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ABSTRACT

Attribution, the problem of assigning proportional responsibility for an outcome
to each event in a temporal sequence of causes, is central to diverse applications
ranging from marketing and seismology to sports analytics. While incorporating
exogenous features substantially enhances the expressiveness of attribution models,
existing approaches lack the scalability required to integrate modern machine learn-
ing. We introduce FeatHawkes, a feature-augmented Hawkes process framework
for event-level attribution in continuous time. Our core contribution is a novel first-
order optimization routine for Hawkes processes that leverages stochastic gradient
methods, scaling favorably with both dataset size and feature dimensionality. This
gradient-based formulation enables compatibility with automatic differentiation
and end-to-end ML pipelines. We release FeatHawkes as an open-source Python
library, and demonstrate its effectiveness through synthetic experiments and a case
study on professional football data, where the framework supports what-if analyses
such as quantifying the impact of replacing players in a lineup.

1 INTRODUCTION

Given a series of interventions, such as ads displayed to a user or treatments given to a patient, how
can one determine which ones were responsible, and to what extent, for an outcome, such as a user
purchase or a patient recovery? This fundamental task, known formally as attribution, arises naturally
across many diverse fields of science and industry, such as marketing (Gaur & Bharti, 2020; Bompaire
et al., 2024), neuroscience (which neurons led to activity of a given neuron) (Truccolo et al., 2005;
Pillow et al., 2008), seismology (which earthquakes are fore– or aftershocks) (Ogata, 1988; Zhuang
et al., 2002), but also social networks (Zhou et al., 2013), epidemiology and medicine (Rizoiu et al.,
2018; Hernán & Robins, 2006), etc.

Most of these applications focus on factual attribution, that is, who was actually responsible for the
outcome? In contrast, relatively little attention has been given to the predictive side of attribution:
what if a different intervention were in place, how would the outcome have changed?

The example of sports analytics offers a compelling illustration of this distinction, which we will
use throughout the paper. Assessing the factual contribution of an individual player to the team’s
success (matches won) is a crucial task for managers and analysts and has been studied in works
such as Narayanan et al. (2023) or Baouan et al. (2023). Obviously, fair attribution of team success
has substantial financial implications for players and is vital for managerial decision-making. Yet to
optimise team composition, managers must go further: they need to evaluate how the team would
have performed with different players. This requires a hypothetical, intervention-based understanding
of individual contributions.

Predictive attribution, by necessity, builds upon a foundation of factual attribution. The simplest
factual approach, last-touch attribution, assigns all credit to the final intervention before the outcome,
i.e. to who scored the goal. While computationally simple, it clearly fails to provide a fair assessment
of the team’s overall contribution. In complex systems, effective attribution must be multi-touch
(Shao & Li, 2011), distributing credit more equitably across all contributing interventions.

There are two approaches to addressing this problem: physical modelling, which, while valuable in
scientific contexts, requires ad-hoc expert knowledge and complex experimentation, and statistical
modelling, which relies solely on observed data. In statistical attribution, estimates of the conditional
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probability of the outcome given a set of interventions are used to fairly distribute the value or
credit created by the outcome among the interventions. These probabilities are estimated using
point-process models, foregoing strong (physical) structural assumptions. Credit distribution can then
be done in various ways, e.g. using Shapley values (Zhao et al., 2018) or individual treatment effects
(Diemert et al., 2021).

Statistical attribution’s use of estimation and fractional credit assignment focuses on being accurate
on average over many events, rather than on a causal single-event basis. Naturally, then, this approach
has prevailed in applications with large scale data streams, such as marketing (Shao & Li, 2011),
neuroscience (Paninski, 2004; Pillow et al., 2008), seismology (Ogata, 1988; Zhuang et al., 2002),
epidemiology (Rizoiu et al., 2018), and social networks (Zhou et al., 2013), etc. Nowadays, the
advent of large-scale data collection and processing has opened the door to incorporating exogenous
features into attribution models, making such intervention-based evaluations possible. The main
driver of this movement has been online advertising, see e.g. Diemert et al. (2021).

This paper introduces a framework for predictive attribution using exogenous (feature) information.
In the context of a sports team, this corresponds to data on individual players and the matches they
played. The framework we propose is statistical and based on a Hawkes process structure for the
event point-process. The self-excitation property of these models allows for parametric estimation of
both direct (last-touch) and indirect (multi-touch) contributions, thereby overcoming the limitations
of conditional expectation estimators and the combinatorial cost of Shapley values. We extend this
foundation by integrating a machine learning module directly into a GPU-accelerated, gradient-based
fitting routine, enabling feature-conditioned attribution through scalable end-to-end optimisation. Our
open-source implementation, FeatHawkes , makes these tools broadly accessible. We validate the
framework on synthetic benchmarks and real football data, illustrating how evaluating alternative
player interventions provides actionable insights into the potential impact of transfers.

The organisation of the paper is as follows. In Section 2, we formally introduce the attribution
problem, present the Hawkes process attribution framework and situate our work in context. In
Section 3, we describe our estimation procedure for Hawkes processes with exogenous features,
tailored for attribution under hypothetical interventions. Finally, we report our experimental results
in Section 4. For illustrative clarity, we will continue to use the example of a football (soccer) team
throughout the paper. Nevertheless, our framework is general and applies to temporal attribution
problems in diverse domains such as marketing or seismology. Indeed, our contribution is primarily
methodological, with scalability and integration with modern ML pipelines as its main strengths.

2 PRELIMINARIES

2.1 SETTING AND ATTRIBUTION PROBLEM

We consider an attribution problem in which there are d ∈ N types of interventions and, for simplicity,
a single outcome type. We refer to these types as dimensions and arrange them into a vector of
length d + 1. All of these dimensions are observed through a collection (N (k))Kk=1, K ∈ N, of
(d+ 1)-dimensional counting processes1 on [0,+∞).

In our football example, as in Baouan et al. (2023), each intervention type corresponds to a player
(i.e. d = 11), and the associated dimension of N (k) counts the number of touches of the ball by this
player. Thus, N (k)

i (t) counts the number of times player i touched the ball up to time t ≥ 0 in match
k. Outcomes are quantities of interest for managers that can be readily computed from match data,
such as the number of goals scored, or other metrics, see e.g. Baouan et al. (2023).

Given this observed data, we seek to estimate the influence exerted by dimensions i ≤ d on the
outcome dimension d+1 by fitting a Hawkes process to the data. Let us first introduce these processes
and explain how they quantify the influence between dimensions. Thereafter, in Section 3.2, we will
introduce our version of this model with exogenous features.

1Meaning N
(k)
i is almost surely a non-decreasing integer-valued function on [0,+∞), for each i ∈ [d+ 1].
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2.2 HAWKES PROCESSES AND ATTRIBUTION

To lighten notation, let us temporarily fix K = 1 and drop the associated superscript k. We will
consider that N is a (random) point process on some probability space2 and let (Ft)t≥0 be its filtration.
The instantaneous risk of an event between time t and time t+ dt is captured by the intensity

λ : t ∈ [0,+∞) 7→ lim
h→0

E
[
h−1(N(t+ h)−N(t))|Ft

]
∈ [0,+∞)d+1 (1)

of the process. Note that λ is a vector-valued random function (because of conditional expectation)
on [0,+∞). The counting process N = (N1, . . . , Nd+1), whose arrival times are denoted (τ

(i)
ℓ )ℓ∈N

for i ∈ [d+ 1], is a Hawkes process (Hawkes, 1971) if λ = (λ1, . . . , λd+1)
⊤ is of the form

λi : t ∈ [0,+∞) 7→ µi +

d+1∑
j=1

∑
ℓ∈N

φi,j(t− τ
(j)
ℓ )1{τ(j)

ℓ <t} (2)

for i ∈ [d+ 1] and parameters µ ∈ [0,+∞)d+1 and φi,j : R→ [0,+∞).

This particular structure of the intensity splits events of N of type i into two categories: exogenous
events, which arrive at a constant rate µi independently of the past (thus forming a Poisson process),
and endogenous events, which are triggered by the process exciting itself, within the same dimension
(if φi,i > 0), or from dimension j to i (if φi,j > 0). This self-exciting property is the key feature of
Hawkes processes which will allow us to capture the influence of the interventions on the outcome.

The influence of dimensions of a Hawkes process on each other is encoded by the branching matrix

B :=

[∫ ∞

0

φi,j(s)ds

]
(i,j)∈[d+1]2

,

which captures the magnitude of the direct excitation effects of dimensions on each other. Attributing
the outcomes of dimension d + 1 to the dimensions i ≤ d in proportion to the coefficients Bd+1,i

corresponds to a form of average last-touch attribution as, in effect, Bi,j gives the average number of
events of type i that are triggered by a single event of type j.

One of the benefits of using Hawkes process models for the point process is that multi-touch attribution
can be performed by computing the descendent matrix

D := B(I −B)−1 ,

which is well defined when the process is sub-critical, i.e. when
∫ +∞
0

φi,j(s)ds < +∞ for all
i, j ∈ [d+ 1] and the spectral radius of B is strictly less than 1. In effect, Di,j is the average total
number of events of type i that are triggered by a single event of type j. Our attribution methodology
is to attribute the outcome of dimension d+ 1 to dimensions i ≤ d in proportion to the coefficients
Dd+1,i. When extending to hypothetical or predictive attribution, we incorporate exogenous features
into the process by allowing φi,j to depend on features and parameters of each dimension pair.

2.3 RELATED WORK AND CHALLENGES

Multi-touch attribution. Most modern work on attribution focuses on multi-touch attribution
(MTA) in marketing and advertising. MTA represents a methodological advance over simple heuristics
like “last-click” or “first-click” by distributing credit across multiple touchpoints in a customer’s
journey (Li & Kannan, 2014; Xu et al., 2014). Early heuristic models (e.g., linear, time-decayed, or
U/W-shaped rules) are valued for their simplicity but criticised for lacking empirical grounding (Shao
& Li, 2011; Berman, 2018; El Mekkaoui & Benyoussef, 2024; Mrad & Hnich, 2024).

To overcome these limitations, data-driven models were introduced. Probabilistic models, such
as those based on Markov chains, infer the relative importance of each interaction from user path
data (Anderl et al., 2016; Dalessandro et al., 2015). Causal methods, have also been proposed, on
the basis of the do-calculus (Athey & Imbens, 2017; Bottou et al., 2013). Finally, game-theoretic
methods based on Shapley values allocate credit by computing marginal contributions across possible
scenarios (Shao & Li, 2011; Datta et al., 2017). More recently, machine learning approaches have
been used to capture complex, non-linear interactions between channels at scale (Zhang et al., 2014).

2We defer a more formal series of definitions and measurability arguments to Appendix A.
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Hawkes processes. Since their introduction by Hawkes (1971), Hawkes processes have become
a cornerstone in both theoretical and applied modelling of self-exciting phenomena. Classical
applications include demographic modelling via Galton-Watson processes (Neves & Moreira, 2006)
and earthquake aftershock sequences (Ogata, 1988; Iwata, 2025; Kwon et al., 2023). More recently,
they have been applied in neuroscience (Truccolo et al., 2005; Pillow et al., 2008), social networks
(Zhou et al., 2013; Rizoiu et al., 2018), and epidemiology (Rizoiu et al., 2018), among others.

Theoretical work has primarily focused on the probabilistic structure of Hawkes processes (Hawkes,
1971), with significant contributions to their statistical estimation via maximum likelihood (Ogata,
1978; Ozaki, 1979), EM algorithms (Veen & Schoenberg, 2008; Lewis & Mohler, 2011), and Bayesian
approaches (Rasmussen, 2013; Linderman & Adams, 2014; Donnet et al., 2020). Hawkes models
have also seen widespread adoption in finance, where they are used to capture high-frequency trading
dynamics and market microstructure (Jaisson & Rosenbaum, 2015; 2016; Dandapani et al., 2021;
Rosenbaum & Tomas, 2021); see also the survey by Bacry et al. (2015).

