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Abstract

The recent success of Large Language Models001
(LLMs) has been predominantly driven by cu-002
rating the training dataset composition, scaling003
of model architectures and dataset sizes and004
advancements in pretraining objectives, leav-005
ing tokenizer influence as a blind spot. Shed-006
ding light on this underexplored area, we con-007
duct a comprehensive study on the influence of008
tokenizer choice on LLM downstream perfor-009
mance by training 24 mono- and multilingual010
LLMs at a 2.6 B parameter scale, ablating dif-011
ferent tokenizer algorithms and parameteriza-012
tions. Our studies highlight that the tokenizer013
choice can significantly impact the model’s014
downstream performance and training costs. In015
particular, we find that the common tokenizer016
evaluation metrics fertility and parity are not017
always predictive of model downstream per-018
formance, rendering these metrics a question-019
able proxy for the model’s downstream perfor-020
mance. Furthermore, we show that multilingual021
tokenizers trained on the five most frequent022
European languages require vocabulary size in-023
creases of factor three in comparison to English.024
While English-centric tokenizers have been ap-025
plied to the training of multi-lingual LLMs in026
the past, we find that this approach results in027
a severe downstream performance degradation028
and additional training costs of up to 68%, due029
to an inefficient tokenization vocabulary.030

1 Introduction031

LLMs have shown impressive capabilities in many032

downstream tasks in a zero/few-shot setting such033

as summarization, reading comprehension, trans-034

lation, and commonsense reasoning (Brown et al.,035

2020b; Touvron et al., 2023). To train a LLM,036

the currently established approach is to employ a037

tokenizer that splits the training documents into038

tokens where a token represents a word (Bengio039

et al., 2000), a sub-word (Schuster and Nakajima,040

2012; Sennrich et al., 2015; Wang et al., 2020), or a041

single character (Gao et al., 2020b), and each token 042

is represented in the model by an embedding vector 043

that can be further processed. 044

The quality of a tokenizer can be assessed intrin- 045

sically and extrinsically. An intrinsic evaluation 046

solely addresses the characteristics of tokenizers 047

and their generated output in isolation, whereas the 048

extrinsic evaluation measures the impact of the tok- 049

enizer on a downstream component, e.g., the Large 050

Language Model (LLM). 051

While many different tokenization approaches 052

have been proposed, ranging from character-based 053

to word-based methods, the potential impact of 054

different tokenizers is underexplored w.r.t. LLMs, 055

especially in the context of multilingual LLMs. Re- 056

cent work proposed by Petrov et al. (2023) demon- 057

strates that carelessly designed tokenizers applied 058

to the training of multilingual LLMs result in se- 059

vere inequalities and limitations across languages. 060

Text passages translated into different languages 061

resulted in tokenized sequences that differ in length 062

up to a factor of 15, affecting inference costs 063

and latency during inference. Furthermore, it is 064

known that the learning of long-range dependen- 065

cies (Vaswani et al., 2017), is an essential property 066

for effectively learning transformer-based LLMs. 067

Given a fixed sequence length, learning to relate 068

words far apart in the input text is impossible for 069

languages whose text is excessively fragmented by 070

the tokenizer. 071

Despite the importance of tokenizers and the 072

potentially severe impact of poorly performing tok- 073

enizers, there exists no extensive study so far that 074

holistically investigates the intrinsic and extrinsic 075

tokenizer performance in a monolingual and multi- 076

lingual setting with a focus on decoder-only mod- 077

els, which represent the backbone of current LLMs. 078

In this work, we address this gap and conduct an 079

extensive study in which we measure the impact 080

of the tokenizer on the model performance. In 081

particular, we make the following contributions: 082
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• We conduct a study investigating the intrinsic083

