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ABSTRACT

State estimation for nonlinear state space models (SSMs) is a challenging task.
Existing assimilation methodologies predominantly assume Gaussian posteriors
on physical space, where true posteriors become inevitably non-Gaussian. We
propose Deep Bayesian Filtering (DBF) for data assimilation on nonlinear SSMs.
DBEF constructs new latent variables h; in addition to the original physical vari-
ables z; and assimilates observations o;. By (i) constraining the state transition
on the new latent space to be linear and (ii) learning a Gaussian inverse obser-
vation operator r(h;|o;), posteriors remain Gaussian. Notably, the structured de-
sign of test distributions enables an analytical formula for the recursive compu-
tation, eliminating the accumulation of Monte Carlo sampling errors across time
steps. DBF trains the Gaussian inverse observation operators r(h;|o;) and other
latent SSM parameters (e.g., dynamics matrix) by maximizing the evidence lower
bound. Experiments demonstrate that DBF outperforms model-based approaches
and latent assimilation methods in tasks where the true posterior distribution on
physical space is significantly non-Gaussian.

1 INTRODUCTION

Data assimilation (DA) is a crucial technique across various scientific domains. Its primary objective
is to estimate the trajectory and current state of a system by integrating an imperfect model with
partially informative observations. Specifically, given a series of observations 1" time steps o;.r,
the goal is to infer the posterior distribution of the system’s physical variables z;: p(z¢|01.¢). DA
has been widely applied in fields such as weather forecasting (Hunt et al., 2007; |[Lorenc, 2003
Andrychowicz et al., 2023), ocean research analysis (Ohishi et al.l [2024), sea surface temperature
prediction (Larsen et al.|[2007)), seismic wave analysis (Alfonzo & Oliver,[2020), multi-sensor fusion
localization (Bach & Ghil, [2023)), and visual object tracking (Awal et al., 2023)).

A key challenge in DA arises from the non-Gaussian nature of the posterior distributions p(z¢|01.¢),
which results from the inherent nonlinearity in both the system dynamics and observation models.
Despite this, many operational DA systems, such as those used in weather forecasting, rely on meth-
ods like the ensemble Kalman Filter (EnKF) (Evensen, |1994; |Bishop et al.l 2001) for sequential
state filtering (i.e., p(z¢|01.+)) and the four-dimensional variational method (4D-Var) for retrospec-
tive state analysis (i.e., p(zt|o1.7),t < T). These approaches assume Gaussianity in their test
distributions g(z¢|01.t) or g(z¢|o1.7), a simplification driven by computational constraints. While
exact methods such as bootstrap Particle Filters (PF) or sequential Monte Carlo (SMC) (Chopin
& Papaspiliopoulos,, [2020; Daum & Huang, 2007; Hu & van Leeuwen) 2021) could compute the
true posterior, their performance degrades significantly when the number of particles is insuffi-
cient (Beskos et al.| [2014). This issue is exacerbated in high-dimensional systems, making SMC
approaches impractical for many physical problems.

To address these limitations, we propose a novel variational inference approach called Deep
Bayesian Filtering (DBF) for posterior estimation. Our strategy consists of two main components:
(i) constraining the test distribution to remain Gaussian to ensure computational tractability, and,
in cases where the original dynamics are nonlinear, (ii) leveraging a nonlinear mapping to enhance
the expressive capability of the test distribution. The DBF methodology diverges into two paths
depending on the nature of the system dynamics, whether linear Gaussian or nonlinear:
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Linear dynamics When the system’s dynamics p(z¢41|2¢) are linear, DBF assumes Gaussianity
in the original space, similar to traditional methods. However, DBF introduces the concept of the
inverse observation operator (IOO; see also |Frerix et al.|2021) to construct Gaussian test distribu-
tions g(z¢|o1.¢). The 100, along with any unknown system parameters, are trained to minimize the
Kullback-Leibler divergence between the test distribution g(z¢|o1.+) and the true posterior p(z¢|o1.+).
The 10O and the system parameters are trained without teacher signals z;.

Nonlinear dynamics In the more common case of nonlinear dynamics, DBF operates in a latent
space, assuming Gaussianity in the latent variables h;. The original physical variables are recovered
through a nonlinear mapping function ¢, implemented via neural networks (NNs). This nonlinear
mapping allows for a more flexible representation of the test distribution g(z¢|01.¢). The IOO and
other parameters are trained in a supervised manner (i.e., z; is used during training).

