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Abstract

When deploying machine learning systems to
the wild, it is highly desirable for them to effec-
tively leverage prior knowledge to the unfamil-
iar domain while also firing alarms to anoma-
lous inputs. In order to address these require-
ments, Universal Domain Adaptation (UniDA)
has emerged as a novel research area in com-
puter vision, focusing on achieving both adap-
tation ability and robustness (i.e., the ability
to detect out-of-distribution samples). While
UniDA has led significant progress in computer
vision, its application on language input still
needs to be explored despite its feasibility. In
this paper, we propose a comprehensive bench-
mark for natural language that offers thorough
viewpoints of the model’s generalizability and
robustness. Our benchmark encompasses mul-
tiple datasets with varying difficulty levels and
characteristics, including temporal shifts and
diverse domains. On top of our testbed, we val-
idate existing UniDA methods from computer
vision and state-of-the-art domain adaptation
techniques from NLP literature, yielding valu-
able findings: We observe that UniDA meth-
ods originally designed for image input can be
effectively transferred to the natural language
domain while also underscoring the effect of
adaptation difficulty in determining the model’s
performance.

1 Introduction

Deep learning models demonstrate satisfactory per-
formance when tested on data from the training
distribution. However, real-world inputs encounter
novel data ceaselessly that deviate from the trained
distribution, commonly known as distributional
shift. When confronted with such inputs, machine
learning models frequently struggle to differentiate
them from regular input. Consequently, they face
challenges in adapting their previously acquired
knowledge to the new data distribution, resulting
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Figure 1: The model trained with formal language
(source domain) will likely face spoken language (target
domain) in the real world. The model is expected to
properly handle such transferable input despite the dis-
tributional shift. (middle) At the same time, the model
should discern unprocessable inputs (bottom) from the
target domain.

in a significant drop in performance (Ribeiro et al.,
2020; Miller et al., 2020; Hendrycks et al., 2020).
The aforementioned phenomenon represents a long-
standing challenge within the machine learning
community, wherein even recent cutting-edge lan-
guage models (OpenAI, 2023; Touvron et al., 2023;
Chowdhery et al., 2022; Brown et al., 2020) do not
serve as an exception to this predicament (Wang
et al., 2023).

In response to these challenges, existing lit-
erature proposes two distinct approaches. The
first approach, known as Domain Adaptation (DA)
(Blitzer et al., 2006; Ganin et al., 2016b; Karouzos
et al., 2021; Wu and Shi, 2022), endeavors to estab-
lish alignment between a new set of data from an
unknown distribution and the model’s prior knowl-



edge distribution. The objective is to enhance the
model’s generalization capability and reduce per-
formance drop springing from the distributional
shift. In parallel, a distinct line of work, referred to
as out-of-distribution (OOD) detection (Aggarwal,
2017; Hendrycks and Gimpel, 2017; Hendrycks
et al., 2019; Cho et al., 2021), focuses on discern-
ing inputs originating from dissimilar distributions.
They opt to circumvent potential risks or disrup-
tions arising from shifted inputs, thereby enriching
system robustness and resilience.

While both approaches offer unique advantages
addressing specific distributional shifts, integrating
their merits could substantially enhance robustness.
In pursuit of this objective, a novel field called Uni-
versal Domain Adaptation (UniDA) (You et al.,
2019) has emerged, aiming to harness the syner-
gies of both OOD detection and DA when con-
fronted with distributional shifts. UniDA leverages
the best of the two worlds and offers comprehen-
sive perspectives that integrate the merits of these
two research areas. The essence of UniDA lies
in measuring the uncertainty of the data from the
shifted distribution precisely. Then, we can en-
hance the model’s transferability by distinguishing
portions of low-uncertainty inputs that can be ad-
equately handled with the current model’s knowl-
edge. Simultaneously, we enrich the robustness
of the model to OOD inputs by discerning the re-
maining samples that cannot be processed normally.
However, distinguishing between these inputs and
properly processing them becomes increasingly
challenging without explicit supervision.

Despite the versatility of UniDA, this topic has
yet to be explored in the Natural Language Process-
ing (NLP) literature. As a cornerstone in enhancing
reliability against distributional shifts in NLP, we
introduce a testbed for evaluating the model’s ro-
bustness in a holistic view. First, we construct vari-
ous adaptation scenarios in NLP, utilizing an array
of thoughtfully selected datasets. To discern the
degree to which our proposed datasets incorporate
the various degree of challenges in UniDA, we de-
fine two novel metrics: Performance Drop Rate
(PDR) and Distinction Difficulty Score (DDS).
Using these metrics, We verify that our testbed
captures a broad spectrum of distributional shifts.
Finally, based on the suggested setting, we sys-
tematically compare several UniDA methods in-
herently designed for the task, against heuristic
combinations of previous approaches for the parts

of the problem, i.e., OOD detection and DA.
Our empirical results show that UniDA meth-

ods are fully transferable in the NLP domain and
can robustly respond to various degrees of shift.
Moreover, we find out that the adaptation difficulty
notably affects the performance of the methods. In
certain circumstances, DA methods display compa-
rable or even better performance. We release our
dataset, encouraging future research on UniDA in
NLP to foster the development of more resilient
and domain-specific strategies.2

2 Universal Domain Adaptation

2.1 Problem Formulation
Distributional shift refers to a situation where the
joint distribution P estimated from the training
dataset fails to adequately represent the wide range
of diverse and complex test inputs. More formally,
a distributional shift arises when the test input xtest
originates from a distant distribution Q, which is
not effectively encompassed by the current trained
distribution P .

One of the most prevalent research areas address-
ing this distributional shift includes OOD detection
and DA. OOD detection aims to strictly detect all
inputs from Q to enhance the model’s reliability.
Although distribution Q demonstrates a discernibly
different distribution from the distribution P , the
trained model can still transfer a subset of instances
from Q, overcoming the inherent discrepancy be-
tween P and Q. This particular capability serves
as a fundamental motivation underlying the pursuit
of DA. UniDA endeavours to integrate the merits
of both fields, thereby enhancing both the gener-
alizability and reliability of the model. Specifi-
cally, let us divide the target distribution Q into dis-
joint subsets H , which share the same label space
with source distribution P and its complement I
(Q = H ∪ I). The objective of UniDA is to enrich
the robustness of the model by flexibly transferring
existing knowledge to transferable samples from
H while firing alarms to unknown samples from I .