tokenizer performance.084

• We conduct a study investigating the extrinsic085

tokenizer performance, i.e., the impact of the086

tokenizer on the model’s downstream perfor-087

mance.088

• We investigate whether a correlation between089

the intrinsic and the extrinsic tokenizer perfor-090

mance exists.091

2 Related Work092

This section provides an overview of tokenization093

algorithms and their usage in encoder- and decoder-094

only transformer models.095

2.1 Tokenization Approaches096

Word Tokenization. The most basic tokeniza-097

tion approach is the splitting of sequences based098

on white spaces and considering each word as a099

token (Bengio et al., 2000).100

Subword tokenization. This class of algo-101

rithms subsumes all data-driven tokenization ap-102

proaches which can decompose words into sub-103

words/multiple tokens and currently represent the104

established tokenization approach upon which105

LLMs rely (Kudo and Richardson, 2018; Petrov106

et al., 2023). Because subword tokenizers decom-107

pose words into subwords, they can process out-108

of-vocabulary words by merging subwords from109

the vocabulary (Kudo and Richardson, 2018). Ex-110

amples of popular subword tokenizers are Word-111

Piece (Schuster and Nakajima, 2012), BPE (Gage,112

1994; Sennrich et al., 2015), Byte-Level BPE113

(BBPE) (Wang et al., 2020), and Unigram (Kudo,114

2018).115

Character Tokenization. Tokenization can also116

be performed on a character level or based on UTF-117

8 bytes. However, this results in an increased se-118

quence length, which becomes computationally ex-119

pensive in the transformer architecture, the current120

predominated architecture for LLMs due to the121

quadratic complexity of the self-attention layer in122

the sequence length (Vaswani et al., 2017). Though,123

several approaches have been proposed to address124

this limitation (Gao et al., 2020b; Tay et al., 2021;125

Xue et al., 2022; Clark et al., 2022; Yu et al., 2023).126

2.2 Tokenizers in Transformers Models127

Tokenizers in Encoder Models Most research128

on tokenization has been conducted on encoder129

models. Rust et al. (2021) investigated whether the 130

tokenizer choice impacts the downstream perfor- 131

mance of multi- and monolingual BERT (Devlin 132

et al., 2018) models. Zhang et al. (2022) showed 133

that better machine translation performance is of- 134

ten obtained when languages are equally sampled 135

during the tokenizer training. Toraman et al. (2023) 136

trained several medium-sized language models for 137

Turkish and suggested that different subword tok- 138

enizers perform roughly equivalent, whereas word- 139

and character-level tokenizers perform drastically 140

worse on downstream tasks. Finally, (Chirkova and 141

Troshin, 2022) analyzed the effect of employing 142

different tokenizations on code-related tasks and 143

demonstrated that carefully configured tokenizers 144

could reduce average sequence length up to 40% 145

or allow for small downstream performance im- 146

provements by up to 2% at a lower compression 147

rate. 148

Tokenizers in Decoder Models An overview of 149

current mono- and multilingual LLMs is provided 150

in (Lin et al., 2022; Shliazhko et al., 2022; Scao 151

et al., 2022). Stollenwerk (2023) evaluated the 152

intrinsic metrics of the GPT-SW3 (Ekgren et al., 153

2023) tokenizer that focused on the Nordic lan- 154

guages. As part of their work, Shliazhko et al. 155

(2022) ablated different tokenizer pre-processing 156

approaches while keeping the tokenizer algorithm, 157

the vocabulary size, and the employed implemen- 158

tation fixed. In none of the other major LLM pub- 159

lications, the extrinsic tokenizer performance has 160

been studied. 161

3 Approach 162

To investigate the tokenizer impact on the model 163

performance, we conducted an extensive ablation 164

study. In detail, we created dedicated datasets 165

for the training of the tokenizers and the models, 166

trained BPE and Unigram tokenizers, and for each 167

tokenizer we trained decoder-only models with a 168

size of 2.6B parameters while keeping the remain- 169

ing configuration (i.e., dataset and model hyper- 170

parameters) fixed. This allowed us to measure the 171

tokenizer’s impact on the model’s downstream per- 172

formance in isolation. 173

3.1 Data 174

While creating our tokenizer and model training 175

datasets, we ensure that the mixture proportions 176

of data domains (Wikipedia, books, web text) fol- 177

low the same distribution to avoid a domain shift 178
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between tokenizers training and model training.179

