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ABSTRACT

The objective of domain generalization (DG) is to enhance the transferability of
the model learned from a source domain to unobserved domains. To prevent over-
fitting to a specific domain, Sharpness-Aware Minimization (SAM) reduces source
domain’s loss sharpness. Although SAM variants have delivered significant im-
provements in DG, we highlight that there’s still potential for improvement in
generalizing to unknown domains through the exploration on data space. This pa-
per introduces an objective rooted in both parameter and data perturbed regions
for domain generalization, coined Unknown Domain Inconsistency Minimization
(UDIM). UDIM reduces the loss landscape inconsistency between source domain
and unknown domains. As unknown domains are inaccessible, these domains are
empirically crafted by perturbing instances from the source domain dataset. In
particular, by aligning the loss landscape acquired in the source domain to the loss
landscape of perturbed domains, we expect to achieve generalization grounded on
these flat minima for the unknown domains. Theoretically, we validate that merg-
ing SAM optimization with the UDIM objective establishes an upper bound for
the true objective of the DG task. In an empirical aspect, UDIM consistently out-
performs SAM variants across multiple DG benchmark datasets. Notably, UDIM
shows statistically significant improvements in scenarios with more restrictive do-
main information, underscoring UDIM’s generalization capability in unseen do-
mains. Our code is available at https://github.com/SJShin-AI/UDIM.

1 INTRODUCTION

Domain Generalization (DG) (Zhou et al., 2022; Wang et al., 2022) focuses on domain shift that
arises when training and testing occur across distinct domains, i.e. a domain of real pictures in train-
ing, and a separate domain of cartoon images in testing. The objective of DG is to train a model
on a given source domain dataset, and generalizes well on other unobserved domains. To address
the domain discrepancy between the source domain and other domains, various methods have been
proposed: 1) alignment-based methods (Li et al., 2021a; Wald et al., 2021); 2) augmentation-based
methods (Qiao et al., 2020a; Zhou et al., 2021); and 3) regularization-based methods (Arjovsky
et al., 2019; Krueger et al., 2021; Rame et al., 2022). While these methodologies have demonstrated
promising results, they often underperform in settings where given domain information is particu-
larly limited (Wang et al., 2021b; Qiao et al., 2020b). Also, most methods lack theoretical guarantees
on the minimization of the target risk at the distribution level.

In contrast to the aforementioned methods, Sharpness-aware optimizers, which flatten the loss land-
scape over a perturbed parameter region, demonstrate promising performances in DG tasks (Zhang
et al., 2023b; Wang et al., 2023). By optimizing the perturbed local parameter regions, these ap-
proaches relieve the model overfitting to a specific domain, thereby enhancing the adaptability of
the model across various domains. Also, this concept has a solid theoretical foundation based on the
parameter space analysis with PAC-Bayes theories (McAllester, 1999; Dziugaite & Roy, 2017).

While the perturbation methods based on the parameter space have shown promising improvements
in DG tasks, this paper theoretically claims that perturbation rooted in the data space is essential for
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robust generalization to unobserved domains. Accordingly, this paper introduces an objective that
leverages both parameter and data perturbed regions for domain generalization. In implementation,
our objective minimizes the loss landscape discrepancy between a source domain and unknown
domains, where unknown domains are emulated by perturbing instances from the source domain
datasets. Recognizing the loss landscape discrepancy as an Inconsistency score across different
domains, we name our objective as Unknown Domain Inconsistency Minimization (UDIM).

Introduction of UDIM on the DG framework has two contributions. First, we theoretically prove
that the integration of sharpness-aware optimization and UDIM objective becomes the upper bound
of population risk for all feasible domains, without introducing unoptimizable terms. Second, we
reformulate the UDIM objective into a practically implementable term. This is accomplished from
deriving the worst-case perturbations for both parameter space and data space, each in a closed-form
expression. Our experiments on various DG benchmark datasets illustrate that UDIM consistently
improves the generalization ability of parameter-region based methods. Moreover, we found that
these improvements become more significant as domain information becomes more limited.

2 PRELIMINARY

2.1 PROBLEM DEFINITION OF DOMAIN GENERALIZATION

This paper investigates the task of domain generalization in the context of multi-class classification
(Arjovsky et al., 2019; Sagawa et al., 2019; Nam et al., 2021). We define an input as x ∈ Rd and
its associated class label as y ∈ {1, .., C}. Let De represent a distribution of e-th domain. E is a
set of indices for all domains, and D := {De}e∈E denotes the set of distributions for all domains,
where every domain shares the same class set. For instance, let’s hypothesize that video streams
from autonomous cars are being collected, and the data collection at days and nights will constitute
two distinct domains. A sampled dataset from the e-th domain is denoted by De = {(xi, yi)}ne

i=1
where (xi, yi) ∼ De and ne is the number of data instances of e-th domain.

Throughout this paper, let θ ∈ Θ represents a parameter of trained model fθ, where Θ is a set of
model parameters. Using De, we define a loss function as LDe

(θ) = 1
ne

∑
(xi,yi)∈De

ℓ(fθ(xi), yi),
where we sometimes denote ℓ(fθ(xi), yi) as ℓ(xi, θ). The population risk for domain e is given
by LDe

(θ) = E(x,y)∼De
[ℓ(fθ(x), y)]. Then, the population risk over all domains is defined as

LD(θ) =
∑

e∈E p(e)LDe
(θ), where p(e) represents the occurrence probability of domain e.

In essence, the primary goal of training a model, fθ, is to minimize the population risk, LD(θ). In
practical scenarios, we only have access to datasets derived from a subset of all domains. We call
these accessible domains and datasets as source domains and source domain datasets, respectively;
denoted as DS = {Ds}s∈S and DS = {Ds}s∈S where S is the set of indexes for source domains.
As DS ̸= D , DS deviates from the distribution D under the sampling bias of DS . As a conse-
quence, a model parameter θ∗S = argminθLDS

(θ), which is trained exclusively on DS , might not
be optimal for LD(θ). Accordingly, domain generalization emerges as a pivotal task to optimize
θ∗ = argminθLD(θ) by only utilizing the source domain dataset, DS .

2.2 VARIANTS OF SHARPNESS-AWARE MINIMIZATION FOR DOMAIN GENERALIZATION

Recently, a new research area has emerged by considering optimization over the parameter space
(Foret et al., 2020; Kwon et al., 2021). Several studies have focused on the problem of θ overfitted
to a training dataset (Wang et al., 2023; Zhang et al., 2023b;a). These studies confirmed that opti-
mization on the perturbed parameter region improves the generalization performance of the model.
To construct a model that can adapt to unknown domains, it is imperative that an optimized param-
eter point is not overfitted to the source domain datasets. Accordingly, there were some studies to
utilize the parameter perturbation in order to avoid such overfitting, as elaborated below (Table 1).

Among variations in Table 1, Sharpness-Aware Minimization (SAM) (Foret et al., 2020) is the most
basic form of the parameter perturbation, which regularizes the local region of θ to be the flat minima
on the loss curvature as minθ max∥ϵ∥2≤ρ LDs

(θ+ ϵ)+ ∥θ∥2. Here, ϵ is the perturbation vector to θ;
and ρ is the maximum size of the perturbation vector. Subsequently, methodologies for regularizing
stronger sharpness were introduced (Zhang et al., 2023b; Wang et al., 2023; Zhang et al., 2023a).
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These approaches exhibited incremental improvements in domain generalization tasks. Check Ap-
pendix A for more explanations.

Table 1: Objectives of SAM variants for DG
Method Objective

SAM (Foret et al., 2020) max
∥ϵ∥2≤ρ

LDs(θ + ϵ)

GAM (Zhang et al., 2023b) LDs(θ) + ρ max
∥ϵ∥2≤ρ

∥∇LDs(θ + ϵ)∥

SAGM (Wang et al., 2023) LDs
(θ) + LDs

(θ + ρ∇LDs
(θ)
/
∥∇LDs

(θ)∥ − α∇LDs
(θ))

FAM (Zhang et al., 2023a) LDs(θ) + max
∥ϵ∥2≤ρ

(LDs(θ + ϵ)− LDs(θ)) + ρ max
∥ϵ∥2≤ρ

∥∇LDs(θ + ϵ)∥

We are motivated by this char-
acteristic to extend the parameter
perturbation towards data pertur-
bation, which could be effective
for the exploration of unknown
domains. None of SAM variants
proposed data-based perturbation
for unknown domain discovery. Fundamentally, SAM variants predominantly focus on identify-
ing the flat minima for the given source domain dataset, DS . In Section 3.1, we highlight that
finding flat minima in the source domain cannot theoretically ensure generalization to unknown tar-
get domains. Consequently, we demonstrate that generalization should be obtained from unobserved
domains, rather than solely the source domain. Since SAM imposes the perturbation radius of ρ on
only θ, we hypothesize Ds could be perturbed by additional mechanism to generalize Ds toward D .

While SAM minimizes the loss over ρ-ball region of θ, its actual implementation minimizes the
maximally perturbed loss w.r.t. θ + ϵ∗; where the maximal perturbation, ϵ∗, is approximated in a
closed-form solution via Taylor expansion as follows:

max
∥ϵ∥2≤ρ

LDs
(θ + ϵ) ≈ LDs

(θ + ϵ∗) where ϵ∗ ≈ ρ · sign(∇θLDs
(θ))

|∇θLDs(θ)|
∥∇θLDs

(θ)∥22
. (1)

The existence of this closed-form solution of ϵ∗ simplifies the learning procedure of SAM by avoid-
ing min-max game and its subsequent problems, such as oscillation of parameters (Chu et al., 2019).
This closed-form solution can also be applied to the perturbation on the data space.

3 METHOD

3.1 MOTIVATION : BEYOND THE SOURCE DOMAIN-BASED FLATNESS

Based on the context of domain generalization, Theorem 3.1 derives the relationship between the
SAM loss on the source domain dataset, denoted as max∥ϵ∥2≤ρ LDs

(θ + ϵ), and the generalization
loss on an arbitrary unknown domain, LDe

(θ), for a model parameter θ ∈ Θ as follows:
Theorem 3.1. (Rangwani et al., 2022) For θ ∈ Θ and arbitrary domain De ∈ D , with probability
at least 1 − δ over realized dataset Ds from Ds with |Ds| = n, the following holds under some
technical conditions on LDe(θ), where h0 : R+ → R+ is a strictly increasing function.

LDe(θ) ≤ max
∥ϵ∥2≤ρ

LDs(θ + ϵ) +Df(Ds||De) + h0(
∥θ∥22
ρ2

) (2)

Theorem 3.1 provides an upper bound for LDe
(θ). The second term of this upper bound, represented

asDf(Ds||De), corresponds to the distribution discrepancy between Ds and De. Notably,Df denotes
the discrepancy based on f -divergence. When e ̸= s, De is inaccessible in the context of domain
generalization. Accordingly, the SAM optimization on Ds leaves an unoptimizable term in its upper
bound, posing challenges for the domain generalization.

In a setting that only Ds and model parameter θ are accessible, generating unseen domain data be-
comes infeasible. Nontheless, by perturbing Ds towards the direction that is most sensitive given
θ, we can emulate the worst-case scenario for an unobserved domain (Sagawa et al., 2019). While
parameters trained via the SAM optimizer may exhibit flat regions based on the source domain
dataset, Ds, there is no theoretic study on the flat minima under unobserved domains. By identi-
fying the worst-case scenario that maximizes the loss landscape difference between domains, our
methodology seeks the generalization across the unknown domains.

