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ABSTRACT

Quantization is a critical approach for efficiently deploying Mixture-of-Experts
(MoE) models with massive parameters. However, MoE models suffer from non-
negligible accuracy loss with extreme quantization, such as under 4 bits. To ad-
dress this, we introduce BT-MoE, a novel framework that achieves a unified and
globally optimal allocation of mixed-precision bit-widths and low-rank compen-
sator configurations. Our key insight is to formalize this co-design problem as
a Multiple-Choice Knapsack Problem (MCKP). To make this NP-hard problem
computationally feasible, we further propose an efficient proxy metric based on
layer-wise quantization loss for rapid configuration impact assessment, so that a
standard Integer Linear Programming (ILP) solver can solve the MCKP within
a practical time. Our comprehensive evaluation demonstrates that BT-MoE con-
sistently outperforms state-of-the-art quantization methods across various MoE
models and benchmarks. By systematically exploring the design space, BT-MoE
achieves superior accuracy-memory trade-offs, significantly improving the de-
ployability of large MoE models on resource-constrained hardware.

1 INTRODUCTION

The Mixture-of-Experts (MoE) architecture has emerged as the dominant paradigm for scaling Large
Language Models (LLMs), achieving state-of-the-art performance by replacing dense MLP blocks
with specialized expert networks and dynamic routing mechanisms (Jiang et al., 2024; Qwen et al.,
2025; Liu et al., 2024; Fedus et al., 2022). This design delivers enhanced model capacity without
sacrificing computational efficiency. However, these advantages come at the cost of critical deploy-
ment challenges. The memory footprint of MoE models is typically several times larger than dense
counterparts. For instance, Mixtral-8x7B requires approximately 88 GB of memory, which exceeds
the 24 GB capacity of consumer GPUs like RTX 4090, while DeepSeek-V3’s 671B parameters
surpass the memory capacity of eight H100 GPUs (Liu et al., 2024).

Deploying MoE models that exceed single-GPU memory requires either offloading to host or exter-
nal memory, which introduces additional communication overhead, or resorting to expensive multi-
GPU inference (Eliseev & Mazur, 2023; Rajbhandari et al., 2022). Among various compression
techniques, model quantization has emerged as the most promising approach for LLM deployment
(Frantar et al., 2022; Xiao et al., 2023; Badri & Shaji, 2023). Mixed-precision quantization further
enhances MoE model performance by assigning different bit-widths to model components based on
their quantization sensitivity (Huang et al., 2025b; Tang et al., 2024). This approach allocates lower
bit-widths to quantization-robust components while preserving higher precision for sensitive ones.

Despite these advances, a critical limitation emerges under aggressive compression scenarios. As
shown in Figure 1, while existing methods like GPTQ (Frantar et al., 2022) and HQQ (Badri & Shaji,
2023) maintain reasonable accuracy at 4-bit precision, they suffer severe performance degradation
when pushed to 3-bit quantization. For instance, Mixtral-8×7B experiences a perplexity increase
from 3.70 (FP16) to 4.73 (3-bit GPTQ), indicating a severe degradation in model performance.

To address this accuracy degradation, recent works have introduced low-rank compensators as post-
quantization correction mechanisms (Li et al., 2025a; Huang et al., 2025a). These methods capture
quantization residuals using low-rank matrix factorization, effectively recovering lost information.
However, existing approaches suffer from a fundamental design flaw: they treat bit-width selection
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Figure 1: Comparison of existing quantization methods and BT-MoE on various bit-precision.

and compensator rank allocation as independent optimization problems, typically applying uniform
configurations across all experts.

This uniform approach fundamentally misaligns with the heterogeneous nature of MoE architec-
tures. Our empirical analysis reveals that different experts exhibit dramatically different sensitivities
to quantization: some experts can tolerate aggressive 2-bit quantization with minimal accuracy loss,
while others require higher precision even with compensator assistance. More critically, we discover
a complex interdependency between bit-width and compensator rank: the optimal compensator rank
for an expert is not fixed but depends heavily on its quantization bit-width, and vice versa. This in-
terdependency creates a vast combinatorial optimization space that defies simple heuristic solutions.
For a typical MoE model with 64 experts, each having 5 bit-width options and 5 rank choices, the
total configuration space exceeds 2564 ≈ 1090 possibilities, making exhaustive search computation-
ally intractable. Existing greedy approaches, such as allocating the highest resources to the most
frequently activated experts, fail to capture the nuanced trade-offs between different configuration
combinations and often converge to local minima.