We created two datasets with 70B words where180

one of the datasets is monolingual, containing En-181

glish documents, and the second is a multilingual182

dataset comprised of English, German, French, Ital-183

ian, and Spanish documents. Our datasets are fil-184

tered and deduplicated and consist of web-crawled185

data (80%) and curated data (20%), comparable to186

related datasets used to train LLMs. In the mul-187

tilingual dataset, the amount of web-crawled data188

is equally distributed across languages in terms of189

number of words. Further details about our data190

pipeline and the data composition are described in191

Appendix A.192

3.2 Tokenizer193

Our studies rely on the two established tokeniza-194

tion algorithms, BPE and Unigram, and their im-195

plementation in the Huggingface tokenizer library196

(Moi and Patry, 2023) and the SentencePiece li-197

brary (Kudo and Richardson, 2018). We consid-198

ered both libraries in order to investigate the effect199

of differences in the pre-and post-processing steps200

and potential differences in the implementations.201

Due to missing pre-processing options for Hug-202

gingface’s Unigram implementation, which causes203

a large discrepancy in the resulting vocabulary com-204

pared to SentencePiece’s implementation of Uni-205

gram, we omitted the training of Unigram tokeniz-206

ers based on Huggingface. Overall, we trained 24207

different tokenizers, where one-half of the tokeniz-208

ers were monolingual English tokenizers, and the209

other half of the tokenizers were multilingual tok-210

enizers. Besides the tokenizer algorithm, language211

composition, and employed tokenizer library, we212

also varied the vocabulary size. Concrete tokenizer213

configurations are described in the Appendix B.214

3.3 Models215

To measure the impact of our trained tokenizers216

on the model downstream performance, we trained217

one model for each tokenizer. In particular, for218

each of our 24 trained tokenizers, we trained a219

2.6B transformer-based decoder-only model on up220

to 52B tokens following the scaling law proposed221

by (Hoffmann et al., 2022a). Additionally, serv-222

ing as baselines, we trained a monolingual and a223

multilingual model using the pre-trained GPT-2 to-224

kenizer (Radford et al., 2018). All models have225

been trained based on the causal language model-226

ing training objective.227

3.4 Evaluation 228

To assess the impact of the tokenizers on the model 229

downstream performance, we first performed an in- 230

trinsic tokenizer evaluation, followed by an extrin- 231

sic evaluation, and finally, we investigated whether 232

a correlation between both evaluation approaches 233

is given. 234

The intrinsic evaluation aims to assess the gen- 235

erated output of tokenizers based on fertility and 236

parity. Furthermore, the tokenizer’s vocabulary 237

overlap with other tokenizers is computed. The 238

intrinsic evaluation does not assess the impact of 239

tokenizers on the model performance. 240

Fertility, the most common metric to evaluate a 241

tokenizer’s performance (Scao et al., 2022; Stol- 242

lenwerk, 2023; Rust et al., 2021), is defined as the 243

average number of tokens that are required to rep- 244

resent a word or document. For a tokenizer T and 245

dataset A, the fertility can be calculated as the num- 246

ber of tokens in A (when T is applied) divided by 247

the number of words in A. We calculate the fertility 248

on a held-out set (10,000 documents), which was 249

not used for the tokenizer training. For calculating 250

the words of a document, we used whitespace split- 251

ting. Higher fertility scores correspond to weaker 252

compression capabilities of the tokenizer. 253

Parity (Petrov et al., 2023), which has been re- 254

cently proposed, assesses how fairly a tokenizer 255

treats equivalent sentences in different languages. 256

A tokenizer T achieves parity for language A with 257

respect to language B if |T (sA)|
|T (sB)| ≈ 1, where sA 258

and sB denote the sets of all sentences in the cor- 259

pora of languages A and B, respectively, and the 260

ratio |T (sA)|
|T (sB)| is defined as premium. We use the 261

FLORES-200 (Goyal et al., 2022) parallel corpus, 262

consisting of the same sentences human-translated 263

into 200 languages. We calculate the parity values 264

for each tokenizer and the four non-English lan- 265

guages with respect to English (see Fig. 2 for an 266

overview). 267

The extrinsic evaluation aims to explicitly assess 268

the impact of a tokenizer on the model’s down- 269

stream performance. We selected a comprehensive 270

set of downstream tasks (see Section 5.1) to mea- 271

sure the downstream performance. 272

Additionally, we computed the impact of a to- 273

kenizer on the average computational costs of a 274

given model per word during training. The compu- 275

tational costs during training for one step including 276

the forward and the backward pass can be estimated 277
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by278

C = 96Bslh2
(
1 +

s

6h
+

V

16lh

)
, (1)279

given a model with batch size B, sequence length280

s, l layers, hidden size h and vocabulary size V281

(Narayanan et al., 2021). The costs per token can282

be derived by Ctoken = C/Bs and the average costs283

per word by Cword = Ctoken× fertility. The Results284

are discussed in Section 5.3.285

4 Intrinsic Tokenizer Evaluation286

In our intrinsic evaluation, we first compare the287

fertility and parity of the trained tokenizers (Sec-288

tion 4.1) and subsequently the overlap of their vo-289

cabularies (Section 4.2).290

4.1 Fertility & Parity291

Applying the described fertility and parity evalua-292

tion to the mono-/multilingual tokenizers, our anal-293

ysis highlights the following two major aspects, as294

visualized in Fig. 1 and Fig. 2.295

Firstly, it can be observed that applying a mono-296

lingual tokenizer to multilingual data results in297

significantly higher fertility and parity scores (see298

Fig. 1a and Fig. 2). While multilingual tokenizers299

have lower fertility than monolingual English to-300

kenizers on all non-English documents by a large301

margin, they are only slightly worse on tokenizing302

English documents, as shown in Fig. 1b.303

Secondly, with increasing vocabulary size, fer-304

tility and parity reduce in all cases, which can be305

explained by the tokenizer requiring fewer sub-306

word tokens when tokenizing text given a larger307

vocabulary. However, it can be observed that for308

monolingual English tokenizers, the fertility is less309

dependent on the vocabulary when tokenizing En-310

glish documents, implying that 33k might be a311

sufficiently large vocabulary.312

4.2 Vocabulary Overlap313

To analyze the tokenizer similarity, we calculated314

the vocabulary overlap. Particularly, we assess315

Huggingface’s and SentencePiece’s BPE imple-316

mentations, as depicted in Table 1.317

The overlap is roughly constant across differ-318

ent vocabulary sizes, and the total overlap tends to319

be rather low, despite being the identical algorithm320

only implemented by two different libraries. Conse-321

quently, the tokenizers produce different tokenized322

sequences, possibly affecting model training and323

33k 50k 82k 100k

English 0.77 0.76 0.74 0.74
Multilingual 0.62 0.62 0.62 0.61

Table 1: Vocabulary overlap between the HuggingFace
and SentencePiece BPE tokenizer for different vocab
sizes.