3.2 UDIM : UNKNOWN DOMAIN INCONSISTENCY MINIMIZATION

This section proposes an objective based on both parameter and data perturbed regions for domain
generalization, coined Unknown Domain Inconsistency Minimization (UDIM). UDIM minimizes
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(a) Changes in the loss landscape across domains based on the
perturbed parameter space of θ: initial state (left), post-SAM op-
timization (center), and subsequent to UDIM application (right).
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(b) Changes in domain-wise inconsistency
sharpness based on data space of Ds before
(left) and after (right) applying UDIM.

Figure 1: Illustration of our model, UDIM, based on parameter space (a) and data space (b). (a)
We define flatness within a perturbed region by minimizing the inconsistency loss relative to the
unknown domains, around the flat region derived from the source domain. (b) Furthermore, by
reducing the domain-wise inconsistency within the input perturbed regions, where ρx denotes per-
turbation length, our method can also be interpreted as an data space perspective of SAM.

the loss landscape discrepancy between the source domain and unknown domains, where unknown
domains are empirically realized by perturbing instances from the source domain dataset, Ds.

Let Θθ,ρ = {θ′ |∥θ′ − θ∥2 ≤ ρ}, which is ρ-ball perturbed region of a specific parameter point
θ. When training a parameter θ on an arbitrary domain dataset De with the SAM optimizer, some
regions within Θθ,ρ are expected to be optimized as flat regions for source domain. Following the
notation of Parascandolo et al. (2020b), define Nγ,ρ

e,θ := {θ′ ∈ Θθ,ρ |
∣∣LDe(θ

′
) − LDe(θ)

∣∣ ≤ γ},
which is the region in Θθ,ρ where the loss value of θ deviates by no more than γ. Given small
enough values of LDe(θ) and γ, Nγ,ρ

e,θ could be recognized as a flat minima for e-th domain.

We aim to utilize the flat minima of θ obtained through training on Ds using the SAM optimizer,
where we represent s-th domain as our source domain. The goal is to regularize the loss and its
corresponding landscape of unknown domains, so that the flat minima of the unknown domain
aligns with that of the source domain. By optimizing the domain of worst-case deviation in the
loss landscape from Ds, we facilitate regularization across a range of intermediary domains. Eq. 3
formalizes our motivation, which is cross-domain inconsistency score:

Iγs (θ) = max
e∈E

max
θ′∈Nγ,ρ

s,θ

|LDe
(θ

′
)− LDs

(θ
′
)| (3)

In the above equation, the inner maximization seeks the worst-case parameter point θ
′

that amplifies
the domain-wise loss disparity, while the outer maximization identifies e-th domain that maximizes
maxθ′∈Nγ,ρ

s,θ
|LDe

(θ
′
) − LDs

(θ
′
)|. Parascandolo et al. (2020a) utilizes an equation similar to Eq.

3, and this equation is also employed to indicate θ with a loss surface that is invariant to the en-
vironment changes. Our methodology differs from Parascandolo et al. (2020a), which simply uses
inconsistency as a metric, in that we employ it directly as the objective we aim to optimize. Let’s
assume that θ exhibits sufficiently low loss along with flat loss landscape of Ds. Further, if we can
identify θ with a low value of Iγs (θ), then this θ would also demonstrate consistently good gener-
alization for unknown domains. This motivation leads to the UDIM’s objective, which specifically
targets the reduction of the cross-domain inconsistency score across unobserved domains.

Objective Formulation of UDIM While we define the cross-domain inconsistency as Iγs (θ), the
final formulation of UDIM is the optimization of θ regarding both source and unknown domain
losses from the flat-minima perspective. Eq. 4 is the parameter optimization of our proposal:

min
θ

(
max

∥ϵ∥2≤ρ
LDs

(θ + ϵ) + λ1 max
e∈E

max
θ′∈Nγ,ρ

s,θ

|LDe
(θ

′
)− LDs

(θ
′
)|+ λ2∥θ∥2

)
(4)

The objective of UDIM consists of three components. The first term is a SAM loss on Ds, guiding θ
toward a flat minima in the context of Ds. Concurrently, as θ provides flattened local landscape, the
second term weighted with λ1 is a region-based loss disparity between the worst-case domain e and
the source domain. Subsequently, the algorithm seeks to diminish the region-based loss disparity
between the worst-case domain and the source domain. Figure 1 (a) illustrates the update of the loss
landscape in the parameter-space for each domain, based on the optimization of Eq. 4. As SAM
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optimization on Ds progresses, Nγ,ρ
s,θ is expected to be broadened. However, SAM optimization does

not imply the minimization of Iγs (θ) (center). Given that the optimization of Iγs (θ) is conducted on
Nγ,ρ

s,θ , we expect the formation of flat minima spanning all domains in the optimal state (rightmost).
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Figure 2: Inconsistency score
of each method on PACS
training dataset (X-axis:
training iteration). Y-axis is
depicted in a log-scale.

The optimization of Eq. 4 can also be interpreted as minimizing
another form of sharpness in the data space. Let’s suppose all
other domains lie within a finite perturbation of the source domain’s
dataset. In the context of the data space over the Ds, the optimiza-
tion can be seen as identifying the worst-case perturbed dataset,
De, by evaluating maxθ′∈Nγ,ρ

s,θ
|LDe

(θ
′
) − LDs

(θ
′
)|. If we view

the perturbation of the Ds, not as discrete choices but as a con-
tinuum within the data-space; our optimization can be viewed as
minimizing the sharpness of domain-wise inconsistency in the data
space. Figure 1 (b) illustrates this interpretation. After such opti-
mization, the resulting parameter θ can offer the consistent general-
ization over domains located within the perturbed data space.

At this juncture, a crucial consideration is whether the SAM opti-
mization on Ds focuses on minimizing the second term, Iγs (θ), or
not. We illustrate the limited capability of SAM variants in minimizing the second term, by an ana-
lytical illustration of Figure 1 (a); and by an empirical demonstration of Figure 2. Therefore, UDIM
covers the optimization area that SAM does not operate.

Theoretical Analysis of UDIM Given the definition of Θθ,ρ = {θ′ |∥θ′ − θ∥2 ≤ ρ}, we introduce
Θθ,ρ′ = argmaxΘθ,ρ̂⊆Nγ,ρ

s,θ
ρ̂, which is the largest ρ′-ball region around θ in Nγ,ρ

s,θ .1 Theorem 3.2
introduces the generalization bound of Eq. 4, which is the objective of UDIM. Theorem 3.2 states
that Eq. 4 can become the upper bound of LD(θ), which is the population risk over all domains.
Theorem 3.2. For θ ∈ Θ and arbitrary domain e ∈ E , with probability at least 1− δ over realized
dataset De from De, the following holds under technical conditions on LDe

(θ) and LDe
(θ), where

h : R+ → R+ is a strictly increasing function. (Proof in Appendix B.1.)

LD(θ) ≤ max
∥ϵ∥2≤ρ

LDs(θ + ϵ) + (1− 1

|E| )max
e∈E

max
θ′∈Nγ,ρ

s,θ

|LDe(θ
′
)− LDs(θ

′
)|+ h(

∥θ∥22
ρ2

) (5)

In such a case, Theorem 3.2 retains the same form of weight decay term as presented in Theorem
3.1. Unlike Theorem 3.1, which contains terms that are inherently unoptimizable, our objective is
capable of minimizing every term encompassed in the upper bound of Theorem 3.2 because we do
not have an inaccessible term, Df(Ds||De).

3.3 IMPLEMENTATION OF UDIM

This section reformulates the second term of Eq. 4 into an implementable form. We first formalize
the perturbation of Ds to emulate the worst-case domain for maxθ′∈Nγ,ρ

s,θ
|LDe

(θ
′
)− LDs

(θ
′
)|.

Inconsistency-Aware Domain Perturbation on Ds For clarification, we explain the perturbation
process based on an arbitrary input instance x from Ds. Given that the magnitude of the perturbation
vector for input x is constrained to ρx, the perturbed input x̃ can be expressed as follows:

x̃ = x+ argmax
ϵx:∥ϵx∥2≤ρx

max
θ′∈Nγ,ρ

s,θ

(
ℓ(x+ ϵx, θ

′
)− ℓ(x, θ

′
)
)
≈ x+ argmax

ϵx:∥ϵx∥2≤ρx

max
θ′∈Nγ,ρ

s,θ

ℓ(x+ ϵx, θ
′
)

(6)

≈
1st Taylor

x+ argmax
ϵx:∥ϵx∥2≤ρx

(
ℓ(x+ ϵx, θ) + ρ′∥∇θℓ(x+ ϵx, θ)∥2

)
(7)

Assuming Nγ,ρ
s,θ as flat minima of θ, ℓ(x, θ

′
) is almost invariant for θ

′ ∈ Nγ,ρ
s,θ . We assume that the

invariant value of ℓ(x, θ
′
) does not significantly influence the direction of x’s perturbation because

it becomes almost constant in Nγ,ρ
s,θ . Therefore, we cancel out this term in Eq. 6.

1For the sake of simplicity, we do not inject the notation of s or γ in Θθ,ρ′ .

5



Published as a conference paper at ICLR 2024

Additionally, as we cannot specify the regional shape of Nγ,ρ
s,θ , it is infeasible to search maximal

point θ
′ ∈ Nγ,ρ

s,θ . As a consequence, we utilize Θθ,ρ′ , which is the largest ρ′-ball region within
Nγ,ρ

s,θ , to approximately search the maximal point θ
′
. It should be noted that Θθ,ρ′ ⊆ Nγ,ρ

s,θ ⊆ Θθ,ρ,
where we assume that ρ′ gradually approaches ρ during the SAM optimization. Through the first-
order Taylor expansion2 for the maximum point within Θρ′ , we can design the aforementioned
perturbation loss as Eq. 7. Consequently, the perturbation is carried out in a direction that maximizes
the loss and ρ′-weighted gradient norm of the original input x.

Inconsistency Minimization on θ After the perturbation on x ∈ Ds, we get an inconsistency-
aware perturbed dataset, D̃s; which approximates the worst-case of unobserved domains. Accord-
ingly, we can formulate the optimization of Iγs (θ) based on θ as minθ max

θ′∈Nγ,ρ
s,θ

(
LD̃s

(θ
′
)−LDs

(θ
′
)
)

.

For the above min-max optimization, we approximate the search for the maximum parameter θ
′

in
a closed-form using second order taylor-expansion, similar to the approach of SAM in Eq. 1.

max
θ′∈Nγ,ρ

s,θ

(
LD̃s

(θ
′
)− LDs

(θ
′
)
)
≈LD̃s

(θ)− LDs
(θ) + ρ′∥∇θLD̃s

(θ)∥2 + max
θ′∈Nγ,ρ

s,θ

1

2
θ
′⊤HD̃s

θ
′

(8)

=
(
LD̃s

(θ)− LDs
(θ)
)
+ ρ′∥∇θLD̃s

(θ)∥2 + γmax
i

λD̃s
i /λDs

i (9)

Full derivation and approximation procedure of Eq. 8 and Eq. 9 are in Appendix B.2. HD̃s
in Eq. 8

denotes a Hessian matrix of the perturbed dataset, D̃s. Also, λD̃s
i in Eq. 9 denotes i-th eigenvalue of

HD̃s
. Finally, Eq. 9 becomes the objective with three components: 1) the loss difference between

D̃s and Ds, 2) the gradient norm of D̃s and 3) the maximum eigenvalue ratio between D̃s and Ds.
Note that λD̃s

i /λDs
i is minimized when HD̃s

becomes equivalent to HDs
.