Beyond the classical setting, extensions to multidimensional and marked Hawkes processes are
well-established (Laub et al., 2021), and recent developments include nonparametric inference and
structural variants (Bonnet et al., 2023). Exogenous features have also been incorporated into Hawkes
process, either in the form of spatio-temporal models or Neural Hawkes processes. The former
encodes both spatial (feature-space) and temporal evolution (Bernabeu et al., 2025). The latter
integrate recurrent neural architectures into the excitation probabilities of the Hawkes process (Mei &
Eisner, 2017; Zhang et al., 2020; Shchur et al., 2021). The expressivity of these models allows them to
capture complex non-linear endogenous dynamics. Despite their integration of features, these models
are not attribution models. Our contribution is therefore complementary: rather than maximising
expressiveness of dynamics, we focus on attribution with exogenous features and scalable inference.

2.4 CHALLENGES AND CONTRIBUTIONS

Challenges. Despite significant progress, two fundamental challenges remain unresolved in the
literature on both attribution and Hawkes processes. First, statistical attribution models are inherently
limited in their ability to incorporate exogenous features, which are essential for evaluating alternative
interventions, a core requirement for predictive attribution. Without the ability to model how
changes in external covariates (e.g. player traits, treatment, or marketing interventions) influence
outcomes, these models cannot support the evaluation or optimisation of interventions. Second, the
numerical methods traditionally used to fit Hawkes models are inefficient and outdated, rendering
them unsuitable for large-scale applications. In particular, they are ill-equipped to integrate with
machine learning pipelines, where efficient, differentiable and scalable training procedures are critical.

Contributions. This paper addresses both challenges directly. First, we introduce a feature-
augmented Hawkes model in which the excitation kernel is governed by feature-dependent (random)
coefficients. This formulation enables machine learning models to learn complex attribution rules
from exogenous information, facilitating predictive evaluation of interventions. Second, we develop a
stochastic gradient ascent procedure for penalised conditional likelihood maximization. Unlike EM
or MLE approaches, our method is GPU-compatible, scalable, and differentiable, making it suitable
for integration with modern ML workflows. These innovations are packaged in our open-source
Python library FeatHawkes , designed for accessibility and real-world deployment. We validate
our approach both on synthetic benchmarks and real football data, demonstrating both computational
efficiency and the practical utility of predictive attribution in complex decision-making contexts.

3 STATISTICAL ESTIMATION AND MODEL FITTING

3.1 MAXIMUM LIKELIHOOD ESTIMATION FOR HAWKES PROCESSES

Statistical attribution is an unsupervised learning problem, since by definition the true cause of each
event is unobserved. The use of a Hawkes process to model the event times allows learning of
relationships between interventions (or features) and outcomes using its likelihood model as a loss
function. We present this loss function and discuss its estimation in this section.
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In order to make optimisation efficient, we will focus on a parametric Hawkes process, and in
particular on exponential kernels which imposes φi,j : t 7→ αi,jβi,je

−βi,jt for every (i, j) ∈ [d+1]2,
and for some parameters (αi,j , βi,j) ∈ [0,+∞)2. Exponential kernels are the kernel of choice in
most applications, see e.g. Laub et al. (2021, § 3.4), as they are simple to fit via maximum likelihood
(see below) and to interpret. Indeed, αi,j gives the magnitude of the excitation effect from j to i while
βi,j gives the rate of decay of this effect. Practical examples also show that exponential decay is
well-suited to many applications (Ogata, 1988). This model has straightforward attribution as B = α.

Given a single trajectory, up to a time T ∈ [0,+∞), of an exponential Hawkes process N with
intensity λ, the negative log-likelihood of the parameters (µ, α, β) := [µi, αi,j , βi,j ]i,j is given by

L(N ;µ, α, β) = −
d+1∑
i=1

Ni(T )∑
ℓ=1

log λi

(
τ
(i)
ℓ

)
−
∫ T

0

λi(t)dt . (3)

Inspection of (2) in the context of (3) highlights one of the clear benefits of an exponential kernel: the
time integral of the intensity, a quantity known as the compensator can be computed in closed form
without the need for numerical integration, see Ogata (1978) or Daley & Vere-Jones (2007, Ch. 7).

Minimisation of L(N ; ·) to fit a Hawkes process to the data of N by maximum likelihood is compli-
cated by two factors: (i) the non-convexity of the L(N ; ·); (ii) the need to respect positivity constraints
on the parameters. The first issue is unfortunately unavoidable and makes implementation quite
sensitive to initialisation. Nevertheless, L(N ; ·) is a smooth function of the parameters on the interior
of the parameter space, which is sufficient to use gradient-based optimisation methods.

Unfortunately, the use of (simple) gradient-based methods is not appropriate for constrained minimi-
sation problems. To avoid this issue, we propose the introduction of a barrier function

Υ : (µ, α, β) 7→ −
d+1∑
i=1

log(µi) +

d+1∑
j=1

log(αi,j) + log(βi,j)

 ,

using the convention log(·) = −∞ on (−∞, 0].

In summary, our method for maximum likelihood estimation of Hawkes processes with exponential
kernels solves the following optimisation problem:

min
µ,α,β

L(N ;µ, α, β) + ηΥ(µ, α, β) , (4)

for η > 0. Minimising in (4) requires gradient-based optimisation, but is bottlenecked by the nested
sums in the gradient of (3). The speed of any implementation hinges on how efficiently these sums
are computed. Our FeatHawkes library leverages GPU acceleration via PyTorch to overcome
the performance limits of traditional CPU-based methods, and includes optional L1 penalisation of
the likelihood (see Appendix C.1 for details).

Beyond implementation tricks, the key to fast and scalable fitting lies in the choice of optimisation
method. Full gradient (or Hessian) computation becomes prohibitive for multiple or long trajectories,
making stochastic or partial-gradient methods more efficient. FeatHawkes adopts an adaptive
mini-batch gradient strategy using the PyTorch optimiser framework, avoiding the costly operations
used in earlier algorithms like Ogata (1978) and Veen & Schoenberg (2008) (see Appendix C.2).

3.2 INCORPORATING FEATURES AND FITTING MACHINE LEARNING MODELS TO DATA

Let us return to our general setting, consisting of a dataset of trajectories N (k), k = 1, . . . ,K, each
with length Tk > 0. We assume that each trajectory has a fixed, time-invariant3, collection of features
(Z(k), (X

(k)
i )i∈[d+1]) associated with the whole trajectory and individual dimensions (respectively).

We consider that theses features affect the intensity of the Hawkes process N (k) via (1) with kernel
φi,j := φθi,j (X

(k)
i , X

(k)
j , Z(k)) for a fixed φ and θi,j parameters of the pair (i, j) to be learnt. Any

parametric ML model can be used here for φ, provided it outputs probabilities, i.e. φ : R→ [0, 1).

3If features are time-dependent, the time-integral of λ in (3) may lose its closed form, dramatically increasing
numerical complexity.
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For the sake of exposition, we will focus on a logistic regression model in which only the α coefficients
are dependent on features and βi,j = βi ∈ (0,+∞) for every (i, j) ∈ [d+ 1]2. The method extends
naturally if µ or β are also dependent on features, at the cost of increased complexity in the fitting
procedure. Specifically, we will write

αi,j = αi,j(γ, θ;X
(k), Z(k)) := σ

(
γi,j + θ

(0)
i,j

⊤
Z(k) + θ

(1)
i,j

⊤
X

(k)
i + θ

(2)
i,j

⊤
X

(k)
j

)
, (5)

for some coefficients γi,j ∈ R, θ(0)i,j ∈ Rdz , θ(1)i,j ∈ Rdi , and θ
(2)
i,j ∈ Rdj , (i, j) ∈ [d + 1]2, with

θi,j := (θ
(0)
i,j , θ

(1)
i,j , θ

(2)
i,j ) and σ : R→ (0, 1) denoting the logistic function. This statistical model is

identifiable (see Proposition A.1 in Appendix A), up to convex combinations of the values of θ(1)i,i

and θ
(2)
i,i , an issue circumvented in practice by imposing θ

(1)
i,i = θ

(2)
i,i without loss of generality.

Combining (4) and (5) allows us to write a (conditional) likelihood function

L(N ;µ, γ, θ, β|X,Z) :=

K∑
k=1

L(N (k);µ, α(γ, θ;X(k), Z(k)), β) (6)

for the parameters of the logistic regression and the Hawkes process in an end-to-end procedure.
Since α is in (0, 1) we may remove it from Υ, yielding the optimisation problem

min
µ,θ,β

L(N ;µ, θ, β|X,Z)− η

d+1∑
i=1

log(µi) +

d+1∑
j=1

log(βi,j) .

Note that alternative optimisation methods such as Frank–Wolfe (Zhao, 2025), dual coordinate ascent
(Bompaire et al., 2018), or projection-free adaptive gradients (Combettes et al., 2020) are effective
in convex settings with fixed decay parameters (β), but are not directly applicable in our general,
non-convex case where all (d+ 1)2 coefficients must be learned jointly.

4 SIMULATION STUDY

4.1 NUMERICS OF HAWKES PROCESS FITTING

Obtaining quantitative convergence guarantees for Hawkes process fitting algorithms remains chal-
lenging due to the non-convexity of the negative log-likelihood L, even without features. To date,
no non-asymptotic convergence results are known. As a result, algorithmic comparisons must rely
on empirical evaluation. To avoid the confounding effects of real-world data, we use controlled
simulation studies. Fortunately, simulating Hawkes processes is well understood following the
method of Ogata (1978), which we implement in FeatHawkes and describe in Appendix B.

Our first simulation experiment, summarised in Figure 1, consists in recovering the parameters

µ̃ =

0.05
0.1
0.15
0.2

 , α̃ =

 0 0.1 0.05 0.03
0.1 0 0.1 0.05
0.05 0.1 0 0.1
0.03 0.05 0.1 0

 , and β̃ = 1.4

from a single randomly-generated trajectory containing N ∈ N events, for a range of values of N .
Because of the comparable results and computational cost of existing algorithms, we limit ourselves
to the two most common methods as benchmarks: the Maximum-Likelihood algorithm of Ogata
(1978), which we denote MLE, and the Expectation-Maximisation algorithm of Veen & Schoenberg
(2008), which we denote EM. We report the averages of five instances of this experiment in Figure 1.
Absent standard stopping heuristics, all algorithms were considered to have terminated when their
respective loss criteria failed to improve by more than 10−5 between two subsequent steps.

Figure 1a shows our algorithm achieves the accuracy of MLE (omitted for clarity as indistinguishable)
and better than EM. However, Figure 1b highlights stark differences in computational efficiency: MLE
is 100 times slower than EM, and both scale quadratically with the time horizon. In contrast, our
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(a) Estimation error per sample size N . (Ogata
(1978) not shown as indistinguishable from ours.)
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(b) Runtime as a function of the sample size N .

Figure 1: Quantitative comparison of quality and efficiency of Hawkes process fitting algorithms.

method leverages stochastic gradients and adaptive batching (see Section 3.1), yielding a sublinear
cost growth of N 1

2 and already outperforming EM by two orders of magnitude at N = 5000.

