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ABSTRACT

Protecting data privacy in deep learning (DL) is at its urgency. Several celebrated
privacy notions have been established and used for privacy-preserving DL. However,
many of the existing mechanisms achieve data privacy at the cost of significant
utility degradation. In this paper, we propose a stochastic differential equation
principled residual perturbation for privacy-preserving DL, which injects Gaussian
noise into each residual mapping of ResNets. Theoretically, we prove that residual
perturbation guarantees differential privacy (DP) and reduces the generalization
gap for DL. Empirically, we show that residual perturbation outperforms the state-
of-the-art DP stochastic gradient descent (DPSGD) in both membership privacy
protection and maintaining the DL models’ utility. For instance, in the process of
training ResNet8 for the IDC dataset classification, residual perturbation obtains
an accuracy of 85.7% and protects the perfect membership privacy; in contrast,
DPSGD achieves an accuracy of 82.8% and protects worse membership privacy.

1 INTRODUCTION

Many high-capacity deep nets (DNs) are trained with private data, including medical images and
financial transaction data (Yuen et al., 2011; Feng et al., 2017; Liu et al., 2017). DNs usually
overfit and can memorize the private training data, which makes training DNs exposed to data
privacy leakage (Fredrikson et al., 2015a; Shokri et al., 2017; Salem et al., 2018; Yeom et al., 2018;
Sablayrolles et al., 2018). Given a pre-trained DN, the membership inference attack can determine if
an instance is in the training set based on DN’s response (Fredrikson et al., 2014; Shokri et al., 2017;
Salem et al., 2018); the model extraction attack can learn a surrogate model that matches the target
model, given the adversary only black-box access to the target model (Tramèr et al., 2016; Gong &
Liu, 2018); the model inversion attack can infer certain features of a given input from the output of a
target model (Fredrikson et al., 2015b; Al-Rubaie & Chang, 2016); the attribute inference attack can
deanonymize the anonymized training data (Gong & Liu, 2016; Zheng et al., 2018).

Machine learning (ML) with data privacy is crucial in many applications (Lindell & Pinkas, 2000;
Barreno et al., 2006; Hesamifard et al., 2018; Bae et al., 2019). Several algorithms have been
developed to reduce privacy leakage include differential privacy (DP) (Dwork et al., 2006), federated
learning (FL) (McMahan et al., 2016; Konečnỳ et al., 2016), and k-anonymity (Sweeney, 2002;
El Emam & Dankar, 2008). Objective, output, and gradient perturbations are among the most used
approaches for ML with DP guarantees at the cost of significant utility degradation (Chaudhuri et al.,
2011; Bassily et al., 2014; Shokri & Shmatikov, 2015; Abadi et al., 2016b; Bagdasaryan et al., 2019).
FL trains centralized ML models, through gradient exchange, with the training data being distributed
at the edge devices. However, the gradient exchange can still leak the privacy (Zhu et al., 2019; Wang
et al., 2019c). Most of the existing privacy is achieved at a tremendous sacrifice of utility. Moreover,
training ML models using the state-of-the-art DP stochastic gradient descent (DPSGD) leads to
tremendous computational cost due to the requirement of computing and clipping the per-sample
gradient (Abadi et al., 2016a). It remains a great interest to develop new privacy-preserving ML
algorithms without excessive computational overhead or degrading the utility of the ML models.

1.1 OUR CONTRIBUTION

In this paper, we propose residual perturbation for privacy-preserving deep learning (DL) with DP
guarantees. At the core of residual perturbation is injecting Gaussian noise to each residual mapping
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of ResNet (He et al., 2016), and the residual perturbation is theoretically principled by the stochastic
differential equation (SDE) theory. The major advantages of residual perturbation are threefold:
• It can protect the membership privacy of the training data almost perfectly and often without

sacrificing ResNets’ utility. Furthermore, it can even improve ResNets’ classification accuracy.
• It has fewer hyperparameters to tune than the benchmark DPSGD. Also, it is more computationally

efficient than DPSGD, which requires to compute the per-sample gradient.
• It can be easily implemented by a few lines of code in modern DL libraries.

1.2 RELATED WORK

Improving the utility of ML models with DP guarantees is an important task. PATE (Papernot et al.,
2017; 2018) uses semi-supervised learning together with model transfer between the “student” and
“teacher” models to enhance utility. Several variants of the DP notions have also been proposed
to improve the privacy budget and some times can also improve the resulting model’s utility at a
given DP budget (Abadi et al., 2016b; Mironov, 2017; Wang et al., 2018; Dong et al., 2019). Some
post-processing techniques have also been developed to improve the utility of ML models with
negligible computational overhead (Wang et al., 2019a; Liang et al., 2020). From the SDE viewpoint,
(Li et al., 2019; Wang et al., 2015) showed that several stochastic gradient Monte Carlo samplers
could reach state-of-the-art performance in terms of both privacy and utility in Bayesian learning.

Gaussian noise injection in residual learning has been used to improve the robustness of ResNets
(Rakin et al., 2018; Wang et al., 2019b; Liu et al., 2019). In this paper, we inject Gaussian noise to
each residual mapping to achieve data privacy instead of adversarial robustness.

1.3 ORGANIZATION

We organize this paper as follows: In Section 2, we introduce the residual perturbation for privacy-
preserving DL. In Section 3, we present the generalization and DP guarantees for residual perturbation.
In Section 4, we numerically verify the efficiency of the residual perturbation in protecting data
privacy without degrading the underlying models’ utility. We end with some concluding remarks.
Technical proofs and some more experimental details and results are provided in the appendix.

1.4 NOTATIONS

We denote scalars by lower or upper case letters; vectors/ matrices by lower/upper case bold face
letters. For a vector x = (x1, · · · , xd) ∈ Rd, we use ‖x‖2 = (

∑d
i=1 |xi|2)1/2 to denote its `2 norm.

For a matrix A, we use ‖A‖2 to denote its induced norm by the vector `2 norm. We denote the
standard Gaussian in Rd as N (0, I) with I ∈ Rd×d being the identity matrix. The set of (positive)
real numbers is denoted as (R+) R. We use B(0, R) to denote the ball centered at 0 with radius R.

