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ABSTRACT

Deep clustering is a recent deep learning technique which combines deep learn-
ing with traditional unsupervised clustering. At the heart of deep clustering is a
loss function which penalizes samples for being an outlier from their ground truth
cluster centers in the latent space. The probabilistic variant of deep clustering
reformulates the loss using KL divergence. Often, the main constraint of deep
clustering is the necessity of a closed form loss function to make backpropaga-
tion tractable. Inspired by deep clustering and adversarial net, we reformulate
deep clustering as an adversarial net over traditional closed form KL divergence.
Training deep clustering becomes a task of minimizing the encoder and maxi-
mizing the discriminator. At optimality, this method theoretically approaches the
JS divergence between the distribution assumption of the encoder and the dis-
criminator. We demonstrated the performance of our proposed method on several
well cited datasets such as MNIST, REUTERS and CIFAR10, achieving on-par or
better performance with some of the state-of-the-art deep clustering methods.

1 INTRODUCTION

Deep neural network such as the autoencoder is applied to many domains such as speech and au-
dio processing Karamatli et al. (2019); Last et al. (2020), image clustering Huang et al. (2019);
Xie et al. (2016) and medical data processing Abdelhameed & Bayoumi (2019); Han et al. (2020).
While the latent space of autoencoder is well suited for dimension reduction through reconstruction
loss Song et al. (2013); Yang et al. (2017), the latter is not optimized for clustering/ classification
since class labels cannot be used in the reconstruction loss Min et al. (2018). A recent autoencoder
technique known as the Euclidean distance based clustering (ABC) Song et al. (2013); Yang et al.
(2017), utilize class label information in neural network by introducing a loss function known as
the deep clustering loss The goal is to minimizes the Euclidean distance in the latent space between
samples and partitioning learnt by clustering algorithms e.g. Kmeans or Gaussian mixture model
(GMM). In other words, the latent space of an autoencoder learnt using reconstruction loss will look
different when we further perform K-means on the latent space. A recent probabilistic approach to
ABC uses KL divergence (KLD) Lim et al. (2020); Jiang et al. (2017) and assumes that both the
variational autoencoder (VAE) Kingma & Welling (2014) latent space and clustering approach are
Gaussian distributed. We can compare the similarities and differences between deep clustering and
VAE to better understand the former (A.2, A.3). The neural network of VAE and deep clustering
are optimized by backpropagating samples in the latent space to update the encoder weights. Also,
both deep clustering and VAE share a similar goal of modeling each input image as a sample draw
of the Gaussian distribution in the latent space. However, their Gaussian distributions are different.
VAE enforce samples in the latent space to be closely distributed by a Gaussian distribution with
continuous mean µ and variance σ i.e. z ∼ µ+σ ·N (0, 1). Whereas the latent space of deep cluster-
ing approaches a Gaussian mixture model (GMM) and each Gaussian has a set of fixed parameters
i.e. z∼ N (Bk, σk), ∀k ∈ K. The goal of VAE is to enforce all class samples in the latent space
to be distributed by continuous mean and variance. The goal of deep clustering is to enforce class
samples in the latent space to be distributed by a discrete K set of mean and variance. Thus, only
deep clustering is associated with clustering, making it more suitable for unsupervised classification.
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Deep clustering is not without problem. Mainly, when backpropagating from a neural network, we
require a closed form loss function for tractability. Most deep learning methods including VAE re-
strict to the assumption of a KLD between two Gaussians to obtain a closed form loss function for
backpropagating. When generalizing to f -divergence between two Gaussians, closed form solution
does not exist. A well known workaround to this problem is to approximate the JS divergence (JSD)
between two Gaussians using adversarial net. In fact, adversarial net is quite versatile as shown in
Table 1. For different methods, the discriminator can be seen as performing a specific task different
from other adversarial nets. We distinguish the proposed work from other “adversarial net based
X” in Table I where X can be any discriminator input. In GAN Goodfellow et al. (2014), X refers
to image generation. Other instances of “adversarial net based X” includes AAE Makhzani et al.
(2016) , DASC Zhou et al. (2018) and etc. In our approach, “Deep clustering using adversarial net
based clustering loss” (DCAN), X refers to clustering. More specifically, in DCAN the JSD between
latent space and clustering is approximated by adversarial net. More details are discussed in A.1.