Realistic attribution tasks, such as modelling a football team (d = 11), demand scalability in the
number of dimensions d+ 1. As shown in Figure 2, EM scales poorly with d; MLE is excluded due to
prohibitive runtime. In contrast, our algorithm scales roughly linearly and is already 100 times faster
than EM for d = 6. When incorporating features for attribution, the baseline runtime from Figure 1b
is further compounded by the cost of fitting the regression model over (γ, θ). As Figure 2 makes
clear, only our gradient-based fitting method, which is readily compatible with machine learning
models, offers practical scalability for real-world applications.
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Figure 2: Runtime as a function of the dimen-
sion d+ 1.
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(2) (2)

(c) (c)

Total

Figure 3: Estimation error as a function of the
number of trajectories K.

Fitting with exogenous features and logistic regression. To demonstrate the convergence of our
method with features, we fix d = 2 and coefficients

µ̃ :=

(
0.1
0.15
0.2

)
, γ̃ :=

( −1 −0.5 −1
−1 −0.5 −1
−0.5 0 0

)
, θ̃(1) :=

(
0 0 0
0 −0.75 −0.5
0 −1 0

)
,

θ̃(2) :=

(
0 0 0.75
0.5 0 −0.5
0.75 −0.25 0

)
, β̃ :=

(
0.8 0.8 0.8
1 1 1
1.2 1.2 1.2

)
. (7)

We then simulate κ ∈ N copies of randomly sampled features (X̃i)i∈[d+1] with each X̃i ∈ R
(ignoring Z for simplicity). We then simulate 20 trajectories for each sampled feature of the resulting
conditional Hawkes process, i.e. (5) with (γ̃, θ̃, 0, (X̃i)i∈[d+1]) instead of (γ, Z(k), (X

(k)
i )i∈[d+1]) by

7
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using the method of Ogata (1981). Figure 3 shows the resulting error4 curves as a function of the
total number of trajectories K = 20κ used in the estimation. The overall error decreases as K− 1

2 ,
indicating an efficient (parametric-rate) learning procedure. Using the same protocol, we further
evaluate whether the fitted attribution matrices (α̂, D̂) successfully recover the generative matrices
implied by (γ̃, θ̃) in the data-generating process. The results, presented in Figure 4, in Appendix D.1,
show an error for both of order K− 1

2 , demonstrating the robustness and data-efficiency of our method.

Finally, we compare our credit attribution method through D̂ to alternative credit assignments from
the point-process estimates α̂ using two classical attribution methods, Shapley values and uplift. We
describe these experimental details in and give results in Appendix D.2 Table 4. These results show
that, at least when the ground-truth generative model is a Hawkes process, our method outperforms
the baselines by a factor of two in terms of the error with respect to D.

4.2 PREDICTIVE ATTRIBUTION IN FOOTBALL

Sports are often viewed by the public as purely athletic endeavours, yet, at the professional level, they
have become highly data-driven disciplines. In team sports in particular, performance data has been
widely adopted by managers seeking to optimise their teams. A central challenge in this endeavour is
understanding how individual players contribute to collective success—an attribution problem.

To illustrate the effectiveness of our predictive attribution methodology, we consider one of the
most high-profile recent transfers in European football: the move of French forward Kylian Mbappé
from France’s Paris Saint-Germain (PSG) to Spain’s Real Madrid (RM). Using match data from the
2023–2024 and 2024–2025 domestic leagues and UEFA Champions League, we assess whether our
model accurately predicted Mbappé’s performance at RM, and whether his contribution exceeded
expectations or not. Before that, we describe the data and validate our method’s attribution.

Data. To train our attribution model, we compiled a dataset comprising the 60 matches played in the
second half of the 2023–2024 season by four leading European clubs with comparable characteristics
(e.g. budget, composition, tactical approach): PSG, RM, Manchester City, and Liverpool. The dataset,
proprietary to the football analytics firm Footovision, contains around 24000 individual events across
60 match trajectories.

We build our Hawkes process model by assigning each player to a dimension i ∈ [d] corresponding to
their role on the pitch. For the outcome dimension, we follow standard practice in football analytics
(Baouan et al., 2023), identifying times when the ball enters the opponent’s penalty area5. This
proxy outcome smooths the randomness associated with goals while retaining meaningful signals of
attacking value. We record an event at time t in dimension i when player i touches the ball, and an
event in the outcome dimension d+ 1 when the ball enters the penalty box.

To avoid feature leakage, we use the first half of the 2023–2024 season exclusively to construct the
features X(υ) and Z(υ), for each team υ ∈ [4]. These features remain fixed across that team’s matches
in the second half of the season. They include statistics on players, teams, and leagues, all derived
from proprietary Footovision data. Full details on data processing and feature selection are provided
in Appendix D.4. We fit the Hawkes process and logistic regression model to the second-half matches
by minimising (6), using a deterministic batched ADAM optimiser with early stopping. Further
implementation details are provided in Appendix D.3. The resulting fitted coefficients for each team
υ ∈ [4] are denoted by (µ̆υ, γ̆υ, θ̆υ, β̆υ).

Empirical validation. In the absence of ground truth data, to validate the quality of the predictive
attribution, we will compare its predictions to a feature-less model fitted retro-actively. Namely, we
estimate the excitation coefficients for each team υ ∈ [4] during the 2024–2025 season using the
featureless Hawkes model from Section 3.1, yielding parameters (µ̂υ, α̂υ, β̂υ). We then compare to

4Because of the identifiability problem, we compare θ̃
(c)
i := θ̃

(1)
i,i + θ̃

(2)
i,i to θ̂

(c)
i := θ̂

(1)
i,i + θ̂

(2)
i,i .

5We also include long-range shots with an estimated scoring probability of at least 25% to mitigate sparsity.
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this the predictions made using (µ̆υ, γ̆υ, θ̆υ, β̆υ) on the 2024–2025 features through the average error

E :=
1

4

4∑
υ=1

∥µ̂υ − µ̆υ∥2+
∥∥∥∥α̂υ − σ

(
γ̆i,j + θ̆

(0)
i,j

⊤
Z(υ) + θ̆

(1)
i,j

⊤
X

(υ)
i + θ̆

(2)
i,j

⊤
X

(υ)
j

)∥∥∥∥2+∥∥∥β̂υ − β̆υ

∥∥∥2.
The results, summarised in Table 1, show a small average error of E ≈ 0.13 across 600 parameters,
confirming that the model can reliably infer performance from features. Importantly, the accuracy of
predictions for µ and β suggests that team performance is temporally stable enough to make such
predictions meaningful. The higher errors for Manchester City and Real Madrid are attributable to
their underperformance during the 2024–2025 season.

Table 1: Discrepancy between the estimated coefficients of our featureless model for the 2024–2025
season and the coefficients predicted using the full model fit on the 2023–2024 data, for four major
European clubs. The average total corresponds to E .

Club (υ)
Error Terms

∥µ̂υ − µ̆υ∥2 ∥α̂υ − σ(· · · )∥2 ∥β̂υ − β̆υ∥2 Total

PSG 0.0102 0.095 0.0160 0.1212
Manchester City 0.0096 0.130 0.0090 0.1486
Liverpool 0.0108 0.088 0.0120 0.1108
Real Madrid 0.0099 0.120 0.0140 0.1439

Average 0.0101 0.1083 0.0128 0.1311

Predictive attribution Our model estimates Kylian Mbappé’s (#9) direct excitation of scoring
opportunities during the 2023–2024 season with PSG to be 0.13 (see Figure 9), with a total influence
score of 0.30 (see Figure 10). For his transfer to Real Madrid, the model predicted using the RM
feature a low excitation α̂12,9 = 0.05 (see Figure 13) and reduced total influence of 0.17 (see
Figure 14). While the overall importance was well forecasted (see Figure 12), the direct excitation
was underestimated as Mbappé ultimately posted a factual excitation of 0.10 at RM (see Figure 11).
This gap is consistent with post-transfer behavioural shifts.

Our framework also supports hypothetical roster changes. Had Mbappé joined Liverpool to replace
Cody Gakpo (#8), his predicted direct contribution (0.09) would have been similar to that with PSG;
however, the overall impact would have been lower due to diminished excitation of teammates—a
difference tied to role-specific features rather than raw quality (see Appendix D.5).

5 CONCLUSION

We have introduced a novel attribution methodology grounded in Hawkes processes, enabling feature-
based reasoning in complex event-driven systems. Our framework addresses the central challenge of
extrapolating attribution beyond observed data, crucial for informing policy and strategic interventions
in high-dimensional interactive settings such as team sports. In addition, we developed a performant,
scalable, and GPU-accelerated software library integrated with PyTorch, and validated our approach
empirically on both synthetic and real-world football data.

Looking ahead, this work provides a foundation for developing more advanced models of interpretable,
data-driven attribution in complex systems, with broad applicability across domains. For example, our
current approach captures only first-order effects and does not account for higher-order interactions
such as how variations in one feature may alter the dependencies of interactions among other features.
Extending the framework to learn the excitation structure α from all features jointly would be a
worthwhile direction of future work to model these effects. Likewise, although we use a single
outcome variable for offensive threat, the framework naturally extends to multiple outcomes, and
discovering relevant outcome combinations for applications presents a fruitful direction.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Eva Anderl, Ingo Becker, Florian Von Wangenheim, and Jan Hendrik Schumann. Mapping the
customer journey: Lessons learned from graph-based online attribution modeling. International
journal of research in marketing, 33(3):457–474, 2016.

Susan Athey and Guido W. Imbens. The state of applied econometrics: Causality and policy
evaluation. Journal of Economic perspectives, 31(2):3–32, 2017.

Emmanuel Bacry, Iacopo Mastromatteo, and Jean-François Muzy. Hawkes Processes in Finance.
Market Microstructure and Liquidity, 2015.

Emmanuel Bacry, Martin Bompaire, Stéphane Gaïffas, and Jean-Francois Muzy. Sparse and low-rank
multivariate Hawkes processes. Journal of Machine Learning Research, 21(50):1–32, 2020.

Ali Baouan, Sebastien Coustou, Mathieu Lacome, Sergio Pulido, and Mathieu Rosenbaum. Crediting
football players for creating dangerous actions in an unbiased way: the generation of threat (got)
indices. arXiv preprint arXiv:2304.05242, 2023.

Ron Berman. Beyond the last touch: Attribution in online advertising. Marketing Science, 37(5),
2018.

Alba Bernabeu, Jiancang Zhuang, and Jorge Mateu. Spatio-Temporal Hawkes Point Processes: A
Review. Journal of Agricultural, Biological and Environmental Statistics, 30(1):89–119, 2025.

Martin Bompaire, Emmanuel Bacry, and Stéphane Gaïffas. Dual optimization for convex constrained
objectives without the gradient-lipschitz assumption. arXiv preprint arXiv:1807.03545, 2018.

Martin Bompaire, Antoine Désir, and Benjamin Heymann. Fixed Point Label Attribution for Real-
Time Bidding. Manufacturing & Service Operations Management, 26(3):1043–1061, 2024.

Anna Bonnet, Miguel Martinez Herrera, and Maxime Sangnier. Inference of multivariate exponential
Hawkes processes with inhibition and application to neuronal activity. Statistics and Computing,
33(4):91, 2023.

Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X. Charles, D. Max Chickering, Elon
Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual reasoning and learning
systems: The example of computational advertising. The Journal of Machine Learning Research,
14(1):3207–3260, 2013.

Cyrille W Combettes, Christoph Spiegel, and Sebastian Pokutta. Projection-free adaptive gradients
for large-scale optimization. arXiv preprint arXiv:2009.14114, 2020.

Brian Dalessandro, Rod Hook, Claudia Perlich, and Foster Provost. Evaluating and optimizing online
advertising: Forget the click, but there are good proxies. Big data, 3(2):90–102, 2015.