2.2 Challenges in UniDA
UniDA models should be capable of accurately
capturing the underlying reasons behind the shift,
thereby enabling the discrimination between trans-
ferable samples and unknown samples. Among
the diverse categories of causes, the domain gap

2The dataset is available at https://github.com/
heyjoonkim/universal_domain_adaptation_for_nlp

https://github.com/heyjoonkim/universal_domain_adaptation_for_nlp
https://github.com/heyjoonkim/universal_domain_adaptation_for_nlp


and the category gap (You et al., 2019) emerge as
pivotal factors, each exerting a substantial impact
on the overall complexity of the UniDA problem.
While these concepts have previously been defined
in a rather vague manner, we deduced the necessity
for a more explicit definition. Thus, we set forth to
redefine the concepts of domain and category gap
more explicitly.

Domain gap refers to the performance drop when
a model trained on P fails to correctly process
transferable inputs due to the fundamental discrep-
ancy between P and H , i.e., a domain shift. A
dataset with a higher domain gap amplifies the
problem’s difficulty as the trained model becomes
more susceptible to misaligning transferable sam-
ples.

A category shift, characterized by the disparity in
the class sets considered by P and I , causes a cate-
gory gap. Category gap represents the performance
drop that arises for inputs from I , which cannot be
processed properly due to differing class sets be-
tween P and I , which are erroneously handled. A
larger category gap makes distinguishing unknown
samples from transferable samples harder, thereby
worsening the robustness of the model.

From the perspective of addressing the domain
gap and category gap, the main goal of UniDA is
to minimize both gaps simultaneously. This aims
to ensure transferable samples properly align with
the source domain for adequate processing, while
handling unknown samples as unprocessable excep-
tions.

3 Testbed Design

The primary objective of our research is to con-
struct a comprehensive benchmark dataset that ef-
fectively captures the viewpoint of UniDA. To ac-
complish our objective, we attempt to create a di-
verse dataset that encompasses a range of difficulty
levels and characteristics, such as domains, senti-
ment, or temporal change. These variations are the
fundamental elements that can significantly influ-
ence the overall performance.

Specifically, we initially select datasets from
multiple practical domains and approximate the
adaptation difficulty by quantifying different shifts
with our newly proposed metrics. In the following
subsections, we provide an in-depth explanation of
our dataset along with the analysis of our bench-
marks.

3.1 Quantifying Different Shifts
As the extent of both domain and category gaps
significantly influences the overall adaptation com-
plexity, it is essential to quantify these gaps when
designing the dataset for evaluation. Unfortunately,
existing literature has not devised a clear-cut and
quantitative measure for assessing domain and cat-
egory gaps. Therefore, we endeavoured to define
measures that can aptly approximate the two types
of gaps.

Performance Drop Rate (PDR) measures the
degree of domain gap by assessing the absolute
difficulty of the dataset itself and the performance
drop caused by the shift from P to H . Specifically,
we fine-tune bert-base-uncased on the source train
set and evaluate its test set accuracy accs from
the same distribution. Leveraging the same model
trained on the source domain, we then measure the
accuracy of the target test set acct. We measure
the performance degradation caused by the distri-
butional shift by measuring accs − acct. Since the
significance of the performance drop may vary de-
pending on the source performance, we normalize
the result with the source performance and mea-
sure the proportion of the performance degradation.
A more significant drop rate indicates a greater
decline in performance, considering the source do-
main performance. Formally, PDR for a source
domain s and a target domain t can be measured as
follows:

PDRs,t = 100× accs − acct
accs

(1)

Distinction Difficulty Score (DDS) is measured
to estimate the difficulty of distinguishing between
H and I , which, in other words, measures the dif-
ficulty of handling the category shift. We utilized
the same model trained on the source domain and
extracted the [CLS] representations of the source
inputs. We estimated the source distribution, as-
suming the extracted representations follow the
multivariate normal distribution. We then extracted
[CLS] representations of target distribution inputs
from the same model and measured the Maha-
lanobis distance between the source distribution.
Using the distance, we measured the Area Under
the ROC Curve (AUC) as a metric for discerning I
and H . AUC values closer to 1 indicate the ease of
discerning unknown inputs from the transferable
inputs. Since we focus on quantifying the difficulty
in distinguishing the two, we subtract the AUC
from 1 to derive our final measure of interest. For



the source domain s, the target domain t, and AUC
as AUCs,t, DDS can be measured as:

DDSs,t = 100× (1− AUCs,t) (2)

3.2 Implementation of Different Shifts
To construct a representative testbed for UniDA, it
is essential to illustrate domain and category shifts.
To exhibit domain shift, we delineated domains
from various perspectives. This involves explicit
factors such as temporal or sentiment and implicit
definitions based on the composition of the class
set. Detailed formation of domains for each dataset
is stipulated in Section 3.3.

To establish category shifts, the source and the
target domain must have a set of common classes C
and a set of their own private classes, C̄s and C̄t, re-
spectively. We followed previous works (You et al.,
2019; Fu et al., 2020) by sorting the class name in
alphabetical order and selecting the first |C| classes
as common, the subsequent |C̄s| as source private,
and the rest as target private classes. The class
splits for each dataset are stated as |C|/|C̄s|/|C̄t|
in the main experiments.

3.3 Dataset Details
We focused on text classification tasks for our ex-
periments. Four datasets were selected from mul-
tiple widely used classification domains in NLP,
such as topic classification, sentiment analysis, and
intent classification. We reformulated the datasets
so that our testbed could cover diverse adaptation
scenarios.

Huffpost News Topic Classification (Huffpost)
(Misra, 2022) contains Huffpost news headlines
spanning from 2012 to 2022. The task is to clas-
sify news categories given the headlines. Using
the temporal information additionally provided, we
split the dataset year-wise from 2012 to 2017, treat-
ing each year as a distinct domain. We selected
the year 2012 as the source domain, with the subse-
quent years assigned as the target domains, creating
5 different levels of temporal shifts.

Multilingual Amazon Reviews Corpus (Ama-
zon) (Keung et al., 2020) includes product reviews
that are commonly used to predict star ratings based
on the review, and additional product information
is provided for each review. We have revised the
task to predict the product information given the
reviews and utilized the star ratings to define senti-
ment domains. Reviews with a star rating of 1 or 2
are grouped as negative sentiment, and those with

Dataset
Huffpost
(2013)

Huffpost
(2014)

Huffpost
(2015)

Huffpost
(2016)

PDR 7.87 20.69 20.47 25.00
DDS 19.67 27.79 25.71 31.19

Dataset
Huffpost
(2017)

CLINC-150 MASSIVE Amazon

PDR 33.62 11.59 36.14 15.45
DDS 31.74 13.45 23.92 36.04

Table 1: PDR and DDS values of each datasets. The
largest value of PDR and DDS is highlighted in bold.

a rating of 4 or 5 are categorized as positive. We
exclude 3-star reviews, considering them neutral.

