time and computational constraints, we include full fine-tuning and standard LoRA

as baselines.
• For fairness, all methods share a single hyperparameter setting: learning rate 1× 10−6 and

batch size 4, without grid search.

Model Method Upd.% PASS@1 (HumanEval)

LLaMA-3-8B
Full FT 100.0 26.22
LoRA 0.10 24.80
GASDU 0.10 25.61

Table 14: PASS@1 (%) on HumanEval for LLaMA-3-8B fine-tuned on Code-Feedback. All meth-
ods use the same learning rate (1× 10−6) and batch size (4).

Under this controlled setting, GASDU with a 0.10% update budget closely matches full fine-tuning
and slightly outperforms LoRA on HumanEval, indicating that the proposed dynamic sparse update

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

mechanism extends beyond short-form reasoning tasks to longer-context, multi-step code genera-
tion.

F ADAM OPTIMIZER AND MOMENTUM HANDLING IN GASDU

Our theory is stated for masked gradient descent with a scalar stepsize to isolate the role of the gradi-
ent–retention factor, but all reported GASDU experiments use an adaptive optimizer (DeepSpeed’s
FusedAdam). Importantly, Adam is applied only to a small adapter vector per wrapped layer, not to
the full dense backbone, so optimizer memory scales with the sparse budget k instead of the model
size.

For each wrapped layer we maintain a fixed adapter vector δ ∈ Rk (implemented as delta_vals)
and keep the dense weight matrix W frozen during the optimizer step. Let j ∈ {1, . . . , k} index
slots of δ, and let πt(j) denote the dense weight coordinate assigned to slot j at step t by the current
Top-k mask. Adam is run in the usual way on the slot gradients g(j)t ,

m
(j)
t+1 = β1m

(j)
t + (1− β1)g

(j)
t , v

(j)
t+1 = β2v

(j)
t + (1− β2)

(
g
(j)
t

)2
,

δ
(j)
t+1 = δ

(j)
t − η

m
(j)
t+1√

v
(j)
t+1 + ε

,

where (m
(j)
t , v

(j)
t) are Adam’s first and second moments for slot j. After each optimizer step we

commit the adapter updates to the backbone and reset the slots:

Wt+1

[
πt(j)

]
= Wt

[
πt(j)

]
+ δ

(j)
t+1, δ

(j)
t+1 ← 0 ∀j,

while keeping (m
(j)
t+1, v

(j)
t+1) intact.

When the mask is refreshed every M steps (including M = 1), the assignment πt changes and a
slot j may be reassigned from a coordinate u at step t to a new coordinate v at step t+1. In that
case, the first update to v uses a “warm-start” state (m

(j)
t+1, v

(j)
t+1) inherited from u. Empirically,

this slot-based momentum trains stably and M=1 consistently matches or outperforms larger M ,
indicating that such warm starts do not create optimization pathologies in practice.

Conceptually, Adam is attached to the k adapter slots rather than to fixed dense coordinates, so it
is best viewed as providing an adaptive step-size schedule in a k-dimensional adapter space, not as
exact per-coordinate momentum on all weights. The optimizer state tensors (mt, vt) therefore have
the same fixed shape as δ (two length-k vectors per wrapped layer), so the optimizer memory is
O(k) and does not grow with the number of distinct dense coordinates visited by the Top-k selector.
This differs fundamentally from “fused SGD,” which still computes dense gradients and updates
all coordinates, whereas GASDU changes which coordinates are ever updated and stores optimizer
state only for that sparse subset.

28

	Introduction
	Related Work
	Method
	Theoretical Analysis
	Convergence Analysis
	Mask-Reuse Retention Analysis
	Verification of the Local PL Condition

	Experiments
	Main Results
	Effect of Refresh Period
	Training Efficiency and Mask-refresh overhead analysis

	Conclusion
	Definitions and Proofs
	Convergence Analysis
	Mask-Reuse Retention Analysis
	Additional Theoretical Analysis

	Dataset Descriptions
	Batch Size and Learning Rate
	PEFT Modularity and Adapter Storage
	Additional Experiments
	Effect of the Sparsity Budget
	GASDU as Plug-In Sparse Adapters
	HumanEval Code Generation Results

	Adam Optimizer and Momentum Handling in GASDU