D. J. Daley and David Vere-Jones. An Introduction to the Theory of Point Processes: Volume II:
General Theory and Structure. Springer Science & Business Media, 2007.

Aditi Dandapani, Jusselin Paul, and Mathieu Rosenbaum. From quadratic Hawkes processes to
super-Heston rough volatility models with Zumbach effect. Quantitative Finance, 21(8), 2021.

Hannes Datta, Kusum L. Ailawadi, and Harald J. Van Heerde. How well does consumer-based brand
equity align with sales-based brand equity and marketing-mix response? Journal of Marketing, 81
(3):1–20, 2017.

Tom Decroos, Lotte Bransen, Jan Van Haaren, and Jesse Davis. Actions Speak Louder Than
Goals: Valuing Player Actions in Soccer. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1851–1861, July 2019. doi: 10.1145/
3292500.3330758. arXiv:1802.07127 [stat].

Eustache Diemert, Artem Betlei, Christophe Renaudin, Massih-Reza Amini, Théophane Gregoir,
and Thibaud Rahier. A large scale benchmark for individual treatment effect prediction and uplift
modeling. arXiv preprint arXiv:2111.10106, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sophie Donnet, Vincent Rivoirard, and Judith Rousseau. Nonparametric Bayesian estimation for
multivariate Hawkes processes. The Annals of Statistics, 48(5), 2020.

Zine El Abidine El Mekkaoui and Hatim Benyoussef. Multi-touch attribution en marketing: Analyse
bibliométrique et revue des perspectives. Revue de Publicité et de Communication Marketing, 2
(2), 2024.

Jitendra Gaur and Kumkum Bharti. Attribution modelling in marketing: Literature review and
research agenda. Academy of Marketing Studies Journal, 24(4):1–21, 2020.

Alan G. Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika,
58(1):83–90, 1971.

Miguel A. Hernán and James M. Robins. Instruments for causal inference: an epidemiologist’s
dream? Epidemiology, 17(4):360–372, 2006.

Takaki Iwata. Mixture of Linear and Nonlinear Hawkes Processes and Its Application to Real
Earthquake Sequences. Journal of Agricultural, Biological and Environmental Statistics, 2025.

Thibault Jaisson and Mathieu Rosenbaum. Limit theorems for nearly unstable Hawkes processes.
The Annals of Applied Probability, 25(2):600–631, 2015.

Thibault Jaisson and Mathieu Rosenbaum. Rough fractional diffusions as scaling limits of nearly
unstable heavy tailed Hawkes processes. The Annals of Applied Probability, 26(5):2860–2882,
2016.

Junhyeon Kwon, Yingcai Zheng, and Mikyoung Jun. Flexible spatio-temporal Hawkes process
models for earthquake occurrences. Spatial Statistics, 54:100728, 2023.

Patrick J. Laub, Young Lee, and Thomas Taimre. The Elements of Hawkes Processes. Springer
International Publishing, 2021.

Erik Lewis and George Mohler. A Nonparametric EM algorithm for Multiscale Hawkes Processes.
Journal of Nonparametric Statistics, 2011.

Hongshuang Li and P.K. Kannan. Attributing conversions in a multichannel online marketing
environment: An empirical model and a field experiment. Journal of marketing research, 51(1):
40–56, 2014.

Scott Linderman and Ryan Adams. Discovering Latent Network Structure in Point Process Data. In
Proceedings of the 31st International Conference on Machine Learning, pp. 1413–1421. PMLR,
2014.

Hongyuan Mei and Jason M. Eisner. The Neural Hawkes Process: A Neurally Self-Modulating
Multivariate Point Process. In Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

Ali Ben Mrad and Brahim Hnich. Intelligent attribution modeling for enhanced digital marketing
performance. Intelligent Systems with Applications, 21:200337, 2024.

Santhosh Narayanan, Ioannis Kosmidis, and Petros Dellaportas. Flexible marked spatio-temporal
point processes with applications to event sequences from association football. Journal of the
Royal Statistical Society Series C: Applied Statistics, 2023.

Armando G. M. Neves and Carlos H. C. Moreira. Applications of the Galton–Watson process to
human DNA evolution and demography. Physica A: Statistical Mechanics and its Applications,
368(1):132–146, 2006.

Yoshiko Ogata. The asymptotic behaviour of maximum likelihood estimators for stationary point
processes. Annals of the Institute of Statistical Mathematics, 30(2):243–261, 1978.

Yosihiko Ogata. On Lewis’ simulation method for point processes. IEEE Transactions on Information
Theory, 27(1):23–31, 1981.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yosihiko Ogata. Statistical models for earthquake occurrences and residual analysis for point
processes. Journal of the American Statistical association, 83(401):9–27, 1988.

T. Ozaki. Maximum likelihood estimation of Hawkes’ self-exciting point processes. Annals of the
Institute of Statistical Mathematics, 31(1):145–155, 1979.

Liam Paninski. Maximum likelihood estimation of cascade point-process neural encoding models.
Network: Computation in Neural Systems, 15(4):243–262, 2004.

Jonathan W. Pillow, Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M. Litke, E. J.
Chichilnisky, and Eero P. Simoncelli. Spatio-temporal correlations and visual signalling in a
complete neuronal population. Nature, 454(7207):995–999, 2008.

Jakob Gulddahl Rasmussen. Bayesian Inference for Hawkes Processes. Methodology and Computing
in Applied Probability, 15(3):623–642, 2013.

Marian-Andrei Rizoiu, Swapnil Mishra, Quyu Kong, Mark Carman, and Lexing Xie. SIR-Hawkes:
Linking Epidemic Models and Hawkes Processes to Model Diffusions in Finite Populations. In
Proceedings of the 2018 World Wide Web Conference, pp. 419–428, 2018.

Mathieu Rosenbaum and Mehdi Tomas. From microscopic price dynamics to multidimensional
rough volatility models. Advances in Applied Probability, 53(2):425–462, 2021.

Xuhui Shao and Lexin Li. Data-driven multi-touch attribution models. In Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 258–264.
Association for Computing Machinery, 2011.

Oleksandr Shchur, Ali Caner Türkmen, Tim Januschowski, and Stephan Günnemann. Neural temporal
point processes: A review. arXiv preprint arXiv:2104.03528, 2021.

Wilson Truccolo, Uri T. Eden, Matthew R. Fellows, John P. Donoghue, and Emery N. Brown. A Point
Process Framework for Relating Neural Spiking Activity to Spiking History, Neural Ensemble,
and Extrinsic Covariate Effects. Journal of Neurophysiology, 93(2):1074–1089, 2005.

Alejandro Veen and Frederic P. Schoenberg. Estimation of Space–Time Branching Process Models
in Seismology Using an EM–Type Algorithm. Journal of the American Statistical Association,
103(482):614–624, 2008.

Lizhen Xu, Jason A. Duan, and Andrew Whinston. Path to purchase: A mutually exciting point
process model for online advertising and conversion. Management Science, 60(6):1392–1412,
2014.

Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-Attentive Hawkes Process. In
Proceedings of the 37th International Conference on Machine Learning, pp. 11183–11193. PMLR,
2020.

Ya Zhang, Yi Wei, and Jianbiao Ren. Multi-touch attribution in online advertising with survival
theory. In 2014 IEEE international conference on data mining, pp. 687–696, 2014.

Kaifeng Zhao, Seyed Hanif Mahboobi, and Saeed R. Bagheri. Shapley Value Methods for Attribution
Modeling in Online Advertising, 2018.

Renbo Zhao. New analysis of an away-step frank–wolfe method for minimizing log-homogeneous
barriers. Mathematics of Operations Research, 2025.

Ke Zhou, Hongyuan Zha, and Le Song. Learning social infectivity in sparse low-rank networks using
multi-dimensional hawkes processes. In Artificial intelligence and statistics, pp. 641–649. PMLR,
2013.

Jiancang Zhuang, Ogata , Yosihiko, , and David Vere-Jones. Stochastic Declustering of Space-Time
Earthquake Occurrences. Journal of the American Statistical Association, 97(458):369–380, 2002.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

These appendices are independent of each other and organised in the following manner. Section A
below completes the preliminaries by providing rigourous definitions of Hawkes processes and the
surrounding probabilistic framework. Sections B and C give mathematical and implementation details
of our framework and FeatHawkes , respectively focusing on the simulation of Hawkes processes
(used for our synthetic experiments) and on maximum likelihood fitting (accompanying the statistics
section) respectively. Finally, Section D contains extensive details on the experiments, both synthetic
and real-data.

A DEFINITIONS AND NOTATIONS

A.1 PROBABILISTIC FRAMEWORK

We first consider a probability space (ΩX ,FX ,PX) with ΩX := Rdz+
∑d+1

i=1 di , endowed with a
random variable W := (Z, (Xi)i∈[d+1]), with Z being Rdz -valued and each Xi, i ∈ [d+ 1], being
Rdi -valued. For the sake of completeness, we take FX to be the Borel σ-algebra on ΩX .

In parallel, we consider the Skorokhod space D([0,+∞),Rd+1) of all càdlàg (right-continuous
with left limits) (d + 1)-dimensional real vector-valued functions on [0,+∞). We let ΩH :=
D([0,+∞),Rd+1) and FH be the completion of its Borel σ-algebra.

Let Θ ⊂ Rdϑ be a parameter set and w ∈ ΩX , w := (z, x) and let ϑ := (µ, θ, β), for µ ∈
[0,+∞)d+1, β ∈ (0,+∞)d+1, and θ := (γ, θ(0), θ(1), θ(2)) ∈ R(d+1)2 × (Rdz )d+1×

∏
j

∏
i Rdi ×∏

j

∏
i Rdi . Let N (ϑ,w) be a random variable which forms a counting process on (ΩH ,FH) and

define on [0,+∞), for any locally bounded measurable function f : [0,+∞) → R, the stochastic
integral ∫ ·

0

f(s)dN (ϑ,w)(s) :=
∑
s<·

f(s)1{N(ϑ,w)(s−)̸=N(ϑ,w)(s)} ,

wherein N (ϑ,w)(s−) := limϵ↓0 N
(ϑ,w)(s− ϵ) is the left limit of N (ϑ,w) at s.

Under any probability measure P̃ on (ΩH ,FH), the P̃-compensator of N (ϑ,w) is the unique pre-
dictable process Λ(ϑ,w) with Λ(ϑ,w)(0)

a.s.
= 0 such that N (ϑ,w) −Λ(ϑ,w) is a local martingale. For any

f locally bounded and measurable,

Ẽ
[∫ ·

0

f(s)dN (ϑ,w)
s

]
= Ẽ

[∫ ·

0

f(s)dΛ(ϑ,w)

]
wherein Ẽ denotes the expectation with respect to P̃.

Let P(ϑ,w) be a probability measure such that Nϑ,w is an exponential Hawkes process parametrised
by ϑ. In other words, such that its compensator is of the form

Λ(ϑ,w) : t ∈ [0,+∞) 7→
∫ t

0

λ(ϑ,w)(s)ds

wherein λ(ϑ,w) := (λ
(ϑ,x)
1 , . . . , λ

(ϑ,x)
d+1 )⊤ and

λ
(ϑ,w)
i : t ∈ [0,+∞) 7→ µi +

d+1∑
j=1

∫
φϑ,w
i,j (s− u)dN (ϑ,w)(u)

for i ∈ [d+ 1] and the parametric collection of functions

φϑ,w
i,j : t ∈ [0,+∞) 7→ σ

(
γi,j + θ

(0)
i,j

⊤
z + θ

(1)
i,j

⊤
xi + θ

(2)
i,j

⊤
xj

)
βi,je

−βi,jt ∈ [0,+∞) ,

for any (i, j) ∈ [d+ 1]2.
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Now, we move from the conditional measure family (P(ϑ,w))ϑ∈Θ to the joint family

Pϑ : S1 × S2 ∈ FH ×FX 7→
∫
S2

∫
S1

dP(ϑ,W )dPX ,

and consider the statistical model (Ω,F , (Pϑ)ϑ∈Θ).