MASSIVE (FitzGerald et al., 2022) is a hi-
erarchical dataset for intent classification. The
dataset consists of 18 first-level and 60 second-
level classes. Each domain is defined as a set of
classes, including private classes exclusive to a spe-
cific domain and common classes shared across
domains. We divided the common first-level class
into two parts based on second-level classes to sim-
ulate domain discrepancy. The half of the divided
common class represents the source domain while
the other half represents the target domain. We as-
sume that the second-level classes within the same
first-level class share a common feature and thus
can be adapted.

CLINC-150 (Larson et al., 2019) is widely used
for intent classification in OOD detection. The
dataset consists of 150 second-level classes over 10
first level-classes and a single out-of-scope class.
The domain is defined in the same way as MAS-
SIVE.

3.4 Dataset Analysis

In this section, we intend to validate whether our
testbed successfully demonstrates diverse adapta-
tion difficulties, aligning with our original motiva-
tion. We assess adaptation difficulty from domain
and category gap perspectives, each approximated
by PDR and DDS, respectively.

The results of PDR and DDS are reported in Ta-
ble 1. The result shows diverse PDR values ranging
from 7 to 36 points, indicating various degrees of
domain gap across the datasets. MASSIVE mea-
sured the most considerable domain gap, while
Huffpost (2013) demonstrated the most negligi-
ble domain gap among the datasets. Additionally,
our testbed covers a wide range of category gaps,
indicated by the broad spectrum of DDS values.
Specifically, Amazon exhibits a significantly high
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Figure 2: The visualization of adaptation difficulty for
each dataset in terms of domain gap (PDR) and category
gap (DDS). We categorized the dataset into 4 distinct
groups based on the adaptation complexity. Best viewed
in color.

DDS value, representing an extremely challenging
scenario of differentiating the unknown samples
from the transferable samples.

We consolidate the two indicators to measure
the coverage of different adaptation complexity of
our proposed testbed. We visualized the datasets
considering the PDR and DDS; metrics on the re-
spective axes. Figure 2 is the visualization of the
adaptation complexity for each dataset factored
by PDR and DDS. We grouped the datasets into
four distinct clusters based on the plotted distri-
bution. Datasets closer to the lower-left corner,
CLINC-150 and Huffpost (2013), are easy adap-
tation scenarios with minor domain and category
gaps. Datasets plotted in the center, Huffpost (2014,
2015, 2016), presents moderate difficulty. Amazon
suffers from a category gap significantly, while
Huffpost (2017) and MASSIVE demonstrate a no-
table domain gap, yielding high adaptation com-
plexity. The results validate that our testbed em-
bodies a diverse range of adaptation difficulties as
intended.

4 Experimental Setting

4.1 Compared Methods

We compare several domain adaptation methods
on our proposed testbed. We selected two previ-
ous state-of-the-art closed-set Domain Adaptation
(CDA) methods, UDALM (Karouzos et al., 2021)

and AdSPT (Wu and Shi, 2022), under the assump-
tion that all the inputs from the target domain are
transferable without considering unknown classes.
Two previous state-of-the-art UniDA methods were
selected, OVANet (Saito and Saenko, 2021) and
UniOT (Chang et al., 2022), which are fully op-
timized to handle UniDA scenarios in the vision
domain. We also conducted experiments with ad-
ditional baseline methods such as DANN (Ganin
et al., 2016a), UAN (You et al., 2019), and CMU
(Fu et al., 2020). However, the performance was
subpar compared to the selected methods, exhibit-
ing a similar tendency. Hence, we report the ad-
ditional results in Appendix A. For the backbone
of all the methods, we utilized bert-base-uncased
(Devlin et al., 2019) and used the [CLS] represen-
tation as the input feature. Implementation details
are stipulated in Appendix B.

4.2 Thresholding Method

Since CDA methods are not designed to handle
unknown inputs, additional techniques are required
to discern them. A straightforward yet intuitive
approach to detecting unknown inputs is applying
a threshold for the output of the scoring function.
The scoring function reflects the appropriateness
of the input based on the extracted representation.
If the output of the scoring function falls below the
threshold, the instance is classified as unknown. We
sequentially apply thresholding after the adaptation
process.3 Formally, for an input x, categorical pre-
diction ŷ, threshold value w, and a scoring function
fscore, the final prediction is made as:

y(x) =

{
argmax(ŷ), if fscore(x) > w

unknown, otherwise.
(3)

We utilize Maximum Softmax Probability (MSP)
as the scoring function4 (Hendrycks and Gimpel,
2017). Following the OOD detection literature, the
value at the point of 95% from the sorted score
values was selected as the threshold.

3In the case of applying the thresholding first, all the in-
puts from the target domain would be classified as OOD. If all
the target inputs were classified as OOD, the criteria for dis-
cerning transferable and unknown inputs become inherently
unclear. Therefore, we have only considered scenarios where
thresholding is applied after the adaptation.

4In addition to MSP, we have applied various scoring func-
tions such as cosine similarity and Mahalanobis distance, but
using MSP achieved the best performance. Results for other
thresholding methods have been included in the Appendix A.
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4.3 Evaluation Protocol
The goal of UniDA is to properly process the trans-
ferable inputs and detect the unknown inputs simul-
taneously, consequently making both the transfer-
able and the unknown accuracies crucial metrics.
We applied H-score (Fu et al., 2020) as the pri-
mary evaluation metric to integrate both evaluation
metrics. H-score is the harmonic mean between
the accuracy of common class accC and unknown
class accC̄t

, where accC is the accuracy over the
common class set C and accC̄t

is the accuracy pre-
dicting the unknown class. The model with a high
H-score is considered robust in the UniDA setting,
indicating its proficiency in both adaptation (high
accC) and OOD detection (high accC̄t

). Formally,
the H-score can be defined as :

Hscore = 2 ·
accC · accC̄t

accC + accC̄t

(4)

Although the H-score serves as an effective eval-
uation criterion for UniDA, we also report accC
and accC̄t

to provide a comprehensive assessment.
We report the averaged results and standard devia-
tions over four runs for all experiments.