2 ALGORITHMS

2.1 DEEP RESIDUAL LEARNING AND ITS CONTINUOUS ANALOGUE

Given the training set SN := {xi, yi}Ni=1, with {xi, yi} ⊂ Rd × R being a data-label pair. For a
given xi the forward propagation of a ResNet with M residual mappings can be written as

xl+1 = xl + F̂ (xl,Wl), for l = 0, 1, · · · ,M − 1, with x0 = xi; ŷi = f(xM ), (1)

where F̂ (·,Wl) is the nonlinear mapping of the lth residual mapping parameterized by Wl; f is the
output activation function, and ŷi is the predicted label for xi. The heuristic continuum limit of (1) is

dx(t) = F (x(t),W(t))dt, x(0) = x̂, where t is the time variable. (2)

The ordinary differential equation (ODE) (2) can be revertible, and thus the ResNet counterpart might
be exposed to data privacy leakage. For instance, we use the ICLR logo (Fig. 1 (a)) as the initial
data x̂ in (2). Then we simulate the forward propagation of ResNet by solving (2) from t = 0 to
t = 1 using the forward Euler solver with a time step size ∆t = 0.01 and a given velocity field
F (x(t),W(t)) (see Appendix E for the details of F (x(t),W(t))), which maps the original image to
its features (Fig. 1 (b)). To recover the original image, we start from the feature and use the backward
Euler iteration, i.e., x̃(t) = x̃(t+∆t)−∆tF (x̃(t+∆t), t+∆t), to evolve x̃(t) from t = 1 to t = 0
with x̃(1) = x(1) being the features obtained in the forward propagation. We plot the recovered
image from features in Fig. 1 (c), and the original image can be almost perfectly recovered.
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(a) x(0) (ICLR logo) (b) x(1) (ODE ) (c) x̃(0) (ODE ) (d) x(1) (SDE ) (e) x̃(0) (SDE )

Figure 1: Illustrations of the forward and backward propagation of the training data using 2D ODE
(2) and SDE (3) models. (a) the original image; (b) & (d) the features of the original image generated
by the forward propagation using ODE and SDE, respectively; (c) & (e) the recovered images by
reverse-engineering the features shown in (b) & (d), respectively. We see that it is easy to break the
privacy of the ODE model, but harder for SDE.

2.2 RESIDUAL PERTURBATION AND ITS SDE ANALOGUE

In this part, we propose two SDE models to reduce the reversibility of (2), and the corresponding
residual perturbations analogue can protect the data privacy in DL.

Strategy I. For the first strategy, we consider the following SDE model:

dx(t) = F (x(t),W(t))dt+ γdB(t), γ > 0, (3)

where B(t) is the standard Brownian motion. We simulate the forward propagation and reverse-
engineering the input from the output by solving the SDE model (3) with γ = 1 using the same
F (x(t),W(t)) and initial data x̂. We use the following forward (4) and backward (5) Euler-
Maruyama discretizations (Higham, 2001) of (3),

x(t+ ∆t) = x(t) + ∆tF (x(t),W(t)) + γN (0,
√

∆t I), (4)

x̃(t) = x̃(t+ ∆t)−∆tF (x̃(t+ ∆t),W(t+ ∆t)) + γN (0,
√

∆t I), (5)

for the forward and backward propagation, respectively. Figure 1 (d) and (e) show the results of the
forward and backward propagation by SDE, respectively, and these results show that it is much harder
to reverse the features obtained by SDE evolution. The SDE model informs us to inject Gaussian
noise, in both training and test phases, to each residual mapping of ResNet to protect data privacy,
which results in

xi+1 = xi + F̂ (xi,Wi) + γni, where ni ∼ N (0, I)1. (6)

Strategy II. For the second strategy, we consider using the multiplicative noise instead of the
additive noise used in (3) 2 and (6), and the corresponding SDE can be written as

dx(t) = F (x(t),W(t))dt+ γx(t)� dB(t), γ > 0, (7)

where � denotes the Hadamard product. Similarly, we can use the forward and backward Euler-
Maruyama discretizations of (7) to propagate the image in Fig. 1 (a), and we provide these results in
Appendix D.1. The corresponding residual perturbation is

xi+1 = xi + F̂ (xi,Wi) + γxi � ni, where ni ∼ N (0, I), (8)

again, the noise γxi � ni is injected to each residual mapping in both training and test phases.

We will provide theoretical guarantees for these two residual perturbation schemes, i.e., (6) and (8),
in Section 3, and numerically verify their efficacy in Section 4.

2.3 UTILITY ENHANCEMENT VIA MODEL ENSEMBLE

Wang et al. (2019b) showed that an ensemble of noise injected ResNets can improve models’ utility.
In this paper, we will also study the model ensemble for utility enhancement. We inherit notations
from (Wang et al., 2019b), e.g., we denote an ensemble of two noise injected ResNet8 as En2ResNet8.

3 MAIN THEORY

In this section, we will provide theoretical guarantees for the above two residual perturbations.
1Liu et al. (2019); Wang et al. (2019b) used this noise injection to improve robustness of ResNets.
2Liu et al. (2019) injected multiplicative noise to neural networks to improve their robustness.
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3.1 DIFFERENTIAL PRIVACY GUARANTEE FOR STRATEGY I
We consider the following function class for ResNets with residual perturbation:

F1 := {f(x) = wTxM |xi+1 = xi + φ
(
Uixi

)
+ γni, i = 0, · · · ,M − 1, (9)

x0 = input data + πn,n and ni ∼ N (0, I),w ∈ Rd,Ui ∈ Rd×d},

where x0 ∈ Rd is the noisy input 3, Ui is the weight matrix in the ith residual mapping and w ∈ Rd
is the weights of the last layer. γ, π > 0 are hyperparameters. φ = BN(ψ) with BN being the batch
normalization and ψ being a L-Lipschitz and monotonically increasing activation function (e.g.,
ReLU). We first recap on the definition of differential privacy below.
Definition 1 ((ε, δ)-DP). (Dwork et al., 2006)A randomized mechanism M : SN → R satisfies
(ε, δ)-DP if for any two datasets S, S′ ∈ SN that differ by one element, and any output subset O ⊆ R,
it holds that P[M(S) ∈ O] ≤ eε · P[M(S′) ∈ O] + δ,where δ ∈ (0, 1) and ε > 0.

We have the following DP guarantee for Strategy I, and we provide its proof in Appendix A.
Theorem 1. Assume the input to ResNet lies in B(0, R) and the output of every residual mapping
is normal distributed and bounded by G, in `2 norm, in expectation. Given the total number of
iterations T used for training ResNet. For any ε > 0 and δ, λ ∈ (0, 1), the parameters Ui and w in the
ResNet with residual perturbation satisfies ((λ/i+ (1− λ))ε, δ)-DP and ((λ/M + (1− λ))ε, δ)-
DP, respectively, provided that π > R

√
(2Tbα)/(Nλε) and γ > G

√
(2Tbα)/(Nλε), where

α = log(1/δ)/ ((1− λ)ε) + 1, M,N and b are the number of residual mappings, training data, and
batch size, respectively. In particular, when γ > G

√
(2Tbα)/(NMλε) the whole model obtained by

injecting noise according to strategy I satisfies (ε, δ)-DP.