For state space models (SSMs) with nonlinear dynamics, DBF functions as a variational autoen-
coder (VAE) that adheres to the Markov property. Posterior distributions of the latent variables
h; are expressed in a Bayesian framework. This approach is closely related to dynamical VAEs
(DVAEs, |Girin et al.|2021|for a review), which use VAEs to model time-series data. However, DBF
distinguishes itself by its posterior design. Unlike DVAEs, where Monte Carlo sampling is required
for inference (see Sec. 2.6.1)), DBF allows for the analytical computation of the prediction step,
recursively computing posteriors through closed-form expressions.

When applied to problems with nonlinear or unknown dynamics, DBF can be interpreted as learn-
ing the Koopman operator (Koopman, [1931) using NNs. The discovery of such latent spaces and
operators through machine learning has been extensively studied (Takeishi et al.l | 2017; Lusch et al.,
2018; |Azencot et al., 2020) and will be experimentally validated through the handling of nonlinear
filtering tasks involving chaotic dynamics.

Key contributions of the proposed DBF methodology include:

* DBF is the first VAE-based model for time-series data that maintains a posterior structure
faithful to the Markov property in SSMs.

* For systems with linear dynamics, DBF extends the Kalman Filter (KF) to handle nonlin-
ear observations through learnable NNs. The training process enables the model to infer
unknown system parameters directly from data (see Sec. 3.1).

* For nonlinear dynamics, DBF constructs a new latent space for data assimilation, allowing
for the analytical integration of time steps and preventing the accumulation of Monte Carlo
sampling errors. This is accomplished through the application of Koopman operator theory,
which ensures that the model’s representational power is maintained, as long as the latent
space is sufficiently high-dimensional (see Sec. 3.2 and 3.3).

* As a generative model, DBF estimates the uncertainty of the physical variables z;, in con-
trast to 3D- and 4D-Var, which yield only point estimates (see Sec. 3.2 and Fig.[3).

* The linear constraint on dynamics stabilizes the training process, which is known to be
unstable in standard recurrent NNs (see Sec. 3.3 and Fig. [6).

DBF has demonstrated superior performance over classical DA algorithms and latent assimilation
methods in scenarios with highly non-Gaussian posteriors, particularly in the presence of strongly
nonlinear observation operators or large observation noise.

2 METHOD

2.1 INFERENCE OF PHYSICAL VARIABLES IN A STATE-SPACE MODEL

A physical system is defined by variables z;, with its evolution described by the dynamics model
p(ze+1lzt) = N(ze41; f(20), Q), where N (z|u, X) denotes a Gaussian whose mean and covari-
ance are p and Y. The nonlinear function f is the dynamics operator and () is the system
covariance. The Markov property holds, as z;4; depends only on z;. An observation model
p(ot]zt) = N(og; h(zt), R) relates observations to physical variables via the observation opera-
tor h and covariance R. The panel (a) of Fig. 1| shows the system’s graphical model. The objective
of sequential DA is to compute the posterior of z; given 01.¢.
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Figure 1: Panel (a) shows the graphical model for the simplest SSM. If the dynamics of the orig-
inal SSM is linear, DBF assimilates on that space. Panel (b) shows the graphical model for the
SSM assumed for SSM with nonlinear dynamics. Panel (c) shows the inference structure of our
methodology for SSM with nonlinear dynamics.

2.2  KF FOR LINEAR DYNAMICS, LINEAR OBSERVATIONS

In the KF, the dynamics and observation models are both linear Gaussian. Given that the dynam-
ics and observation operators f, h are linear, we can represent them using matrices A and C, re-
spectively. All matrices (4, C,Q, and R) are constant. The filter distribution p(z¢|01.+) remains
Gaussian, provided that the initial distribution p(z1) is Gaussian. We can recursively compute the
posterior parameters (means p; and covariance matrices X;) using the following equations:

W = Et(AEtflAT + Q)_lA/th1 + Ki(op — HAp—1), (D
u7 o= (AR AT+ Q) '+ HRTHT, @)

where K; = (AY; 1 AT + Q)HT (H(AX;_1 AT + Q)HT + R~1)~! is the Kalman Gain.