5 Experimental Results

5.1 Overview
We conduct evaluations based on the clusters de-
fined in Section 3.4 and analyze how the results
vary depending on the adaptation complexity. Fig-
ure 3 presents an overview of the H-score results
for the best-performing method from each CDA

Huffpost (2012 → 2013) (3 / 4 / 4)

Method accC accC̄t
H-score

UDALM 52.74 ±2.92 58.55 ±6.03 55.15 ±2.37

AdSPT 55.05 ±2.11 80.66 ±2.99 65.38 ±1.00

OVANet 65.11 ±0.60 24.91 ±6.75 35.64 ±6.70

UniOT 53.76 ±1.10 65.86 ±3.57 59.14 ±1.14

CLINC-150 (4 / 3 / 3)

Method accC accC̄t
H-score

UDALM 74.92 ±6.11 69.91 ±13.98 71.28 ±4.62

AdSPT 3.96 ±2.17 98.69 ±0.36 7.55 ±3.95

OVANet 83.49 ±0.62 31.24 ±1.70 45.45 ±1.88

UniOT 64.14 ±9.14 77.36 ±3.94 69.88 ±6.11

Table 2: Experimental results on CLINC-150 and Huff-
post (2013), which is a relatively easy adaptation sce-
nario. The best method with the highest H-score is in
bold, and the second-best method is underlined.

and UniDA approach: AdSPT representing CDA
and UniOT representing UniDA. Despite an outlier
caused by unstable thresholding in CLINC-150, the
overall trend demonstrates that AdSPT manifests
comparable performance in less complex scenar-
ios, while UniOT exhibits superior performance
towards challenging scenarios. These trends align
with the findings of other methods that are not de-
picted in the figure.

5.2 Detailed Results

Table 2 demonstrates the results of relatively easy
adaptation scenarios. CDA methods demonstrate
performance that is on par with, or even superior
to, UniDA methods. The results appear counter-
intuitive, as CDA methods are designed with-
out considering unknown samples. Specifically,
UDALM outperforms all the UniDA methods in
CLINC-150 and performs comparable or even bet-
ter in Huffpost (2013). AdSPT exhibits the best
performance in Huffpost (2013). However, AdSPT
suffers a significant performance drop in CLINC-
150, as we speculate this result is due to the inherent
instability of the thresholding method. The mis-
guided threshold classifies the majority of the in-
puts as unknown, which leads to a very high accC̄t

,
but significantly reduces the accC . This inconsis-
tency also leads to a high variance of accC̄t

for all
the CDA methods.

In the case of moderate shifts, no particular
method decisively stands out, as presented by Ta-
ble 3. In all cases, AdSPT and UniOT present



Huffpost (2012 → 2014) (3 / 4 / 4)

Method accC accC̄t
H-score

UDALM 29.90 ±1.89 50.00 ±17.49 34.14 ±5.07

AdSPT 29.64 ±4.51 80.03 ±6.09 42.93 ±3.41

OVANet 45.85 ±2.62 33.96 ±6.78 36.02 ±3.95

UniOT 33.49 ±4.79 71.44 ±6.19 45.23 ±3.60

Huffpost (2012 → 2015) (3 / 4 / 4)

Method accC accC̄t
H-score

UDALM 25.15 ±2.60 61.79 ±8.88 35.56 ±3.15

AdSPT 29.08 ±5.39 73.04 ±12.71 40.78 ±3.42

OVANet 43.91 ±2.09 35.70 ±4.41 39.21 ±2.43

UniOT 27.16 ±3.40 75.50 ±2.68 39.82 ±3.39

Huffpost (2012 → 2016) (3 / 4 / 4)

Method accC accC̄t
H-score

UDALM 29.14 ±1.59 60.87 ±6.87 39.28 ±1.44

AdSPT 28.84 ±3.57 82.52 ±4.22 42.55 ±3.27

OVANet 44.30 ±2.89 33.49 ±4.79 38.03 ±3.79

UniOT 33.09 ±3.62 69.27 ±3.83 44.60 ±2.85

Table 3: Experimental results on Huffpost (2014, 2015,
2016), which has a moderate complexity for adaptation.
The best method with the highest H-score is in bold,
and the second-best method is underlined.

the best performance with a marginal difference,
making it inconclusive to determine a superior ap-
proach. Despite the relatively subpar performance,
UDALM and OVANet also exhibit similar results.
Still, it is notable that CDA methods, which are
not inherently optimized for UniDA settings, show
comparable results.

The result of Amazon, in which the category gap
is most prominent, is reported in Table 4. UniDA
methods exhibit substantially superior performance
to CDA methods. In particular, while the difference
in accC is marginal, there exists a substantial gap
of up to 55 points in accC̄t

. As the category gap
intensifies, we observe the decline in the perfor-
mance of CDA methods, which are fundamentally
limited by the inability to handle unknown inputs.

Finally, the results of Huffpost (2017) and MAS-
SIVE, which exhibit a high domain gap, are re-
ported in Table 5. The result indicates that UniDA
methods consistently display superior performance
in most cases. However, the divergence between
the approaches is relatively small compared to
Amazon. UniOT demonstrates the best perfor-
mance in all datasets, with OVANet’s slightly lower
performance. AdSPT demonstrates marginally bet-
ter performance than OVANet in Huffpost (2017),

Amazon (11 / 10 / 10)

Method accC accC̄t
H-score

UDALM 47.69 ±1.47 15.10 ±2.30 22.85 ±2.65

AdSPT 30.26 ±3.52 30.93 ±26.14 27.12 ±11.03

OVANet 44.50 ±0.84 42.49 ±3.95 43.38 ±1.83

UniOT 38.60 ±1.08 70.98 ±7.76 49.90 ±2.08

Table 4: Experimental results on Amazon, which
has a significant influence of category gap. The best
method with the highest H-score are in bold, and the
second-best method is underlined.

MASSIVE (8 / 5 / 5)

Method accC accC̄t
H-score

UDALM 38.33 ±4.88 41.29 ±15.14 39.28 ±9.69

AdSPT 36.78 ±2.65 59.87 ±13.47 45.32 ±6.20

OVANet 59.04 ±0.69 39.28 ±2.14 47.12 ±1.47

UniOT 44.01 ±0.20 79.19 ±3.52 56.52 ±3.49

Huffpost (2012 → 2017) (3 / 4 / 4)

Method accC accC̄t
H-score

UDALM 32.85 ±1.05 43.08 ±6.76 37.08 ±2.82

AdSPT 35.74 ±3.33 53.04 ±16.02 41.36 ±5.04

OVANet 48.37 ±4.12 35.03 ±3.60 40.46 ±2.32

UniOT 31.57 ±1.92 75.85 ±9.63 44.36 ±1.27

Table 5: Experimental results on MASSIVE and Huff-
post (2017), which demonstrates high domain gap. The
best method with the highest H-score is in bold, and
the second-best method is underlined.

but the gap is marginal. Even though CDA methods
pose comparable performance, UniDA methods
demonstrate better overall performance.