downstream performance. Investigating the under- 324

lying reasons, the low overlap might be attributed 325

to different configuration and pre-processing op- 326

tions in these libraries. Due to the larger thesaurus 327

in multilingual documents, the overlap for the mul- 328

tilingual tokenizer is lower than for the English 329

tokenizers. 330

5 Extrinsic Tokenizer Evaluation 331

In the following, we describe the results of our 332

extrinsic evaluation of tokenizers. Section 5.1 de- 333

scribes the experimental setup, Section 5.2 presents 334

the downstream performance of the trained mod- 335

els based on the investigated tokenizers, and Sec- 336

tion 5.3 analyzes the computational costs associ- 337

ated with each tokenizer when employed in a spe- 338

cific model. 339

5.1 Experimental Setup 340

To assess the impact of the tokenizers on the model 341

downstream performance, we trained a decoder- 342

only transformer model of size 2.6 B for each to- 343

kenizer. We trained our models for 52.6 B tokens 344

following the scaling laws proposed by Hoffmann 345

et al. (2022b), based on the causal language mod- 346

eling training objective. The hyper-parameters are 347

described in Table 10 in the Appendix C. We eval- 348

uated our models in zero-shot settings on a wide 349

range of mono- and multilingual tasks: 350

• Natural language inference: XNLI (Conneau 351

et al., 2018), MNLI (Williams et al., 2018), 352

RTE (Wang et al., 2018), WNLI (Levesque 353

et al., 2012), CB (De Marneffe et al., 2019) 354

• Question answering: X-CSQA (Goodman, 355

2001), XStoryCloze (Lin et al., 2022), Pub- 356

MedQA (Jin et al., 2019) 357

• Reading comprehension: BoolQ (Clark et al., 358

2019)), LAMBADA (Paperno et al., 2016), 359

RACE (Lai et al., 2017), MRPC (Dolan and 360

Brockett, 2005). 361
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(a) Non-English, multilingual documents
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(b) English documents

Figure 1: Comparison of fertility scores between mono- and multilingual tokenizers applied to (a) Non-English,
multilingual documents and (b) English documents.

Figure 2: Comparison of parity scores between mono-
lingual (English) tokenizer and multilingual tokenizers
applied multi-lingual documents.

• Commonsense reasoning: HellaSwag (Zellers362

et al., 2019), WinoGrande (Sakaguchi363

et al., 2020), ARC (Clark et al., 2018),364

XCOPA (Ponti et al., 2020), XCDOAH (Good-365

man, 2001), WSC (Levesque et al., 2012),366

COPA (Roemmele et al., 2011)367

• Classification: PAWS-X (Yang et al., 2019),368

GNAD10 (Schabus et al., 2017), SST (Socher369

et al., 2013), WIC (Pilehvar and Camacho-370

Collados, 2019), PIQA (Bisk et al., 2020)371

Table 2 provides an overview of the number of372

tasks for each category and language.373

Task EN DE FR ES IT

NLI 6 1 1 1 0
QA 3 2 2 3 2
RC 3 1 1 1 1
CR 7 0 1 0 1
CL 3 1 0 1 0

22 5 4 6 4

Table 2: Overview of the number of evaluation tasks for
each language and the categories of Natural language
inference (NLI), Reading comprehension (RC), Ques-
tion answering (QA), Commonsense reasoning (CR)
and Classification (CL).

5.2 Downstream Performance 374

We split our analysis of the downstream perfor- 375

mance into several parts. 376

First, we discuss the overall results obtained 377

for the investigated tokenizers, followed by pre- 378

senting the impact of the tokenizer library (Sec- 379

tion 5.2.1), the impact of the tokenizer algorithm 380

(Section 5.2.2), and the impact of the vocabulary 381

size (Section 5.2.3). 382

We present both, obtained results for selected sin- 383

gle tasks (Table 3), and aggregated results across 384

all tasks (Table 4). For the average performance 385

across all tasks presented in Table 4, we computed 386

weighted average to take into account the differ- 387

ent number of tasks per language. In particular, 388

we computed for each language the mean across 389

all tasks, and then computed the mean over all 390

language-means. 391
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(b) German documents
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Figure 3: Average compute (GFLOPS) required to process a single word within (a) multilingual, (b) English, and
(c) German documents within a full training pass (including the backward pass).

Task Min Max Rand.

E
N

ARC-Easy 0.50 0.59 0.20
HellaSwag 0.34 0.41 0.25
MRPC 0.54 0.69 0.50
PIQA 0.67 0.72 0.50

M
U

LT
I XNLI FR 0.37 0.49 0.33

XNLI EN 0.49 0.52 0.33
X-CODAH ES 0.28 0.43 0.25
10kGNAD 0.15 0.43 0.11

Table 3: Worst- and best-performing tokenizer for se-
lected tasks and the random performance on this task.

Model EN MULTI

GPT-2-50 50.36 39.41

BPE-HF-33 49.13 40.52
BPE-HF-50 49.51 40.47
BPE-HF-82 48.71 40.24
BPE-HF-100 49.54 40.48

BPE-SP-33 50.81 40.28
BPE-SP-50 49.81 40.49
BPE-SP-82 48.99 41.21
BPE-SP-100 49.46 41.44

UNI-SP-33 50.28 40.30
UNI-SP-50 49.90 40.48
UNI-SP-82 49.65 41.20
UNI-SP-100 50.21 40.74

Table 4: Average accuracy of monolingual and multi-
lingual tokenizers across all downstream tasks. Due
to varying number of tasks per language, multi-lingual
accuracies have been adjusted to each language con-
tributing equally to the average.