2.3 DBF FOR LINEAR DYNAMICS, NONLINEAR OBSERVATIONS

In this scenario, Gaussianity of the test distribution is lost during the KF update step. We introduce
an inverse observation operator (I00) 7(z:|o:) (see also [Frerix et al.|2021):

_ ploglzg)p(zelore—1)  r(zt]or)
plzfore) = p(or]orn 1) o8 o(z0) p(zt|01:4—1), 3)

where r(z¢|or) = %

proximating both the 100 and the virtual prior as Gaussians, r(z:|o;) = N(fg(0:),Gg(0;)) and
p(zt) = N(m, V), respectively, the posterior q(z¢|o1.:) can be analytically computed as a Gaussian,
where the mean p; and covariance X, are given as:

pe = (A% 1 AT + Q) Apsq + Go(or) Tt falor) — Vim, 4)
St = (A% AT+ Q)T+ Glo) T -V, (5)

and p(z;) is a prior virtually introduced for the 100. By ap-

where fg(o;) and Gy(o;) are NNs with parameters 6, and m and V' are constants set to m = 0
and V = 108I. These values bias the NNs’ outputs without affecting performance. The initial
distribution ¢(z1) is taken to be a Gaussian with y; = 0 and ¥y = 1001.

The recursive formula for the exact posterior (Equation [3)) requires no approximation. Thus, DBF
computes the exact posterior when the true I0O 74ye(he|ot) is Gaussian, i.e., the SSM is a LGSS.
In that case, the posterior update formula agrees with the KF (see Equations [I] [2] and ] 5). The
key difference is that nonlinear functions are applied to both the mean, fy(o;), and the covariance,
Gy(ot). In the KF, fy(0;) is linear, and Gy(o;) is a constant covariance matrix (see Equations|l|and
. The dependence of Gy(0;) on observations provides flexibility in adjusting the impact of the new
observation on the state estimation. The importance of adjusting the internal state updates based on
observations has also been discussed in recent SSM-based approaches (Gu & Dao, [2023)).
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2.4 DBF FOR NONLINEAR DYNAMICS, LINEAR/NONLINEAR OBSERVATIONS

In this scenario, the Gaussianity of the test distribution is lost during the predict step, making it
impossible to apply the original dynamics over the physical variables z;. Therefore, we introduce a
new set of latent variables h; and assume a dynamics model over hy: p(hyt1|hi) = N (hyg1|Ahe, Q)
(see panel (b) in Fig. [I). The IOO maps observations into the latent variables h;: r(h¢|o;). The
recursive formula follows Equations ] and [5| To retrieve the distribution of the original physical
variables z;, we introduce an emission model p(z;|h;) = N (z¢; ¢(he), R), where ¢ is represented
by a NN. By marginalizing over h; with this emission model, a trained DBF can generate samples
of z; that follow the test distribution ¢(z¢|o1.¢) given observations o01.;.

Although the dynamics operator A for the latent variables h; is linear, it can express any nonlinear
dynamics if the latent space is sufficiently high-dimensional. The Koopman operator (Koopman)
1931)) provides a framework for representing nonlinear systems by mapping observables—functions
of the system’s state—into a higher-dimensional space where the dynamics are linear. For a system
zt41 = f(zt), the Koopman operator K is a linear operator acting on a set of observables g(z), such
that Cg(z:) = g(f(#:)). This reformulates the system as h;1 = Ah; in the latent space, where A
is the dynamics matrix learned by DBF. While the physical dynamics f(z) are nonlinear, the Koop-
man operator ensures the existence of an embedding that linearizes the dynamics, enabling recursive
computation of test distributions. Discovering such embeddings in finite dimensions has been widely
studied (Takeishi et al.,|2017;[Lusch et al., 2018;|Azencot et al.,2020). In high-dimensional simula-
tions, the true degrees of freedom are often far fewer than the simulated variables, making surrogate
modeling with the Koopman operator a promising approach to reducing computational costs.

2.5 TRAINING

When assimilating in the physical space (i.e., when the dynamics are linear), we train the 10O (i.e.,
fo and Gy) by optimizing the evidence lower bound (ELBO) without using the teacher signal z;:

T
logp(orr) = > logp(olors—1) > —LeLso,
=1
T
Lerpo = —Z/q(ht|01:t)10gp(0t|ht)dht+KL[q(ht|O1:t)|‘q(ht|01:t—1)]7 (6)
=1

where K L[p||q] denotes the Kullback-Leibler divergence between distributions p and ¢ (see Sec.
in the appendix for the derivation). Here, q(hi|o1.9) = ¢(hy) is the initial distribution. If the SSM
contains any unknown parameters, we can train these parameters as well.