Table 1: Different strategies of using ”adversarial net based X”
Method Adversarial net Task X

GAN
Is x from the ground truth or randomly generated?

x ∼ p(data)
{

if x ∼ p(data), T = 1
elseif x ∼ p(g), T = 0

AAE
Is z from a Gaussian prior?

z ∼ p(z)
{

if z ∼ µ+ σ · N (0, 1), T = 1
elseif z ∼ q(z | x), T = 0

DASC
Does z fall along the assigned subspace?

z ∼ p(ψ∗)
{

if z ∼ p(ψ∗), T = 1

elseif z ∼ p(ψ̂), T = 0

DCAN
Does z belong to the assigned cluster?

z ∼ p(z | θ∗)
{

if z ∼ p(z | θ∗), T = 1
elseif z ∼ q(z | x), T = 0

2 PROPOSED METHOD

One motivation for using a JSD approach is that it does not suffer from asymmetry unlike KLD
Nielsen (2019); Goodfellow et al. (2014). However, there is no closed form solution avail-
able for the JSD between two data distributions. GAN Goodfellow et al. (2014) overcome the
need for a closed form solution by employing an adversarial training procedure. GAN approxi-
mates JSD or DJS (pdata ∥ pg) = Ex∼pdata

[logDG(x)] + Ex∼pg
[log (1−DG {x})] at optimal-

ity, where pdata is the real data distribution and pg is the generated data distribution. In the JSD
between two Gaussian distributions for deep clustering, we seek DJS ( p(z | θ∗) ∥ q(z | x) ) =
Ez∼p(z|θ∗) [lnD(z)] + Ez∼q(z|x) [ln (1−D {z})], whereby z ∼ p(z | θ∗) refers to the sample
distributed from clustering and z ∼ q(z | x) refers to the sample distributed from the encoder.
Unlike the discriminator of GAN in the original space, the discriminator of DCAN works in the
latent space. We can visualize DJS ( p(z | θ∗) ∥ q(z | x) ) using Fig 1. The discriminator tries to
distinguish samples from clustering, z ∼ p(z | θ∗) versus samples generated from the encoder,
z ∼ q(z | x).

2.1 TRAINING DCAN

We train DCAN by feeding it with 1...N positive and negative samples. In Fig 1, we refer to each nth

sample of x as x(n). During the forward pass, samples enter the discriminator through the encoder
and clustering. Samples generated from clustering are positive i.e. T = 1 and samples generated
from encoder are negative i.e. T = 0. We define the neural network output and target label as
y = {0, 1} and T = {0, 1} respectively. We update the discriminator weight using DCAN loss (A.4)
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Figure 1: Architecture of “adversarial net based X” for discriminator task in the latent space, (e.g.
AAE). Task X can be any discriminator input as shown in Table 1. Replace xwith z (and vice-versa)
for discriminator task in the image space, (e.g. GAN).

in eqn (1). Since the samples in the latent space displaces each time the encoder weight changes,
clustering parameters θ has to be re-computed each time the discriminator weight is updated. The
encoder q(z | x) maps x to z in the latent space. However, we seek to minimize between q(z | x)
and p(z | θ∗). Meaning that we desire to produce a sample z from q(z | x) that is as close as
possible to the sampling from p(z | θ∗). Lastly, we backpropagate from the discriminator to update
the encoder using DCAN loss. (A.5)

LDCAN =

{
1
N

∑N
n=1 E

x(n)∼pdata

[
ln

(
1−D

(
G(x(n))

))]}
T=0

+

{
1
N

∑N
n=1 E

z(n)∼p(z|θ∗)

[
lnD

(
z(n)