3.2 THEORETICAL GUARANTEES FOR STRATEGY II
Privacy. To analyze the residual perturbation (8), we consider the following function class:

F2 := {f (x) = wTxM + πxMn| xi+1 = xi + φ
(
Uixi

)
+ γx̃i � ni), (10)

i = 0, · · · ,M − 1,ni ∼ N (0, I), ‖w‖2 ≤ a}

where a > 0 is a constant; we denote the entry of xi that has the largest absolute value as ximax,
and x̃i is defined as (sgn(xij) max(|xij |, η))dj=1. Due to batch normalization, we assume φ can be
bounded by a positive constant B. The other notations are defined similar to that in (9).

Consider training F2 by using two different datasets S and S′, and we denote the resulting models as:

f (x|S) := wT
1 x

M + πxMnM ; xi+1 = xi + φ
(
Ui

1x
i
)

+ γx̃i � ni, i = 0, · · · ,M − 1. (11)

f
(
x|S

′
)

:= wT
2 x

M + πxMnM ; xi+1 = xi + φ
(
Ui

2x
i
)

+ γx̃i � ni, i = 0, · · · ,M − 1. (12)

Theorem 2. For f(x|S) and f(x|S′) that are defined in (11) and (12), respectively. Let λ ∈
(0, 1), δ ∈ (0, 1), and ε > 0, if γ > (B/η)

√
(2αM)/(λε) and π > a

√
(2αM) /λε, where α =

log(1/δ)/ ((1− λ)ε) + 1, then P[f(x|S) ∈ O] ≤ eε · P[f(x|S′
] ∈ O] + δ for any input x and any

subset O in the output space.

We provide the proof of Theorem 2 in Appendix B. Theorem 2 guarantees the privacy of the training
data given only black-box access to the model, i.e., the model will output the prediction for any input
without granting adversaries access to the model itself. In particular, we cannot infer whether the
model is trained on S or S′ no matter how we query the model in a black-box fashion. We leave the
theoretical DP-guarantee for for Strategy II as a future work.

Generalization Gap. Many works have shown that overfitting in training ML models leads to
privacy leakage (Salem et al., 2018), and reducing overfitting can mitigate data privacy leakage (Shokri
et al., 2017; Yeom et al., 2018; Sablayrolles et al., 2018; Salem et al., 2018; Wu et al., 2019b). In
this part, we will show that the residual perturbation (8) can reduce overfitting via computing the
Rademacher complexity. For simplicity, we consider binary classification problems. Suppose
SN ={xi, yi}Ni=1 is drawn from X × Y ⊂ Rd×{−1,+1} with X and Y being the input data and label

3We add noise to the input for DP guarantee
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spaces, respectively. Assume D is the underlying distribution of X × Y , which is unknown. Let
H ⊂ V be the hypothesis class of the ML model. We first recap on the definition of Rademacher
complexity.
Definition 2. (Barlett & Mendelson, 2002) Let H : X → R be the space of real-valued functions
on the space X . For a given sample S = {x1,x2, · · · ,xN} of size N , the empirical Rademacher
complexity ofH is defined as

RS(H) :=
1

N
Eσ[sup

h∈H

N∑
i=1

σih(xi)],

where σ1, σ2, · · · , σN are i.i.d. Rademacher random variables with P(σi = 1) = P(σi = −1) = 1
2 .

Rademacher complexity is a tool to bound the generalization gap (Barlett & Mendelson, 2002). The
smaller the generalization gap is, the less overfitting the model is. For ∀xi ∈ Rd and constant c ≥ 0,
we consider the following two function classes:

F := {f(x,w) = wxp(T )|dx(t) = Ux(t)dt,x(0) = xi; w ∈ R1×d,U ∈ Rd×d}
with ‖w‖2, ‖U‖2 ≤ c},

G := {f(x,w) = E (wxp(T )) |dx(t) = Ux(t)dt+ γx(t)� dB(t),x(0) = xi; w ∈ R1×d,

with U ∈ Rd×d, ‖w‖2, ‖U‖2 ≤ c},

where 0 < p < 1 takes the value such that xp is well defined on the whole Rd. γ > 0 is a
hyperparameter and U is a circulant matrix that corresponding to the convolution layer in DNs. B(t)
being the 1D Brownian motion. The function class F represents the continuous analogue of ResNet
without inner nonlinear activation functions, and G denotes F with the residual perturbation (8).
Theorem 3. Given the training set SN = {xi, yi}Ni=1. We have RSN

(G) < RSN
(F).

We provide the proof of Theorem 3 in Appendix C, where we will also provide quantitative lower and
upper bounds of the above Rademacher complexities. Theorem 3 shows that residual perturbation (8)
can reduce the generalization error. We will numerically verify this generalization error reduction for
ResNet with residual perturbation in Section 4.

4 EXPERIMENTS

In this section, we will numerically verify that 1) can residual perturbation protect data privacy; in
particular, membership privacy? 2) can the ensemble of ResNets with residual perturbation improve
the classification accuracy? 3) are skip connections crucial in residual perturbation for DL with data
privacy? 4) what is the advantage of the residual perturbation over the DPSGD? We focus on Strategy
I in this section, and we provide the results of Strategy II in Appendix D.

4.1 PRELIMINARIES

Datasets. We consider both CIFAR10/CIFAR100 (Krizhevsky et al., 2009) and the Invasive Ductal
Carcinoma (IDC) datasets. Both CIFAR10 and CIFAR100 contain 60K 32× 32 color images with
50K and 10K of them used for training and test, respectively. The IDC dataset is a breast cancer-
related benchmark dataset, which contains 277,524 patches of the size 50× 50 with 198,738 labeled
negative (0) and 78,786 labeled positive (1). Figure 2 depicts a few patches from the IDC dataset. For
the IDC dataset, we follow Wu et al. (2019a) and split the whole dataset into training, validation, and
test set. The training set consists of 10,788 positive patches and 29,164 negative patches, and the test
set contains 11,595 positive patches and 31,825 negative patches. The remaining patches are used as
the validation set. For each dataset, we split its training set into Dshadow and Dtarget with the same
size. Furthermore, we split Dshadow into two halves with the same size and denote them as Dtrain

shadow

and Dout
shadow, and split Dtarget by half into Dtrain

target and Dout
target. The purpose of this splitting of the

training set is for the membership inference attack, which will be discussed below.