To address these challenges, we propose BT-MoE, a novel framework that introduces a Budget-
Aware Tuning approach for the joint allocation of mixed-precision bit-widths and low-rank compen-
sators. Our central idea is to cast the joint design as a Multiple-Choice Knapsack Problem (MCKP),
where each expert selects exactly one configuration from a set of (bit-width, rank) candidates under
a global resource budget. Although the resulting problem is NP-hard, we make it computationally
tractable by employing an efficient layer-wise proxy for quantization-induced degradation. This
proxy enables rapid evaluation of thousands of candidate configurations without exhaustive full-
model retraining or validation, allowing the global selection to be solved by a standard Integer
Linear Programming (ILP) solver within a practical time.

Our contributions are threefold. (1) We identify and formalize the complex coupling between weight
bit-width and compensator rank in MoE quantization. (2) We propose an ILP-based global alloca-
tion method that jointly optimizes both dimensions, enabled by an efficient proxy metric that makes
the global optimization computationally feasible. (3) We demonstrate consistent and significant im-
provements over existing methods across multiple MoE models and benchmarks, achieving superior
accuracy-memory trade-offs that enable practical deployment of large MoE models on resource-
constrained hardware.

2 RELATED WORKS

Post-Training Quantization (PTQ). PTQ has become the standard for LLM compression, avoid-
ing the prohibitive cost of Quantization-Aware Training (QAT). In this line of work, state-of-the-art
methods such as GPTQ (Frantar et al., 2022) and AWQ (Lin et al., 2024) have successfully com-
pressed dense LLMs to 4-bit precision without significant accuracy loss. More recently, calibration-
free methods like HQQ (Badri & Shaji, 2023) have also been explored, which capture outliers us-
ing a Super-Laplacian distribution with a closed-form solution. However, a uniform quantization
scheme is often suboptimal for models with heterogeneous components like MoEs. To address this,
Mixed-precision quantization allocates varied bit-widths to model components based on their dif-
fering sensitivities to quantization error (Wang et al., 2019; Dong et al., 2019). This principle is
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particularly effective for MoE models, whose experts naturally exhibit heterogeneous sensitivities
(Huang et al., 2025b). Nevertheless, a key challenge persists: existing PTQ approaches, whether
uniform or mixed-precision, still struggle to maintain accuracy when compressing MoE models to
higher compression ratios, particularly in the sub-4-bit regime.

Low-rank Compensation methods for LLM compression. Low-Rank Factorization techniques
are widely used to compensate for accuracy loss in LLM compression. ASVD (Yuan et al., 2023)
proposes an activation-aware factorization method that uses a transformation matrix to absorb infor-
mation about outliers from the activations into the weight matrices to compress the model. LoRC
(Yao et al., 2024) applies low-rank factorization to the quantization error matrix and uses the low-
rank matrices as a ”compensator,” making it an effective method for model accuracy recovery.
SVDQuant (Li et al., 2025a) utilizes a high-precision, low-rank branch to absorb the most hard-
to-quantize outliers in the weights and activations, thereby allowing the remaining, smoother resid-
ual component to be easily quantized to 4-bit precision. MiLo (Huang et al., 2025a) designs a
mixed-rank compensation scheme specifically for MoE models, adaptively assigning varying ranks
to different experts. Different from those efforts, we explore a joint optimization of mixed-precision
quantization and low-rank compensation for different components in MoE models, systematically
exploring the optimal model compression configuration.

3 METHODOLOGY

3.1 CO-DESIGN CHALLENGE IN MOE QUANTIZATION

The core challenge in compressing MoE models lies in their heterogeneous nature. Different com-
ponents exhibit varying sensitivities to quantization, creating a complex optimization space. Our
analysis, along with recent studies, reveals a clear hierarchy of these sensitivities (Duanmu et al.,
2025). As illustrated in Figure 2a, we observe that attention layers are more sensitive than expert
FFNs, and shared experts are more sensitive than regular experts. Furthermore, within a single MoE
layer, experts exhibit varying sensitivities to quantization (Figure 2b). This heterogeneity motivates
the use of mixed-precision quantization.
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Figure 2: (a) Comparison of quantizing more bits for attention vs. experts and shared-experts v.s.
others evaluated on the DeepSeek-MoE-16B-base model. (b) Quantization loss across experts in
Qwen1.5-MoE’s 1st layer under different bit width, group size=128.