A.2 MODEL SPECIFICATION AND IDENTIFIABILITY

Proposition A.1. Suppose the measure PX is non-degenerate, in the sense that there are at least
two disjoint PX -non-null subsets (A,B) of FX such that there is no affine function ϕ : A→ B with
W |B = ϕ(W |A). Then, the statistical model (Ω,F , (Pϑ)ϑ∈Θ̄) is identifiable. In other words, for any
(ϑ, ϑ̃) ∈ Θ̄2, Pϑ ̸= Pϑ̃.

Proof. Let (ϑ, ϑ̃) ∈ Θ2 and let Pϑ and Pϑ̃ be their induced measures. Denote ϑ :=

(µ, (γ, θ(0), θ(1), θ(2)), β) and ϑ̃ := (µ̃, (γ̃, θ̃(0), θ̃(1), θ̃(2)), β̃). Assume for a contradiction that
Pϑ = Pϑ̃ which implies P(ϑ,·) = P(ϑ̃,·) on any PX -non-null set of ∈ ΩX . As Hawkes measures, both
P(ϑ,w) and P(ϑ̃,w) are absolutely continuous with respect to P∗

w, the homogenous Poisson measure of
rate 1, thus

dP(ϑ,w)

dP∗
w

a.s.
=

dP(ϑ̃,w)

dP∗
w

.

Recalling the form of the likelihood from (3), for P∗
w-almost every N ∈ ΩH , we obtain

d+1∑
i=1

∫ ·

0

log λ
(ϑ,w)
i (s)dN(s)−

∫ ·

0

λ(ϑ,w)(s)ds =

d+1∑
i=1

∫ ·

0

log λ
(ϑ̃,w)
i (s)dN(s)−

∫ ·

0

λ(ϑ̃,w)(s)ds

on [0,+∞). Let τ = inf{t ∈ [0,+∞) : N(t) > 0} be the first jump time of N , which is almost
surely strictly positive. Thus, almost surely, λ(ϑ,w) = λ(ϑ̃,w) on [0, τ), thus the likelihoods are equal
on [0, τ ] and by proceeding likewise between each jump,

λ(ϑ,w) a.s.
= λ(ϑ̃,w) on [0,+∞) . (8)

On [0, τ), (8) shows that µ = µ̃, while for t > τ it shows that

d+1∑
j=1

∑
ℓ∈N

αi,j(γ, θ;x, z)βi,je
−βi,j(t−τ

(j)
ℓ )1{τ(j)

ℓ <t}

=

d+1∑
j=1

∑
ℓ∈N

αi,j(γ̃, θ̃;x, z)β̃i,je
−β̃i,j(t−τ

(j)
ℓ )1{τ(j)

ℓ <t}

where τ
(j)
ℓ := inf{t ∈ [0,+∞) : Nj(t) = ℓ} for (j, ℓ) ∈ [d + 1] × N and w := (z, x). By non-

degeneracy of PX , αi,j(γ, θ;x, z) ̸= αi,j(γ̃, θ̃;x, z), leaving us with two countable combinations of
families of functions of the form

t 7→ aυe
−bυ(t−s) and t 7→ ãυe

−b̃υ(t−s)

as indexed by a shared index s ∈ [0,+∞), for some υ ∈ [d + 1]2. Any such combinations can
only be equal if the coefficients are the same, i.e. aυ = ãυ and bυ = b̃υ if aυ ̸= 0. Thus, for every
(i, j) ∈ [d+ 1]2, βi,j = β̃i,j as αi,j(·) > 0 almost surely. By bijection of the logistic function and
using the fact that w is arbitrary and the non-degeneracy assumption, γ = γ̃ and θ = θ̃.

Thus, we arrive at ϑ = ϑ̃, a contradiction.

14
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B SIMULATION OF HAWKES PROCESSES

B.1 SIMULATING HAWKES PROCESSES VIA OGATA’S THINNING ALGORITHM

The standard method for simulating Hawkes processes, known as thinning was introduced by Ogata
(1981). In the univariate exponential case, with parameters (µ, α, β) ∈ [0,∞)3 suppose a trajectory
has been simulated up to time t ≥ 0, yielding a counting process N : [0, t]→ N with arrival times
(τℓ)

N(t)
ℓ=1 and target intensity

λ = µ+
∑
ℓ∈N

αβe−β(·−τℓ) .

The thinning algorithm generates samples to continue the Hawkes process using rejection sampling,
i.e. given an upper bound λ̄ ≥ λ, it generates the next sample inter-arrival time according to a Poisson
process with intensity λ̄, with an acceptance probability of λ(t)/λ̄(t). This procedure can be repeated
until a fixed time horizon T ∈ [0,+∞) or until a fixed number of samples is obtained.

In the multivariate case, the upper bound used is the sum of intensities over dimensions, i.e. λ̄ =∑d+1
i=1 λi, and a sample accepted at time t > 0 is then randomly assigned to a dimension in proportion

to λ(t)/λ̄(t). The resulting algorithm is presented in Algorithm 1.

Algorithm 1 Multivariate Hawkes Simulation (Ogata’s Thinning Method)

Require: µ ∈ [0,+∞)d+1, α ∈ [0,+∞)(d+1)2 , β ∈ [0,+∞)(d+1)2 , time horizon T ∈ (0,+∞],
number of samples N ∈ N ∪ {+∞}

1: Initialize t← 0, n← 0Hi ← [ ] for all i
2: Initialize Ri,j ← 0 for all i, j
3: while t < T or n ≤ N do
4: Compute λ(t) = µ+

∑
j R·,j

5: Update λ̄(t)←
∑

i λi(t)
6: Sample s ∼ Exp(1/λ̄(t))
7: Update λ(t+ s)← µ+

∑
j R·,j ◦ exp(−β·,js)

8: Update λ̄(t+ s)←
∑

i λi(t+ s)
9: Sample u ∼ U(0, 1)

10: if u ≤ λ̄(t+ s)/λ̄(t) then
11: Random choose ĵ ∈ [d+ 1] with probability λ(t+ s)/λ̄(t+ s)
12: Append t toHĵ

13: Update n← n+ 1
14: for each i ∈ {1, . . . , d+ 1} do
15: νi,ĵ ← Ri,ĵ e

−βi,ĵs + αi,ĵβi,ĵ

16: end for
17: end if
18: Increment t← t+ s
19: end while
20: return {Hi}d+1

i=1

B.2 IMPLEMENTATION IN FEATHAWKES

In FeatHawkes , Algorithm 1 is implemented using a residual memory matrix R which is updated
so that at any jump time τ

Ri,j(τ) =
∑
ℓ∈N

αi,jβi,je
−βi,j(τ−τ

(j)
ℓ )1{τℓ≤τ}

where (τ
(j)
ℓ )ℓ∈N denotes the sequence of jump times of dimension j. The value of R is maintained

online using

R(t+ s) = R(t) e−βs

15
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when the global inter-arrival time s ∈ [0,+∞) is sampled by Algorithm 1. Using R, the simulation
is performed efficiently by updating

λ(t) = µ+

d+1∑
j=1

R·,j(t)

and using λ̄ :=
∑d+1

i=1 λi for importance sampling in Algorithm 1. The samples are allocated to a
specific dimension ĵ at random, which adds a new log to R by

R·,ĵ ← R·,ĵ + α·,ĵβ·,ĵ .

Throughout the simulation, event times and their corresponding types (dimensions) are stored
in self.times and self.types. The process stops either once a given number of
events have been generated or a specified time horizon is exceeded. An additional method,
_calculate_intensity, can be used to compute λ(t) across a discrete time grid for anal-
ysis or visualisation. For each evaluation time, it adds up the contribution from the baseline intensity
and from all past events:

λi(t) = µi +
d+1∑
j=1

∑
τ
(j)
k <t

αi,je
−βi,j(t−τ

(j)
k ).

This implementation is designed to be efficient and scalable. By maintaining a compact memory
matrix that is updated incrementally, it avoids the need to recompute full excitation sums at each time
step. This makes the implementation of the algorithm well-suited for high-dimensional simulation
tasks, such as those encountered in feature-based attribution models for player performance.

C IMPLEMENTATION OF HAWKES FITTING IN FEATHAWKES

C.1 VECTORISED LIKELIHOOD CALCULATIONS

Let us consider the likelihood for K trajectories (N (k))Kk=1 each on [0, Tk] of an exponential Hawkes

process, each respectively with arrival times ((τ (k,i)ℓ )
N(k)(Tk)
ℓ=1 )d+1

i=1 , that is

L(N ;µ, α, β) =−
K∑

k=1

d+1∑
i=1

N
(k)
i (Tk)∑
ℓ=1

log

µi +

d+1∑
j=1

ℓ∑
m=1

αi,jβi,je
−βi,j(τ

(k,i)
ℓ −τ(k,i)

m )


−

K∑
k=1

d+1∑
i=1

µiTk +

d+1∑
j=1

N
(k)
i (Tk)∑
ℓ=1

αi,j

(
1− e−βi,j(Tk−τ

(k,i)
ℓ )

)
. (9)

The computation of the partial sums of the kernel in the first term are performed efficiently in
FeatHawkes by computing a 3-tensor of differences ∆ with

∆k,ℓ,m := t
(k)
ℓ − t(k)m ,

in which (t
(k)
ℓ )ℓ=1 is the sequence of jump times of N (k) (ignoring dimensions). Creating ∆ is

performed efficiently via PyTorch using tensor-specialised computation on GPUs. In order to
conform the dimensions of ∆, one pads it up to the maximum number of events across trajectories.
In practical applications, the resulting additional computation still outperforms treating trajectories
independently.

The tensor ∆ contains some negative entries which do not appear in the first term of (9). These can
be efficiently eliminated using an “upper-triangular” masking tensor M defined by

Mk,ℓ,m := 1{m<ℓ} .

Let δ denote the 2-tensor of dimensions, i.e. δk,ℓ ∈ [d + 1] gives the dimension in which a jump
occurred at time t

(k)
ℓ . Given coefficients (α, β), we can compute the 3-tensor of coefficients α

effectively corresponding to each jump using
Ak,ℓ,m := αδk,ℓ,δk,m

16
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and finally compute the first likelihood term from
d+1∑
j=1

ℓ∑
m=1

αi,jβi,je
−βi,j(τ

(k,i)
ℓ −τ(k,i)

m ) = [A exp(−β∆ ◦M) ◦M ]k,ℓ

in which ◦ denote the element-wise (Hadamard) product of tensors, as
Σ(log (µδ +A exp(−β∆ ◦M) ◦M))

in which Σ denotes the sum of all entries of its tensor argument. In the presence of features, this
computation continues to hold, up to making α dependent on k as per (5).

The second term of the likelihood (9) can be computed efficiently in a similar manner.