Membership inference attack. To verify the efficiency of residual perturbation for protecting data
privacy, we consider the membership inference attack (Salem et al., 2018) in all the experiments
below. The membership attack proceeds as follows: 1) train the shadow model by using Dtrain

shadow; 2)
apply the trained shadow model to predict all data points in Dshadow and obtain the corresponding
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Negative Positive Negative Positive
Figure 2: Visualization of a few selected images from the IDC dataset.
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Figure 3: Performance of residual perturbation for En5ResNet8 with different noise coefficients
(γ) and membership inference attack thresholds on the IDC dataset. Residual perturbation can
significantly improve membership privacy and reduce the generalization gap. γ = 0 corresponding to
the baseline ResNet8. (Unit: %)

classification probabilities of belonging to each class. Then we take the top three classification
probabilities (or two in the case of binary classification) to form the feature vector for each data point.
A feature vector is tagged as 1 if the corresponding data point is in Dtrain

shadow, and 0 otherwise. Then
we train the attack model by leveraging all the labeled feature vectors; 3) train the target model by
using Dtrain

target and obtain feature vector for each point in Dtarget. Finally, we leverage the attack
model to decide whether a data point is in Dtrain

target.

Experimental settings. We consider En5ResNet8 (ensemble of 5 ResNet8 with residual perturba-
tion) and the standard ResNet8 as the target and shadow models. We use a multilayer perceptron
with a hidden layer of 64 nodes, followed by a softmax output function as the attack model, which is
adapted from (Salem et al., 2018). We apply the same settings as that used in (He et al., 2016) to
train the target and shadow models on the CIFAR10 and CIFAR100. For training models on the IDC
dataset, we run 100 epochs of SGD with the same setting as before except that we decay the learning
rate by 4 at the 20th, 40th, 60th, and 80th epoch, respectively. Moreover, we run 50 epochs of Adam
(Kingma & Ba, 2014) with a learning rate of 0.1 to train the attack model. For both IDC and CIFAR
datasets, we set π as half of γ in Strategy I, which simplifies hyperparameters calibration, and based
on our experiment it gives a good trade-off between privacy and accuracy.

Performance evaluations. We consider both classification accuracy and capability for protecting
membership privacy. The attack model is a binary classifier, which is to decide if a data point is in
the training set of the target model. For any x ∈ Dtarget, we apply the attack model to predict its
probability (p) of belonging to the training set of the target model. Given any fixed threshold t if
p ≥ t, we classify x as a member of the training set (positive sample), and if p < t, we conclude that
x is not in the training set (negative sample); so we can obtain different attack results with different
thresholds. Furthermore, we can plot the ROC curve(see details in subsection 4.5) of the attack model
and use the area under the ROC curve (AUC) as an evaluation of the membership inference attack.
The target model protects perfect membership privacy if the AUC is 0.5 (attack model performs
random guess), and the higher AUC is, the less private the target model is. Moreover, we use the
precision (the fraction of records inferred as members are indeed members of the training set) and
recall (the fraction of training set that is correctly inferred as members of the training set by the attack
model) to measure ResNets’ capability for protecting membership privacy.

4.2 EXPERIMENTS ON THE IDC DATASET

In this subsection, we numerically verify that the residual perturbation in protecting data privacy while
retaining the classification accuracy on the IDC dataset. We select the En5ResNet8 as a benchmark
architecture, which has ResNet8 as its baseline architecture (the details of the neural architectures are
provided in Appendix F). As shown in Figure 3, we set four different thresholds to obtain different
attack results with three different noise coefficients (γ) when γ = 0 means the standard ResNet8
without residual perturbation. We also depict the ROC curve for this experiment in Figure 7 (c).
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Table 1: Residual perturbation vs. DPSGD in training ResNet8 and EnResNet8 for the IDC
classification. Ensemble of ResNet8 with residual perturbation has higher test accuracy and protects
better membership privacy (smaller AUC).

ResNet8 (DPSGD) En1ResNet8 En5ResNet8
AUC Training Acc Test Acc AUC Training Acc Test Acc AUC Training Acc Test Acc
0.503 0.831 0.828 0.496 0.864 0.852 0.497 0.869 0.857
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Figure 4: Performance of En5ResNet8 with residual perturbation using different noise coefficients
(γ) and membership inference attack threshold on CIFAR10. Residual perturbation can not only
enhance the membership privacy, but also improve the classification accuracy. γ = 0 corresponding
to the baseline ResNet8 without residual perturbation or model ensemble. (Unit: %)
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Figure 5: Performance of En5ResNet8 with residual perturbation using different noise coefficients
(γ) and membership inference attack threshold on CIFAR100. Again, residual perturbation can
not only enhance the membership privacy, but also improve the classification accuracy. γ = 0
corresponding to the baseline ResNet8 without residual perturbation or model ensemble. (Unit: %)

En5ResNet is remarkably better in protecting the membership privacy, and as γ increases the model
becomes more resistant to the membership attack. Also, as the noise coefficient increases, the gap
between training and test accuracies becomes smaller, which resonates with Theorem 3. For instance,
when γ = 0.2 the AUC for the attack model is 0.495 and 0.563, respectively, for En5ResNet8 and
ResNet8; the classification accuracy of En5ResNet8 and ResNet8 are 0.867 and 0.847, respectively.

4.2.1 RESIDUAL PERTURBATION VS. DPSGD

In this part, we compare the residual perturbation with the benchmark Tensorflow DPSGD module
(McMahan et al., 2018), and we calibrate the hyperparameters, including the initial learning rate (0.1)
which decays by a factor of 4 after every 20 epochs, noise multiplier (1.1), clipping threshold (1.0),
micro-batches (128), and epochs (100) 4 such that the resulting model gives the optimal trade-off
between membership privacy and classification accuracy. DPSGD is significantly more expensive
due to the requirement of computing the per-sample gradient. We compare the standard ResNet8
trained by DPSGD with En1ResNet8 and En5ResNet8 with residual perturbation (γ = 0.3). Table 1
lists the AUC of the attack model and training and test accuracies of the target model; we see that
residual perturbation can improve accuracy and protect better membership privacy.