However, heuristic-based bit allocation (Li et al., 2025b) is insufficient, particularly under the ag-
gressive compression required by strict memory budgets, which inevitably leads to significant quan-
tization error. To counteract this residual error, low-rank compensators have been introduced as a
powerful correction tool. It creates a second, coupled dimension for optimization: the rank of the
compensator. However, the co-design of mixed-precision bit-widths and compensator ranks intro-
duces three fundamental challenges:

(1) Coupled Relationship: Nonlinear trade-offs between bit-width and rank. The memory
budgets for bit-width and rank compensation are interdependent. An expert quantized to a lower
bit-width can have its accuracy recovered by a higher-rank compensator. We find that the benefit of
increasing the compensator rank for an expert depends on its current quantization bit-width. For an
expert quantized to 2-bit, a rank-32 compensator might provide a significant improvement; however,
for an expert already at 4-bits, the same compensator may have little effect. As shown in Figure
3(a), a 4-bit configuration with no compensator might yield a similar quantization loss to a 3-bit
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configuration with a rank-64 compensator, but the 4-bit configuration is more memory-intensive.
This non-linear coupling between bit-width and rank indicates that optimizing one dimension in
isolation will lead to a suboptimal outcome.
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Figure 3: (a) Quantization Loss vs. Memory Footprint for a single expert (Layer 10, Expert 24) in
DeepSeek-V2-Lite under various compression configurations. (b) Weight distribution for a single
expert (Layer 20, Expert 17) in Qwen1.5-MoE under 2-bit quantization, illustrating the accuracy
recovery from different compensator ranks.

(2) Heuristic Limitations: Greedy and frequency-based allocation fall short. Due to the coupled
relationship described above, employing simple greedy algorithms or heuristic strategies can easily
lead to a local optimum. For example, allocating the highest-cost configuration (i.e., the highest
bit-width and rank) to the most sensitive expert might seem reasonable, but this can excessively
consume the budget. This would leave dozens of other experts with poor configurations, conse-
quently harming the overall model performance.
Some existing work on mixed-precision MoE quantization uses a heuristic based on expert activation
frequency; however, we find this approach also fails to achieve optimal results. This is particularly
true for MoE models like Mixtral-8x7B. This is because the model has a small number of experts
per layer, leading to little variance in their activation frequencies, as shown in Figure 4a. For models
with a large number of fine-grained experts, such as DeepSeek-MoE and Qwen1.5-MoE, the expert
activation frequencies exhibit significant variance, as shown in Figure 4b and 4c. Consequently, for
these models, a frequency-based mixed-precision allocation can be a reasonably effective strategy.
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Figure 4: Heatmap of expert activation frequency in Mixtral8×7B, DeepSeek-V2-Lite and Qwen1.5-
MoE on the WikiText-2 task. The vertical axis from top to bottom represents the layer depth, and
the horizontal axis represents expert indices.

(3) Combinatorial Explosion: Vast search space and costly evaluation. A key difficulty in co-
optimizing bit-width selection and compensator rank lies in the Combinatorial Explosion, which
creates an extremely large design space. An MoE model contains a large number of experts, and
each expert has multiple possible combinations of bit-widths and compensator ranks. For instance,
models like Qwen1.5-MoE or DeepSeek-MoE have over 60 experts per layer. If we provide just
a few bit-width options and several rank choices for each expert, every expert will have dozens of
possible configurations. For the entire model, the total number of combined configurations is vast:

O
(
(|B| × |R|)|E|

)
,

where B is the number of bit-width options, R is the number of rank options, and E is the total
number of experts in the model to be configured. making a brute-force search of all possibilities
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computationally impossible. Therefore, this is a massive discrete combinatorial optimization prob-
lem that requires a systematic method to efficiently explore this vast design space.