For SSMs with nonlinear or unknown dynamics, we have two approaches:

Strategy 1 Pretrain the Koopman operator, which consists of the nonlinear mapping from z; to
h¢, the linear dynamics between h; and h;;; represented by matrix A, and the reverse nonlinear
mapping from h; to z; denoted by ¢. With these components (A and ¢) of the Koopman operator,
the method designed for linear dynamics can be applied. For pretraining, we require samples of z; or
the SSM for the physical variables to generate these samples. Pairs of z; and o; are not necessary, as
the training for the linear dynamics (A and ¢) and the IOO (r(h|o;)) can be performed separately.

Strategy 2 Train all components (the matrix A, the stochastic mapping p(zi|h:) =
N (z¢; ¢(hy), diag[o?]), and the IOO) simultaneously. In this case, samples of (2, o;) pairs or the
SSM for both physical and observation variables to generate these sample pairs are required during
training. Note that the physical variables z; are not required for inference, ensuring that real-time
applications are not hindered by the need for z; during training. The parameters are optimized by
maximizing a joint ELBO, LEg1,B0 joint, Via supervised training:

T

Ing(Ol:T7 Z1:T) = Z 10gp(0t, Zt|01:t—17 Zl:t—1) > —ﬁELBO,joinm
t=1

LELBO,joint = *Z/q(ht|01:t)10gp(2t\ht)dht+KL[q(ht|01:t)||q(ht\01:f,—1)]- @)
t
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(See Sec. in the appendix for the derivation). We have replaced q(h¢|o1.¢, z1.¢) with its special
case q(h¢|o1.+) as our objective is to give the best estimate of z; given observations o1 ..

2.6 RELATED WORKS
2.6.1 DYNAMICAL VARIATIONAL AUTOENCODERS

DVAE:s (see |Girin et al.|[2021] for a review) are a broad class of models incorporating time-series
architectures into VAEs, with DBF as a specialized subcategory. Key differences include (i) the
posterior design and realization of the dynamics step, and (ii) the loss function.

posterior design Our strategy for the test distribution is to incorporate an appropriate architecture
that reflects the Markov property in the time dimension of the test distribution. The 100, r(h¢|o;),
and the linear dynamics model serve as key instruments in constructing the test posterior distribu-
tions. A distinguishing feature of our methodology is that each component’s role is defined with
respect to the Markov property of the state-space model (SSM) and is clearly differentiated from
other components involved in posterior construction. For example, the IOO influences only the up-
date step and does not affect the prediction step. We refer to this methodology as “Bayes-Faithful”
due to its tailored design for SSMs that exhibit the Markov property.

In contrast, the test posterior distributions in DVAEs are constructed using RNNs. The complexity
of the transition model prevents the analytical computation of latent variables across time steps. As
a result, these values can only be estimated via Monte Carlo sampling. Consequently, during infer-
ence, successive Monte Carlo sampling (“cascade trick”; |Girin et al.[2021)) becomes unavoidable.

loss function DBF takes the ELBO from factorized density log p(o¢|o1.+—1) in logp(o1.7) =
> logp(ot|o1.i—1):

T
logp(orr) > > (Egnyjor.nlogp(or|he)] — K Llg(helore)|q(hilors—1)))- (®)
t=1

On the other hand, DVAEs take the ELBO from probability density with all the observations at once.
logp(or.r) > Eq(hl;T‘Ol:T)[logp(h1:T7 or.r) —logq(hi.r|o1.1)]. 9

Therefore, DBF seeks for the filtered distributions ¢(h:|o1.;) whereas DVAEs model the smoother
distributions ¢q(h;|o1.7). Again, for DVAEs, to evaluate the expected values in Equation @ we
need to undergo successive Monte-Carlo sampling over T variables (hy.7) (also see Sec. in the
appendix).

Assuming linear Gaussian dynamics and a Gaussian IOO, DBF allows for the analytical integration
of g(ht|o1.4—1), resulting in a structured encoder. This structured posterior enables the recursive
computation of the filtered distribution g(h;|o1.;) without relying on Monte Carlo sampling, setting
it apart from other DVAEs. By constraining the dynamics to be linear, DBF ensures exact integration
without the accumulation of Monte Carlo sampling errors across time steps.