While Eq. 9 is differentiable with respect to θ and can thus be utilized as a tractable objective, com-
puting the Hessian matrix for an over-parameterized θ is computationally demanding. In line with
Rame et al. (2022), we replace the objective with the Hessian matrix (Eq. 9) with an optimization
based on gradient variance. Accordingly, Eq. 10 represents the gradient variance-based objective as
an optimization with respect to θ as follows: (See detailed derivations in Appendix B.3)

min
θ

ρ′∥∇θLD̃s
(θ)∥2 + ∥Var(GD̃s

)− Var(GDs
)∥2 (10)

Here, gi is a per-sample gradient for i-th sample; and GD = {gi}|D|
i=1 is a set of per-sample gradient

for xi ∈ D. Accordingly, the variance of GD, which we denote as Var(GD), is calculated as
Var(GD) = 1

|D|−1

∑|D|
i=1

(
gi − ḡ

)2
. Matching the gradient variances between two distinct datasets

encapsulates a specific form of loss matching between them (Rame et al., 2022). This allows us to
unify loss matching and Hessian matching under a single optimization using Var(GD).

Summary Our methodology applies the perturbation technique to both input x and parameter θ. Par-
ticularly, the perturbation on inputs and parameters is necessary to minimize Iγs (θ) under unknown
domains, which is the unique contribution of this work. Ablation study in Section 4.3 supports that
UDIM, which is the combination of the Eq. 7 and Eq. 10, yields the best performance compared to
various perturbations and optimizations. Algorithm of UDIM is in Appendix C.

A single iteration of UDIM optimization with SAM loss can be described as the following procedure:

1. Construction of D̃s via Inconsistency-Aware Domain Perturbation on Ds

D̃s = {(x̃i, yi) | (xi, yi) ∈ Ds} where x̃i = xi + ρx
∇xi

(
ℓ(x, θt) + ρ′∥∇θtℓ(x, θt)∥2

)∥∥∇xi

(
ℓ(x, θt) + ρ′∥∇θtℓ(x, θt)∥2

)∥∥
2

(11)

2. SAM loss and Inconsistency Minimization on the current parameter θt

θt+1 = θt − η∇θt

(
max

∥ϵ∥2≤ρ
LDs(θt + ϵ) + ρ′∥∇θtLD̃s

(θt)∥2 + ∥Var(GD̃s
)− Var(GDs)∥2 + λ2∥θt∥2

)
(12)

2We empirically found out that extending it into second-order does not affect the resulting performance.
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Table 2: Test accuracy for CIFAR-10-C. Each level states the severity of corruption. Bold is the best
case of each column or improved performances with the respective sharpness-based optimizers.

Method level1 level2 level3 level4 level5 Avg

LOO
DG

Based

ERM 75.9± 0.5 72.9± 0.4 70.0± 0.4 65.9± 0.4 59.9± 0.5 68.9
IRM (Arjovsky et al., 2019) 37.6± 2.7 36.0± 2.8 34.6± 2.6 32.8± 2.1 30.8± 1.9 34.3
GroupDRO (Sagawa et al., 2019) 76.0± 0.1 72.9± 0.1 69.8± 0.2 65.5± 0.3 59.5± 0.5 68.7
OrgMixup (Zhang et al., 2018) 77.1± 0.0 74.2± 0.1 71.4± 0.1 67.4± 0.2 61.2± 0.1 70.3
Mixup (Yan et al., 2020) 76.3± 0.3 73.2± 0.2 70.2± 0.2 66.1± 0.1 60.1± 0.1 69.2
CutMix (Yun et al., 2019) 77.9± 0.0 74.2± 0.1 70.8± 0.2 66.3± 0.3 60.0± 0.4 69.8
MTL (Blanchard et al., 2021) 75.6± 0.5 72.7± 0.4 69.9± 0.2 65.9± 0.0 60.2± 0.3 68.9
MMD (Li et al., 2018b) 76.4± 0.1 73.2± 0.2 70.0± 0.3 65.7± 0.3 59.6± 0.5 69.0
CORAL Sun & Saenko (2016) 76.0± 0.4 72.9± 0.2 69.9± 0.0 65.8± 0.1 59.6± 0.1 68.8
SagNet (Nam et al., 2021) 76.6± 0.2 73.6± 0.3 70.5± 0.4 66.4± 0.4 60.1± 0.4 69.5
ARM (Zhang et al., 2021) 75.7± 0.1 72.9± 0.1 69.9± 0.2 65.9± 0.2 59.8± 0.3 68.8
DANN (Ganin et al., 2016) 75.4±0.4 72.6±0.3 69.7±0.2 65.6±0.0 59.6±0.2 68.6
CDANN (Li et al., 2018c) 75.3±0.2 72.3±0.2 69.4±0.2 65.3±0.1 59.4±0.2 68.3
VREx Krueger et al. (2021) 76.0± 0.2 73.0± 0.2 70.0± 0.2 66.0± 0.1 60.0± 0.2 69.0
RSC (Huang et al., 2020) 76.1± 0.4 73.2± 0.5 70.1± 0.5 66.2± 0.5 60.1± 0.5 69.1
Fishr (Rame et al., 2022) 76.3± 0.3 73.4± 0.3 70.4± 0.5 66.3± 0.8 60.1± 1.1 69.3

SDG
Based

M-ADA (Qiao et al., 2020a) 77.2±0.2 74.2±0.1 71.2±0.0 67.1±0.1 61.1±0.1 70.2
LTD (Wang et al., 2021a) 75.3±0.2 73.0±0.0 70.6±0.0 67.2±0.2 61.7±0.2 69.6

SAM
Based

SAM (Foret et al., 2020) 79.0±0.3 76.0±0.3 72.9±0.3 68.7±0.2 62.5±0.3 71.8
UDIM w/ SAM 80.3±0.0 77.7±0.1 75.1±0.0 71.5±0.1 66.2±0.1 74.2
SAGM (Wang et al., 2023) 79.0±0.1 76.2±0.0 73.2±0.2 69.0±0.3 62.7±0.4 72.0
UDIM w/ SAGM 80.1±0.1 77.5±0.1 74.8±0.1 71.2±0.2 65.9±0.2 73.9
GAM (Zhang et al., 2023b) 79.5±0.1 76.8±0.1 74.0±0.2 69.9±0.1 64.1±0.2 72.8
UDIM w/ GAM 81.4±0.1 78.9±0.0 76.3±0.0 72.8±0.1 67.4±0.1 75.3

4 EXPERIMENT

4.1 IMPLEMENTATION

Datasets and Implementation Details We validate the efficacy of our method, UDIM, via experi-
ments across multiple datasets for domain generalization. First, we conducted evaluation on CIFAR-
10-C (Hendrycks & Dietterich, 2019), a synthetic dataset that emulates various domains by applying
several synthetic corruptions to CIFAR-10 (Krizhevsky et al., 2009). Furthermore, we extend our
evaluation to real-world datasets with multiple domains, namely PACS (Li et al., 2017), Office-
Home (Venkateswara et al., 2017), and DomainNet (Peng et al., 2019). Since UDIM can operate
regardless of the number of source domains, we evaluate UDIM under both scenarios on real-world
datasets: 1) when multiple domains are presented in the source (Leave-One-Out Domain General-
ization, LOODG); and 2) when a single domain serves as the source (Single Source Domain Gen-
eralization, SDG). Unless specified, we report the mean and standard deviation of accuracies from
three replications. Appendix D.1 provides information on the dataset and our implementations.

Implementation of UDIM To leverage a parameter θ exhibitng flat minima on Ds during the min-
imization of Iγs (θ), we perform a warm-up training on θ with the SAM loss on Ds. While keeping
the total number of iterations consistent with other methods, we allocate initial iterations for warm-
up based on the SAM loss. As a result, we expect to optimize Eq. 4 with a sufficiently wide region
of Nγ,ρ

s,θ for sufficiently low γ.

The gradient variance, Var(GDs
) in Eq. 10, necessitates the costly computation of per-sample

gradients with respect to θ. We utilize BackPACK (Dangel et al., 2020), which provides the faster
computation of per-sample gradients. Also, we compute the gradient variance only for the classifier
parameters, which is an efficient practice to improve the performance with low computational costs
(Shin et al., 2023). Appendix D.1 specifies additional hyperparameter settings of UDIM.

Baselines for Comparison Since our approach, UDIM, is tested under both LOODG and SDG
scenarios, we employed methods tailored for each scenario as baselines. These include strategies
for robust optimization (Arjovsky et al., 2019; Sagawa et al., 2019) and augmentations for novel
domain discovery (Zhang et al., 2018; Yun et al., 2019; Nam et al., 2021). Appendix D.2 enumer-
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Table 3: Test accuracy for PACS. Each column represents test domain for LOODG, and train domain
for SDG. ∗ denotes that the performances are from its original paper. Bold indicates the best case of
each column or improved performances when combined with the sharpness-based optimizers.

Leave-One-Out Source Domain Generalization Single Source Domain Generalization
Method Art Cartoon Photo Sketch Avg Art Cartoon Photo Sketch Avg

Fishr∗ (Best among LOODG methods) 88.4∗±0.2 78.7∗±0.7 97.0∗±0.1 77.8∗±2.0 85.5∗ 75.9±1.7 81.1±0.7 46.9±0.7 57.2±4.4 65.3
RIDG (Chen et al., 2023b) 86.3±1.1 81.0±1.0 97.4±0.7 77.5±2.5 85.5 76.2±1.4 80.0±1.8 48.5±2.8 54.8±2.4 64.9
ITTA (Chen et al., 2023a) 87.9±1.4 78.6±2.7 96.2±0.2 80.7±2.2 85.8 78.4±1.5 79.8±1.3 56.5±3.7 60.7±0.9 68.8

M-ADA 85.5±0.7 80.7±1.5 97.2±0.5 78.4±1.4 85.4 78.0±1.1 79.5±1.2 47.1±0.4 55.7±0.5 65.1
LTD 85.7±1.9 79.9±0.9 96.9±0.5 83.3±0.5 86.4 76.8±0.7 82.5±0.4 56.2±2.5 53.6±1.4 67.3

SAM 86.8±0.6 79.6±1.4 96.8±0.1 80.2±0.7 85.9 77.7±1.1 80.5±0.6 46.7±1.1 54.2±1.5 64.8
UDIM w/ SAM 88.5±0.1 86.1±0.1 97.3±0.1 82.7±0.1 88.7 81.5±0.1 85.3±0.4 67.4±0.8 64.6±1.7 74.7
SAGM 85.3±2.5 80.9±1.1 97.1±0.4 77.8±0.5 85.3 78.9±1.2 79.8±1.0 44.7±1.8 55.6±1.1 64.8
UDIM w/ SAGM 88.9±0.2 86.2±0.3 97.4±0.4 79.5±0.8 88.0 81.6±0.3 84.8±1.2 68.1±0.8 63.3±0.9 74.5
GAM 85.5±0.6 81.1±1.0 96.4±0.2 81.0±1.7 86.0 79.1±1.3 79.7±0.9 46.3±0.6 56.6±1.1 65.4
UDIM w/ GAM 87.1±0.9 86.3±0.4 97.2±0.1 81.8±1.1 88.1 82.4±0.9 84.2±0.4 68.8±0.8 64.0±0.7 74.9
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Figure 3: (a) Sensitivity analyses of UDIM. (b) test accuracy plot of UDIM and sharpness-based
approaches based on training iterations. Shaded regions represent standard deviation.

ates baselines for comparisons. For methods that leverage relationships between source domains, a
straightforward application is not feasible in SDG scenarios. In such cases, we treated each batch
as if it came from a different domain to measure experimental performance. ERM means the base
model trained with standard classification loss. We also utilize the sharpness-based approaches as
the baselines. Note that the first term of Eq. 4 (SAM loss on Ds) can be substituted with objectives
for similar flatness outcomes, such as SAGM (Wang et al., 2023) and GAM (Zhang et al., 2023b).