This challenge is twofold. Beyond the sheer number of configurations, evaluating the quality of
any single complete assignment by running a full model benchmark is also prohibitively expensive.
To solve this, our framework introduces a two-part approach. First, to address the evaluation cost,
we propose an efficient proxy metric based on layer-wise quantization loss. Through isolated per-
turbation experiments, we rapidly collect the quant-loss for each expert under every potential (bit,
rank) configuration. This allows us to model the global accuracy degradation as the weighted sum
of these local losses. Second, with the cost and impact of each configuration now quantified, we
tackle the search problem by formulating this task as an Integer Linear Programming (ILP) prob-
lem. By minimizing the total weighted loss, the ILP solver can efficiently navigate the vast design
space to find a provably optimal solution, bypassing the need for an exhaustive search. As our ex-
periments demonstrate, this systematic approach yields configurations that are significantly superior
to baseline methods.
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Figure 5: Comparison of Model Size (GB) and Perplexity (PPL) for DeepSeek-V2-Lite and
Qwen1.5-MoE at 3-bit precision with different compensator ranks and a group size of 128. The
⋆ symbols indicate corresponding perplexity values on WikiText2.

3.2 ILP-BASED FRAMEWORK FOR UNIFIED GLOBAL ALLOCATION

Mixed-precision quantization and low-rank compensation are complementary techniques for com-
pressing MoE models, yet integrating them within a single optimization framework remains nontriv-
ial. To address the co-design challenges outlined in Section 3.1, we present BT-MoE, an ILP-driven
framework that performs unified, global allocation of bit-widths and compensator ranks. BT-MoE
formulates the joint selection as a constrained optimization problem over a discrete configuration
space, enabling principled trade-offs between accuracy and resource usage and avoiding the subop-
timality of heuristic decisions.

3.2.1 OPTIMIZING UNIFIED (BIT, RANK) CONFIGURATIONS

The basic building block of our framework is the unified (bit, rank) pair configuration assigned to
each expert. To ensure each potential configuration is effective before our global search, we must
optimally solve for its internal parameters. This involves finding the best possible balance between
the precision offered by the bit-width and the error correction provided by the compensator rank.

To achieve this, we employ an iterative joint optimization process, inspired by MiLo (Huang et al.,
2025a), which is superior to treating quantization and compensation as separate, sequential steps.
For each candidate (bit, rank) pair, we solve for the optimal quantization parameters(zero-point and
scale) and compensator matrices (U, V ) by minimizing the overall representation error:

arg min
z,s,U,V

L(W −Q−1
z,s(Qz,s(W ))− UV ).

This optimization alternates between two key steps:
(1) Quantization Optimization: For the given bit-width, we treat the compensated weight matrix
W − UV as the target for quantization. We then apply an iterative solver based on HQQ to this
target matrix to find the optimal quantizer parameters (z, s).
(2) Low-Rank Compensator Optimization: For the given rank, we use Singular Value Decompo-
sition (SVD) on the current quantization residual W −Wq to find the optimal compensator matrices

5
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(U, V ). This process ensures that each configuration passed to our ILP solver is a locally-optimized
implementation.

3.2.2 MODELING AS A MULTIPLE-CHOICE KNAPSACK PROBLEM

We model the task of assigning a (bit, rank) configuration to each expert as a Multiple-Choice
Knapsack Problem (MCKP). This analogy provides a clear and powerful framework for our opti-
mization:

• The Knapsack represents the total allowed memory budget for the compression overhead.
• Each Expert in the MoE model corresponds to a group of items.
• Each possible (bit, rank) Configuration for an expert is an item within that group (e.g.,

(3-bit, rank-32) is one item).
• The Value of an item is its contribution to accuracy, weighted by the expert’s importance.
• The Weight of an item is its memory cost.

The objective is to select exactly one item (configuration) from each group (expert) to maximize the
total value, without exceeding the knapsack’s capacity (memory budget).

3.2.3 MEASURING CONFIGURATION IMPACT VIA LAYER-WISE QUANTIZATION LOSS

A prerequisite for our ILP formulation is an efficient method to quantify the impact of thousands of
potential (bit, rank) configurations, especially for MoE models with a large number of experts. As
a full model evaluation for each candidate is computationally prohibitive, we propose an efficient
proxy metric based on layer-wise quantization loss. Our approach is based on a simple idea: when
we compress a single expert, the error this creates mostly affects that expert’s own layer. We measure
this local error as the quantization error produced by compressing this expert.