4.3 EXPERIMENTS ON THE CIFAR10/CIFAR100 DATASETS

We further test the residual perturbation for ResNet8 and En5ResNet8 on the CIFAR10/CIFAR100
dataset. Figure 4 plots the performance of En5ResNet8 on the CIFAR10 dataset under the above four
different measures. Again, the ensemble of ResNets with residual perturbation is remarkably less
vulnerable to the membership inference attack; for instance, the AUC of the attack model for ResNet8
and En5ResNet8 (γ = 0.75) is 0.757 and 0.573, respectively. Also, the classification accuracy of
En5ResNet8 (67.5%) is higher than that of ResNet8 (66.9%) for CIFAR10 classification. Figure 5
depicts the results of En5ResNet8 for CIFAR100 classification. These results confirm again that
residual perturbation can protect membership privacy and improve classification accuracy.

4https://github.com/tensorflow/privacy/tree/master/tutorials
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Figure 6: The performance of residual perturbation with different noise coefficients (γ) and different
number of models in the ensemble. The optimal privacy-utility tradeoff lies in the choice of these
two options. (Unit: %)
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Figure 7: ROC curves for different datasets. (ga: noise coefficient γ)

4.3.1 EFFECTS OF THE NUMBER OF MODELS IN THE ENSEMBLE

In this part, we consider the effects of the number of residual perturbed ResNets in the ensemble.
Figure 6 illustrates the performance of EnResNet8 for CIFAR10 classification measured in the AUC,
and training and test accuracy. These results show that tuning the noise coefficient and the number of
models in the ensemble is crucial to optimize the trade-off between accuracy and privacy.

4.4 ON THE IMPORTANCE OF SKIP CONNECTIONS

Residual perturbations theoretically relies on the irreversibility of the SDEs (3) and (7), and this
ansatz lies in the skip connections in the ResNet. We test both standard ResNet and the modified
ResNet without skip connections. For CIFAR10 classification, under the same noise coefficient
(γ = 0.75), the test accuracy is 0.675 for the En5ResNet8 (with skip connection); while the test
accuracy is 0.653 for the En5ResNet8 (without skip connection). Skip connections makes EnResNet
more resistant to noise injection which is indeed crucial for the success of residual perturbation for
protecting data privacy.

4.5 ROC CURVES FOR EXPERIMENTS ON DIFFERENT DATASETS

The receiver operating characteristic (ROC) curve can be used to illustrate the classification ability of
a binary classifier. ROC curve is obtained by plotting the true positive rate against the false positive
rate at different thresholds. The true positive rate, also known as recall, is the fraction of the positive
set (all the positive samples) that is correctly inferred as a positive sample by the binary classifier. The
false positive rate can be calculated by 1-specificity, where specificity is the fraction of the negative
set (all the negative samples) that is correctly inferred as a negative sample by the binary classifier. In
our case, the attack model is a binary classifier. Data points in the training set of the target model are
tagged as positive samples, and data points out of the training set of the target model are tagged as
negative samples. Then we plot ROC curves for different datasets (as shown in Figure 7). These ROC
curves show that if γ is sufficiently large, the attack model’s prediction will be nearly a random guess.

4.6 REMARK ON THE PRIVACY BUDGET

In the experiments above, we set the constantsG andR to 30 for Strategy I. For classifying IDC with
ResNet8, the DP budget for Strategy I is (ε = 1.1e5, δ = 1e− 5) and the DP-budget for DPSGD
is (ε = 15.79, δ = 1e − 5). For classifying CIFAR10 with ResNet8, the DP budget for Strategy
I is (ε = 3e5, δ = 1e − 5) and the DP-budget for DPSGD is (ε = 22.33, δ = 1e − 5). Note that
theorem 1 offers a quite loose DP budget compared to DPSGD. There are several difficulties we need
to overcome to get tight DP bounds for Strategy I. Compared to DPSGD, it is significantly harder.
In particular, 1) the loss function of the nose injected ResNets is highly nonlinear and very complex
with respect to the weights, also the noise term appears in the loss function due to the noise injected
in each residual mapping. These together make the tight estimate very difficult. 2) In our proof, we
leveraged the framework of subsampled Rényi-DP (Wang et al., 2018) to find a feasible range of
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noise variance parameter, and then convert to DP to get the value of γ for a given DP budget. This
procedure will significantly reduce the accuracy of the estimated γ. We leave the tight DP guarantee
as future work. In particular, how to reduce the accuracy of estimating due to the conversion between
Rényi-DP and DP.

5 CONCLUDING REMARKS

In this paper, we proposed residual perturbations, whose theoretical foundation lies in the theory of
stochastic differential equations, to protect data privacy for deep learning. Theoretically, we prove
that the residual perturbation can reduce the generalization gap with differential privacy guarantees.
Numerically, we have shown that residual perturbations are effective for protecting membership
privacy on some benchmark datasets. In particular, on the IDC benchmark, residual perturbations
protect better membership privacy than state-of-the-art differentially private stochastic gradient
descent and achieve remarkably better classification accuracy.
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The appendices are structured as follows. In Sections A, B, and C, we prove Theorems 1, 2, and
3, respectively. In Section D, we provide numerical results for the Strategy II. More experimental
details are provided in Section E. Finally, in Section F, we summarize the architecture of deep neural
networks used in our experiments.
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A PROOF OF THEOREM 1

A.1 RÉNYI DIFFERENTIAL PRIVACY

We will use the notion of Rényi differential privacy (RDP) to prove the differential privacy (DP)
guarantees for the proposed residual perturbations. First, let’s review the definition and several results
of the Rényi differential privacy (Mironov, 2017).
Definition 3. (Mironov, 2017) (Rényi divergence) For any two probability distributions P and Q
defined over the distribution D, the Rényi divergence of order α > 1 is

Dα(P ||Q) =
1

α− 1
logEx∼Q(P/Q)α.

Definition 4. (Mironov, 2017) ((α, ε)-RDP) A randomized mechanismM : D → R is said to have
ε-Rényi differential privacy of order α or (α, ε)-RDP for short, if for any adjacent S,S ′ ∈ D that
differ by only one entry, it holds that

Dα(M(S)||M(S
′
) ≤ ε.

Lemma 1. (Mironov, 2017) Let f : D → R1 be (α, ε1)-RDP and g : R1 ×D → R be (α, ε)-RDP,
then the mechanism defined as (X,Y ), where X ∼ f(D) and Y ∼ g(X,D), satisfies (α, ε1 + ε2)-
RDP.
Lemma 2. (Mironov, 2017) (From RDP to (ε, δ)-DP) If f is an (α, ε)-RDP mechanism, then it also
satisfies (ε− (log δ)/(α− 1), δ)-differential privacy for any 0 < δ < 1.
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Lemma 3. (Mironov, 2017) (Post-processing lemma) LetM : D → R be a randomized algorithm
that is (α, ε)-RDP, and let f : R → R′

be an arbitrary randomized mapping. Then f(M(·)) : D →
R′

is (α, ε)-RDP

A.2 PROOF OF THEOREM 1

In this subsection, we will give a proof of Theorem 1, i.e., DP-guarantee for the Strategy I.