)]}
T=1

(1)

We model p(z | θ∗) using Gaussian mixture model (GMM) Bishop (2006) in eqn (2). We denote
GMM variables, θ = {η, τ, ψ} as the mean η, precision τ and mixture component ψ. The signifi-
cance of ψ is that each cluster is represented as a probability ψk as opposed to hard assignment in
Kmeans. (A.6)

ln p(z|η, τ, ψ) =
N∑

n=1

K∑
k=1

{lnψk + lnN (zn|ηk, τk, ψk)} ζnk (2)

3 EXPERIMENTS

We selected some benchmarked datasets used by deep clustering for our experiments in Tables 2.
There are several factors affecting deep clustering. i) The clustering algorithm used in the latent
space e.g. Kmeans or GMM. ii) The number of hidden layers and nodes of the neural network. iii)
The gradient ascent method used for training the loss functions. iv) The activation functions used.
For DCAN, we use tanh for the hidden layers and sigmoid for the output. We set the clustering
iteration to one in Table 2 and a sufficient statistics of at least 600 points in the raw latent space to
estimate the cluster parameters. The number of cluster is the same as the number of classes. We
use a minibatch size of N = 16 samples, 500 iterations and we use gradient ascent with momentum
with a learning rate between 10−3 and 10−5. We use accuracy (ACC) Cai et al. (2005) to evaluate
the performance of our clustering.
MNIST: A well cited 10 digit classes dataset with no background but it has more samples than
USPS. The train and test sample size is at 50K and 10K. Our settings are 196 − 384 − 256 for the
encoder and 256− 16− 1 for the discriminator. The input dimension is originally at 28× 28 but we
have downsampled it to 14×14 and flattened to 196. In Table 2, DCAN using raw pixel information
obtained 0.8565 for ACC which is on par or better than deep clustering methods including DEC,
ABC and DC-GMM. However on MNIST, most deep clustering methods could not obtain the per-
formance of recent deep learning methods such as KINGDRA-LADDER-1M (a.k.a. KINGDRA)
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Table 2: ACC Benchmark
Approach MNIST Reuters10k CIFAR10

ABC Song et al. (2013) 0.760 0.7019 0.435
DEC Xie et al. (2016) 0.843 0.7217 0.469

DC-GMM Tian et al. (2017) 0.8555 0.6906 -
AAE Makhzani et al. (2016) 0.8348 0.6982 -
IMSAT-RPT Hu et al. (2017) 0.896 0.719 0.455

KINGDRA Gupta et al. (2020) 0.985 0.705 0.546
DCAN (proposed) 0.8565 0.7867 0.5844

and IMSAT as their goals are much more ACC result oriented. For KINGDRA, it combines several
ideas together including ladder network Rasmus et al. (2015) and psuedo-label learning Lee (2013)
for the neural network and using ensemble clustering. In DAC, their approach is based on pairwise
classification. In IMSAT-RPT, the neural network was trained by augmenting the training dataset. In
our case, we simplified our focused on deep clustering using adversarial net. DCAN penalizes sam-
ples for being an outlier from their cluster centers and does so uniquely by using the discriminator
to penalize the encoder. The original objective of deep clustering is specifically aimed at clustering.
In some datasets, the latent space of this objective do not necessarily co-serve as the most important
factor for raw pixel feature extraction. Thus, we also used ResNet18 pretrained model as a feature
extractor for MNIST, prior to deep clustering. This simple step allows the ACC for DCAN to im-
proved to 0.995 (not shown in Table 2) and in fact outperforms KINGDRA.
Reuters-10k: The Reuters-10k dataset according to Tian et al. (2017); Xie et al. (2016) contains
10K samples with 4 classes and the feature dimension is 2000. End-to-end learning is performed
on this dataset. We compared DCAN to other unsupervised deep learning approaches. DCAN uses
2000 − 100 − 500 and 500 − 100 − 1 respectively for the encoder and discriminator. In Table 2,
we observed that Kmeans alone can achieve an ACC of 0.6018 on the raw feature dimension. Most
deep learning methods can achieve between 0.69 to 0.73 on this dataset. DCAN was able to obtain
the best ACC at 0.7867.
CIFAR10: A 10 classes object categorization dataset with 50K training and 10K testing of real
images. On CIFAR10, most methods have difficulty performing end-to-end learning. As compared
to deep ConvNet which utilizes convolutional neural network and supervised learning for a specific
task (i.e. feature extraction), deep clustering typically rely on fewer hidden layer in the encoder for
end-to-end learning (i.e. both feature extraction and clustering). Thus, we followed the experiment
setup in KINGDRA Gupta et al. (2020) by using the “avg pool” layer of ResNet50 He et al. (2016)
(ImageNet pretrained) as a feature extractor with a dimension of 2048. In Table 2, DCAN uses
2048− 1024− 512− 128 and 128− 16− 1 respectively for the encoder and discriminator. Despite
the stronger performance of DAC, IMSAT and KINGDRA on MNIST, we outperformed these com-
parisons on CIFAR10 at 0.5844. This is despite the fact that both KINGDRA and IMSAT also use
ResNet50 for CIFAR10.