5.3 Impact of Threshold Values

The selection of the threshold value considerably
influences the performance of CDA methods. In
order to probe the impact of the threshold values on
the performance, we carry out an analysis whereby
different threshold values are applied to measure
the performance of the methods.

The results are demonstrated in Figure 4. In
cases of low or moderate adaptation complexity,
such as CLINC-150 and Huffpost (2013, 2014,
2015, 2016), CDA methods demonstrate the po-
tential to outperform UniDA methods when pro-
vided an appropriate threshold. However, as the
adaptation complexity intensifies, such as Huffpost
(2017), MASSIVE, and Amazon, UniDA meth-
ods outperform CDA methods regardless of the
selected threshold. These observations align seam-
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Figure 4: H-score performance with different threshold values. Results of UniDA methods are visualized as a
horizontal line for comparison.

lessly with the findings from Section 4.3 that under-
score the proficiency of UniDA methods in manag-
ing challenging adaptation scenarios. Additionally,
it should be noted that determining the optimal
threshold is particularly challenging in the absence
of supervision from the target domain. Therefore,
the best performance should be considered upper-
bound of the CDA methods.

6 Related Work

6.1 Domain Adaptation

The studies in the field of DA in NLP primar-
ily assumes a closed-set environment, which the
source and the target domain share the same la-
bel space. CDA research predominantly concen-
trated on learning domain invariant features (Blitzer
et al., 2006; Pan et al., 2010; Ben-David et al.,
2020; Ganin and Lempitsky, 2015; Du et al., 2020)
for effective adaptation. With the advent of pre-
trained language models (PLMs), CDA methods
have evolved to effectively leverage the capabili-
ties of PLMs. Techniques such as masked language
modeling (Karouzos et al., 2021) or soft-prompt
with adversarial training (Wu and Shi, 2022) have
shown promising results. However, the closed-set
assumption has a fundamental drawback as it may
leave the models vulnerable when exposed to data
from an unknown class.

To mitigate such issue, a new line of work named
UniDA (You et al., 2019) was proposed which as-
sumes no prior knowledge about the target domain.

You et al. (2019) quantifies sample-level transfer-
ability by using of uncertainty and domain similar-
ity. Following the work, Fu et al. (2020) calibrates
multiple uncertainty measures to handle such an
issue. Saito and Saenko (2021) apply a one-vs-
all classifier to minimize inter-class distance and
classify unknown classes. More recently, Chang
et al. (2022) applied Optimal Transport and further
expanded the task to discovering private classes.
Other recent works focus on utilizing mutually
nearest neighbor samples (Chen et al., 2022a,c) or
leveraging source prototypes with target samples
(Chen et al., 2022b; Kundu et al., 2022). Despite
the practicality of UniDA, its application in the
NLP domain has barely explored.

6.2 Out-of-Distribution Detection

The early exploration of OOD detection focused on
training supervised detectors (Dhamija et al., 2018;
Lee et al., 2018a; Jiang et al., 2018). However,
since obtaining labeled OOD samples is imprac-
tical, recent OOD detection research has shifted
towards unsupervised methods, such as generat-
ing pseudo-OOD data (Chen and Yu, 2021; Zheng
et al., 2020), utilizing self-supervised learning
(Moon et al., 2021; Manolache et al., 2021; Li et al.,
2021; Zeng et al., 2021; Zhan et al., 2021; Cho
et al., 2022), and measuring uncertainty through
scoring functions for input instances (Hendrycks
and Gimpel, 2017; Lee et al., 2018b; Liu et al.,
2020; Tack et al., 2020). While these methods have
shown effectiveness, OOD detection is limited in



that it does not offer opportunities for adaptation.

7 Conclusion and Future Work

In this study, we present a testbed for evaluating
UniDA in the field of NLP. The testbed is designed
to exhibit various levels of domain and category
gaps through different datasets. Two novel metrics,
PDR and DDS, were proposed which can mea-
sure the degree of domain and category gap, re-
spectively. We assessed UniDA methods and the
heuristic combination of CDA and OOD detection
in our proposed testbed. Experimental results show
that UniDA methods, initially designed for the vi-
sion domain, can be effectively transferred to NLP.
Additionally, CDA methods, which are not fully
optimized in UniDA scenario, produce comparable
results in certain circumstances.

Recent trends in NLP focus on Large Language
Models (LLMs) of their significant generalization
abilities. However, the robustness of LLMs from
the perspective of UniDA remains uncertain. As
part of our future work, we assess the performance
and the capabilities of LLMs from a UniDA view-
point.

Limitations

Limited coverage of the evaluated model sizes
The evaluation was conducted only with models
of limited size. Moreover, there is a lack of zero-
shot and few-shot evaluations for large language
models (LLMs) that have recently emerged with
remarkable generalization capabilities. The evalu-
ation of LLMs is currently being considered as a
top priority for our future work, and based on pre-
liminary experiments, the results were somewhat
unsatisfactory compared to small models with ba-
sic tuning for classification performance. In this
regard, recent research that evaluated LLMs for
classification problems (such as GLUE) also re-
ported that the performance is not yet comparable
to task-specifically tuned models. Considering the
limitations of LLMs in terms of their massive re-
source usage and the fact that tuning small models
still outperforms them in a task-specific manner,
the findings from this study are still considered
highly valuable in the NLP community.

Limited scope of the tasks Our proposed testbed
is restricted to text classification tasks only. The
majority of existing research on DA and OOD also
focuses on classification. This selective task prefer-
ence is primarily due to the challenge of defining

concepts such as domain shifts and category shifts
in generative tasks. However, in light of recent ad-
vancements in the generative capabilities of models,
handling distributional shifts in generative tasks is
indubitably an essential problem that needs to be
addressed in our future work.
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A Full Experimental Results

A.1 UniDA Results

Table 7 is the full results of UniDA methods in our
proposed testbed. Baseline methods such as UAN
(You et al., 2019) and CMU (Fu et al., 2020) are
included in the results. We can observe that UniDA
methods do not always retrain the same level of
applicability in NLP. Specifically, UAN and CMU
utilize a fixed threshold defined in the vision do-
main. While CMU remains fully compatible in the
NLP domain, UAN struggles to apply effectively,
as it fails to detect unknown samples.

A.2 CDA Results

In this section, we demonstrate the experimental
results of CDA methods with two additional scor-
ing functions: cosine similarity and Mahalanobis
distance. The threshold value was selected based
on the score from the scoring functions, using the
same approach as the main experiment. Also, we
report the results of DANN (Ganin et al., 2016a)
and source-only fine-tuning which was left out
from the main experiment. In some cases, source-
only fine-tuning outperforms other adaptation meth-
ods, which is also observed in the vision domain
(You et al., 2019).