C.2 OPTIMISATION

In FeatHawkes , we fit exponential Hawkes processes by minimising a penalised likelihood of the
form

min
µ,α,β

L(N ;µ, α, β) + ηΥ(µ, α, β) + ν ∥α∥1 , (10)

in which (η, ν) are positive meta-parameters and ∥α∥1 :=
∑

i,j |αi,j | is the one norm of the flattened
coefficient matrix. By default, ν = 0 (as we described in Section 3.1), but ν offers the possibility to
regularise the coefficients in a parsimonious manner, which is desirable in some applications (Bacry
et al., 2020; Zhou et al., 2013). In the presence of features, (10) is replaced by an analogue to (6),
namely

min
µ,γ,θ,β

L(N ;µ, γ, θ, β|X,Z)− η

d+1∑
i=1

log(µi) +

d+1∑
j=1

log(βi,j) + ν(∥θ∥1 + ∥γ∥1) . (11)

The minimisation of (10) and (11) is done in FeatHawkes using gradient-based methods. It is
possible to use any optimiser implementable using PyTorch’s optimizers module. For the sake
of simplicity, we present a stochastic gradient method. Setting a learning rate schedule (ρs)s∈N, at
each step s ∈ N, update

(µ̂s+1, γ̂s+1, θ̂s+1, β̂s+1)
⊤
= (µ̂s, γ̂s, θ̂s, β̂s)

⊤
− ρs∇Γs(µ̂s, γ̂s, θ̂s, β̂s) ,

wherein

Γs(α, γ, θ, β) :=

K∑
k∈Ξs

L(N (k);µ, α(γ, θ;X(k), Z(k)), β)

− η
d+1∑
i=1

log(µi) +
d+1∑
j=1

log(βi,j) + ν(∥θ∥1 + ∥γ∥1)

for (Ξs)s∈N an independent sequence of random subsets of [K] each of size ξ ∈ [K], i.e. mini-batches.

In terms of descent hyperparameters, FeatHawkes allows for early stopping criteria, for adjusting
the learning rate schedule, including using classical heuristics such as ReduceLROnPlateau, and
for choosing between a constant penalisation or simulated annealing by setting an adjustable sequence
(ηs)s∈N of log-barrier penalties.

D COMPLEMENTS TO THE EXPERIMENTS

This appendix contains all complements to the experiments conducted in Section 4, ordered relative to
the order of that section. Thus, we begin by reporting more detailed numerical results from synthetic
data in Appendix D.1. Next, in Appendices D.3 and D.4, we describe the football match data used for
the real-world experiments. In particular, the way we convert teams to vectors of dimensions in our
Hawkes model and the features we used, respectively. In Appendix D.5, we mobilise this construction
to give a demonstration of factual attribution for Liverpool, which we only summarised in Section 4.
Using the same data, we perform a validation of the soundness of our exogenous features method in
Appendix D.6. Finally, in Appendix D.7, we fully demonstrate the predictive attribution method on
Kylian Mbappé’s transfer from Paris Saint-Germain to Real Madrid.
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D.1 ADDITIONAL RESULTS FROM SYNTHETIC DATA

We provide in Tables 2 and 3 a detailed breakdown of the data of Figure 1.

Table 2: Numerical comparison of estimation error of our algorithm and EM.

T ∥µ̃− µ̂∥
∥∥µ̃− µ̂(EM)

∥∥ ∥β̃ − β̂∥ ∥β̃ − β̂(EM)∥ ∥α̃− α̂∥
∥∥α̃− α̂(EM)

∥∥
400 0.000441 0.000421 0.398946 0.588488 0.002788 0.002846
800 0.000125 0.000129 0.070473 0.058170 0.001087 0.001120

1200 0.000126 0.000129 0.053482 0.048189 0.000587 0.000663
1500 0.000088 0.000092 0.028381 0.029470 0.000516 0.000567
2000 0.000064 0.000062 0.018383 0.022729 0.000407 0.000455
3000 0.000056 0.000050 0.012951 0.015462 0.000329 0.000377
5000 0.000042 0.000029 0.004178 0.003363 0.000205 0.000253

Table 3: Numerical comparison of efficiency and overall error of our algorithm and EM.

T Total error EM Total error Runtime EM Runtime

400 0.402175 0.591756 0.473366 1.000571
800 0.071686 0.059419 0.385347 4.825050

1200 0.054195 0.048981 0.559265 12.434479
1500 0.028984 0.030129 0.613456 18.865248
2000 0.018855 0.023246 0.622070 32.207077
3000 0.013336 0.015888 0.652892 75.800880
5000 0.004425 0.003646 0.752208 233.128337

Figure 4 presents the error in the estimation of the excitation (α̂) and descendent (D̂) matrices of
the Hawkes process described in (7) relative to the ground truth values (α,D) as a function of the
number of sample trajectories.
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Figure 4: Estimation error for (α̂, D̂) as a function of the number of trajectories K.
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D.2 FEATURE-BASED ATTRIBUTION ON SYNTHETIC FOOTBALL DATA

In this section we describe the experimental protocol used to compare different multi-touch attribution
methods from the predicted last-touch attributions α̂ using the Hawkes model for the point-process.

In order to increase the realism of the experiment, we forgo the example of (7) in favour of a 12-
dimensional simulation (matching the real-world football data from the next section). First, as before,
we fix coefficient matrices

µ̃ :=



0.05000000
0.05909091
0.06818182
0.07727273
0.08636364
0.09545455
0.10454545
0.11363636
0.12272727
0.13181818
0.14090909
0.15000000



, β̃ :=



0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6



, γ̃ :=



−8 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8
−2 −8 −8 −2 −2 −8 −8 −8 −8 −8 −8 −8
−2 −8 −8 −2 −2 −8 −8 −8 −8 −8 −8 −8
−2 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8
−2 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8
−8 −2 −2 −2 −2 −8 −8 −8 −8 −8 −8 −8
−8 −2 −2 −8 −8 −2 −8 −8 −8 −8 −8 −8
−8 −2 −2 −8 −8 −2 −8 −8 −8 −8 −8 −8
−8 −2 −2 −8 −8 −2 −2 −2 −8 −8 −8 −8
−8 −2 −2 −8 −8 −2 −2 −2 −8 −8 −8 −8
−8 −2 −2 −8 −8 −2 −2 −2 −8 −8 −8 −8
−8 −2 −2 −8 −8 −8 −2 −2 −2 −2 −2 −8



,

θ̃(1) :=



0 0 0 0 0 0 0 0 0 0 0 0
0.002 0 0 0.009 0.009 0 0 0 0 0 0 0
0.002 0 0 0.009 0.009 0 0 0 0 0 0 0
0.002 0 0 0 0 0 0 0 0 0 0 0
0.002 0 0 0 0 0 0 0 0 0 0 0
0 0.18 0.18 0.009 0.009 0 0 0 0 0 0 0
0 0.18 0.18 0 0 0.2925 0 0 0 0 0 0
0 0.18 0.18 0 0 0.2925 0 0 0 0 0 0
0 0.18 0.18 0 0 0.2925 0.48 0.48 0 0 0 0
0 0.18 0.18 0 0 0.2925 0.48 0.48 0 0 0 0
0 0.18 0.18 0 0 0.2925 0.48 0.48 0 0 0 0
0 0.09 0.09 0 0 0 0.48 0.48 0.95 1.25 0.95 0



,

θ̃(2) :=



0 0 0 0 0 0 0 0 0 0 0 0
0.054 0 0 0.081 0.081 0 0 0 0 0 0 0
0.054 0 0 0.081 0.081 0 0 0 0 0 0 0
0.018 0 0 0 0 0 0 0 0 0 0 0
0.018 0 0 0 0 0 0 0 0 0 0 0
0 0.324 0.324 0.162 0.162 0 0 0 0 0 0 0
0 0.486 0.486 0 0 0.5265 0 0 0 0 0 0
0 0.486 0.486 0 0 0.5265 0 0 0 0 0 0
0 0.756 0.756 0 0 0.819 1.008 1.008 0 0 0 0
0 1.026 1.026 0 0 1.1115 1.368 1.368 0 0 0 0
0 0.756 0.756 0 0 0.819 1.008 1.008 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



.

Next, we generate features (X̃ ′
i)i∈[d+1] (again foregoing Z for simplicity) according to Gaussian

distributions whose means are chosen to mimic key properties of football match data. We structure
excitation coefficients to mimic real football data by imposing a sparse adjacency pattern that reflects
plausible ball progression, enforcing strong negative biases on forbidden links, and prohibit any
outgoing effect from the surface node (θ̃(2)12 = 0). Weights are scaled by role, with larger values
assigned to attacking channels, moderate values to midfield relays, and smaller values to defenders.
Finally, all coefficients are tuned so that the resulting Hawkes matrix remains subcritical (spectral
radius < 1), ensuring stability and a well-defined branching operator. The complete generation
procedure is available in FeatHawkes .
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From the κ′ = 150 sampled copies of (X̃ ′
i)i∈[d+1] and the coefficients (γ̃, θ̃), we generate K ′ = κ′

trajectories and fit our Hawkes model to these, obtaining the direct (first-touch) attribution α̂ under
the Hawkes model. This experiment aims to compare different methods for performing indirect
(multi-touch) attribution from this point-process fit. On the one hand, for our method, we compute
the empirical descendant matrix D̂. On the other hand, for j ∈ [d+ 1], let α̂(j) denote the matrix α̂

with the row j and column j removed, from which one computes D̂(j) := α̂(j) ∗ (Id− α̂(j))−1 the
attribution in absence of player j and ŝ(j) :=

∑
i∈[d+1] D̂

(j)
12,i the total value generated, which yields

their uplift Uj via

Uj = ŝ− ŝ(j)

wherein ŝ :=
∑

i∈[d+1] D̂12,i. Finally, we compute attribution scores using Shapley values by
extending the uplift methodology by denoting by α̂(S), where S ⊂ [d], the analogue of α̂(j) in
which all rows and columns whose indices are in S have been deleted. The Shapley values are then
computed combinatorially using

Sj :=
∑

S∈{S∈P([d]):j∈S}

(d− |S|)!(|S| − 1)!

d!

(
s(S) − s(S\{j})

)
wherein P([d]) denotes the power set of [d].

We present in Table 4 the resulting estimated values for each method, as well as the errors in each
dimension. Note that, in order to facilitate comparisons across methods, Shapley values and Uplift
are renormalised to sum to 1 for ease of comparison with our method.

Table 4: Comparison of indirect attribution heads on top of α̂. Dim. denotes the number of dimension,
GT denotes ground truth, i.e. D12,i, Ours denotes D̂12, Shapley, Sj , and Uplift, Uj . Each “error”
column contains the difference of GT and the value of the method to the left of it. The last line
contains the means of the sums of squares of the “error” columns.

Dim. GT Ours Error Shapley Error Uplift Error

1 0.000560 0.017406 0.016847 0.017314 0.016754 0.020033 0.019473
2 0.042158 0.057407 0.015249 0.077540 0.035382 0.083067 0.040909
3 0.000627 0.047148 0.046522 0.049066 0.048440 0.052012 0.051385
4 0.000627 0.027246 0.026619 0.024980 0.024353 0.030449 0.029823
5 0.015112 0.048843 0.033731 0.049218 0.034105 0.065204 0.050092
6 0.042158 0.058239 0.016081 0.076030 0.033872 0.082443 0.040285
7 0.101764 0.096691 -0.005073 0.110046 0.008282 0.112707 0.010943
8 0.218193 0.156551 -0.061643 0.130437 -0.087756 0.121531 -0.096662
9 0.100839 0.097653 -0.003186 0.108224 0.007385 0.111818 0.010979
10 0.223901 0.176266 -0.047634 0.152849 -0.071051 0.141122 -0.082778
11 0.254061 0.216548 -0.037514 0.204296 -0.049766 0.179614 -0.074448

MSE 0.001118 0.002012 0.002881

Inspection of Table 4 reveals that all methods perform similarly, successfully recovering the important
dimensions of the ground truth, but that the magnitude of the means squared error of our method is
50% lower, validating the use of the descendant matrix even in the presence of estimation noise.