Monolingual Tokenizer Table 4 demonstrates 392

that the BPE-SP-33 tokenizer, on average, is the 393

best-performing tokenizer, followed by the GPT- 394

2 tokenizer. Interestingly, SentencePiece’s imple- 395

mentation of BPE with a vocabulary size of 33k 396

has been used for LLaMA2 (Touvron et al., 2023). 397

Aggregated metrics provide a reasonable overview 398

of the overall performance. However, it does not 399

express potentially large performance differences 400

across tasks. Therefore, we listed in Table 3 the 401

obtained results for a list of selected tasks obtained 402

by the best and worst performing tokenizer on this 403

task. The results illustrate that the performance dif- 404

ference can be huge. For instance, for ARC-Easy, 405

a commonsense reasoning task, the gap between 406

the best and worst tokenizer is 9%. 407

Multilingual Tokenizer Table 4 shows that the 408

BPE-SP-100 tokenizer is the best-performing tok- 409

enizer followed by the BPE-SP-82 tokenizer. Fur- 410

thermore, Table 4 demonstrates that the GPT-2 411

tokenizer performs poorly, implying that using a 412

pre-trained GPT-2 tokenizer to pre-train and fine- 413

tune multilingual models should be omitted. The 414

analysis of selected tasks ( 3) reveals that for multi- 415

lingual tokenizers, the performance difference be- 416

tween tasks can be huge. 417

5.2.1 Impact of the Tokenizer Library 418

Table 5 demonstrates that BPE-SP, on average, out- 419

performs BPE-HF in the monolingual and multilin- 420

gual setting across all languages. The performance 421

differences might be attributed to the differences in 422

implementation details of the tokenizers’ pre-and 423

postprocessing, which could affect the vocabulary 424

creation (see Section 4.2) and, consequently, the 425

downstream performance. 426
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MULTI MONO

Vocabulary DE FR IT ES EN AVG EN

33 36.75 36.66 39.30 41.76 47.37 40.37 49.55
50 36.12 37.07 38.94 42.22 46.71 40.21 49.90
82 36.50 37.83 39.97 42.30 47.80 40.88 49.12
100 35.92 38.07 40.13 42.64 47.67 40.89 49.74

Algorithm and Library DE FR IT ES EN AVG EN

BPE-HF 35.69 37.31 39.37 42.28 47.48 40.43 48.98
BPE-SP 37.13 37.45 40.04 41.96 47.68 40.85 49.77
UNI-SP 36.51 37.66 39.57 42.56 47.10 40.68 50.01

Table 5: Impact of the vocabulary size (upper), and tokenizer algorithm and library (lower), on the downstream
performance. The accuracy scores are either averaged over the libraries and tokenizer algorithms (upper) or the
different vocabulary sizes (lower).

5.2.2 Impact of the Tokenizer Algorithm427

Furthermore, Table 5 shows that depending on the428

language, either the BPE or Unigram exhibits better429

performance. It is noteworthy that the Germanic430

languages German and English benefit from the431

BPE algorithm, whereas the Romanic languages432

French and Spanish benefited from Unigram. The433

experiments for Italian, a Romanic language as434

well, show a different pattern than the other two435

Romanic languages.436

5.2.3 Impact of the Tokenizer Vocabulary437

Analyzing the impact of the vocabulary size re-438

vealed that in the monolingual English setting, the439

smaller/medium-sized, i.e., a vocabulary size of440

33k/50k performs better (Table 5) whereas in the441

multilingual setting, in all cases except for German,442

larger vocabulary sizes result in better downstream443

performance. Taking into account the results pre-444

sented in Table 4 showing that in the monolingual445

English setting, the best-performing tokenizer on446

average across all tasks had a vocabulary size of447

33k and that the best-performing multilingual tok-448

enizer had a vocabulary size of 100k additionally449

supports the observation that for the monolingual450

English setting a small vocabulary size is beneficial451

and for the multilingual setting a large vocabulary452

size is required.453

5.3 Computational Costs454

Given a fixed model, the computational costs de-455

pend on the vocabulary size and the fertility of the456

tokenizer, as defined in Eq. (1).457

While larger vocabulary sizes introduce addi-458

tional computational costs, they might also result in459

lower fertility scores and, therefore, lower overall 460

computational costs for processing a set of docu- 461

ments, as discussed in Section 4. However, our find- 462

ings in Fig. 3 show that increasing the vocabulary 463

size from 50k to larger vocabulary sizes increases 464

the computational costs in all cases. This highlights 465

that the potentially lower fertility of larger vocab- 466

ulary sizes cannot compensate for the additional 467

costs introduced by the larger vocabulary size. 468

Furthermore, we observe that the computational 469

training costs for multilingual documents are sig- 470

nificantly lower for multilingual tokenizers than for 471

monolingual English tokenizers (Fig. 3a). In fact, 472

Fig. 3b and Table 11 in the appendix demonstrate 473

that the training costs can increase up to 68% (com- 474

paring Multi-UNI-SP-50 to EN-UNI-SP-100 for 475

German documents) for a given dataset. Assuming 476

that during training it is required to process a fixed 477

set of documents (e.g., Wikipedia to learn specific 478

facts) entirely and not only a given number of to- 479

kens, the choice of the tokenizer can significantly 480

impact the computational costs for training on this 481

corpus. 482

While we could observe large cost differences 483

between multilingual and monolingual English to- 484

kenizers in the monolingual English setting, the 485

difference in computational costs between multilin- 486

gual and monolingual English tokenizers for pro- 487

cessing English documents is marginal (Fig. 3c). 488

6 Correlation Between Intrinsic And 489

Extrinsic Tokenizer Performance 490

This section investigates a possible predictive rela- 491

tionship of intrinsic tokenizer metrics (fertility and 492
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Figure 4: Spearman correlation of fertility/parity scores
and downstream task performance for all five languages.
We evaluated monolingual models on English tasks
(left), whereas our multilingual models are evaluated
across all non-English tasks. Pearson and Kendall cor-
relation metrics showed a very similar picture.