Therefore, for each expert ei and every candidate configuration cj , we conduct an isolated pertur-
bation experiment. In this step, only the target expert is temporarily replaced with its compressed
counterpart corresponding to the candidate configuration, while the remainder of the model is held
constant in FP16. The quantization loss for this configuration, denoted QuantLoss(ei, cj), is then
formally defined as the Euclidean (L2) distance between the output of this perturbed layer and its
corresponding FP16 reference. This systematic process is repeated for all experts and configurations,
yielding a comprehensive sensitivity map that serves as the primary input for our ILP solver.

The quantization loss for this configuration, Li,j , is then formally defined as the Euclidean (L2)
distance between the output of this perturbed layer and its corresponding FP16 reference:

Lij = ||LayerOutput(ei ← cj)− LayerOutputFP16||2.

This systematic process yields a comprehensive sensitivity map that serves as the primary input for
our ILP solver, making the optimization computationally feasible.

3.2.4 INTEGER LINEAR PROGRAMMING FORMULATION

We formally define the optimization problem: Let E = {e1, e2, . . . , eN} be the set of N experts
in the model, and C = {c1, c2, ..., cK} be the set of K possible (bit, rank) configurations. To
find the optimal (bit, rank) assignment, we formulate the problem as an optimization that seeks
to minimize the total, importance-weighted quantization loss across all experts, subject to a strict
memory budget. This allows us to systematically navigate the complex trade-offs between accuracy,
expert sensitivity, and resource constraints.

Parameters.

• Fi: The activation frequency of expert ei, serving as its importance weight.
• Li,j : The layer-level quantization loss for expert ei under compression configuration cj .
• Mj : The memory overhead incurred by adopting configuration cj .
• B: The total memory budget for the compression overhead.

6
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Decision Variable. We introduce a binary variable xij ∈ {0, 1}, where xij = 1 if expert ei is
assigned configuration cj , and 0 otherwise.

Objective Function. Our goal is to minimize the sum of importance-weighted and quantization
losses across all experts:

Minimize

N∑
i=1

K∑
j=1

(Fi · Lij) · xij . (1)

Constraints. The optimization is subject to the following constraints:

• Unique Choice Constraint: Each expert must be assigned exactly one configuration

K∑
j=1

xij = 1, ∀i ∈ {1, ..., N}. (2)

• Memory Budget Constraint: The total memory overhead from all chosen configurations
cannot exceed the budget

N∑
i=1

K∑
j=1

Mj · xij ≤ B. (3)

By adopting this two-stage approach, our framework fundamentally transforms the nature of the
optimization problem. The initial brute-force search complexity of O

(
(|B| × |R|)|E|

)
, is entirely

circumvented. Instead, our method’s complexity is dominated by two stages:
(1) Quant Loss Collection: The first stage involves populating the sensitivity map. This requires
conducting an isolated perturbation experiment for each configuration across all experts. The com-
plexity of this stage is polynomial: O (B| × |R × |E|), which is practically feasible.
(2) ILP Solving: The second stage involves solving the formulated ILP problem. Our formulation
maps the challenge onto a well-structured Multiple-Choice Knapsack Problem (MCKP). For such
problems, modern, highly optimized solvers can employ sophisticated techniques such as branch-
and-bound and cutting-plane methods to find the provably optimal solution in a time frame that is
vastly more efficient than the original brute-force search. In practice, for all our experiments, the
solver finds the optimal configuration in under 10 seconds.

Finally, we solve this ILP problem using Google OR-Tools (SCIP) (Perron & Didier), formulating
the objective to minimize the total weighted quantization loss. This process yields the globally
optimal (bit, rank) assignment for the entire MoE model.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Models. We evaluate BT-MoE on three open-source MoE models: Mixtral-8x7B (Jiang et al., 2024),
DeepSeek-V2-Lite (Liu et al., 2024), and Qwen1.5-MoE (Team, 2024). DeepSeek-V2-Lite employs
a hybrid architecture, using dense MLP instead of MoE blocks in the first layer. More details about
the models are provided in the Appendix A.1.