4.2 CLASSIFICATION ACCURACIES ON VARIOUS BENCHMARK DATASETS

To assess the effectiveness of each method under unknown domains, we present the accuracy re-
sults on unknown target domains. Table 2 shows the results on CIFAR-10-C. The sharpness-based
methods exhibit excellent performances compared to the other lines of methods. This underscores
the importance of training that avoids overfitting to a specific domain. By adding UDIM (specifi-
cally, the inconsistency term of Eq. 4) to these SAM-based approaches, we consistently observed
improved performances compared to the same approaches without UDIM.

Table 3 shows the results on the PACS dataset. Similar to the results in Table 2, UDIM consistently
outperforms the existing baselines across each scenario. This improvement is particularly amplified
in the single source scenario. Unlike the Leave-One-Out scenario, the single source scenario is more
challenging as it requires generalizing to unknown domains using information from a single domain.
These results emphasize the robust generalization capability of UDIM under unknown domains.

This section aims to examine the efficacy of UDIM by analyzing the sensitivity of each hyper-
parameter used in UDIM’s implementation. Additionally, We perform an ablation study by compos-
ing each part of the UDIM’s objective in Eq. 12. Unless specified, each experiment is carried out in
the Single source domain generalization scenario using the PACS dataset.

4.3 SENSITIVITY ANALYSES AND ABLATION STUDY
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Figure 4: Ablation study of UDIM

Sensitivity Analyses Figure 3 (a) shows the sensitivity
of ρ

′
, λ1 and ρx, which are main hyper-parameters of

UDIM, under the feasible range of value lists. As a de-
fault setting of UDIM, we set ρ

′
=0.05, λ1=1 and ρx=1.

In implementation, we multiply ρx by the unnormalized
gradient of x. Therefore, the values presented in the ab-
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lation study have a larger scale. Also, we compare the performances between SAM and UDIM w/
SAM to compare the effectiveness of UDIM objective. Each figure demonstrates that UDIM’s per-
formance remains robust and favorable, invariant to the changes in each hyper-parameter. Figure 3
(b) presents the test accuracies over training iterations while varying the sharpness-based approaches
used alongside UDIM. Regardless of which method is used in conjunction, additional performance
improvements over the iterations are observed compared to the original SAM variants.

Ablation Studies Figure 4 presents the ablation results of UDIM, which were carried out by re-
placing a subpart of the UDIM’s objective with alternative candidates and subsequently assessing
the performances. We conduct various ablations: ’SourceOpt’ represents the optimization method
for Ds, ’Perturb’ indicates the perturbation method utilized to emulate unknown domains, and ’Per-
turbOpt’ indicates the optimization for the perturbed dataset D̃s. Appendix D.3 enumerates each
ablation candidate and its implementation. UDIM, depicted by the red bar, consistently outperforms
in all ablations, suggesting the effectiveness of our derived objective formulation.
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Figure 5: Sharpness plots for models trained using various methods: the upper plot shows sharpness
on the perturbed parameter space, while the lower plot displays sharpness on the perturbed data
space. The colormap of each row is normalized into the same scale for fair comparison.

4.4 SHARPNESS ANALYSES

Figure 1 claims that UDIM would reduce the suggested sharpness in both parameter space and data
space. To support this claim with experiments, Figure 5 enumerates the sharpness plots for models
trained with sharpness-based methods and those trained with UDIM. These figures are obtained by
training models in the single source domain setting of the PACS dataset, and each plot is drawn
utilizing target domain datasets, which are not utilized for training.

The top row of Figure 5 represents the measurement of sharpness in the parameter space by in-
troducing a random perturbation to the parameter θ. Additionally, to examine the sharpness in the
perturbed data space of unobserved domains, the bottom side of Figure 5 illustrates sharpness based
on the input-perturbed region of the target domain datasets. Current SAM variants struggle to main-
tain sufficient flatness within both the perturbed parameter space and data space. On the other hand,
UDIM effectively preserves flatness in the perturbed parameter space and the data space of unknown
domains. Within the region, the model trained using UDIM also exhibits a lower loss value com-
pared to other methods. Through preserving flatness in each space, we confirm that the optimization
with UDIM, both in parameter and data space, has practical effectiveness.

5 CONCLUSION

We introduce UDIM, a novel approach to minimize the discrepancy in the loss landscape between
the source domain and unobserved domains. Combined with SAM variants, UDIM consistently
improves generalization performance on unobserved domains. This performance is achieved by
perturbing both domain and parameter spaces, where UDIM optimization is conducted based on the
iterative update between the dataset and the parameter. Experimental results demonstrate accuracy
gains, up to 9.9% in some settings, by adopting UDIM in current sharpness-based approaches.
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A EXPLANATION OF SHARPNESS VARIANTS FOR DOMAIN
GENERALIZATION

Gradient norm-Aware Minimization (GAM) Zhang et al. (2023b) introduces first-order flatness,
which minimizes a maximal gradient norm within a perturbation radius, to regularize a stronger
flatness than SAM. Accordingly, GAM seeks minima with uniformly flat curvature across all direc-
tions.

Sharpness-Aware Gradient Matching (SAGM) Wang et al. (2023) minimizes an original loss,
the corresponding perturbed loss, and the gap between them. This optimization aims to identify a
minima that is both flat and possesses a sufficiently low loss value. Interpreting the given formula,
this optimization inherently regularizes the gradient alignment between the original loss and the
perturbed loss.

Flatness-Aware Minimization (FAM) Zhang et al. (2023a) concurrently optimizes both zeroth-
order and first-order flatness to identify flatter minima. To compute various sharpness metric on the
different order, it incurs a higher computational cost.

B PROOFS AND DISCUSSIONS

B.1 PROOF FOR THEOREM 3.2

First, we provide some theorem, definition, and assumptions needed to prove the Theorem 3.2.
Theorem B.1. (Foret et al., 2020) For any ρ > 0 which satisfies LDe(θ) ≤ Eϵ∼p(ϵ)LDe(θ + ϵ),
with probability at least 1− δ over realized dataset De from De with |De| = n, the following holds
under some technical conditions on LDe

(θ):

LDe
(θ) ≤ max

∥ϵ∥2≤ρ
LDe

(θ + ϵ) + he(
∥θ∥22
ρ2

),

where he : R+ → R+ is a strictly increasing function.

Definition B.2. Let Θθ,ρ = {θ′ |∥θ′−θ∥2 ≤ ρ} and Nγ,ρ
e,θ = {θ′ ∈ Θθ,ρ| |LDe(θ

′
)−LDe(θ)| ≤ γ}.

Assumption B.3. LD(θ) ≤ Eϵ∼p(ϵ)LD(θ + ϵ) where p(ϵ) ∼ N (0, σ2I) for some σ > 0.

Assumption B.4. maxe∈E LDe
(θ

′
) ≥ LDs

(θ
′
) for all θ

′ ∈ Nγ,ρ
s,θ .

In practice, Assumption B.4 is acceptable. Contrary to the dataset De from an unobserved domain e,
Ds is a source domain dataset provided to us and hence, available for training. Moreover, the region
of Nγ,ρ

s,θ would be flat with respect to local minima, θ∗, from the perspective of the source domain
dataset. Therefore, the perturbed loss on the source domain dataset, LDs

(θ
′
), would be likely to

have a sufficiently low value.
Theorem B.5. For θ ∈ Θ and arbitrary domain e ∈ E , with probability at least 1− δ over realized
dataset De from De with |De| = n, the following holds under some technical conditions on LDe(θ).

LD(θ) ≤ max
∥ϵ∥2≤ρ

LDs
(θ + ϵ) + (1− 1

|E| )max
e∈E

max
θ′∈Nγ,ρ

s,θ

|LDe(θ
′
)− LDs(θ

′
)|+ h(

∥θ∥22
ρ2

) (13)

where h : R+ → R+ is a strictly increasing function.

Proof. For the derivation of Theorem 3.2, we assume the case of single source domain general-
ization, where s represents a single domain in E . It should be noted that the number of avail-
able source domain does not affect the validity of this proof because we can consider multi-
ple source domains as a single source domain by Ds = ∪i∈SDi. Based on the definition,
LD(θ) = 1

|E|
∑

e∈E LDe
(θ) = 1

|E|

(
LDs

(θ) +
∑

e∈E,e̸=s LDe
(θ)
)

. From Theorem B.1, we can
derive the generalization bound of a source domain s as follows:

LDs
(θ) ≤ max

∥ϵ∥2≤ρ
LDs

(θ + ϵ) + hs(
∥θ∥22
ρ2

) (14)
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where hs : R+ → R+ is a strictly increasing function. To define the upper bound of LD(θ∗),
we need to find the upper bound of the remaining term,

∑
e∈E,e̸=s LDe

(θ). Here, we introduce a
parameter set Θρ′ := argmaxΘρ̂⊆Nγ,ρ

s,θ
ρ̂, which is the largest ρ′-ball region around θ in Nγ,ρ

s,θ . Then,
we can construct inequality as follows:

max
∥ϵ∥2≤ρ′

LDe(θ + ϵ) ≤ max
θ′∈Nγ,ρ

s,θ

LDe
(θ

′
) ≤ max

∥ϵ∥2≤ρ
LDe

(θ + ϵ) (15)

This is because Θρ′ ⊂ Nγ,ρ
s,θ ⊂ Θθ,ρ. Similar to Foret et al. (2020); Kim et al. (2022), we make use

of the following result from Laurent & Massart (2000):

z ∼ N (0, σ2I)⇒ ∥z∥22 ≤ kσ2

(
1 +

√
log n

k

)2

with probability at least 1− 1√
n

(16)

We set ρ = σ(
√
k +
√
log n). Then, it enables us to connect expected perturbed loss and maximum

loss as follows:

Eϵ∼N (0,σ2I)

[
LDe

(θ + ϵ)
]
≤ (1− 1√

n
) max
∥ϵ∥2≤ρ

LDe
(θ + ϵ) +

1√
n
le,max (17)

Here, le,max is the maximum loss bound when ∥z∥22 ≥ ρ2. Also, we introduce σ′ where ρ′ =

σ′(
√
k +
√
log n). Then, similar to Eq. 17, we also derive the equation for ρ′ as follows:

Eϵ∼N (0,(σ′ )2I)

[
LDe

(θ + ϵ)
]
≤ (1− 1√

n
) max
∥ϵ∥2≤ρ′

LDe
(θ + ϵ) +

1√
n
l′e,max (18)

≤ (1− 1√
n
) max
θ′∈Nγ,ρ

s,θ

LDe
(θ

′
) +

1√
n
l′e,max (19)

where l′e,max is the maximum loss bound when ∥z∥22 ≥ (ρ′)2. Then, we have the below derivation
by summing up all e ̸= s and using the fact that le,max ≤ l′e,max:

1

(|E| − 1)

∑
e∈E,e̸=s

E
ϵ∼N (0,σ′2I)

[
LDe

(θ + ϵ)
]

(20)

≤ (1− 1√
n
)

1

(|E| − 1)

∑
e∈E,e ̸=s

max
θ′∈Nγ,ρ

s,θ

LDe(θ
′
) +

1√
n

1

(|E| − 1)

∑
e∈E,e̸=s

l′e,max (21)

≤ (1− 1√
n
)max

e∈E
max

θ′∈Nγ,ρ
s,θ

LDe
(θ

′
) +

1√
n
max
e∈E

l′e,max (22)

Using Assumption B.3 and PAC-Bayesian generalization bound (McAllester, 1999; Dziugaite &
Roy, 2017; Foret et al., 2020), we find the upper bound of the sum of target domain losses.