1. Cosine Similarity (Tack et al., 2020) calcu-
lates the cosine similarity score between the
test input and the train input. The score is
selected as the cosine similarity between the
input and the nearest neighbor. The results are
reported in Table 8.

2. Mahalanobis Distance (Lee et al., 2018b) is
the distance of the test sample to each class
distribution. The representation is assumed to
follow the multivariate normal distributions.
The distance between the nearest class distri-
bution is used as the score. The results are
demonstrated in Table 9

Additionally, the full experimental results of
MSP thresholding are presented in Table 10.
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CDA Methods BERT DANN UDALM AdSPT

Huffpost (2013) 5e-5 5e-5 1e-4 5e-5
Huffpost (2014) 5e-5 5e-5 1e-4 5e-5
Huffpost (2015) 5e-5 5e-5 1e-4 5e-5
Huffpost (2016) 5e-5 5e-5 1e-4 5e-5
Huffpost (2017) 5e-5 1e-4 1e-4 5e-5

CLINC-150 1e-4 5e-4 5e-4 1e-5
MASSIVE 5e-5 5e-5 5e-5 5e-5

Amazon 1e-5 5e-6 5e-5 1e-5

UniDA Methods UAN CMU OVANet UniOT

Huffpost (2013) 5e-5 5e-5 5e-5 1e-4
Huffpost (2014) 5e-5 5e-5 5e-5 1e-4
Huffpost (2015) 1e-4 1e-4 5e-5 5e-5
Huffpost (2016) 1e-4 5e-5 5e-5 1e-4
Huffpost (2017) 1e-4 5e-5 5e-5 1e-4

CLINC-150 5e-6 1e-5 5e-6 5e-5
MASSIVE 5e-5 5e-5 5e-5 1e-4

Amazon 5e-5 5e-5 5e-5 5e-5

Table 6: Learning rates for each methods. The learning
rate was selected from 5e-4, 1e-4, 5e-5, 1e-5, and 1e-6
with the best evaluation performance from the source
domain.

B Implementation Details

For the experiments, we adopt a 12-layer pre-
trained language model bert-base-uncased (Devlin
et al., 2019) as the backbone of all the methods.
We utilized the [CLS] representation as the input
feature. AdamW optimizer (Loshchilov and Hut-
ter, 2019) was used for all the experiments with
a batch size of 32. We selected the best learning
rate among 5e-4, 1e-4, 5e-5, 1e-5, and 5e-6. The
learning rate for each method is reported in Table
6. The model was trained for 10 epochs with an
early stopping on the accuracy of the source do-
main’s evaluation set. All the experiments were
implemented with Pytorch (Paszke et al., 2019)
and Huggingface Transformers library (Wolf et al.,
2020). The experiments take an hour on a single
Tesla V100 GPU.

C Ablation on Different Class Splits

For the main experiment, we utilized class names as
the criterion to implement the category gap. How-
ever, this may only show the specific scenario of
the category gap. To provide a more comprehen-
sive analysis, we also report the results when the
class set is randomly split. We utilized CLINC-150
and MASSIVE dataset for the ablation study, and
MSP thresholding was applied for CDA methods.
We conducted three experiments, each with a dif-
ferent class split, and for every split, we reported

the average results of three different runs.
Table 11 is the results of the experiments. Due to

the changes in the class set to be predicted, the task
difficulty varies, resulting in differences in abso-
lute performances. However, when comparing the
relative performance between different methods,
we can observe that they exhibit consistent trends
regardless of the class split.

D Receiver Operating Characteristic
(ROC) Curve

To measure Distinction Difficulty Score (DDS), we
calculated the AUROC and subtracted from 1. Fig-
ure 5 is the ROC curve of discerning unknown in-
puts from the transferable inputs for our proposed
datasets. The closer the ROC curve is to the upper-
left corner, it indicates that it is easier to distinguish
between unknown and transferable inputs.



Dataset Huffpost (2012 → 2013) (3 / 4 / 4) Huffpost (2012 → 2014) (3 / 4 / 4)

Method accC accC̄t
H-score accC accC̄t

H-score

UAN 73.58 ±5.76 0.00 ±0.00 0.00 ±0.00 36.38 ±3.04 0.00 ±0.00 0.00 ±0.00

CMU 58.18 ±1.88 26.89 ±4.29 36.76 ±4.22 33.13 ±3.35 39.98 ±3.71 36.02 ±1.46

OVANet 65.11 ±0.60 24.91 ±6.75 35.64 ±6.70 45.85 ±2.62 33.96 ±6.78 38.56 ±3.95

UniOT 53.76 ±1.10 65.86 ±3.57 59.14 ±1.14 33.49 ±4.79 71.44 ±6.19 45.23 ±3.60

Dataset Huffpost (2012 → 2015) (3 / 4 / 4) Huffpost (2012 → 2016) (3 / 4 / 4)

Method accC accC̄t
H-score accC accC̄t

H-score

UAN 34.17 ±6.00 0.00 ±0.00 0.00 ±0.00 42.53 ±16.52 0.00 ±0.00 0.00 ±0.00

CMU 39.57 ±3.54 17.98 ±6.30 24.02 ±5.57 41.80 ±2.08 30.09 ±3.51 34.84 ±1.97

OVANet 43.91 ±2.09 35.70 ±4.41 39.21 ±2.43 44.30 ±2.89 33.49 ±4.79 38.03 ±3.79

UniOT 27.16 ±3.40 75.50 ±2.68 39.82 ±3.39 33.09 ±3.62 69.27 ±3.83 44.60 ±2.85

Dataset Huffpost (2012 → 2017) (3 / 4 / 4) CLINC-150 (4 / 3 / 3)

Method accC accC̄t
H-score accC accC̄t

H-score

UAN 22.74 ±10.63 0.00 ±0.00 0.00 ±0.00 48.99 ±14.49 0.00 ±0.00 0.00 ±0.00

CMU 34.87 ±3.14 55.79 ±2.71 42.86 ±2.72 60.70 ±1.02 36.89 ±1.52 45.87 ±1.09

OVANet 48.37 ±4.12 35.03 ±3.60 40.46 ±2.32 83.49 ±0.62 31.24 ±1.70 45.45 ±1.88

UniOT 31.57 ±1.93 75.85 ±9.63 44.36 ±1.27 64.14 ±9.14 77.36 ±3.94 69.88 ±6.11

Dataset MASSIVE (8 / 5 / 5) Amazon (11 / 10 / 10)

Method accC accC̄t
H-score accC accC̄t

H-score

UAN 13.00 ±7.18 0.00 ±0.00 0.00 ±0.00 35.40 ±3.44 0.00 ±0.00 0.00 ±0.00

CMU 37.38 ±1.59 10.33 ±3.06 16.03 ±3.84 44.30 ±0.90 39.95 ±9.67 41.48 ±5.10

OVANet 59.04 ±0.69 39.25 ±2.14 47.12 ±1.47 44.50 ±0.84 42.49 ±3.95 43.38 ±1.83

UniOT 44.01 ±3.52 79.19 ±4.14 56.52 ±3.49 38.60 ±1.08 70.98 ±7.76 49.90 ±2.08

Table 7: Experimental results of UniDA methods in the proposed testbed. For each dataset, the best method with
the highest H-score is in bold and the second-best method is underlined.