parity) to the extrinsic model downstream perfor-493

mance.494

As highlighted in the correlation heatmaps in495

Fig. 4, we find that there is no distinct correlation496

across all tasks and languages, demanding a more497

granular analysis. While for non-English tasks, we498

mainly observe a correlation between low fertil-499

ity and higher downstream performance, the non-500

English tasks yield seemingly random positive and501

negative correlations. However, it should be noted502

that the number of multilingual tasks per language503

is much lower than for English and that for several504

multilingual tasks such as XSQA and LAMBADA,505

a similar correlation behaviour between the English506

tasks and their translated version can be observed.507

Taking the fertility trends with varying vocabu-508

lary sizes (see Fig. 1) into consideration, we hypoth-509

esize that fertility only correlates with downstream510

performance in certain language-specific vocabu-511

lary size limits. For the English language, the tok-512

enizers already provide low, close-to-convergence513

fertility scores for vocabulary sizes of 33k tokens.514

While additional tokens yield only minute fertility515

improvements, we presume that they do not cap-516

ture morphological segmentations and, thus, can517

harm downstream performance and significantly518

increase the computation costs (see Section 5.3) in519

the end. 520

In contrast, for multilingual tokenizers, we ob- 521

serve significant fertility improvements with in- 522

creasing vocabulary sizes. Due to the larger the- 523

saurus induced by the additional languages, the 524

tokenizer requires a larger vocabulary to allow a 525

model to perform convincingly on all languages. 526

Therefore, only within the non-convergence vocab- 527

ulary range, we achieve a strong, negative correla- 528

tion between fertility and downstream performance 529

with varying vocabulary sizes. 530

In conclusion, intrinsic tokenizer metrics such 531

as fertility and parity need to be taken with a grain 532

of salt and supposedly are only predictive of down- 533

stream model performance in certain bounds. Low 534

fertility scores might be regarded as a necessary 535

criterion but not as a sufficient one. 536

7 Conclusion & Future Work 537

This work represents a fundamental step to a better 538

understanding of the impact of the tokenizer on 539

the models’ downstream performance. We have 540

shown that training tokenizers with a balanced 541

share across languages achieve comparable low fer- 542

tility and parity scores across all languages, which 543

has important implications. Higher fertility results 544

in up to 68% more computational costs during train- 545

ing and prevents the model from learning long- 546

range dependencies in limited context windows. 547

Furthermore, we highlight that the tokenizer 548

choice can significantly impact the model’s down- 549

stream performance. We could show that the BPE 550

algorithm applies well to mono- and multilingual 551

settings. For English, we show that a vocabulary 552

size of 33k is sufficient, whereas multilingual mod- 553

els based on our five considered languages require 554

a up to three times larger vocabulary size. More- 555

over, we could show that the SentencePiece library 556

outperforms the Huggingface tokenizer library. 557

Finally, we could demonstrate that there is no 558

clear correlation between intrinsic and extrinsic to- 559

kenizer performance, but the correlation is rather 560

task-specific. A small fertility value might be a nec- 561

essary condition for good downstream performance 562

but not a sufficient one. 563

In the future, we aim to investigate tokenizers 564

for a larger set of languages, including very diverse 565

languages, and investigate the impact of alternative 566

tokenization approaches such as SAGE (Yehezkel 567

and Pinter, 2023) that focus on context information 568

during tokenizer training. 569
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8 Limitations570