4 CONCLUSION

The objective of deep clustering is to optimize the autoencoder latent space with clustering infor-
mation. The key to this technique lies in a loss function that minimizes both clustering and encoder
in the latent space. Despite the recent success of deep clustering, there are some concerns: i) How
to use probabilistic approach for the loss function? ii) Can we backpropagate without closed form
solution for the probabilistic function? A JS divergence approach does not suffer from asymmetry
like KL divergence loss. But there is no closed form solution to the JS divergence when backprop-
agating the network. This paper propose a novel deep clustering approach based on adversarial net
to estimate JS divergence for deep clustering.
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A APPENDIX

A.1 ADVERSARIAL NET BASED X

The optimization of adversarial net in general centers around minimizing the encoder/generator and
maximizing the discriminator. However, there are several methods using “adversarial net based
X” in Table 1 and we highlight the similarities and differences as follows: In GAN the generator is
responsible for generating an image when given a sample from the latent space. The discriminator
of GAN checks whether the generated image belongs to the distribution of the original dataset.
Similarly, in DCAN we minimize the encoder and maximize the discriminator but for different
purpose. In DCAN, the encoder receives an image and outputs a sample in the latent space. GAN
trains the generator to be sensitive to the variance of the image class i.e. small displacement of
the sample in the latent space can result in huge image variance. DCAN trains the encoder to be
insensitive to the class variance i.e. different images from the same class populate tightly close to the
cluster center in the latent space. Both DCAN and AAE utilize the adversarial net in totally different
ways despite having similar architecture (encoder acting as generator). The goal of AAE is identical
to VAE i.e. the AAE encoder models the latent sample as a sum and product of N (0, 1). On the other
hand, the goal of DCAN is not identical to VAE. DCAN models the latent sample, as the sample
draw from the nearest cluster (using e.g. Kmeans or Gaussian mixture model). The goal of DASC
is subspace clustering, and it is different from deep clustering. Like principal component analysis,
DASC projects the dataset onto different number of low dimensional subspaces. Each cluster using
Ncut is a low dimensional subspace. Thus task X in the ”adversarial net based X” of all four
methods, GAN (models the dataset), AAE (models VAE loss), DASC (models subspace clustering)
and DCAN (models GMM clustering) are optimized in totally different ways as summarized in
Table I.

A.2 DEEP CLUSTERING

The simplest form of deep clustering uses the Euclidean distance loss in the Autoencoder based
clustering (ABC) Song et al. (2013) approach. In ABC, the deep clustering objective optimizes the
neural network to be affected by Kmeans clustering or L2 loss function in eqn (3). On the contrary,
traditional reconstruction loss or L1 does not utilize any information from Kmeans.