Baselines. We evaluate BT-MoE against three representative quantization methods, all configured
with a group size of 128 for fair comparison: HQQ (Badri & Shaji, 2023), a calibration-free method
using half-quadratic quantization; GPTQ (Frantar et al., 2022), a calibration-based approach lever-
aging Hessian information for weight quantization; and MiLo (Huang et al., 2025a), a specialized
MoE quantization method that utilizes low-rank compensators for extremely low-bit scenarios.

Benchmarks. We evaluate BT-MoE on five representative benchmarks, including Wikitext-2 (Mer-
ity et al., 2017), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), Lambada (Radford et al.,
2019), and MMLU (Hendrycks et al., 2021). We present the performance on MMLU with 5-shot
and others with zero-shot. All evaluations are conducted using the EleutherAI Language Model
Evaluation Harness (Gao et al., 2024).
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4.2 COMPARISON OF MODEL PERFORMANCE AND MEMORY FOOTPRINT

BT-MoE provides different compression configurations corresponding to various memory con-
straints. Each configuration individually sets the bit-width and compensator rank for every ex-
pert. Within these configurations, both the attention parts of the models and the shared experts in
DeepSeek-V2-Lite and Qwen1.5-MoE are uniformly set to a (4-bit, rank=512) configuration.

Table 1: Model Perplexity and Accuracy Perplexity under Various Quantization Methods.

Model Method Mem (GB) WikiText2 (PPL) HS PQ LO MMLU AVG

Mixtral-8x7B

FP16 88.90 3.700 86.02 83.67 80.87 71.34 80.48
GPTQ-3bit 18.43 4.730 77.70 79.54 74.36 63.61 73.80
HQQ-3bit 20.55 4.612 77.88 79.16 69.74 60.93 71.93
MiLo 21.50 4.223 82.23 81.33 74.57 67.07 76.30

BT-MoE 18.37 4.480 82.01 81.23 73.70 63.44 75.10
BT-MoE 20.36 4.095 84.64 83.03 76.88 66.76 77.83

DeepSeek-MoE

FP16 31.24 5.832 77.33 79.00 73.88 45.07 68.82
GPTQ-3bit 6.97 6.843 70.98 76.44 68.62 32.53 62.14
HQQ-3bit 7.67 7.082 71.38 77.25 66.67 35.63 62.73
MiLo 8.18 6.423 74.15 78.12 71.47 41.97 66.42

BT-MoE 6.76 6.640 72.32 77.86 70.95 41.41 65.64
BT-MoE 8.18 6.180 75.51 78.83 73.51 42.93 67.70

Qwen1.5-MoE

FP16 26.70 6.521 77.86 81.25 71.90 62.50 73.38
GPTQ-3bit 6.73 8.293 72.77 76.80 62.33 54.36 66.56
HQQ-3bit 6.83 8.272 72.46 77.15 62.48 51.29 65.85

BT-MoE 6.83 7.377 74.54 78.31 67.75 56.71 69.35

To ensure fairness, we compare the accuracy of quantized models with different methods under
similar memory footprints. The comprehensive results, summarized in Table 1, show that BT-MoE
demonstrates superior performance compared to all baselines across all evaluated models.

On Mixtral-8x7B, BT-MoE shows significant advantages. At a memory footprint of 18.37 GB, our
method surpasses the slightly larger GPTQ-3bit baseline (18.43 GB) by over 1.3 points in average
accuracy. More impressively, our 20.36 GB configuration drastically outperforms HQQ-3bit (20.55
GB), reducing the WikiText2 perplexity from 4.612 to 4.095 and increasing the average score from
71.93 to 77.83, recovering a substantial portion of the performance gap to the FP16 model. This
result exemplifies our framework’s ability to establish a better accuracy-memory trade-off, with
consistent advantages observed across all tested models. More detailed and complete experimental
results are presented in the Appendix A.1.4.
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Figure 6: The Objective Function Value as a proxy metric for final model performance on Mixtral-
8x7B. The bubble size represents the memory footprint of the compressed model under each quan-
tization configuration.
We validate that our ILP objective function, the Importance-Weighted L2 Loss Sum, serves as a
highly reliable proxy for final model performance. As shown in Figure 6, this predicted loss ex-
hibits a remarkable correlation of 0.9942 with Perplexity and -0.9900 with Average Score on various
datasets, confirming its effectiveness in guiding our optimization.
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4.3 ABLATION STUDY

To quantify the individual contributions of mixed-precision and low-rank compensation within our
framework, we conduct an ablation study comparing our full BT-MoE method against two ablated
variants that represent each strategy in isolation. In Figure 7, the Base refers to the uniform-bit
quantization method. The Base+Mix-Precision represents a mixed-precision-only approach, which
allocates bit-widths based on an activation frequency heuristic without any compensators. The
Base+Compensation represents a compensation-only approach, applying low-rank compensators
to a uniform bit-width.