1

(|E| − 1)

∑
e∈E,e̸=s

LDe(θ) ≤
1

(|E| − 1)

∑
e∈E,e̸=s

Eϵ∼N (0,(σ′)2I)[LDe
(θ + ϵ)] (23)

≤ 1

(|E| − 1)

∑
e∈E,e̸=s

{Eϵ∼N (0,(σ′)2I)[LDe
(θ + ϵ)] + he(

∥θ∥22
ρ2

)} (24)

≤ (1− 1√
n
)max

e∈E
max

θ′∈Nγ,ρ
s,θ

LDe
(θ

′
) +

1√
n
max
e∈E

l′e,max +
1

(|E| − 1)

∑
e∈E,e̸=s

he(
∥θ∥22
ρ2

) (25)

⇒
∑

e∈E,e̸=s

LDe(θ) ≤ (|E| − 1)(1− 1√
n
)max

e∈E
max

θ′∈Nγ,ρ
s,θ

LDe(θ
′
) + h̃(

∥θ∥22
ρ2

) (26)

where he, h̃ are strictly increasing functions. We use the fact that the sum of strictly increasing
functions is also a strictly increasing function. By integrating results of Eq. 14 and 26,

1

|E|
(
LDs

(θ) +
∑

e∈E,e̸=s

LDe
(θ)
)
≤ 1

|E| max
∥ϵ∥2≤ρ

LDs
(θ + ϵ)

+ (1− 1

|E| )(1−
1√
n
)max

e∈E
max

θ′∈Nγ,ρ
s,θ

LDe
(θ

′
) + h(

∥θ∥22
ρ2

) (27)
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where h : R+ → R+ is a strictly increasing function. The first and second terms of RHS in the
above inequality are upper bounded by the maximum perturbed loss for source domain and unknown
domain inconsistency loss.

1

|E| max
∥ϵ∥2≤ρ

LDs
(θ + ϵ) + (1− 1

|E| )(1−
1√
n
)max

e∈E
max

θ′∈Nγ,ρ
s,θ

LDe
(θ

′
) (28)

≤ 1

|E| max
∥ϵ∥2≤ρ

LDs(θ + ϵ) + (1− 1

|E| )max
e∈E

max
θ′∈Nγ,ρ

s,θ

LDe(θ
′
) (29)

= max
∥ϵ∥2≤ρ

LDs(θ + ϵ) + (1− 1

|E| )
(
max
e∈E

max
θ′∈Nγ,ρ

s,θ

LDe(θ
′
)− max

∥ϵ∥2≤ρ
LDs(θ + ϵ)

)
(30)

≤ max
∥ϵ∥2≤ρ

LDs
(θ + ϵ) + (1− 1

|E| )
(
max
e∈E

max
θ′∈Nγ,ρ

s,θ

LDe
(θ

′
)− max

θ′∈Nγ,ρ
s,θ

LDs
(θ

′
)
)

(31)

≤ max
∥ϵ∥2≤ρ

LDs
(θ + ϵ) + (1− 1

|E| )max
e∈E

max
θ′∈Nγ,ρ

s,θ

(LDe
(θ

′
)− LDs

(θ
′
)) (32)

= max
∥ϵ∥2≤ρ

LDs
(θ + ϵ) + (1− 1

|E| )max
e∈E

max
θ′∈Nγ,ρ

s,θ

|LDe
(θ

′
)− LDs

(θ
′
)| (33)

The last equality comes from the Assumption B.4. To sum up, we can derive the upper bound of
the population loss for whole domain using the maximum perturbed loss for source domain and
unknown domain inconsistency loss with weight decay term.

LD(θ) ≤ max
∥ϵ∥2≤ρ

LDs
(θ + ϵ) + (1− 1

|E| )max
e∈E

max
θ′∈Nγ,ρ

s,θ

|LDe
(θ

′
)− LDs

(θ
′
)|+ h(

∥θ∥22
ρ2

) (34)

B.2 DETAILED EXPLANATION ON APPROXIMATION

Here, we show the full derivation of Eq. 8 and 9 as follows.

max
θ′∈Nγ,ρ

s,θ

(
LD̃s

(θ
′
)− LDs

(θ
′
)
)
≈ max

θ′∈Nγ,ρ
s,θ

LD̃s
(θ

′
)− LDs

(θ) + γ
′

(35)

≈
2nd Taylor

LD̃s
(θ)− LDs

(θ) + ρ′∥∇θLD̃s
(θ)∥2 + max

θ′∈Nγ,ρ
s,θ

1

2
θ
′⊤HD̃s

θ
′

(36)

=
(
LD̃s

(θ)− LDs
(θ)
)
+ ρ′∥∇θLD̃s

(θ)∥2 + γmax
i

λD̃s
i /λDs

i (37)

B.3 DISCUSSION ON HESSIAN MATRIX AND GRADIENT VARIANCE

Hessian Matching This section first discusses how the Hessian matrix matching between two
different datasets could be substituted by the gradient variance matching for the respective datasets.
It should be noted that we follow the motivation and derivation of Rame et al. (2022), and this
section just re-formalize the derivations based on our notations. gi is a per-sample gradient for i-th
sample; and GD = {gi}|D|

i=1 is a set of per-sample gradient for xi ∈ D. Accordingly, the variance
of GD, which we denote as Var(GD), is calculated as Var(GD) = 1

|D|−1

∑|D|
i=1

(
gi− ḡ

)2
. We first

revisit the Eq. 37, which is our intermediate objective as follows:(
LD̃s

(θ)− LDs
(θ)
)
+ ρ′∥∇θLD̃s

(θ)∥2 + γmax
i

λD̃s
i /λDs

i (38)

The last term of Eq. 38, max
i

λD̃s
i /λDs

i , refers to the maximum eigenvalue ratio of the Hessian

matrices between two different datasets, D̃s and Ds. This ratio is minimized when Hessian matrices
of D̃s and Ds becomes equivalent. Then, max

i
λD̃s
i /λDs

i is approximated to the hessian matrix

matching between D̃s and Ds as ∥HD̃s
− HDs

∥2. Computing the full Hessian matrix in over-
parameterized networks is computationally challenging. Therefore, we express the formula using
the diagonalized Hessian matrix, denoted as ĤDs , which results in ∥ĤD̃s

− ĤDs∥2.
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Let the Fisher Information Matrix (Rame et al., 2022) as F =∑n
i=1 Eŷ∼Pθ(·|xi)

[
∇θ log pθ(ŷ|xi)∇θ log pθ(ŷ|xi)

⊤], where pθ(·|xi) is the density of fθ on
a input instance x. Fisher Information Matrix (FIM) approximates the Hessian H with theoretically
probably bounded errors under mild assumptions Schraudolph (2002). Then, diagonalized Hessian
matrix matching between D̃s and Ds, ∥ĤD̃s

− ĤDs∥2 could be replaced by ∥F̂D̃s
− F̂Ds∥2,

where F̂ also denotes the diagonalized version of F . Empirically, F̂ is equivalent to the gradient
variance of the trained model, fθ. This finally confirms the validation of our objective, gradient
variance difference between D̃s and Ds as ∥Var(GD̃s

)−Var(GDs)∥2. Table 2 on the main paper of
Rame et al. (2022) empirically supports that the similarity between Hessian diagonals and gradient
variances is over 99.99%.

Loss Matching Matching the gradient variances for all parameters of our model, fθ, incurs sig-
nificant computational overhead. In this study, we restrict the gradient variance matching to a subset
of entire parameters, specificall y selecting the classifier parameters. In this section, we demonstrate
that by matching gradient variances of two different datasets based on the classifier parameters, it
inherently achieve the loss matching across those datasets.

For simplicity in notation, we refer an arbitrary domain index as e. Let xi
e represent the i-th sample

and yie be its corresponding target class label. We denote zie ∈ Rd as the features for this i-th
sample from domain e. The associated classifier layer W is characterized by weights {wk}dk=1 and
bias b. First, we assume the mean squared error as our loss function for our analysis. For the i-th
sample, the gradient of the loss with respect to b is given by ∇bℓ(fθ(x

i
e), y

i
e) = (fθ(x

i
e) − yie).

Hence, the gradient variance based on the parameter b for domain e is given by: Var(Gb
De

) =
1
ne

∑ne

i=1(fθ(x
i
e) − yie)

2, which directly aligns with the mean squared error (MSE) between the
predictions and the target labels in domain e. Considering our objective, ∥Var(GD̃s

)−Var(GDs
)∥2,

the gradient variance matching on b could be recognized as mean squared error loss matching, which
is ∥ 1

|D̃s|

∑
(xi,yi)∈D̃s

(fθ(x
i)− yi)2 − 1

|Ds|
∑

(xj ,yj)∈Ds
(fθ(x

j)− yj)2∥2.

Analysis on the remaining term We also investigate the gradient variance matching based on
{wk}dk=1 ∈ W , which are remaining part of the classifier parameter W . The gradients with respect
to the wk is derived as∇wk

ℓ(yie, ŷ
i
e) = (ŷie − yie)z

i,k
e . Thus, the uncentered gradient variance in wk

for domain e is: Var(Gwk

De
) = 1

ne

∑ne

i=1

(
(ŷie − yie)z

i,k
e

)2
. Different from the case of b, Var(Gwk

De
)

adds a weight zi,ke on the mean squared error. As zi,ke act as a weight, gradient variance matching
on wk still learns toward matching the MSE loss between two different datasets.
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C ALGORITHM OF UDIM

Here, we present the algorithm of UDIM as follows.

Algorithm 1: Training algorithm of UDIM w/ SAM
Input: Source dataset Ds; perturbation threshold for model parameter θ and data, ρ′ and ρx;

learning rate η; warmup ratio for source domain flatness, p; number of total training
iterations, N ; Other hyperpameters.