Despite the extensiveness of our work, it faces the571

following limitations.572

Firstly, we did not perform hyper-parameter op-573

timizations for each tokenizer. This was a deliber-574

ate choice to avoid additional computational costs,575

considering that training all 26 models only once576

required ≈ 59.000 GPU hours.577

Secondly, we did not investigate the effect of578

different random seeds on the model performance579

for a given tokenizer due to the additional compu-580

tational costs. However, our results lay the foun-581

dation for future works that can further investigate582

the robustness of selected experiments.583

Third, we did not investigate whether the re-584

sults obtained could be extrapolated to larger model585

sizes, which we leave to future works. However,586

our finding that the BPE-SP-33 tokenizer is the587

best-performing tokenizer for the monolingual set-588

ting and the fact that this tokenizer has been used589

for training state-of-the-art models up to 65B (Tou-590

vron et al.) might indicate that our results also591

transfer to larger model sizes.592

Finally, we did not provide results for a few-593

show setting since the metric of interest in the con-594

text of this work was the zero-shot downstream595

performance. Because we wanted to investigate596

whether the tokenizer choice impacts the model’s597

downstream performance, we argue that restricting598

on one of the widely applied metrics, i.e., the zero-599

shot setting, is sufficient to answer this research600

question. One further advantage of focusing on the601

zero-shot scenario is that we do not introduce an602

additional variable represented by the choice of the603

few-shot examples. However, we encourage future604

works to investigate whether our results translate605

into the few-shot evaluation setting.606

9 Ethical And Broader Impact607

LLMs represent a disruptive technology that has608

received significant attention from the public and609

is widely used across societies speaking different610

languages. Therefore, ensuring a democratization611

of the technology across people of different lan-612

guages will represent an important value. Our study613

highlights that neglecting multilingualism while614

training a tokenizer representing a core component615

required for training LLMs can cause severe dis-616

advantages, such as increased training costs and617

decreased downstream performance, raising ma-618

jor ethical concerns. Furthermore, the increased619

training costs translate into an increased carbon 620

footprint, which has an environmental impact. Our 621

findings support an improved development and us- 622

age of this fundamental technology. 623
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Name Language #Words

Oscar DE 11.200.000.000
Oscar ES 11.200.000.000
Oscar EN 11.200.000.000
Oscar IT 11.200.000.000
Oscar FR 11.200.000.000

Pile DE 13.838.432
Pile ES 21.990.512
Pile EN 4.334.313.669
Pile IT 7.946.402
Pile FR 15.857.811

RedPajama DE 143.907.461
RedPajama ES 112.950.000
RedPajama EN 4.663.646.781
RedPajama IT 137.802.711
RedPajama FR 139.749.147
RedPajama Code 2.052.228.788

Misc DE 600.844.912
Misc ES 186.934.269
Misc EN 1.337.030.904
Misc IT 19.810.753
Misc FR 211.147.445

Total 70.000.000.000

Table 6: Overview of the multilingual 70B words dataset
with language, number of sampled words

A Corpora1025

Our web documents in the corpora consist of Os-1026

cars1 (Abadji et al., 2021), that were generated by1027

the ungoliant pipeline2 based on three Common1028

Crawl WET Archives (2022-27, 2022-49 and 2023-1029

14).1030

The curated datasets consist of The Pile (Gao1031

et al., 2020a), RedPajama (Computer, 2023), and1032

single datasets that do not belong to a collec-1033

tion. From the Pile subcorpora, we selected: Phil1034

Archive, PMC Abstracts, PMC Extracts, OpenWeb-1035

Text, NIH Exporterm, and Free Law Opinions V2.1036

From RedPajama we use: ArXiv, Books, Github,1037

StackExchange, and Wikipedia.1038

The remaining datasets are:1039

1. All the News V2.03 is a corpus of newspaper1040

articles crawled from over 26 different publi-1041

1https://oscar-project.org/
2https://github.com/oscar-project/ungoliant
3https://metatext.io/datasets/all-the-news-2.

0

Name Language #Words

Oscar EN 56.000.000.000
Pile EN 4.893.724.288
RedPajama EN 5.308.974.750
RedPajama Code 2.299.301.635
Misc EN 1.497.999.327
Total 70.000.000.000

Table 7: Overview of the English 70B words dataset
with language, number of sampled words

cations from January 2016 to April 1, 2020. 1042

2. Bundestag - Plenarprotokolle4 comprises tran- 1043

scripts of sessions of the German Bundestag. 1044

3. Bundesgerichtshof - Entscheidungen5 is a col- 1045

lection of decisions of the German Federal 1046

Court. 1047

4. CoStEP6 is a cleaned-up and corrected version 1048

of the EuroParl corpus(Graën et al., 2014). 1049

(Koehn, 2005) 1050

5. DCEP7 is a companion corpus to CoStEP, con- 1051

taining documents published by the European 1052

Parliament. (Hajlaoui et al., 2014) 1053

6. DNB Dissertations8 is a collection of disserta- 1054

tions from the Deutsche Nationalbibliothek. 1055

7. MAREC/IREC9: The MAtrixware REsearch 1056

Collection / The Information retrieval facility 1057

Research Collection is a patent corpus of over 1058

19 million documents from the EP, WO, US, 1059

and JP patent offices. 1060

8. Medi-Notice10 is part of the Zurich Parallel 1061

Corpus Collection. It is a multilingual cor- 1062

pus compiled from information leaflets for 1063

4https://www.bundestag.de/dokumente/
protokolle/plenarprotokolle

5https://www.bundesgerichtshof.de/DE/
Entscheidungen/entscheidungen_node.html

6https://pub.cl.uzh.ch/wiki/public/costep/
start

7https://joint-research-centre.ec.
europa.eu/language-technology-resources/
dcep-digital-corpus-european-parliament_en

8https://www.dnb.de/DE/Professionell/Services/
Dissonline/dissonline_node.html

9https://researchdata.tuwien.ac.at/records/
2zx6e-5pr64

10https://pub.cl.uzh.ch/wiki/public/pacoco/
medi-notice
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Hyper-Parameter Value(s)

model_type Unigram | BPE
vocab_size 33k |50k

82k | 100k
character_coverage 0.9999
split_by_number True
allow_whitespace_only True
add_dummy_prefix True
user_symbols <s>,</s>,<pad>,