Proof. We will prove Theorem 1 by mathematical induction. Consider two adjacent datasets
S = {x1, · · · ,xN−1,xN},S ′ = {x1, · · · ,xN−1, x̂N} that differ by one entry. For the first
residual mapping, it is easy to check that when γ ≥ R

√
2α/εp we have Dα(x1

N ||x̂1
N ) =

α‖xN − x̂N‖2/(2γ2) < εp. For the remaining residual mappings, we denote the response of
the ith residual mapping, for any two input data xN and x̂N , as xiN , x̂

i
N , respectively. Based on our

assumpution, we have

xiN + φ(UixiN ) ∼ N (µN,i, σ
2
N,i)

x̂iN + φ(Uix̂iN ) ∼ N (µ̂N,i, σ
2
N,i),

where µN,i and µ̂N,i are both bounded by the constant G. If Dα(xiN ||x̂iN ) ≤ εp/i, according the
post-processing lemma (Lemma 3), we have

Dα(xiN + φ(UixiN )||x̂iN + φ(Uix̂iN )) =
α‖µN,i − µ

′

N,i‖2

2σ2
N,i

≤ εp/i,

so when γ >
√

2αG2/εp, we further have

Dα(xiN + φ(UixiN ) + γn||x̂iN + φ(Uix̂iN ) + γn) =
α‖µN,i − µ

′

N,i‖2

2(σ2
N,i + γ2)

≤ εp
i+ 1

,

which implies that Dα(xi+1
N ||x̂

i+1
N ) <

εp
i+1 . On the other hand, note that

∇Ui+1`|xi+1
N

= l
′ (
xi+1
N + φ

(
Ui+1xi+1

N

))
φ

′
(Ui+1xi+1

N )(xi+1
N )T

∇Ui+1`|x̂i+1
N

= l
′ (
x̂i+1
N + φ

(
Ui+1x̂i+1

N

))
φ

′
(Ui+1x̂i+1

N )(x̂i+1
N )T .

Leveraging the post-processing lemma (Lemma 3) again, we get

Dα(∇Ui+1`|xi+1
N
||∇Ui+1`|x̂i+1

N
) <

εp
i+ 1

.

Let Bt be the index set with |Bt| = b, and we update Ui as following:

Ui+1
t+1|S = Ui

t − α
1

b

∑
j∈Bt

∇Ui+1
t
`(xi+1

j ,Ui+1
t )

Ui+1
t+1|S ′ = Ui

t − α
1

b

∑
j∈Bt

∇Ui+1
t
`(xi+1

j ,Ui+1
t ),

where Ui+1
t is the weights updated after the tth training iterations. When N /∈ Bt, it’s obviously

that Dα(Ui+1
t+1|S||U

i+1
t+1|S ′) = 0; when N ∈ Bt, the equations which we use to update Ui can be

rewritten as

Ui+1
t+1|S = Ui

t − α(1/b)
∑

j∈Bt−{N}

∇Ui+1
t
`(xi+1

j ,Ui+1
t )− α(1/b)∇Ui+1

t
`(xi+1

N ,Ui+1
t )

Ui+1
t+1|S ′ = Ui

t − α(1/b)
∑

j∈Bt−{N}

∇Ui+1
t
`(xi+1

j ,Ui+1
t )− α(1/b)∇Ui+1

t
`(x̂i+1

N ,Ui+1
t ).

According to the post-processing lemma (Lemma 3), we have Dα(Ui+1
t+1|S||U

i+1
t+1|S ′) ≤ εp/(i+ 1).

Because there are only (Tb)/N steps where we use the information of xN and x̂N . Replace εp
by (Tbεp)/N and use composition theorem we can get after T steps the output Ui+1

T satisfies
(α, εp/(i + 1))-RDP and w satisfies (α, εp/M)-RDP. By Lemma 2, we can easily establish the
DP-guarantee for Strategy I, as stated in Theorem 1.
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B PROOF OF THEOREM 2

In this section, we will provide a proof for Theorem 2.

Proof. Let φ = BN(ψ), where BN is batch normalization operation and ψ is an activation function.
Because of the property of batch normalization, we assume that φ can be bounded by a positive
constant B. To show that the model (9) guarantees training data privacy given only black-box access
to the model. Consider training the model (9) with two different datasets S and S′, and we denote the
resulting model as f(·|S) and f(·|S′), respectively. In the following, we prove that with appropriate
choices of γ and π, Dα(f(x|S)||f(x|S′

)) < εp for any input x.

First, we consider the convolution layers, and let Conv(x)i be the ith entry of the vectorized Conv(x).
Then we have Conv(x)i = xi+φ(Ux)i+γx̃ini. For any two different training datasets, we denote

Conv(x)i|S = xi + φ(U1x)i + γx̃ini ∼ N (xi + φ(U1x)i, γ
2x̃2

i ),

and
Conv(x)i|S

′
= xi + φ(U2x)i + γx̃ini ∼ N (xi + φ(U2x)i, γ

2x̃2
i ).

Therefore, if γ > (B/η)
√

(2αM)/(εp), we have

Dα

(
N
(
xi + φ (U1x)i , γ

2x̃2
i

)
||N

(
xi + φ (U2x)i , γ

2x̃2
i

))
≤ α(φ(U1x)i − φ(U2x)i)

2

2γ2η2
≤ 4αL2B2‖x‖22

2γ2x̃2
i

≤ 2αB2

γ2η2
≤ εp/M.

Furthermore, γ > (b/η)
√

(2αM)/(εp) guarantees (α, εp/M)-RDP for every convolution layer. For
the last fully connected layer, if π > a

√
(2αM) /εp, we have

Dα

(
N
(
wT

1 x, π
2x̃2

i

)
||N

(
wT

2 x, π
2x̃2

i

))
=
α
(
wT

1 x−wT
2 x
)2

2π2‖x‖2
≤ 4αa2‖x‖22

2π2‖x‖2

≤ 2αa2

π2
≤ εp/M,

i.e., π > a
√

(2αM) /εp guarantees that the fully connected layer to be (α, εp/M)-RDP. According
to Lemma 1, we have (α, εp)-RDP guarantee for the ResNet of M residual mappings if γ >

(Lb/η)
√

(2αdM)/(εp) and π > a
√

(2αM) /εp. Let λ ∈ (0, 1), for any given (εp, δ) pair, if
εp ≤ λε and −(log δ)/(α − 1), δ) ≤ (1 − λ)ε, then we have get the (ε, δ)-DP guarantee for the
ResNet with M residual mapping using the residual perturbation Strategy II.