D.3 ASSIGNMENT OF PLAYERS TO DIMENSIONS

Football teams can adopt a range of compositions which modify how players are arranged on the
field (for some examples, see Figure 5). One must assume that different compositions will improve or
diminish the effectiveness of some players, ceteris paribus, and thus affect the regression coefficients
of our model. One could fit the model player-by-player, encoding the position as a feature, but
this removes the statistical basis for predictive evaluation of transfers. Instead, we will assign the
dimensions to tactical positions using a methodology which remains consistent across the majority of
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team compositions (circa 70% in our data), namely 4-2-3-1 (see Figure 5a) and 4-3-3 (see Figure 5b)
compositions, and discard the remaining data. One can, of course, fit separate models for these
discarded formations, but, for simplicity, we will focus on teams with stable and similar formations
with four defenders.

We will use data spanning the 2023–2024 and 2024–2025 seasons. To ensure the sanity of our dataset
(N (k))k, we use only teams which retained a 4-3-3 or 4-2-3-1 formation over the season, and we stop
logging a match for a team when the team makes a substitution. If the new team stays stable for at
least ten minutes, we use the resulting play data to start a new “match”.

To assign dimensions to players, we start allocating from the back to the front and from left to
right according to five general groups: the goal (who receives dimension #1), the defenders (who
receive dimensions #2–5 from the left rear to the right rear), the defensive midfielders, the forward
midfielders, and the striker (if applicable). This system is designed for 4-2-3-1 and 4-3-3 teams, as
the same dimensions play a similar tactical role in both. In Figure 5c and Figure 5d we show how
it can be extended to 4-4-2 and 4-3-2-1 configurations in a similar way, though we discard these
uncommon formations are the numbering is a less good fit.
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(a) 4-2-3-1 arrangement
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(b) 4-3-3 arrangement
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(c) 4-4-2 arrangement
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(d) 4-3-2-1 arrangement

Figure 5: Common football formations (opposition to the right), players are numbered from 1
(goalkeeper) to 11 (rightmost forward) according to our procedure.

Recall that dimension 12 corresponds to the outcome, which is either the entry of the ball in the
penalty box of the other team, or a strike estimated to have at least 25% probability of being on
target according to a proprietary prediction model developed by Footovision, a sports analytics firm.
Choosing a constructed feature instead of just scored goals is standard practice in sports analytics
(Baouan et al., 2023) as it helps with sparsity of signals and smooths out random and adversarial
factors that determine the conversion of on-target shots to goals.
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D.4 FEATURE DATA USED FOR THE PREDICTIVE ANALYSIS

The features we used are proprietary to and constructed by Footovision, a sports analytics firm, by
aggregating match-level data. These features are engineered and selected with specialist expertise for
their relevance to data-driven decision-making by football managers. In this example, we use only
one team-wide feature Z(k), which is an indicator of the kind of formation used in the match (4-3-3
or 4-2-3-1).

At the player level, in contrast, we used a range of features. All features using match-data were
calculated on the whole 2023 calendar year, while we will use only data from the second half of the
2023–2024 season for the Hawkes model. This avoids any feedback loop between the features and
the Hawkes process. In total, the features used were:

• Height and age: height in centimetres measured at the start of the season, and age in years
on the 1st July 2023.

• Playtime: average share of the total match time spent on the pitch by the player, expressed
in minutes between 0 and 90.

• Distance covered: average total amount of ground covered, expressed per 90 minutes.
• Movements received: average number of successful ball receptions when the receiver had

moved before receiving, expressed per 90 minutes.
• One-touch passes: average number of passes completed immediately after receiving the

ball (without any controlling touch ) expressed per 90 minutes.
• Forward line-breaking passes : average number of completed forward passes that pene-

trated at least one opposition defensive line, expressed per 90 minutes.
• Crosses excluding penalty area: average number of crosses delivered from the wide

channels (lateral distance of at least 20 meters from the pitch centre) that landed outside the
penalty area, expressed per 90 minutes.

• Passes leading directly to shots: average number of passes by the player which immediately
led the receiver to shoot, expressed per 90 minutes.

• Offensive duels won : average number of one-versus-one situations initiated by the attacking
player (dribbles, shoulder-to-shoulder duels) that result in maintained possession or drawing
a foul, expressed per 90 minutes.

• Passed players with ball drives: average number of “overpassed” players, expressed per
90 minutes.

• VAEP (Valuing Actions by Estimating Probabilities): Total VAEP generated, expressed
per 90 minutes. VAEP is a framework for valuing player actions in football. It assigns a value
to each on-the-ball action in based on its impact on the game outcome while accounting for
the context in which the action happened (Decroos et al., 2019). An action value reflects the
action’s expected influence on the scoreline. That is, an action valued at +0.05 is expected
to contribute 0.05 goals in favour of the team performing the action, while an action valued
at -0.01 is expected to yield 0.01 goals for their opponent.

As we offer L1 regularisation of the estimated regression coefficients θ, see (10), we renormalise all
the features to have zero mean and unit variance. This also ensures that the magnitude of coefficients
is comparable across features.

D.5 ILLUSTRATION OF THE ATTRIBUTION METHOD ON LIVERPOOL FC’S 2023–2024
SEASONS

We illustrate the estimated excitation coefficients of the featureless model in Figure 6 using the data
from the 2023-2024 season of Liverpool FC (we provide a summary of the team in Table 5). In
this figure, the matrix α is represented as a heatmap, on which darker colour indicates a stronger
excitation effect. Recall that αi,j is the excitation coefficient from player j to player i, so that, for
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instance, Van Dijk (#3, the third line in Figure 6) receives a strong excitation effect from Robertson
(#2, second column) and from Konaté (#4, fourth column), who stand next to him on the field. The
apparent cluster in the top left corner of the matrix corresponds to the consistent passing patterns of
defenders and the goalkeeper moving the ball around the back of the field, while the last line shows
clearly the importance of the lateral attacking midfielders, Gakpo (#8) and Salah (#10) and the
forward Diaz (#11) in creating direct outcomes.

Table 5: Team Composition (4-2-3-1) of Liverpool FC in the 2023-2024 season.

Dimension # Jersey # Role Player name
1 1 Goal Keeper Alisson
2 26 Left Back Robertson
3 4 Left Centre Back Van Dijk
4 5 Right Centre Back Konaté
5 66 Right Back Alexander-Arnold
6 10 Left Defensive Midfielder Mac Allister
7 38 Right Defensive Midfielder Gravenberch
8 18 Left Attacking Midfielder Gakpo
9 8 Center Attacking Midfielder Szoboszlai

10 11 Right Attacking Midfielder Salah
11 7 Striker Diaz
12 - Outcome -
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0.20 0.02 0.06 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.07 0.11 0.20 0.00 0.00 0.14 0.09 0.12 0.05 0.00 0.04 0.00

0.22 0.24 0.15 0.24 0.02 0.11 0.07 0.01 0.04 0.00 0.00 0.00

0.22 0.04 0.19 0.17 0.16 0.04 0.11 0.00 0.06 0.00 0.00 0.00

0.03 0.00 0.02 0.19 0.17 0.00 0.09 0.00 0.11 0.18 0.02 0.00

0.01 0.11 0.07 0.02 0.02 0.20 0.09 0.08 0.05 0.01 0.07 0.00

0.05 0.07 0.05 0.05 0.10 0.10 0.21 0.03 0.10 0.05 0.03 0.00

0.00 0.16 0.04 0.00 0.00 0.06 0.02 0.23 0.00 0.00 0.08 0.00

0.02 0.03 0.02 0.04 0.10 0.04 0.06 0.02 0.22 0.07 0.03 0.00

0.00 0.00 0.00 0.07 0.09 0.00 0.03 0.00 0.06 0.19 0.06 0.00

0.01 0.04 0.01 0.00 0.01 0.03 0.01 0.01 0.02 0.00 0.21 0.00

0.00 0.01 0.00 0.00 0.02 0.03 0.02 0.15 0.04 0.12 0.11 0.00
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Figure 6: Estimated coefficient matrix α̂ for Liverpool FC in the 2023-2024 season.

While it only corresponds to last-touch attribution, the matrix α is already insightful for practitioners.
Some insights easily seen are that Gakpo (#8, the left attacking midfielder) generates the most direct
outcomes of the whole team, more than the other two attacking midfielders (Szoboszlai #9 and Salah
#10), and over 30% more than the nominal striker Diaz (#11). Diaz (#11) appears quite isolated at
the tip of the team, as the eleventh line of the matrix is almost entirely null (indicating he barely gets
served by his teammates outside of the penalty box). This is likely because when he does get the ball,
he is already in the penalty box and censored by the data-construction procedure. Nevertheless, he
must be quite an effective player as his direct effect α̂12,11 = 0.11 is still significant.
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1 2 3 4 5 6 7 8 9 10 11 12
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0.38 0.11 0.18 0.20 0.08 0.07 0.08 0.03 0.06 0.03 0.03 0.00

0.37 0.42 0.50 0.26 0.16 0.41 0.34 0.29 0.24 0.08 0.17 0.00

0.73 0.62 0.61 0.65 0.29 0.45 0.42 0.19 0.31 0.12 0.13 0.00

0.68 0.35 0.56 0.59 0.44 0.30 0.43 0.12 0.32 0.16 0.11 0.00
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Figure 7: Estimated descendents matrix D̂ for Liverpool FC in the 2023-2024 season.

In contrast, Figure 7 shows the (scaled) estimated descendants matrix D̂ := α̂(I − α̂)−1 for the same
data, i.e. the multi-touch attribution of the outcomes. Recall that the descendants matrix encodes
the attribution of the outcomes to the players, including both direct and indirect effects. Comparing
Figure 6 and Figure 7, we can see that Diaz (#11) nearly doubles his expected contribution to 0.21,
overtaking Salah (#10) at 0.19. Similarly, we can see the outsized contribution of Robertson (#2)
amongst defenders, making him overall as important as the rear and central midfielders for the team’s
overall offence. Gakpo (#8) remains the most valued player overall.

A good overall picture of the team dynamics and attribution can be obtained by visualising the
players according to both their overall importance and their excitation coefficients, which visualise
the movement of the ball between players, as demonstrated by Figure 8. In this figure, the cycle of
defenders identified in Figure 6 is clearly visible, and we can clearly see Robertson’s (#2) preference
for passing far down the left side to Gakpo (#8) who poses a direct threat to the other team, which
drives his own importance up. Szoboszlai (#9), unlike the other attacking midfielders (Gakpo, #8,
and Salah, #10), is a major ball distributor, as are the defending midfielders Mac Allister (#6)
and Gravenberch #7. However, examining the excitation graph around the midfield highlights the
profound left-right asymmetry in the team dynamics: Szoboszlai (#9) faces squarely right, as he and
Gakpo (#8) do not interact at all, the latter relying on service directly from Robertson (#2) in his
rear.

D.6 FEATURE-BASED ATTRIBUTION ON REAL-WORLD DATA FROM THE 2023–2025 SEASONS

In this section, we present some further details on the empirical validation of the feature-based
Hawkes model described in Section 4.2. We can separate (non-team) effects of the pair (i, j) into
three categories: the receiver effects (θ(1)i,j ), which depend on the features of i, emitter effects (θ(2)i,j )

dependent on the features of j, which, when i, j combine into self-excitation effects (θ(u)i,i , u ∈ {1, 2}).
A selection of other insightful receiver effects includes:

• Playtime, when j is a striker and i = d+ 1 is the outcome. The more a striker is present,
as a share of the team’s play time, the stronger the excitation they exert on the outcome
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Figure 8: Liverpool’s 4-2-3-1 formation for the 2023–2024 season, with players numbered according
to Table 5. The size of each player is proportional to their importance as estimated by D̂12,· with our
method, the thickness of the arrow from j to i is proportional to the estimated excitation effect α̂i,j

(values smaller than 0.05 are not shown).

dimension, with θ̂
(1)
12,11 = 0.84. Two interpretations appear: first, being a better striker is

likely to lead one to be put on the pitch more and also to trigger more outcomes. Second, it
supports the adaptation to a tactical role (rhythm of play, team offensive focus) over time.