The results in Figure 7 reveal that the quality of heuristic-based mixed-precision is critically de-
pendent on whether the heuristic itself can accurately measure expert importance. A clear example
of this limitation is on the Mixtral-8x7B model, where the frequency-based method fails to out-
perform the uniform-4bit HQQ baseline. As we discussed in Section 3.1, this is mainly because
Mixtral8x7B features a small number of experts with low variance in their activation frequencies,
making frequency an unreliable proxy for expert importance.

In contrast, our joint optimization method BT-MoE consistently achieves the best accuracy-memory
trade-off. On the DeepSeek-MoE model, for instance, while Base+Compensation achieves strong
accuracy, BT-MoE delivers comparable or better performance with a significantly smaller memory
footprint. This demonstrates that by jointly optimizing both bit-width and rank, BT-MoE can nav-
igate the complex trade-offs that simple heuristics cannot, validating the superiority of our global
optimization approach.
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Figure 7: Results of different quantization methods and ours BT-MoE on various MoE models. The
⋆ symbols denote the memory size of the compressed model.

5 CONCLUSION

In this study, we address the critical challenges of deploying MoE models with extreme compression.
We introduce BT-MoE, a novel framework that unifies the allocation of mixed-precision bit-widths
and low-rank compensators into a tractable Integer Linear Programming problem. We design an ob-
jective function to minimize the importance-weighted sum of quantization losses, which we validate
as a highly reliable predictor of final model performance. This budget-aware tuning approach sys-
tematically discovers a globally optimal configuration that maximizes model accuracy under a strict
memory budget. Our extensive experiments demonstrate that it consistently outperforms existing
quantization techniques by achieving higher accuracy at similar or even lower memory footprints.
These results highlight the potential of our unified optimization strategy to make the deployment of
large MoE LLMs more feasible in resource-constrained environments.
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A APPENDIX

A.1 FULL EXPERIMENTAL RESULTS

A.1.1 MODEL DETAILS IN EXPERIMENT

Table 2: Architectural Specifications of Evaluated MoE Models

Model Params (GB) Experts TopK

Mixtral-8×7B 92.9 8 2
Qwen1.5-MoE 26.7 60 + 4 4
DeepSeek-V2-Lite 29.3 64 + 2 6

A.1.2 THE EFFECT OF COMPENSATOR RANK ON THE ACCURACY RECOVERY OF LOW-BIT
QUANTIZED WEIGHTS
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Figure 8: The progressive recovery of weight distributions for different model components under
aggressive INT2 quantization. The top set of plots (a) shows the distributions for an expert’s weights,
while the bottom set (b) shows distributions for attention weights. Each column corresponds to a
different compensator rank, from Rank-0 to Rank-256.

A.1.3 OFFLINE COMPUTATIONAL COST FOR DATA COLLECTION

Our framework requires a one-time, offline data collection phase to generate the sensitivity map (the
Li,j values) used by the ILP solver. This involves performing an isolated perturbation experiment
for every expert across all candidate (bit, rank) configurations, as described in Section 3.2.3.

On a single NVIDIA A100 GPU, this data collection process takes approximately 4 to 12 hours,
with the duration depending on the total number of experts in the MoE model (e.g., Mixtral-8x7B is
on the lower end, while DeepSeek-MoE is on the higher end). It is important to note that while this
upfront data collection is computationally intensive, it is a one-time cost. Once this comprehensive
sensitivity map is generated, the ILP optimization itself is extremely efficient, consistently finding
the globally optimal configuration in under 10 seconds.
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A.1.4 FULL EXPERIMENTAL RESULTS UNDER DIFFERENT MEMORY CONSTRAINTS

Table 3: The full results of GPTQ, HQQ, MiLo, MPQ-Freq and ours BT-MoE with 3-bit and 4-bit
weight quantization among 5 datasets on Mixtral-8x7B, DeepSeek-MoE-16B and Qwen1.5-MoE-
14B.We evaluate on the following datasets: Wikitxt-2, HellaSwag(HS), LAMBADA-openai(LO),
PIQA(PQ) and MMLU. Specifically, the GPTQ method utilizes Wikitext2 as the calibration dataset.
MPQ-Freq is a heuristic mixed-precision-only strategy, which allocates bit-widths based on activa-
tion frequency without any compensators.