C PROOF OF THEOREM 3

In this section, we will proof that the residual perturbation (8) can reduce the generalization error via
computing the Rademacher complexity. Let us first recap on some related lemmas on the stochastic
differential equation and the Rademacher complexity.

C.1 SOME LEMMAS

Let ` : V × Y → [0, B] be the loss function. Here we assume ` is bounded and B is a positive
constant. In addition, we denote the function class `H = {(x, y) → `(h(x), y) : h ∈ H, (x, y) ∈
X × Y }. The goal of the learning problem is to find h ∈ H such that the population risk R(h) =
E(x,y)∈D[`(h(x), y)] is minimized. The gap between population risk and empirical risk RSN

(h) =

(1/N)
∑N
i=1 `(h(xi), yi) is known as the generalization error. We have the following lemma and

theorem to connect the population and empirical risks via Rademacher complexity.
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Lemma 4. (Ledoux-Talagrand inequality) (M & Talagrand, 2002)LetH be a bounded real valued
function space and let φ : R→ R be a Lipschitz with constant L and φ(0) = 0. Then we have

1

n
Eσ

[
sup
h∈H

n∑
i=1

σiφ (h (xi))

]
≤ L

n
Eσ

[
sup
h∈H

n∑
i=1

σih (xi)

]
.

Lemma 5. (Barlett & Mendelson, 2002)Let SN = {(x1, y1) , · · · , (xN , yN )} be samples chosen
i.i.d. according to the distribution D. If the loss function ` is bounded by B > 0. Then for any
δ ∈ (0, 1), with probability at least 1− δ, the following holds for all h ∈ H,

R (h) ≤ RSN
(h) + 2BRSN

(`H) + 3B
√

(log(2/δ)/(2N).

In addition, according to the Ledoux-Talagrand inequality and assume loss function is L-lipschitz,
we have

RSN
(`H) ≤ LRSN

(H) .

So the population risk can be bounded by the empirical risk and Rademacher complexity of the
function class H. Because we can’t minimize the population risk directly, we can minimize it
indirectly by minimizing the empirical risk and Rademacher complexity of the function class H.
Next, we will further discuss Rademacher complexity of the function class H. We first introduce
several lemmas below.

Lemma 6. (Klebaner, 2005) For any given matrix U, the solution to the equation{
dx(t) = Ux(t)dt

x(0) = x̂

has the following expression
x(t) = exp(Ut)x̂,

Also, we can write the solution to the following equation{
dy(t) = Uy(t)dt+ γy(t)dB(t)

y(0) = x̂

as

y(t) = exp(Ut− 1

2
γ2tI + γB(t)I)x̂.

Obviously, we have E[y(t)] = x(t).

Lemma 7. A matrix C ∈ Rd×d is circulant, if there exists real number a1, · · · , ad such that

C =


a1 a2

. . . ad

ad a1
. . .

. . .
. . .

. . .
. . . a2

a2
. . . ad a1


.

For any circulant matrix, we have the following eigen-decomposition

ΨHCΨ = diag(λ1, . . . , λd),

where

√
dΨ =


1 1 . . . 1

1 m1 . . . md−1

. . . . . . . . . . . .

1 md−1
1 . . . md−1

d−1

 ,

and mis are the roots of unity and λi = a1 + a2mi + · · ·+ adm
d−1
i .
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C.2 THE PROOF OF THEOREM 3

Proof. By the definition of Rademacher complexity (Def. 2), we have

RSN
(F) = (1/N)Eσ

[
sup
f∈F

N∑
i=1

σiwxpi (T )

]
= (c/N)Eσ

[
sup
‖U‖2≤c

‖
N∑
i=1

σix
p
i (T ) ‖2

]
.

Let ui = Ψxpi and denote the jth element of ui as ui,j . Then by lemma 7, we have

RSN
(F) = (c/N)Eσ sup

‖U‖2≤c

∑
i,j

σiσj〈xpi (T ),xpj (T )〉

1/2

= (c/N)Eσ sup
|λi|≤c

(‖ΨH
N∑
i=1

σi
(
ui,1 exp(λ1Tp), · · · , ui,d exp(λdTp))

T ‖2
)

= (c/N)Eσ sup
|λi|≤c

{
d∑
j=1

[
N∑
i=1

σiui,j exp (λjTp)

]2
}1/2 = (c/N) exp(cTp)Eσ{

d∑
j=1

[
N∑
i=1

σiui,j

]2
}1/2

= (c/N) exp (cTp)Eσ‖
N∑
i=1

σiui‖2 = (c/N) exp (cTp)Eσ‖Ψ
N∑
i=1

σix
p
i ‖2

= (c/N) exp (cTp)Eσ‖
N∑
i=1

σix
p
i ‖2

Note that E (wxpi (T )) = wE (xpi (T )) and according to Lemma 6, similar to proof for the function
class F we have

RSN
(G) = (c/N)Eσ sup

‖U‖2≤c

∑
i,j

σiσj〈Expi (T ),Expj (T )〉

1/2

= (c/N)Eσ sup
|λi|≤c

(‖ΨH
N∑
i=1

σi(ui,1 exp(λ1Tp− p(1− p)γ2T/2),

· · · , ui,d exp(λdTp− p(1− p)γ2T/2))T ‖2)

= (c/N)Eσ sup
|λi|≤c

{
d∑
j=1

[
N∑
i=1

σiui,j exp
(
λjTp− p(1− p)γ2T/2

)]2
}1/2

= (c/N) exp(cTp− p(1− p)γ2T/2)Eσ{
d∑
j=1

[
N∑
i=1

σiui,j

]2
}1/2

= (c/N) exp
(
cTp− p(1− p)γ2T/2

)
Eσ‖

N∑
i=1

σiui‖2

= (c/N) exp
(
cTp− p(1− p)γ2T/2

)
Eσ‖Ψ

N∑
i=1

σix
p
i ‖2

= (c/N) exp
(
cTp− p(1− p)γ2T/2

)
Eσ‖

N∑
i=1

σix
p
i ‖2 < RSN

(F)

Therefore, we have completed the proof for the fact that the ensemble of Gaussian noise injected
ResNets can reduce generalization error compared to the standard ResNet.
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D EXPERIMENTS ON STRATEGY II

D.1 FORWARD AND BACKWARD PROPAGATION USING (7)

Figure 8 plots the forward and backward propagation of the ICLR logo using the SDE model (7).
Again, we cannot simply use the backward Euler-Maruyama discretization to reverse the features
generated by the propagating through the forward Euler-Maruyama discretization.