• Distance covered, when j is a left winger and i is striker. Higher movement is associated
with increased excitation forwards (θ̂(1)i,j = 0.54), underscoring the spatial importance of
off-ball movements in attracting the ball and pushing it to the forefront of the team.

• Offensive duels won, when j is a right winger and i is a striker. Successful one-on-
one actions by the winger significantly increase the likelihood of a pass to the striker
(θ̂(1)i,j = 0.63), capturing the archetypal wing-to-strike transition following a dribble or cross.

On the emitter side, we can identify:

• One-touch passes when j is a striker and i is a neighbouring player. Strikers prone to
one-touch passes substantially increase their excitation towards midfielders and wingers
(θ̂(2)i,j = 0.43), indicative of quick combination play and short build-up sequences around
the penalty box.

• Movement received, when j is a left central midfielder and and i is the outcome. Midfielders’
off-ball movement has a strong positive effect on excitation towards other offensive units
(θ̂(2)i,j = 0.76), highlighting a central orchestrating role facilitating spatial availability.

• Crosses excluding penalty area, when j is a right winger and i is a striker. The positive
excitation coefficient θ̂(2)i,j = 0.62 reinforces the intuition that there is a stable tactical
pathway between the right wing and the striker, reflective of structured offensive transitions.

When i = j, the features for both players are the same, and we report only the average estimated
coefficient θ̂i,i := (θ̂

(1)
i,i + θ̂

(2)
i,i )/2. This coefficient is the change (in log-odds scale) of the magnitude

of excitation a player has on themselves, i.e. on how many ball touches in a row they complete before
passing or losing the ball. These coefficients are quite dependent on positions:

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

• Strikers have positive coefficients for one-touch passes (θ̂i,i = 0.13) and for offensive
duels won (θ̂i,i = 0.12, which suggest that these events often lead to rapid repetitions, such
as shots following rebounds or quick follow-ups.

• Central midfielders have a negative coefficient (θ̂i,i = −0.56) with passed players with
ball drives suggesting that players who excel at dribbling past other players tend to prefer
to redistribute the ball when they have it, likely to relieve pressure or rotate play.

Overall, these results support the existence of stable and interpretable patterns in inter-player in-
teractions. They provide valuable insight into tactical rhythms and the emergent structure of team
dynamics, both of which are critical for performance optimisation and strategic planning.

The model was fitted using the procedure of Appendix C with the standard ADAM algorithm
implemented in PyTorch and the following hyperparameters: a base learning rate of ρ0 = 0.005, a
boundary penalisation η = 0.5, an ℓ1 penalisation ν = 0.3, and an improvement stopping criterion of
0.001. In addition, we use the ReduceLROnPlateau, by decreasing the new learning rate by a
factor of 0.8 whenever the loss fails to improve by more than 0.2 for 4 epochs in a row.

D.7 PREDICTIVE ATTRIBUTION ON FOOTBALL DATA

Before applying predictive attribution, we use our factual attribution method (see Appendix D.5) to
evaluate the coefficient and descendant matrices α̂PSG and D̂PSG for PSG in 2023–2024, when Kylian
Mbappé was part of the team. We show these matrices in Figure 9 and Figure 10 respectively. That
season, PSG played mostly in a 4-2-3-1 configuration with Mbappé as a central attacking midfielder
(occasionally swapping with the left attacking midfielder Dembele, who we number #8), i.e. in
dimension #9 according to Figure 5a.

Inspecting these matrices allows us to identify the playstyle of Mbappé in Paris: he is a highly
influential player (D̂PSG

12,09 = 0.30) who generates a significant amount of threat directly (α̂PSG12,9 =

0.13). Looking at who serves him, i.e. the ninth line of α̂PSG, we see that he relies heavily on Hakimi
(#2, deep in his rear) and Dembele (#8, on his left) to serve him.
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0.09 0.14 0.26 0.02 0.00 0.13 0.06 0.12 0.09 0.07 0.00 0.00

0.33 0.30 0.14 0.28 0.03 0.09 0.08 0.05 0.00 0.00 0.01 0.00
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0.01 0.12 0.03 0.00 0.01 0.03 0.02 0.12 0.21 0.07 0.02 0.01

0.02 0.04 0.01 0.01 0.03 0.03 0.02 0.04 0.03 0.22 0.03 0.00

0.00 0.00 0.00 0.08 0.25 0.05 0.08 0.04 0.02 0.08 0.16 0.01
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Figure 9: Estimated coefficients matrix α̂PSG for PSG in the 2023–2024 season.
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1.33 1.04 1.21 0.86 0.64 0.87 0.74 0.71 0.48 0.48 0.31 0.03

2.12 1.44 1.48 1.44 0.94 1.08 1.01 0.78 0.47 0.50 0.43 0.04
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Figure 10: Estimated descendents matrix D̂PSG for PSG in the 2023–2024 season.

Likewise, we use our factual attribution method to compute the actual team influences (α̂RM and D̂RM)
on Real Madrid’s 2024–2025 season, which we use as a ground truth for the predictions. Real Madrid
played a 4-2-3-1 configuration that season (see Figure 5a), meaning Mbappé retains the number #9
in the predictive scenario and in his actually played season at Real Madrid. Despite the disappointing
performance of the team as a whole that year, Mbappé’s direct influence on the outcome variable was
evaluated at α̂RM12,9 = 0.10 and his overall influence at D̂RM = 0.17, as shown on Figures 11 and 14,
respectively.

Using the trained predictive model, we can evaluate alternative team compositions by using the
features of the hypothetical considered team. As an illustration, we insert Kylian Mbappé’s feature
vector into dimension (#9) of Real Madrid’s 2024–2025 line-up and compute the associated estimated
Hawkes coefficients, and in turn the branching and descendant matrices α̂CF and D̂CF. We visualise
these matrices as heatmaps in Figure 11.

While the model gives outright predictions of Mbappé’s influence (α̂CF12,9 = 0.05 and D̂CF
12,9 = 0.17),

it also gives a prediction of team dynamics as a whole which we can read from Figure 13. Indeed, the
model appears to predict that Mbappé (#9) would behave more as a reactive finisher than an initiator,
meaning he is more likely to be on the final receiver of the ball before the outcome rather than the
initiator of a sequence to the outcome. This is evidenced by comparing his incoming branching
ratio

∑
j α̂

CF
9,j = 0.65 (with

∑
j ̸=9 α̂

CF
9,j = 0.47 coming from team-mates) to his outgoing branching

ratio
∑

i α̂
CF
i,9 = 0.45 (of which only 0.27 goes to other players). In other words, Mbappé receives

more than he distributes, marking him as a textbook finisher. The model estimates a pronounced
self–excitation coefficient (α̂CF9,9 = 0.18), meaning that roughly 18% of Mbappé’s actions would
trigger another event involving him, suggesting he is capable of developing his flank on his own.

The model predicts that powerful precursors of Mbappé will be García (#2) with α̂CF9,2 = 0.16,
Vinicius (#10) with α̂CF9,10 = 0.14, and Valverde (#8) with α̂CF9,8 = 0.10. In contrast, the players
it believes he will most often excite are Vincius (#10) with α̂CF10,9 = 0.07, Valverde (#8) with
α̂CF8,9 = 0.06, and Rodrygo (#11) with α̂CF11,9 = 0.05. Hence, the model’s prediction highlights a
preferred attacking pathway for the team, namely

García/Vinicius/Valverde −→ Mbappé −→ Valverde/Vinicius/Rodrygo −→ Outcome,
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0.05 0.15 0.11 0.08 0.11 0.18 0.09 0.08 0.03 0.05 0.05 0.00

0.06 0.08 0.06 0.11 0.16 0.11 0.18 0.06 0.05 0.05 0.09 0.00

0.02 0.15 0.07 0.00 0.01 0.08 0.05 0.23 0.05 0.06 0.02 0.00

0.00 0.10 0.02 0.01 0.00 0.06 0.04 0.07 0.22 0.08 0.03 0.00

0.00 0.03 0.00 0.00 0.01 0.03 0.03 0.04 0.04 0.23 0.04 0.00
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Figure 11: Estimated coefficients matrix α̂RM for RM in the 2024–2025 season.
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Figure 12: Estimated descendents matrix D̂RM for RM in the 2024–2025 season.

underlining Mbappé’s role as a high-frequency finisher who rapidly recycles possession but is
predominantly activated by wide or defensive recoveries.

The predictive model correctly predicted the overall influence of Mbappé at Real Madrid, with
D̂CF

12,9 = D̂RM12,9 = 0.17, but it failed to accurately predict immediate influence (attribution) as
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Figure 13: Predicted coefficients matrix α̂CF for RM in the 2024–2025 season.
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Figure 14: Predicted descendents matrix D̂CF for RM in the 2024–2025 season.

α̂CF12,9 = 0.05 but α̂RM12,9 = 0.10. If we compare the estimated dynamic to what actually happened in
2024–2025, we can understand this failure state.

Comparing Figures 11 and 13, in particular the ninth lines and columns highlights that the model
failed to predict how effective Tchouameni (#6) and Modrić (#7) would turn out to be at passing to
Mbappé, indeed α̂CF9,6 = 0.01 and α̂CF9,7 = 0.00 while, in reality α̂RM9,6 = 0.06 and α̂RM9,7 = 0.04. Instead,
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the model predicts that Mbappé will depend on Garcia (#2) and Valverde (#8) for passes, i.e. that he
will be dependent directly on his rear as he was in PSG as can be seen by α̂PSG9,2 = 0.12, α̂PSG9,8 = 0.12,
and the rest of the ninth line on Figure 9. This comparison suggests Mbappé and his teammates
adapted quite significantly to each other, leading to him effectively playing quite differently.
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Figure 15: Predicted coefficients matrix α̂Liv for Liverpool in the 2024–2025 season.
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Figure 16: Predicted descendents matrix D̂Liv for Liverpoool in the 2024–2025 season.
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The similarity between this behaviour and the dynamics of the Liverpool team, and particularly
Gakpo (#8), from Appendix D.5 suggests that Mbappé might be a good candidate to take up Gakpo’s
position. Performing the predictive attribution for this transfer in the same manner as previously,
we obtain the coefficient and descendant matrices α̂Liv and D̂Liv respectively. As noted, the model
predicts Mbappé will have similar direct impact as in PSG, with α̂Liv12,8 = 0.09 (just as α̂PSG12,8 = 0.09),
but this predicted performance is well below Gakpo’s (α̂12,8 = 0.09 on Figure 6). Overall, the
influence of Mbappé is estimated at D̂Liv

12,8 = 0.17, well below Gakpo’s D̂12,8 = 0.24. While the
model captures well the increased influence that Roberston (Liverpool’s #2) could wield through
Mbappé (D̂Liv

8,2 = 0.42), it does not believe that Mbappé can take over Gakpo’s dynamic in Liverpool,
likely due to Mbappé’s natural position being more of a central striker than an initiator like Gakpo. It
is worth noting that, in general, certain potentially important variables—such as the off-field chemistry
between players—are not taken into account by the model. The same applies to psychological factors
affecting players, such as their adjustment to a new city or country. It is likely that access to such
difficult-to-measure information would add value to the model.
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