6



Published as a DeLTa Workshop Paper at ICLR 2025

min
w,b

{L1 + λ · L2}

= max
w,b

− 1
2 (T − y)

2 − λ
{
− 1

2 (hz − η∗)
2
} (3)

A.3 PROBABILISTIC VARIANT OF DEEP CLUSTERING

Training a deep clustering algorithm such as ABC in eqn (3) requires a closed-form equation for the
clustering loss function. In higher dimensional latent space, the Euclidean function will become less
robust due to the curse of dimensionality. The probabilistic approach of ABC is based on the “KLD
between two Gaussians” in Lim et al. (2020); Jiang et al. (2017). When the probabilistic approach
is no longer a “KLD between two Gaussians”, the main problem is that:

a) the loss function can become non-trival to differentiate for backprogation.

Instead, we propose a new way to train deep clustering without facing such constrains i.e. we discard
the use of probabilistic approach in deep clustering. Instead, we approximate deep clustering using
adversarial net. There exist a relationship between deep clustering and adversarial net in two simple
steps:

a) From ABC to KLD to JSD: We show that under certain condition (i.e. unit
variance assumption), ABC is identical to KLD and thus related to JSD. Both
KLD and JSD are also under the family of the f -divergence.

b) Adversarial net as JSD: We approximate JSD using adversarial net. This is
possible since adversarial net approaches JSD when the training becomes optimal.

Our main goal is to find a relationship between adversarial net and deep clustering. First, we es-
tablish a relationship between KLD and ABC Lim et al. (2020). KLD measures the probabilistic
distance between two distributions. The distributions of the latent space and deep clustering space
are denoted q(z | x) and p(z | θ) respectively. Deep clustering space is the latent space partitioned
using GMM or Kmeans. For brevity, we denote GMM parameters with θ = {η, τ, ζ} as the mean
η, precision τ and assignment ζ for K number of clusters and N number of samples. Sample in the
latent space is denoted z =

{
z(n)

}N

n=1
∈ RZ , where Z is the dimension of the latent space. Taking

q(z | x) and p(z | θ), the KLD based clustering loss is defined as Lim et al. (2020):

DKL ( p(z | θ) ∥ q(z | x) ) ,
p(z | θ) =

∏K
k=1 N (z | ηk, (τk)−1

)ζk ,
q(z | x) = µ+ σ · N (0, 1)

(4)

The problem is how do we define KLD in terms of two Gaussians, instead of a Gaussian and a GMM
in eqn (4), which is intractable. To overcome this, we re-express the GMM term p(z | θ) as follows

p(z | θ∗) = argmax
k

p(z | θk)

= N (z | η∗, (τ∗)−1)
(5)

We define p(z | θ∗) as the kth Gaussian component of Kmeans or GMM that draws sample z in the
latent space. i.e. we use ζ (assignment) to compute η∗ (mean) and τ∗ (precision). Thus, the KLD
of GMM and latent space in eqn (4) can now become a KLD between two Gaussian distributions in
eqn (6). More importantly, a closed formed equation is available for the latter.

DKL

(
N (z | η∗, (τ∗)−1) ∥ N (z | µ, σ2)

)
(6)

The relationship between KLD and ABC can be explained in Lemma 1: If we discard the second
order terms i.e. σ2 and τ in eqn (6), the KLD reverts back to the original ABC loss Song et al.
(2013); Yang et al. (2017) in eqn (3) as follows:

DKL (N (z | η∗) ∥ N (z | µ)) = 1

2
(η∗ − µ)

2 (7)
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To relate KLD to JSD, we simply recall JSD as the averaging between two KLDs in eqn (8). We
next discuss how to relate adversarial net to JSD.

DJS ( p(z | θ∗) ∥ q(z | x) )
= 1

2DKL

(
p ∥ p+q

2

)
+ 1

2DKL

(
q ∥ p+q

2

) (8)

Lemma 1 Relating deep clustering in eqn (3) to probabilistic deep clustering in eqn (6): We show
that under assumption of “unit variance”, the KLD between the encoder latent space and GMM
reverts back to the ABC loss.