Output: Trained model fθ(x)
for t = 1, ..., N/p do

Warmup fθ(x) with SAM optimization as Eq. 1
end
for t = N/p, ..., N do

Define DB = {(xi, yi)}|B|
i=1 i.i.d. sampled from Ds

Make D̃B = {(x̃i, yi)}|B|
i=1, with x̃i for all i as x̃i = xi + ρx

∇xi

(
ℓ(x,θt)+ρ′∥∇θtℓ(x,θt)∥2

)∥∥∇xi

(
ℓ(x,θt)+ρ′∥∇θtℓ(x,θt)∥2

)∥∥
2

Update fθ(x) by θt+1 ← θt − η∇θt

(
max

∥ϵ∥2≤ρ
LDB

(θt + ϵ) + ρ′∥∇θtLD̃B
(θt)∥2 +

∥Var(GD̃B
)− Var(GDB

)∥2 + λ2∥θt∥2
)

end

We represent the algorithm of UDIM with SAM as a default setting. It should be noted that our
method can be orthogonally utilized with other sharpness-based optimization methods.

D EXPERIMENT

D.1 IMPLEMENTATION DETAILS

Dataset Explanation

• PACS (Li et al., 2017) comprises of four domains, which are photos, arts, cartoons and
sketches. This dataset contains 9,991 images. It consists of 7 classes.

• OfficeHome (Venkateswara et al., 2017) includes four domains, which are art, clipart, prod-
uct and real. This dataset contains 15,588 images. It consists of 65 classes.

• DomainNet (Peng et al., 2019) consists of six domains, which are clipart, infograph, paint-
ing, quickdraw, real and sketch. This dataset contains 586,575 images. It consists of 345
classes.

• CIFAR-10-C (Hendrycks & Dietterich, 2019) has been utilized to evaluate the robustness
of a trained classifier. Images are corrupted from CIFAR10 (Krizhevsky et al., 2009) test
dataset under 5 levels of severity. Corruption types include, brightness, contrast, defocus-
blur, elastic-transform, fog, frost, gaussian-blur, gaussian-noise, glass-blur, impulse-noise,
jpeg-compression, motion-blur, pixelate, saturate, shot-noise, snow, spatter, speckle-noise,
zoom-blur total of 19 types.

Network Architecture and Optimization We use ResNet-18 (He et al., 2016) for CIFAR-10-C
and ResNet-50 (He et al., 2016) for other datasets pretrained on ImageNet (Deng et al., 2009) and use
Adam (Kingma & Ba, 2014) optimizer basically. learning rate is set as 3 × 10−5 following Wang
et al. (2023). For calculating the gradient related materials, e.g. Hessian, we utilize BackPACK
(Dangel et al., 2020) package.

Experimental settings For PACS and OfficeHome, we trained for total of 5,000 iterations. For
DomainNet, we trained for 15,000 iterations. For CIFAR-10, since it usually trains for 100 epochs,
we translate it to iterations, which becomes total of 781×100 = 78, 100 iterations. Unless specified,
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we use batch size as 32 for PACS, OfficeHome, and DomainNet and 64 for CIFAR-10-C. For other
hyperparameters, we follow the experiment settings of Wang et al. (2023) unless specified. Although
our method mainly focuses on the domain generalization, our concept could be also effectively
utilized for domain adaptation Csurka (2017) and open-set domain adaptation Jang et al. (2022).

Hyperparameter setting of UDIM The main hyperparameters of UDIM is ρ, ρ
′
, λ1 and ρx.

Throughout all experiments, we set ρ=0.05 without any hyperparameter tuning. For ρ
′
, we used

values [0.01, 0.025, 0.05], and in most experiments, the value 0.05 consistently showed good per-
formance. It should be noted that a warm-up using the SAM loss is required before the full UDIM
optimization to ensure that ρ

′
=0.05 can be utilized validly. For both λ1 and ρx, we used values in the

range [1,10] and reported the best performances observed among these results. Our methodology
applies perturbations to each instance of the original source domain dataset, effectively doubling the
number of unique instances in a single batch compared to experiments for the baselinse. As a result,
we utilized half the batch size of other baselines.

Evaluation Detail For reporting the model performance, model selection criterion is important.
We get the test performance whose accuracy for source validation dataset is best. For PACS and
OfficeHome, we evaluated every 100 iterations and for DomainNet, we evaluated every 1,000 it-
erations for Leave-One-Out Source Domain Generalization and every 5,000 iterations for Single
Source Domain Generalization.

D.2 BASELINE DESCRIPTION

In this paragraph, we explain baselines that we used for comparison. Specifically, we compare our
method with (1) methods whose objectives are mainly related to Leave-One Out Source Domain
Generalization, (2) methods which are mainly modeled for Single Source Domain Generalization,
and (3) sharpness-aware minimization related methods, as we reported in tables repeatedly.

IRM (Arjovsky et al., 2019) tries to learn a data representation such that the optimal classifier
matches for all training distributions. Specifically, it minimizes the empirical risk and the regular-
ization term, the multiplication of samples’ gradients, to motivate the invariance of the predictor.

GroupDRO (Sagawa et al., 2019) minimizes the loss by giving different weight to each domain.
Weight term for each domain is proportional to the domain’s current loss.

OrgMixup (Zhang et al., 2018) represents the naive mixup technique which is generally utilized in
machine learning community to boost generalization.

Mixup (Yan et al., 2020) is a mixup among domains.

Cutmix (Yun et al., 2019) is another skill which is widely used in machine learning community to
boost generalization. Specifically, it mixes up parts of inputs randomly by pixel-wise.

Mixstyle (Zhou et al., 2021) mix up the statistics (specifically, mean and standard deviation) of the
feature. The mixed feature statistics are applied to the style-normalized input. We did not consider
the domain label.

MTL (Blanchard et al., 2021) considers the exponential moving average (EMA) of features.

MLDG (Li et al., 2018a) is a meta learning based method for domain generalization. Specifically, it
simulates the domain shift between train and test during training procedure by synthesizing virtual
testing domains within each mini-batch. Then it optimizes meta loss using the synthesized dataset.

MMD (Li et al., 2018b) minimizes the discrepancy of feature distributions in a every domain pair-
wise manner, while minimizing the empirical risk for source domains.

CORAL (Sun & Saenko, 2016) is similar to MMD. However, while MMD employs the gaussian
kernel to measure the feature discrepancy, CORAL aligns the second-order statistics between dif-
ferent distributions with a nonlinear transformation. This alignment is achieved by matching the
correlations of layer activations in deep neural networks.

SagNet (Nam et al., 2021) disentangles style features from class categories to prevent bias. Specif-
ically, it makes two networks, content network and style network, and trains both networks to be
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invariant to other counterpart by giving randomized features (updating the content network with
randomized styled features and vice versa).

ARM (Zhang et al., 2021) represents adaptive risk minimization. Specifically, it makes an adaptive
risk representing context.

DANN represents Domain Adversarial Neural Networks, and it iteratively trains a discriminator
which discriminates domain and a featurizer to learn a feature which becomes invariant to domain
information.

CDANN is class conditional version of DANN.

VREx (Krueger et al., 2021) controls the discrepancy between domains by minimizing the variance
of loss between domains.

RSC (Huang et al., 2020) challenges the dominant features of training domain (by masking some
specific percentage of dominant gradient), so it can focus on label-related domain invariant features.

Fishr (Rame et al., 2022) approximates the hessian as the variance of gradient matrix, and they align
the gradient variance of each domain.

M-ADA (Qiao et al., 2020a) perturbs input data to simulate the unseen domain data, yet with ad-
equate regularization not to make the data be too far from the original one. The adversarial per-
turbation direction is affected by the wasserstein autoencoder. Note that this method is specifically
designed for Single source domain generalization.

LTD (Wang et al., 2021a) perturbs source domain data with augmentation network, maximize the
mutual information between the original feature and the perturbed feature so that the perturbed
feature is not too far from the original feature (with contrastive loss), and maximize likelihood of
the original feature. Note that this method is also specifically designed for Single source domain
generalization.

SAM (Foret et al., 2020) is an optimization technique to consider the sharpness of loss surface. It
first perturbs parameter to its worst direction, gets gradient and update the calculated gradient at the
original parameter point.

SAGM (Wang et al., 2023) minimizes an original loss, the corresponding perturbed loss, and the
gap between them. This optimization aims to identify a minima that is both flat and possesses a
sufficiently low loss value. Interpreting the given formula, this optimization inherently regularizes
the gradient alignment between the original loss and the perturbed loss.

GAM (Zhang et al., 2023b) introduces first-order flatness, which minimizes a maximal gradient
norm within a perturbation radius, to regularize a stronger flatness than SAM. Accordingly, GAM
seeks minima with uniformly flat curvature across all directions.

RIDG (Chen et al., 2023b) presents a new approach in deep neural networks focusing on decision-
making in the classifier layer, diverging from the traditional emphasis on features. It introduces a
’rationale matrix’, derived from the relationship between features and weights, to guide decisions
for each input. A novel regularization term is proposed to align each sample’s rationale with the
class’s mean, enhancing stability across samples and domains.

ITTA (Chen et al., 2023a) proposes an Improved Test-Time Adaptation (ITTA) method for domain
generalization. ITTA uses a learnable consistency loss for the TTT task to better align with the
main prediction task and introduces adaptive parameters in the model, recommending updates solely
during the test phase. This approach aims to address the issues of auxiliary task selection and
parameter updating in test-time training.

D.3 ABLATION

Figure 4 of the main paper presents the ablation results of UDIM, which were carried out by replac-
ing a subpart of the UDIM’s objective with alternative candidates and subsequently assessing the
performances. This section enumerates enumerates each ablation candidate and its implementation.
We conduct various ablations: ’SourceOpt’ represents the optimization method for Ds, ’Perturb’
indicates the perturbation method utilized to emulate unknown domains, and ’PerturbOpt’ indicates
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the optimization for the perturbed dataset D̃s. It should be noted that each ablation means that only
the specific part is substituted, while keeping the other parts of UDIM unchanged.

SourceOpt The optimization for the source domain dataset in UDIM is originally based on the
SAM loss, which is max∥ϵ∥2≤ρ LDs

(θ + ϵ). To verify the significance of flatness modeling, we
replaced the original optimization with simple ERM, which we refer to as the ERM ablation.

Perturb The perturbation process of UDIM is conducted based on Eq. 11. We substituted the
perturbation method in Eq. 11 with traditional adversarial attack techniques, which are the cases
of FGSM (Goodfellow et al., 2014) and PGD (Madry et al., 2017), to compare their performance
outcomes.

PerturbOpt Lastly, to observe the ablation for inconsistency minimization between the perturbed
domain dataset D̃s and Ds, we replaced the optimization in Eq. 10 with both ERM and SAM-based
optimizations. Each case in the PerturbOpt ablation is denoted as ERM or SAM.

D.4 ADDITIONAL RESULTS

In this section, we report more results that we did not report in the main paper due to the space issue.

Table 4 shows the model performance of total baselines (At the table 3 of the main paper, there are
only the model performance of some baselines). As we can see in the table, our method, UDIM, con-
sistently improves SAM-based optimization variants and show best performances for each column.
We mark - for training failure case (when the model performance is near 1%).

Table 4: Test accuracy for PACS. For Leave-One-Out Source Domain Generalization, each col-
umn represents test domain, and train domain for Single Source Domain Generalization. ∗ denotes
performances are from its original paper considering LOODG. For SDG scenario, we generated the
experiment results for all baselines. Bold indicates the best case of each column or improved per-
formances when combined with the respective sharpness-based optimizers.