Model Bits Memory WikiText2(PPL) HS PQ LO MMLU AVG

Mixtral-8x7B

FP16 88.90G 3.700 86.02 83.67 80.87 71.34 80.48
GPTQ-4bit 23.81G 4.233 80.73 81.44 74.42 67.84 76.11
GPTQ-3bit 18.43G 4.731 77.70 79.54 74.36 63.61 73.80
HQQ-4bit 25.41G 3.941 83.65 82.62 76.57 68.53 77.84
HQQ-3bit 20.55G 4.612 77.88 79.16 69.74 60.93 71.93
MiLo 21.50G 4.223 82.23 81.33 74.57 67.07 76.30
MiLo 26.01G 3.774 85.47 83.18 77.31 68.13 78.52
MPQ-Freq 23.06G 4.777 82.02 82.37 72.23 66.07 75.67
MPQ-Freq 24.11G 4.354 82.77 82.53 74.70 67.07 76.76

BT-MoE 18.37G 4.4803 82.01 81.23 73.70 63.44 75.10
BT-MoE 20.36G 4.0953 84.64 83.03 76.88 66.76 77.83
BT-MoE 21.50G 3.9725 85.04 83.08 77.99 67.79 78.48
BT-MoE 23.56G 3.8191 85.57 83.51 79.39 69.60 79.52

DeepSeek-MoE

FP16 31.24G 5.832 77.33 79.00 73.88 45.07 68.82
GPTQ-4bit 8.75G 6.266 74.67 78.14 72.28 42.23 66.83
GPTQ-3bit 6.97G 6.843 70.98 76.44 68.62 32.53 62.14
HQQ-4bit 9.37G 6.187 74.68 78.61 72.32 42.30 66.98
HQQ-3bit 7.67G 7.082 71.38 77.25 66.67 35.63 62.73
MiLo 8.18G 6.423 74.15 78.12 71.47 41.97 66.42
MiLo 9.82G 5.946 76.74 78.83 72.11 43.21 67.72
MPQ-Freq 7.52G 6.543 72.45 78.00 68.95 40.05 64.86
MPQ-Freq 8.78G 6.319 74.39 78.07 70.95 42.19 66.40

BT-MoE 6.76G 6.640 72.32 77.86 70.95 41.41 65.64
BT-MoE 7.54G 6.348 73.71 78.13 71.94 41.98 66.44
BT-MoE 8.18G 6.180 75.51 78.83 73.51 42.93 67.70

Qwen1.5-MoE

FP16 26.70G 6.521 77.86 81.25 71.90 62.50 73.38
GPTQ-4bit 8.03G 7.544 75.61 78.40 64.46 58.25 69.18
GPTQ-3bit 6.73G 8.293 72.77 76.80 62.33 54.36 66.56
HQQ-4bit 8.13G 7.143 75.60 78.65 67.22 59.58 70.26
HQQ-3bit 6.83G 8.272 72.46 77.15 62.48 51.29 65.85
MiLo 7.26G 7.326 75.24 78.40 66.28 55.28 68.55
MiLo 8.72G 6.860 77.32 79.64 70.99 58.45 71.58
MPQ-Freq 6.83G 7.667 73.81 78.00 65.44 55.08 68.08
MPQ-Freq 8.18G 7.062 75.32 78.40 69.60 58.22 70.39

BT-MoE 6.83G 7.377 74.54 78.31 67.75 56.71 69.35
BT-MoE 8.21G 6.880 76.37 79.43 71.16 60.17 71.78

A.2 THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, the authors utilized Large Language Models (LLMs)
as a writing assistant. The primary use of these tools was for language enhancement, including
improving grammar, clarity, and readability through translation and polishing of the text.
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