Proof: For a DKL between two Gaussian distributions, there is a unique closed-form expression
available. When we assume unit variance i.e. τ = σ = 1, DKL reverts back to the original
Euclidean distance based clustering loss in eqn (3) as follows

DKL (p(z | θ) ∥ q(z | x)) s.t. {τ = σ = 1}
= DKL

(
N (zn | η∗, (τ∗)−1) ∥ N (zn | µ, σ)

)
= ln τ∗ + lnσ + (τ∗)−1+(η∗−µ)2

2σ2 − 1
2

= 1
2 (η

∗ − µ)
2

(9)

□

A.4 DEEP CLUSTERING USING ADVERSARIAL NET APPROACHES JSD

The problem with using JSD for deep clustering is that there is rarely a closed form solution available
for a “JSD between two Gaussian distributions”. GAN overcome this by employing an adversarial
training procedure that approximates DJS (pdata ∥ pg) at optimality, where pdata is the real data
distribution and pg is the generated data distribution as quoted in Goodfellow et al. (2014):

DJS (pdata ∥ pg)
= E

x∼pdata

[logDG(x)] + E
z∼p(z)

[log (1−DG {G(z)})]

= E
x∼pdata

[logDG(x)] + E
x∼pg

[log (1−DG {x})]
(10)

Unlike the discriminator of GAN in the original space, the discriminator of DCAN works in the
latent space. Despite that, we can express DCAN using the encoder-discriminator network in Fig 1:

DJS (p(z | θ∗) ∥ q(z | x))
= E

z∼p(z|θ∗)
[lnD(z)] + E

x∼pdata

[ln (1−D {G(x)})]

= E
z∼p(z|θ∗)

[lnD(z)] + E
z∼q(z|x)

[ln (1−D {z})]
(11)

Ez∼p(z|θ∗) [·] refers to the expectation function where the sample is drawn from deep clustering
space and Ez∼q(z|x) [·] refers to the expectation function where the sample is drawn from the latent
space. We refer to Lemma 2 for the claim on eqn (11).

Lemma 2 The adversarial net based deep clustering loss by DCAN can be shown to approach JSD
at optimum:

Proof: For brevity, we refer to p(z | θ∗) and q(z | x) as p and q respectively. Optimal discrimi-
nator occurs when G is fixed, i.e. D = p

p+q . Substituting D, we define LHS and RHS in eqn (12)
below. When we subject p = q = 1 on both sides, we can validate the claim on eqn (11).

LHS : Ez∼p [lnD(z)] + Ex∼pdata
[ln (1−D {G(x)})] s.t. {D = p

p+q}
= Ez∼p [logD(z)] + Ez∼q [log (1−D(z))] s.t. {D = p

p+q}
= Ez∼p

[
ln p

p+q

]
+ Ez∼q

[
ln q

p+q

]
=

∫
z
p ln p

p+q + q ln q
p+q dz

RHS : DJS (p ∥ q) = 1
2

∫
p ln 2·p

p+q + q ln 2·p
p+q dz

= 1
2

∫
z
p
{
ln p

p+q + ln 2
}
+ q

{
ln q

p+q + ln 2
}
dz

(12)
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Thus, LHS ≤ 2RHS − 2 log 2.

□

A.5 IMPLEMENTATION OF DCAN

We can visualize DJS ( p(z | θ∗) ∥ q(z | x) ) using Fig. 1. The discriminator tries to distinguish
samples from deep clustering space, z ∼ p(z | θ∗) versus samples from the encoder output, z ∼
q(z | x). We train DCAN by using the two loss functions L1 and L2.