<eod>, <ph_1>,
. . . , <ph_255>

byte_fallback True
max_sentence_length 4192
normalization_rule_name NFKC
train_large_corpus True
remove_extra_whitespaces False
split_by_whitespace True

Table 8: Overview of the SentencePiece options that we
used for the training of our tokenizers.

medications and pharmaceutical products pub-1064

lished by the Swiss Agency for Therapeutic1065

Products.(Graën et al., 2019)1066

9. Swiss Policy11 contains documents of the1067

Swiss Legislation Corpus (Höfler and Pi-1068

otrowski, 2011)1069

10. OpenSubtitles 20181213 is a collection of1070

translated movie subtitles. (Lison and Tiede-1071

mann, 2016)1072

B Tokenizer1073

In our experiments, we focused on the Hugging-1074

face tokenizer library (Moi and Patry, 2023) and1075

the SentencePiece library (Kudo and Richardson,1076

2018). We use the standard settings of the Sentence-1077

Piece library if not stated otherwise in Table 8. For1078

the HuggingFace tokenizer library Table 9 shows1079

where we deviated from the standard values.1080

C LLM Architecture and1081

Hyperparameters1082

Regarding the training architecture of our 2.6B pa-1083

rameter models, we followed closely the architec-1084

ture of GPT-3 (Brown et al., 2020a). An overview1085

11https://pub.cl.uzh.ch/wiki/public/pacoco/
swiss_legislation_corpus

12https://opus.nlpl.eu/OpenSubtitles-v2018.php
13https://www.opensubtitles.org/de/index.cgi

Hyper-Parameter Value(s)

model_type BPE
vocab_size 33k | 50k

82k | 100k
limit_alphabet 512
nfkc_normalizer True
lowercase_normalizer False
strip_accents_normalizer True
pre_tokenizer ByteLevel, Digits

Table 9: Overview of the Huggingface options that we
used for the training of our tokenizers.

Hyper-Parameter Value

# Hidden Dimension 2560
# Layers 32
# Attention-Heads 32
Sequence-Length 2048
Optimizer Adam
Adam−β1 0.9
Adam−β2 0.9
Learning rate 1.6e-4
Learning rate decay Cosine
Precision BF16
FlashAttention 2.0
Position-Embeddings Rotary

Table 10: Overview of the LLM hyperparameters that
we used for the training.

of the used architecture details and hyperparame- 1086

ters is given in Table 10. 1087

For training the models, we used a fork 1088

of Megatron-LMhttps://github.com/NVIDIA/ 1089

Megatron-LM. 1090

D Intrinsic Tokenizer Evaluation 1091

Besides studying the overlap of the same algorithm 1092

on the same thesaurus, we were also interested 1093

in vocabulary overlaps across algorithms and the- 1094

sauruses see Fig. 5. What we can observe is that 1095

multilingual vocabulary and English vocabulary 1096

have a rather small overlap between 24% and 34% 1097

that remains similar across increasing vocabulary 1098

sizes. Across algorithms, we can see that Unigram 1099

and BPE of SentencePiece have a slightly higher 1100

overlap than Unigram of SentencePiece and BPE 1101

of Huggingface. We think this might be due to 1102

library-specific preprocessing steps and more simi- 1103

lar hyperparameters. 1104
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Figure 5: Vocabulary overlap between the examined tokenizers
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Model Non-English English German

GPT-2-50 3.87 2.58 4.59

E
N

BPE-HF-33 3.8 2.32 4.52
BPE-HF-50 3.79 2.38 4.45
BPE-HF-82 3.88 2.55 4.51
BPE-HF-100 3.96 2.67 4.58
BPE-SP-33 3.86 2.37 4.66
BPE-SP-50 3.89 2.42 4.68
BPE-SP-82 4.02 2.59 4.78
BPE-SP-100 4.11 2.71 4.84
UNI-SP-32 4.01 2.36 4.73
UNI-SP-50 4.02 2.42 4.75
UNI-SP-82 4.12 2.59 4.83
UNI-SP-100 4.21 2.71 4.88

M
U

LT
I

BPE-HF-33 2.71 2.46 3.04
BPE-HF-50 2.7 2.5 3.01
BPE-HF-82 2.8 2.65 3.09
BPE-HF-100 2.88 2.76 3.17
BPE-SP-33 2.68 2.55 2.99
BPE-SP-50 2.67 2.57 2.95
BPE-SP-82 2.76 2.72 3.03
BPE-SP-100 2.85 2.82 3.1
UNI-SP-33 2.68 2.55 2.94
UNI-SP-50 2.66 2.58 2.91
UNI-SP-82 2.76 2.73 2.99
UNI-SP-100 2.84 2.83 3.07

Table 11: Computational training costs per word
(GFLOPs) for different tokenizers.

D.1 Computational Costs Per Word During1105

Training1106

Table 11 shows the average computational training1107

costs for processing a word during the forward and1108

backward pass.1109

E Infrastructure & Computational Costs1110

We trained each of our 26 2.6B parameter models1111

on NVIDIA A100 GPUs, and the training of each1112

model took up to 2304 GPU hours. Therefore, the1113

total training costs amounted to ≈ 59.000 GPU1114

hours.1115
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