Leave-One-Out Source Domain Generalization Single Source Domain Generalization
Method Art Cartoon Photo Sketch Avg Art Cartoon Photo Sketch Avg

ERM 86.9±2.3 79.5±1.5 96.6±0.5 78.2±4.1 85.3 79.9±0.9 79.9±0.8 48.1±5.8 59.6±1.1 66.9
IRM∗ 85.0∗±1.6 77.6∗±0.9 96.7∗±0.3 78.5∗±2.6 84.4∗ 73.3±1.5 77.8±2.3 46.9±0.8 49.7±3.0 61.9
GroupDRO 84.8±2.2 79.4±1.2 97.3±0.3 75.8±1.0 84.3 79.0±0.5 79.0±0.6 42.0±2.9 60.8±3.9 65.2
OrgMixup 87.7±0.3 77.4±1.3 97.6±0.3 76.3±0.9 84.8 74.5±1.1 79.8±0.4 46.8±2.1 55.5±1.9 64.1
Mixup 86.9±1.3 78.2±0.7 97.8±0.4 73.7±2.9 84.2 77.4±1.4 80.0±1.2 47.3±1.6 58.2±1.2 65.7
CutMix 80.5±0.7 75.7±1.4 97.0±0.5 74.8±1.7 82.0 71.1±0.5 76.4±3.1 37.7±0.3 50.4±4.0 58.9
Mixstyle 84.4±2.3 80.4±0.6 95.6±0.1 80.5±1.1 85.2 78.1±2.8 78.8±1.1 56.1±3.9 54.7±2.9 66.9
MTL 85.4±2.2 78.8±2.2 96.5±0.2 74.4±2.0 83.8 76.7±1.2 78.7±1.7 44.7±2.0 59.5±1.4 64.9
MLDG 87.7±0.6 77.5±0.7 96.6±0.6 75.3±1.9 84.3 - - - - -
MMD∗ 84.5∗±0.6 79.7∗±0.7 97.5∗±0.4 78.1∗±1.3 85.0∗ 75.4±1.1 80.1±0.5 45.2±1.2 58.2±0.6 64.7
CORAL∗ 87.7∗±0.6 79.2∗±1.1 97.6∗±0.0 79.4∗±0.7 86.0∗ 76.3±0.8 79.2±2.0 45.9±1.7 57.0±1.4 64.6
SagNet 87.1±1.1 78.0±1.9 96.8±0.2 78.4±1.4 85.1 77.4±0.0 78.9±1.8 47.6±2.4 56.4±4.0 65.1
ARM 86.4±0.1 78.8±0.6 96.1±0.1 75.1±3.3 84.1 76.2±0.5 75.5±4.0 45.2±5.7 61.9±2.0 64.7
DANN∗ 85.9∗±0.5 79.9∗±1.4 97.6∗±0.2 75.2∗±2.8 84.6∗ 79.0±1.4 76.5±2.0 48.7±2.1 57.9±4.7 65.5
CDANN∗ 84.0∗±0.9 78.5∗±1.5 97.0∗±0.4 71.8∗±3.9 82.8∗ 78.5±1.5 78.7±2.0 48.3±3.1 56.9±2.2 65.6
VREx 87.2±0.5 77.8±0.8 96.8±0.3 75.2±3.4 84.3 75.3±2.1 80.2±0.4 44.9±2.8 56.8±2.6 64.3
RSC 81.0±0.7 77.6±1.0 95.3±0.8 75.0±1.4 82.2 68.9±2.3 70.6±3.6 41.1±3.1 45.9±3.1 56.6
Fishr∗ 88.4∗±0.2 78.7∗±0.7 97.0∗±0.1 77.8∗±2.0 85.5∗ 75.9±1.7 81.1±0.7 46.9±0.7 57.2±4.4 65.3
RIDG 86.3±1.1 81.0±1.0 97.4±0.7 77.5±2.5 85.5 76.2±1.4 80.0±1.8 48.5±2.8 54.8±2.4 64.9
ITTA 87.9±1.4 78.6±2.7 96.2±0.2 80.7±2.2 85.8 78.4±1.5 79.8±1.3 56.5±3.7 60.7±0.9 68.8

M-ADA 85.5±0.7 80.7±1.5 97.2±0.5 78.4±1.4 85.4 78.0±1.1 79.5±1.2 47.1±0.4 55.7±0.5 65.1
LTD 85.7±1.9 79.9±0.9 96.9±0.5 83.3±0.5 86.4 76.8±0.7 82.5±0.4 56.2±2.5 53.6±1.4 67.3

SAM 86.8±0.6 79.6±1.4 96.8±0.1 80.2±0.7 85.9 77.7±1.1 80.5±0.6 46.7±1.1 54.2±1.5 64.8
UDIM w/ SAM 88.5±0.1 86.1±0.1 97.3±0.1 82.7±0.1 88.7 81.5±0.1 85.3±0.4 67.4±0.8 64.6±1.7 74.7
SAGM 85.3±2.5 80.9±1.1 97.1±0.4 77.8±0.5 85.3 78.9±1.2 79.8±1.0 44.7±1.8 55.6±1.1 64.8
UDIM w/ SAGM 88.9±0.2 86.2±0.3 97.4±0.4 79.5±0.8 88.0 81.6±0.3 84.8±1.2 68.1±0.8 63.3±0.9 74.5
GAM 85.5±0.6 81.1±1.0 96.4±0.2 81.0±1.7 86.0 79.1±1.3 79.7±0.9 46.3±0.6 56.6±1.1 65.4
UDIM w/ GAM 87.1±0.9 86.3±0.4 97.2±0.1 81.8±1.1 88.1 82.4±0.9 84.2±0.4 68.8±0.8 64.0±0.7 74.9

Table 5 and 7 shows the model performances for OfficeHome (Venkateswara et al., 2017) and Do-
mainNet (Peng et al., 2019) dataset, respectively. Similar to the above tables, UDIM shows per-
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Table 5: Results on OfficeHome dataset. ∗ represents we got the results from Wang et al. (2023)
and ′ from Rame et al. (2022) considering Leave-One-Out Source Domain Generalization. For
Single Source Domain Generalization case, we report the model performances generated under our
experiment setting.

Leave-One-Out Source Domain Generalization Single Source Domain Generalization
Method Art Clipart Product Real World Avg Art Clipart Product Real World Avg

ERM 61.4±1.0 53.5±0.2 75.9±0.2 77.1±0.2 67.0 55.6±0.6 52.8±1.6 50.3±1.1 59.4±0.3 54.5
IRM∗ 61.8∗±1.0 52.3∗±1.0 75.2∗±0.8 77.2∗±1.1 66.6∗ 54.9±0.3 53.2±0.6 48.6±0.7 59.2±0.1 54.0
GroupDRO 61.3±2.0 53.3±0.4 75.4±0.3 76.0±1.0 66.5 55.1±0.2 52.0±0.5 50.3±1.1 59.3±0.3 54.2
OrgMixup 63.7±1.1 55.4±0.1 77.1±0.2 78.9±0.6 68.8 56.0±1.1 54.4±1.3 50.4±0.4 61.0±0.7 55.5
Mixup 64.1±0.6 54.9±0.7 76.6±0.4 78.7±0.5 68.6 55.5±0.6 54.1±1.1 49.4±1.7 59.4±0.6 54.6
CutMix 63.2±0.3 52.1±1.7 77.2±0.8 78.1±0.6 67.7 53.5±0.8 52.2±1.2 47.7±1.7 60.2±0.4 53.4
Mixstyle∗ 51.1∗±0.3 53.2∗±0.4 68.2∗±0.7 69.2∗±0.6 60.4 44.3±0.5 29.8±1.2 33.6±0.5 48.5±0.9 39.0
MTL 60.1±0.5 52.0±0.3 75.7±0.3 77.2±0.4 66.3 55.3±0.3 53.3±0.4 49.0±0.3 60.4±0.1 54.5
MLDG∗ 63.7∗±0.3 54.5∗±0.6 75.9∗±0.4 78.6∗±0.1 68.2∗ - - - - -
MMD∗ 63.0∗±0.1 53.7∗±0.9 76.1∗±0.3 78.1∗±0.5 67.7∗ 55.1±0.2 52.0±0.5 50.3±1.1 59.3±0.3 54.2
CORAL 64.1±0.5 54.5±1.7 76.2±0.4 77.8±0.5 68.2 55.6±0.6 52.8±1.6 50.3±1.1 59.4±0.3 54.5
SagNet 62.3±1.1 51.7±0.3 75.4±1.0 78.1±0.2 66.9 56.9±1.2 53.4±2.1 50.8±0.3 61.2±0.8 55.6
ARM 59.9±0.6 51.8±0.5 73.3±0.5 75.7±0.8 65.2 55.0±0.1 51.6±1.1 47.3±0.8 59.3±0.7 53.3
DANN∗ 59.9∗±1.3 53.0∗±0.3 73.6∗±0.7 76.9∗±0.5 65.9∗ 55.2±0.8 49.3±1.5 48.4±1.5 58.4±0.2 52.8
CDANN∗ 61.5∗±1.4 50.4∗±2.4 74.4∗±0.9 76.6∗±0.8 65.7∗ 55.2±0.7 49.9±1.4 47.6±1.3 58.6±0.5 52.8
VREx 61.4±1.0 52.2±0.2 76.1±0.6 77.6±0.9 66.8 55.5±0.6 52.6±0.2 49.1±1.0 59.3±0.6 54.1
RSC - - - - - - - - - -
Fishr

′
62.4±0.5 54.4±0.4 76.2±0.5 78.3±0.1 67.8 55.1±0.4 51.2±0.1 49.2±1.0 59.9±1.4 53.9

RIDG 63.6±0.7 55.0±0.9 76.0±0.8 77.5±0.7 68.0 56.8±0.5 55.4±0.7 50.5±0.3 60.9±0.1 55.9
ITTA 61.8±0.9 57.0±1.0 74.3±0.3 77.3±0.3 67.6 56.0±0.4 51.5±0.8 50.5±0.6 61.6±0.4 54.9

SAM 62.2±0.7 55.9±0.1 77.0±0.9 78.8±0.6 68.5 56.9±0.4 53.8±1.1 50.9±0.7 61.5±0.8 55.8
UDIM (w/ SAM) 63.5±1.3 58.6±0.4 76.9±0.6 79.1±0.3 69.5 58.1±0.6 55.0±0.9 53.8±0.1 64.3±0.2 57.8
SAGM 63.1±2.1 56.2±0.4 77.3±0.2 78.4±0.4 68.8 57.7±0.3 54.8±1.0 51.5±1.2 61.4±0.1 56.3
UDIM (w/ SAGM) 64.4±0.3 57.3±0.5 77.1±0.4 79.1±0.3 69.5 58.5±0.4 55.7±0.6 54.5±0.1 64.5±0.4 58.3
GAM 64.0±0.5 58.6±1.2 77.5±0.1 79.3±0.2 69.8 59.4±0.6 56.1±0.9 53.3±0.6 63.4±0.2 58.1
UDIM (w/ GAM) 64.2±0.3 57.4±0.9 77.5±0.1 79.3±0.3 69.6 58.7±0.3 55.7±0.0 53.6±0.4 64.4±0.0 58.1

Table 6: Results on DomainNet datasets - Leave-One-Out (Multi) Source Domain Generalization