Dataset Huffpost (2012 → 2013) (3 / 4 / 4) Huffpost (2012 → 2014) (3 / 4 / 4)

Method accC accC̄t
H-score accC accC̄t

H-score

BERT 64.06 ±2.13 28.02 ±3.03 38.86 ±2.63 40.63 ±3.55 37.41 ±4.81 38.65 ±1.34

DANN 58.92 ±1.62 1.69 ±0.57 3.28 ±1.07 33.08 ±2.94 2.01 ±0.82 3.76 ±1.48

UDALM 60.12 ±2.56 23.94 ±3.80 34.12 ±4.00 37.97 ±1.69 29.27 ±6.15 32.84 ±4.22

AdSPT 62.71 ±0.88 10.89 ±3.04 18.41 ±4.38 39.57 ±3.81 23.88 ±3.44 29.74 ±3.59

Dataset Huffpost (2012 → 2015) (3 / 4 / 4) Huffpost (2012 → 2016) (3 / 4 / 4)

Method accC accC̄t
H-score accC accC̄t

H-score

BERT 40.75 ±2.12 30.90 ±1.55 35.13 ±1.53 47.07 ±2.46 26.15 ±3.73 33.42 ±2.43

DANN 31.71 ±2.49 3.39 ±0.92 6.11 ±1.57 36.68 ±3.86 2.16 ±0.80 4.05 ±1.44

UDALM 37.06 ±1.74 24.79 ±4.83 29.59 ±3.89 44.10 ±1.52 23.26 ±2.48 30.38 ±2.02

AdSPT 39.92 ±4.75 15.01 ±3.85 21.74 ±4.84 41.44 ±3.63 12.66 ±3.31 19.14 ±3.97

Dataset Huffpost (2012 → 2017) (3 / 4 / 4) CLINC-150 (4 / 3 / 3)

Method accC accC̄t
H-score accC accC̄t

H-score

BERT 48.84 ±3.16 29.52 ±4.67 36.62 ±3.91 74.53 ±3.02 71.37 ±6.54 72.69 ±2.48

DANN 31.30 ±2.34 9.32 ±1.63 14.31 ±2.02 60.21 ±9.33 49.65 ±14.72 52.74 ±10.15

UDALM 41.08 ±3.92 29.10 ±7.01 33.48 ±3.83 75.99 ±3.63 78.11 ±5.41 76.90 ±2.35

AdSPT 43.02 ±0.74 31.07 ±4.77 35.93 ±3.37 42.94 ±5.59 6.96 ±3.44 11.57 ±4.59

Dataset MASSIVE (8 / 5 / 5) Amazon (11 / 10 / 10)

Method accC accC̄t
H-score accC accC̄t

H-score

BERT 51.21 ±3.62 62.96 ±2.06 56.44 ±2.69 44.88 ±2.10 14.49 ±1.25 21.90 ±1.68

DANN 41.55 ±9.00 13.74 ±3.52 20.62 ±5.04 44.58 ±0.97 19.61 ±1.08 27.21 ±0.93

UDALM 65.22 ±2.67 64.25 ±2.17 64.67 ±0.76 46.65 ±0.47 13.58 ±2.23 20.96 ±2.79

AdSPT 36.78 ±2.65 59.87 ±13.47 45.32 ±6.20 30.26 ±1.45 6.45 ±4.55 10.15 ±5.65

Table 8: Experimental results of CDA methods with cosine similarity as the scoring function. For each dataset, the
best method with the highest H-score is in bold and the second-best method is underlined.



Dataset Huffpost (2012 → 2013) (3 / 4 / 4) Huffpost (2012 → 2014) (3 / 4 / 4)

Method accC accC̄t
H-score accC accC̄t

H-score

BERT 10.40 ±12.11 35.69 ±5.72 13.78 ±12.38 11.28 ±8.86 42.44 ±2.47 16.41 ±9.26

DANN 18.55 ±9.65 1.50 ±0.30 2.69 ±0.62 16.78 ±7.67 1.48 ±0.67 2.70 ±1.22

UDALM 7.39 ±10.12 27.73 ±4.25 9.26 ±10.18 4.92 ±4.14 34.04 ±5.66 8.15 ±6.52

AdSPT 18.07 ±10.66 7.70 ±0.36 10.21 ±2.49 17.29 ±8.06 18.80 ±3.47 16.87 ±5.39

Dataset Huffpost (2012 → 2015) (3 / 4 / 4) Huffpost (2012 → 2016) (3 / 4 / 4)

Method accC accC̄t
H-score accC accC̄t

H-score

BERT 11.28 ±11.10 37.71 ±4.18 15.38 ±11.27 10.34 ±9.85 31.43 ±5.76 14.52 ±10.93

DANN 20.09 ±5.97 2.93 ±1.23 4.88 ±1.59 20.79 ±10.71 1.92 ±0.32 3.44 ±0.41

UDALM 4.19 ±2.98 31.19 ±6.15 7.06 ±4.84 6.23 ±5.09 31.52 ±5.19 9.49 ±6.74

AdSPT 19.20 ±7.31 14.55 ±3.02 16.30 ±4.47 17.78 ±9.51 9.73 ±4.76 12.10 ±6.48

Dataset Huffpost (2012 → 2017) (3 / 4 / 4) CLINC-150 (4 / 3 / 3)

Method accC accC̄t
H-score accC accC̄t

H-score

BERT 10.31 ±13.20 34.04 ±5.04 13.10 ±13.18 16.67 ±21.48 72.56 ±5.44 21.87 ±25.69

DANN 16.79 ±0.94 7.48 ±1.62 10.29 ±1.63 1.87 ±1.36 41.89 ±20.06 3.25 ±1.89

UDALM 7.65 ±5.29 30.08 ±8.33 10.93 ±6.62 5.18 ±8.80 80.15 ±3.95 8.73 ±14.40

AdSPT 19.77 ±8.68 30.93 ±3.52 23.30 ±7.35 6.59 ±7.97 29.85 ±29.28 7.41±5.75

Dataset MASSIVE (8 / 5 / 5) Amazon (11 / 10 / 10)