A.5.1 TRAINING THE DISCRIMINATOR

Assuming MLP structure xi − hj − zς for the encoder and zς − hf − yd for the discriminator,
the hidden layers are defined as hf , hj and zς . We train the discriminator by feeding it with 1...N

positive and negative samples. We refer to each nth sample of x as x(n). In the forward pass in
Fig 1, latent samples go to the discriminator through the two paths. Samples generated from deep
clustering space are positive (i.e. T = 1) and samples generated from the encoder are negative
(i.e. T = 0). We define the neural network output and target label as y = {0, 1} and T = {0, 1}
respectively. Both y and T have the same dimension d. Cross-entropy loss is defined for L2 and L1

using the following:

D = yT (1− y)1−T

L1 = lnD(z)
L2 = ln [1−D(G(x))]

(13)

Discriminator training, T = 0: We run forward pass using eqn (14). The activation function for
each layer is represented as σ (·). As we seek sampling from p(z | θ∗) instead of q(z | x), we set
T = 0 for D. We update the discriminator weight using △wϕ for weight wϕ = {wfd, wςf} in eqn
(15).

hj = σj

(∑I
i=1 wij · xi

)
, hf = σf

(∑Z
ς=1 wςf · zς

)
zς = σς

(∑J
j=1 wjς · hj

)
, yd = σd

(∑F
f=1 wfd · hf

) (14)

△wϕ = δ
δwϕ

{
1
N

∑N
n=1 E

x(n)∼pdata

[
ln
(
1−D

(
G(x(n))

))]}
(15)

Discriminator training, T = 1: The samples in the latent space displaces each time the encoder
weight changes. Thus, GMM has to be re-computed each time the weight is updated. After sampling
from GMM i.e. z ∼ p(z | θ∗) and setting T = 1 to D, we perform forward pass using eqn (16) and
update the discriminator weight wϕ using eqn (17).

hf = σf

(∑Z
ς=1 wςf · {z ∼ p(z | θ∗)}

)
yd = σd

(∑F
f=1 wfd · hf

) (16)

△wϕ = δ
δwϕ

{
1
N

∑N
n=1 E

z(n)∼p(z|θ∗)

[
lnD

(
z(n)

)]}
(17)

A.5.2 TRAINING THE ENCODER

Encoder training, T = 0: The encoder q(z | x) maps x to z in the latent space. However, we seek
to minimize between q(z | x) and p(z | θ∗). Meaning that we desire to produce a sample z from
q(z | x) that is as close as possible to the sampling from p(z | θ∗). The discriminator path updates
the encoder weight wρ = {wij , wjς} in Fig 1. Given N samples, eqn (14) compute the forward
pass. Then, eqn (18) computes the weight update for the encoder for T = 0.

△wρ = δ
δwρ

{
1
N

∑N
n=1 E

x(n)∼pdata

[
ln

(
1−D

(
G(x(n))

))]}
(18)
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A.6 IMPLEMENTATION OF GAUSSIAN MIXTURE MODEL

We define Gaussian mixture model (GMM) Bishop (2006) as an K finite mixture of Gaussians in
eqn (19)

ln p(z|η, τ, ψ) =
N∑

n=1

K∑
k=1

{lnψk + lnN (zn|ηk, τk, ψk)} ζnk (19)

We denote cluster assignment for the n sample as ζn where ζn is a 1 − of − K vector, mixture
component as ψ = {ψk}Kk=1 ∈ RZ , cluster mean B = {Bk}Kk=1 ∈ RZ and cluster precision as
τ = {τk}Kk=1 ∈ RZ . In standard GMM, the hidden variables are updated by their point estimates,
τ̂k, η̂k, ˆζnk, ψ̂k. The expectation-maximization algorithm allows us to obtain point estimates using
the closed form equations Bishop (2006) below

τ̂k =
{

1
2

∑N
n=1 ζnk

}
/
{

1
2

(∑N
n=1(zn − ηk)

2ζnk

)}
(20)

η̂k =
∑N

n=1
ˆζnkzn∑N

n=1
ˆζnk

(21)

ˆζnk = argmax
k

{
lnψk − 1

2 (zn − η̂k)
2
}
ζnk (22)

ψ̂k =
∑N

n=1 ζnk∑K
k=1

∑N
n=1 ζnk

(23)
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