(a) x(1) (SDE) (b) x̃(0) (SDE )
Figure 8: Illustrations of the forward and backward propagation of the training data using the SDE
model (7). (a) is the features of the original image generated by the forward propagation using SDE;
(b) is the recovered images by reverse-engineering the features shown in (a).

D.2 EXPERIMENTS ON THE IDC DATASET

In this subsection, we consider the performance of the second residual perturbation in protecting
membership privacy while retaining the classification accuracy on the IDC dataset. We use the same
ResNet models as that used for the first residual perturbation. We list the results in Fig. 9, these
results confirm that the residual perturbation (8) can effectively protect data privacy and maintain or
even improve the classification accuracy. In addition, we depict the ROC curve for this experiment in
Figure 12 (c). We note that, as the noise coefficient increases, the gap between training and testing
accuracies narrows, which is consistent with Theorem 3.
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AUC 0.563 0.493 0.500
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Figure 9: Performance of residual perturbation (8) for En5ResNet8 with different noise coefficients
(γ) and membership inference attack thresholds on the IDC dataset. Residual perturbation can
significantly improve membership privacy and reduce the generalization gap. γ = 0 corresponding to
the baseline ResNet8. (Unit: %)

D.2.1 RESIDUAL PERTURBATION VS. DIFFERENTIALLY PRIVATE STOCHASTIC GRADIENT
DESCENT

We have shown that the first residual perturbation (6) outperforms the DPSGD in protecting mem-
bership privacy and improving classification accuracy. In this part, we further show that the second
residual perturbation (8) also outperforms the benchmark DPSGD with the above settings. Table 2
lists the AUC of the attack model and training & test accuracy of the target model; we see that
the second residual perturbation can also improve the classification accuracy and protecting better
membership privacy.

D.3 EXPERIMENTS ON THE CIFAR10/CIFAR100 DATASETS

In this subsection, we will test the second residual perturbation (8) on the CIFAR10/CIFAR100
datasets with the same model using the same settings as before. Figure 10 plots the performance of
En5ResNet8 on the CIFAR10 dataset. These results show that the ensemble of ResNets with residual
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Table 2: Residual perturbation (8) vs. DPSGD in training ResNet8 for the IDC dataset classification.
Ensemble of ResNet8 with residual perturbation is more accurate for classification (higher test acc)
and protects better membership privacy (smaller AUC).

ResNet8 (DPSGD) En1ResNet8 En5ResNet8
AUC Training Acc Test Acc AUC Training Acc Test Acc AUC Training Acc Test Acc
0.503 0.831 0.828 0.509 0.880 0.868 0.500 0.895 0.872

perturbation (8) is significantly more robust to the membership inference attack. For instance, the
AUC of the attack model for ResNet8 and En5ResNet8 (γ = 2.0) is 0.757 and 0.526, respectively.
Also, the classification accuracy of En5ResNet8 (γ = 2.0) is higher than that of ResNet8, and
their accuracy is 71.2% and 66.9% for CIFAR10 classification. Figure 11 shows the results of
En5ResNet8 for CIFAR100 classification. These results confirm that residual perturbation (8) can
protect membership privacy and improve classification accuracy once more.

0.0 0.5 1.0 1.5 2.0
noise coefficient

0.50
0.55
0.60
0.65th

re
sh

ol
d 69.2 66.5 54.8 52.7 52.2

69.6 67.0 54.3 0.0 0.0
70.1 67.6 0.0 0.0 0.0
70.4 68.6 0.0 0.0 0.0

precision

0.0 0.5 1.0 1.5 2.0
noise coefficient

0.50
0.55
0.60
0.65th

re
sh

ol
d 97.7 91.3 64.5 56.0 53.4

96.7 89.5 25.6 0.0 0.0
94.9 86.2 0.0 0.0 0.0
89.1 77.8 0.0 0.0 0.0

recall

0.0 0.5 1.0 1.5 2.0
noise coefficient

train

test

100.0 100.0 91.7 85.7 80.7

66.9 72.7 74.9 72.8 71.2

train and test accuracy

0.0 0.5 1.0 1.5 2.0
noise coefficient

AUC 0.757 0.747 0.566 0.536 0.526

AUC under different noises

Figure 10: Performance of En5ResNet8 with residual perturbation (8) using different noise co-
efficients (γ) and membership inference attack threshold on CIFAR10. Residual perturbation (8)
can not only enhance the membership privacy, but also improve the classification accuracy. γ = 0
corresponding to the baseline ResNet8 without residual perturbation or model ensemble. (Unit: %)
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Figure 11: Performance of En5ResNet8 with residual perturbation (8) using different noise coeffi-
cients (γ) and membership inference attack threshold on CIFAR100. Again, residual perturbation (8)
can not only enhance the membership privacy, but also improve the classification accuracy. γ = 0
corresponding to the baseline ResNet8 without residual perturbation or model ensemble. (Unit: %)

D.4 ROC CURVES FOR THE EXPERIMENTS ON DIFFERENT DATASETS

Figure 12 plots the ROC curves for the experiments on the different datasets with different models
using the second residual perturbation strategy. These ROC curves again show that if γ is sufficiently
large, the attack model’s prediction will be nearly a random guess.
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(a) CIFAR10 (En5ResNet8) (b) CIFAR100 (En5ResNet8) (c) IDC (En5ResNet8)

Figure 12: ROC curves for different datasets. (nc: noise coefficient)

E MORE EXPERIMENTAL DETAILS

We give the detailed construction of the velocity field F (x(t),W(t)) in (3) and (7) that used to
generate Figs. 1 and 8 in Algorithm 1.
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Algorithm 1 The expression of F (x(t),W(t))

Input: image=x(t); rows, cols, channels = image.shape.
Output: F (x(t),W(t))=dirtyimage.
for k in range(channels) do

for i in range(rows): do
for j in range(cols): do

offset(j) =int([j + 50.0cos(2πi/180)]%cols);
offset(i) =int([i+ 50.0sin(2πi/180)]%row);
dirtyimage[i, j, k] = image[(i+ offset(j))%rows, (j + offset(i))%cols, k];

return dirtyimage

F ARCHITECTURES OF THE USED DNS

Figure 13 shows the architectures of ResNets used in this paper, and we plot basic blocks in Fig. 14.

Figure 13: Architectures of the ResNet8 used in our experiments.
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(a) Basic Block1 (b) Basic Block2 (c) Basic Block3

Figure 14: Architectures of the basic building block of ResNets studied in this paper.
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