Method accC accC̄t
H-score accC accC̄t

H-score

BERT 5.62 ±9.41 68.53 ±4.54 9.07 ±14.57 4.66 ±2.59 15.97 ±1.59 6.85 ±3.45

DANN 4.59 ±3.59 9.73 ±3.60 5.26 ±2.70 8.62 ±7.31 17.74 ±3.69 9.75 ±3.92

UDALM 2.96 ±4.90 62.80 ±5.02 5.17 ±8.36 2.68 ±2.80 19.01 ±5.49 4.48 ±4.22

AdSPT 5.70 ±6.41 54.61 ±12.44 9.60 ±10.75 4.63 ±4.66 9.38 ±6.68 5.61 ±5.65

Table 9: Experimental results of CDA methods with Mahalanobis distance as the scoring function. For each dataset,
the best method with the highest H-score is in bold and the second-best method is underlined.



Dataset Huffpost (2012 → 2013) (3 / 4 / 4) Huffpost (2012 → 2014) (3 / 4 / 4)

Method accC accC̄t
H-score accC accC̄t

H-score

BERT 51.47 ±3.72 72.07 ±10.30 59.64 ±3.28 26.71 ±1.99 78.98 ±8.23 39.75 ±1.51

DANN 49.35 ±6.58 77.79 ±25.05 57.83 ±6.49 14.94 ±3.26 95.24 ±0.70 25.71 ±4.48

UDALM 52.74 ±2.92 58.25 ±6.03 55.15 ±2.37 29.90 ±1.89 50.00 ±17.49 36.14 ±5.07

AdSPT 55.05 ±2.11 80.66 ±2.99 65.38 ±1.00 29.64 ±4.51 80.03 ±6.09 42.93 ±3.71

Dataset Huffpost (2012 → 2015) (3 / 4 / 4) Huffpost (2012 → 2016) (3 / 4 / 4)

Method accC accC̄t
H-score accC accC̄t

H-score

BERT 27.35 ±2.64 77.13 ±2.20 40.30 ±2.60 33.12 ±1.85 63.65 ±3.63 43.53 ±1.96

DANN 16.48 ±7.90 89.93 ±11.51 26.81 ±9.33 11.23 ±4.13 95.41 ±1.23 19.89 ±6.52

UDALM 25.15 ±2.60 61.79 ±8.88 35.56 ±3.15 29.14 ±1.59 60.87 ±6.87 39.28 ±1.44

AdSPT 29.08 ±5.39 73.04 ±12.71 40.78 ±3.42 28.84 ±3.57 82.52 ±4.22 42.55 ±3.27

Dataset Huffpost (2012 → 2017) (3 / 4 / 4) CLINC-150 (4 / 3 / 3)

Method accC accC̄t
H-score accC accC̄t

H-score

BERT 33.07 ±3.90 65.82 ±7.47 43.64 ±1.71 64.69 ±3.68 72.08 ±9.82 67.82 ±4.15

DANN 22.84 ±2.60 82.46 ±4.39 35.66 ±2.85 48.02 ±4.93 67.48 ±19.86 54.90 ±9.17

UDALM 32.85 ±1.05 43.08 ±6.76 37.08 ±2.82 74.92 ±6.11 69.91 ±13.98 71.28 ±4.62

AdSPT 35.74 ±3.33 53.04 ±16.02 41.36 ±5.04 3.96 ±2.17 98.69 ±0.36 7.55 ±3.95

Dataset MASSIVE (8 / 5 / 5) Amazon (11 / 10 / 10)

Method accC accC̄t
H-score accC accC̄t

H-score

BERT 30.04 ±2.74 68.95 ±5.53 41.79 ±3.20 44.98 ±2.32 12.66 ±1.47 19.70 ±1.69

DANN 20.37 ±11.32 88.69 ±5.27 31.77 ±13.32 45.85 ±0.49 12.52 ±0.71 19.66 ±0.87

UDALM 38.33 ±4.88 41.29 ±15.14 39.28 ±9.69 47.69 ±1.47 15.10 ±2.30 22.85 ±2.65

AdSPT 36.78 ±2.65 59.87 ±13.47 45.32 ±6.20 30.26 ±3.52 30.93 ±26.14 27.12 ±11.03

Table 10: Experimental results of CDA methods with Maximum Softmax Probability as the scoring function. For
each dataset, the best method with the highest H-score is in bold and the second-best method is underlined.

Dataset CLINC-150 (4 / 3 / 3) MASSIVE (8 / 5 / 5)

Runs 1 2 3 1 2 3

BERT 44.59 ±6.01 48.08 ±2.90 52.25 ±3.54 51.68 ±1.62 46.68 ±1.90 51.56 ±0.81

DANN 47.91 ±9.96 53.23 ±7.92 60.42 ±7.00 47.16 ±3.79 31.39 ±3.93 45.21 ±8.93

UDALM 49.17 ±8.75 55.04 ±5.31 52.42 ±8.20 55.52 ±3.00 42.34 ±5.88 51.15 ±3.62

AdSPT 31.81 ±8.63 48.62 ±1.85 46.20 ±5.22 45.41 ±9.04 38.61 ±3.90 46.95 ±5.22

UAN 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

CMU 40.32 ±2.32 38.79 ±2.19 40.92 ±1.77 21.46 ±1.62 18.84 ±5.26 28.33 ±4.29

OVANet 41.77 ±1.90 35.89 ±3.86 29.15 ±2.17 63.91 ±3.41 54.31 ±0.63 39.85 ±3.74

UniOT 50.94 ±7.20 61.66 ±1.70 56.51 ±3.53 62.07 ±2.89 55.11 ±2.31 63.59 ±3.15

Table 11: H-score results of UniDA methods in CLINC-150 and MASSIVE with different class splits. The best
method with the highest H-score is in bold and the second-best method is underlined.
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(a) Huffpost (2013)
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(b) Huffpost (2014)
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(c) Huffpost (2015)
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(d) Huffpost (2016)
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(e) Huffpost (2017)
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(f) CLINC-150
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(g) MASSIVE
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Figure 5: ROC curve of discerning unknown samples from the transferable samples. The closer the ROC curve is to
the upper-left corner, it becomes easier to distinguish between the them.