Method clipart infograph painting quickdraw real sketch Avg

ERM 62.8±0.4 20.2±0.3 50.3±0.3 13.7±0.5 63.7±0.2 52.1±0.5 43.8
IRM 48.5±2.8 15.0±1.5 38.3±4.3 10.9±0.5 48.2±5.2 42.3±3.1 33.9
GroupDRO 47.2±0.5 17.5±0.4 33.8±0.5 9.3±0.3 51.6±0.4 40.1±0.6 33.3
MTL 57.9±0.5 18.5±0.4 46.0±0.1 12.5±0.1 59.5±0.3 49.2±0.1 40.6
MLDG 59.1±0.2 19.1±0.3 45.8±0.7 13.4±0.3 59.6±0.2 50.2±0.4 41.2
MMD 32.1±13.3 11.0±4.6 26.8±11.3 8.7±2.1 32.7±13.8 28.9±11.9 23.4
CORAL 59.2±0.1 19.7±0.2 46.6±0.3 13.4±0.4 59.8±0.2 50.1±0.6 41.5
SagNet 57.7±0.3 19.0±0.2 45.3±0.3 12.7±0.5 58.1±0.5 48.8±0.2 40.3
ARM 49.7±0.3 16.3±0.5 40.9±1.1 9.4±0.1 53.4±0.4 43.5±0.4 35.5
DANN∗ 53.8∗±0.7 17.8∗±0.3 43.5∗±0.3 11.9∗±0.5 56.4∗±0.3 46.7∗±0.5 38.4∗

CDANN∗ 53.4∗±0.4 18.3∗±0.7 44.8∗±0.3 12.9∗±0.2 57.5∗±0.4 46.7∗±0.2 38.9∗

VREx 47.3±3.5 16.0±1.5 35.8±4.6 10.9±0.3 49.6±4.9 42.0±3.0 33.6
RSC 55.0±1.2 18.3±0.5 44.4±0.6 12.2±0.2 55.7±0.7 47.8±0.9 38.9
Fishr∗ 58.2∗±0.5 20.2∗±0.2 47.7∗±0.3 12.7∗±0.2 60.3∗±0.2 50.8∗±0.1 41.7∗

SAM 64.5±0.3 20.7±0.2 50.2±0.1 15.1±0.3 62.6±0.2 52.7±0.3 44.3

UDIM (w/ SAM) 63.5±0.1 21.01±0.1 50.63±0.1 14.76±0.1 62.5±0.1 53.39±0.1 44.3

formance improvement over sharpness-aware baselines, and good performances for each column
consistently.

D.5 ADDITIONAL ANALYSES

In this section, we additionally provide analysis on 1) Comparison with Shui et al. (2022), which
utilzes both 1) data-based perturbation and 2) parameter-based regularization on their own frame-
work. Afterwards, we provide visual inspections on the perturbed domain instances, which are
constructed by Eq 11.
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Table 7: Results on DomainNet datasets - Single Source Domain Generalization

Method clipart infograph painting quickdraw real sketch Avg

ERM 27.5±0.5 26.6±0.1 28.5±0.3 7.1±0.1 28.9±0.4 29.4±0.3 24.7
IRM - - - - - - -
GroupDRO 27.6±0.4 26.6±0.8 28.9±0.3 7.3±0.3 28.7±0.2 29.4±0.7 24.8
OrgMixup 28.3±0.1 27.3±0.1 29.4±0.3 7.7±0.4 30.2±0.2 30.0±0.7 25.5
Mixup 27.5±0.3 26.9±0.8 28.6±0.4 7.0±0.1 28.7±0.2 29.6±0.6 24.7
CutMix 28.0±0.2 26.5±0.2 28.4±0.6 6.4±0.1 29.0±0.3 29.7±0.8 24.6
Mixstyle 18.3±0.8 14.5±0.3 19.6±0.2 5.0±0.1 20.5±1.3 21.3±0.8 16.5
MTL 27.3±0.2 26.6±0.3 28.7±0.1 7.8±0.1 28.2±0.2 28.7±0.6 24.5
MLDG - - - - - - -
MMD 27.6±0.4 26.6±0.7 28.5±0.3 7.4±0.3 28.9±0.3 29.5±0.9 24.8
CORAL 18.1±12.8 17.4±12.3 18.9±13.4 4.8±3.4 19.5±13.8 20.2±14.3 16.5
SagNet 27.6±0.3 25.6±0.5 28.5±0.7 7.3±0.2 28.8±0.5 28.8±0.8 24.4
ARM 17.0±12.0 16.8±11.9 17.7±12.5 4.1±2.9 17.5±12.4 18.8±13.3 15.3
DANN 26.8±0.8 25.2±0.9 28.0±0.4 6.8±0.6 27.6±0.2 28.0±0.2 23.8
CDANN 26.8±0.7 25.8±0.2 27.6±0.2 6.8±0.6 27.6±0.2 28.0±0.2 23.8
VREx 18.6±13.1 17.3±12.3 19.3±13.6 4.7±3.3 19.3±13.7 19.9±14.1 16.5
RSC - - - - - - -
Fishr 30.0±0.3 26.6±0.7 28.9±0.3 7.5±0.7 28.4±0.7 28.9±0.3 24.7

SAM 28.4±0.2 26.9±0.1 29.1±0.4 6.9±0.5 30.0±0.2 29.8±0.7 25.2

UDIM (w/ SAM) 30.0±0.1 23.8±0.4 31.0±0.1 12.6±0.1 30.7±0.2 34.0±0.3 27.0

D.5.1 ANALYTICAL COMPARISON WITH SHUI ET AL. (2022)

UDIM and Shui et al. (2022) share a similar direction, as both methodologies involve 1) generating
virtual samples through distinct data perturbation methods, and 2) implementing their own types of
regularization on these samples.

Shui et al. (2022) introduced novel regularization techniques for the embedding function based on
theoretical analysis. Their approach involves establishing an upper bound on the balanced error
rate in the test environment, which is obtained from the combination of the balanced error rates in
the source environments, the feature-conditional invariance, and the smoothness of the embedding
function. In particular, they focused on minimizing the smoothness term by reducing the Frobenius
norm of the Jacobian matrix with respect to the embedding function. To implement this regulariza-
tion term over unobserved regions, they use virtual samples generated by a linear combination of
samples from each source.

On the other hand, UDIM also introduces an upper bound on the generalization loss in an unknown
domain. This bound includes the SAM loss on the source domain and a region-based loss disparity
between the worst-case domain and the source domain. This disparity is implemented by a gradient
variance-based objective outlined in Eq. 10. The objective involves a perturbed dataset constructed
by perturbing samples, where the direction of perturbation is determined by the inconsistencies
described in Eq. 7.

D.5.2 ANALYTIC COMPARISON WITH DOMAIN AUGMENTATION AND ADVERSARIAL ATTACK

The proposed method, UDIM, involves applying arbitrary perturbation to a given instance to create
a new instance, which is similar to domain augmentation and adversarial attacks. However, UDIM
has the following differences and advantages compared to them.

Comparison with domain augmentation First, we taxonomize domain augmentation based on
its dependency on learning signals such as parameters or loss, dividing it into not-learnable domain
augmentation Zhang et al. (2018); Zhou et al. (2021); Li et al. (2021b) and learnable domain aug-
mentation Zhang et al. (2018); Zhou et al. (2021); Li et al. (2021b). Please note that we briefly cite
the representative methodologies among wide range of augmentation techniques.

While non-learnable domain augmentations are effective in generating new styles and may gener-
alize well to specific types of domains, it does not guarantee generalization across wide range of
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unseen domains, as discussed in the Theorem 3.2. In contrast, UDIM’s data perturbation method
is designed to generate perturbations towards the most vulnerable or worst domain from a param-
eter space perspective, enabling a reduction of the generalization bound in Eq 5, even in scenarios
involving numerous unobserved domains. Additionally, it’s important to note that these domain
augmentation techniques could be applied orthogonally to the UDIM framework, for instance, by
implementing domain augmentation prior to UDIM’s data perturbation.

Learnable augmentations, similar to UDIM, determine its augmentation direction based on the cur-
rent parameter response. However, these methodologies do not link their augmentation with a the-
oretical analysis to assure minimization of the target objective, which is left-hand side of Eq 5 of
our manuscript. UDIM’s data perturbation impacts the generalization bound from a parameter per-
spective as it takes into account a parameter loss curvature information, rather than just a single
parameter point, when determining perturbations.

Comparison with adversarial attack Adversarial attacks also introduce perturbations in the di-
rection most vulnerable to the current parameters, but methodologies like FGSM Goodfellow et al.
(2014) and PGD Madry et al. (2017) do not consider the local parameter curvature in their pertur-
bation process. By integrating perturbations on instances with attention to parameter loss curvature;
and parameter perturbation, we facilitate the modeling of inconsistency in unknown domains, as
described in Eq 3. Having said that, Kim et al. (2023) also utilize worst-case instance selection on
the active learning framework by utilizing the parameter perturbation. In the literature of coreset
selection Feldman (2020), Shin et al. (2023) also utilizes the perturbed parameter region to attain
samples which effectively represent whole dataset.

From a mathematical perspective, UDIM’s data perturbation involves receiving not only gradients
related to the simple cross-entropy loss but also additional gradients concerning the norm of gradient,
as elaborated in Eq 7.

Combination of domain augmentation with SAM optimizer We accordingly report the exper-
imental results of models, which combines various domain augmentation techniques with SAM
optimization in Table 8. We reported the average test accuracy for each domain in each setting.
Applying SAM optimization to data instances of augmented domains led to mixed results: some
methodologies improved, others didn’t, but all still under-performed compared to UDIM. We hy-
pothesize that the observed performance decline in certain augmentations combined with the SAM
optimizer might stem from an unstable learning process. This instability may arise from attempting
to minimize sharpness in the perturbed domain prematurely, before ensuring flatness in the source
domain.

Method Leave-One-Out Source Domain Generalization Single Source Domain Generalization
SAM 85.9% 64.8%

SAM w/ Mixup 84.51% 62.28%

SAM w/ Mixstyle 86.56% 68.59%

SAM w/ Simple Augment Li et al. (2021b) 86.26% 64.97%

SAM w/ advstyle Zhong et al. (2022) 85.28% 61.02%

UDIM 88.7% 74.7%

Table 8: Performance comparison of models using combinations of domain augmentation variants
and SAM optimizer, alongside UDIM model, on the PACS dataset.

D.5.3 VISUAL INSPECTION ON THE PERTURBED DOMAIN

In this section, we aim to illustrate how perturbed instances are created depending on the size of
ρ, which represents the magnitude of data perturbation. Each plot utilizes the PACS dataset and a
model trained under the Single Source Domain Generalization setting.

Figure 6 displays instances perturbed through the original UDIM methodology. As the perturba-
tion size increases, we can observe a gradual distortion of the image’s semantics, highlighting the
importance of selecting an appropriate perturbation size.
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Figure 7 shows the scenario where the data perturbation of the original UDIM method is applied
to the input channel, instead of input pixels. This approach of perturbing the channel over pixels
has the advantage of maintaining the basic shape and line information of the image, ensuring the
preservation of essential visual features.
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Figure 6: Pixel-perturbed domain instances by UDIM model trained on PACS dataset by varying the
perturbation size
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Figure 7: Channel-perturbed domain instances by UDIM model trained on PACS dataset by varying
the perturbation size
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