Moreover, the linear assumption helps DBF mitigate the instability issues commonly faced when
training standard RNNs. The linearity of the latent dynamics is also assumed in normalizing Kalman
Filter (de Bézenac et al., [2020) and Kalman variational auto-encoder (Fraccaro et al.,[2017). SSMs
are increasingly favored for modeling long-range dependencies (Gu & Daol [2023). S4 (Gu et al.,
2022) learns linear dynamics in the latent space, proposing an efficient computation algorithm that
outperforms transformers on datasets with long-range dependencies. LS4 (Zhou et al.| [ 2023) extends
S4 by introducing stochasticity through a VAE-like structure. Both LS4 and DBF employ linear
SSMs and Gaussian posterior approximations, but DBF updates the mean and covariance using a
recursive formula based on Bayes’ rule, while the construction of posteriors in LS4 is not recursive.

2.6.2 KF-BASED METHODS

Various approaches have been explored to address LGSS limitations, including linearizing the model
via first-order approximations like the extended Kalman Filter (EKF), approximating populations
with a Gaussian distribution in the ensemble Kalman Filter (EnKF; Evensen|{1994), and using NNs
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to approximate the Kalman gain (Revach et all 2022). The EnKF and its variants (e.g., ETKF;
Bishop et al.[2001]) are commonly used in real-time data assimilation for weather forecasting. How-
ever, these methods rely on the KF’s posterior update equations, limiting the expressivity of the
distributions they can represent. Additionally, computations for covariance matrices become chal-
lenging in high-dimensional spaces, requiring specialized techniques for computational efficiency.

2.6.3 SAMPLING-BASED METHODS

The Particle Filter is a popular method for assimilating any posterior. However, achieving adequate
particle density in high-dimensional state spaces poses significant challenges. Insufficient density of
particles leads to particle degeneracy, where few particles explain the observed data (Beskos et al.}
2014). In contrast, DBF directly learns to position density through the IOO, offering advantages for
high-dimensional tasks. The Particle Flow Filter (PFF; Daum & Huang/2007; |Hu & van Leeuwen
2021) addresses particle degeneracy by moving particles according to gradient flow and effectively
scales to nonlinear SSMs with hidden state dimensions up to 1000 (Hu & van Leeuwen, 2021).

2.6.4 APPROXIMATE MAP ESTIMATION METHOD

MAP estimation is used to identify the high-density point of the posterior in high-dimensional space,
such as in weather forecasting [Lorenc| (2003); [Frerix et al.| (2021)). Even if the computation of the
posterior p(h|o1.,) is intractable, we can optimize log p(h;|o1.1) = log p(o.|hi)+log p(hi|o1:—1) if
we can describe p(o¢|he) and p(ht|o1.t—1) = [ p(he|hi—1)p(hi—1]o1.4—1)dh¢—1 explicitly. In prac-
tice, we cannot access p(h;—_1|o1:4—1) and therefore the integral [ p(h¢|he—1)p(hi—1|o1:0—1)dhi—1,
so we only compute the mean. The downside is that sequential computation of the covariance matrix
of p(ht|o1.+—1) is impossible.

2.6.5 NN-BASED PDE SURROGATE

Recently, there have been attempts to approximate partial differential equations (PDEs) using NNs.
We also tried one of the latest methods, PDE-refiner (Lippe et all 2023)), in the experiments of
this study. However, its performance was poor, and we decided not to include it in the experiments.
We suspect this is because PDE-refiner was designed for constructing PDE surrogates and did not
account for noisy observations, making it susceptible to noise. We confirmed that it produces good
predictions under noiseless observations.

3 EXPERIMENTS

We evaluate the performance of DBF on three tasks: a linear dynamics problem (moving MNIST)
and two nonlinear dynamics problems (double pendulum and Lorenz96).

Linear dynamics: moving MNIST In the moving MNIST task, the goal is to identify the images,
positions, and velocities of two handwritten digits as they move within the observed frames. While
the dynamics of these digit images and their observation processes are provided, the actual images,
positions, and velocities are not available, making supervised learning impossible. DBF assimilates
directly in the physical space. It trains the parameters of the 100, fy and Gy, which are represented
by NNs, along with the pixel values of the embedded images. The results are compared against
conventional DA methods (EnKF, ETKEF, PF) that also operate in the physical space.

Nonlinear dynamics: double pendulum and Lorenz96 For nonlinear dynamics problems, such
as the double pendulum and Lorenz96, DBF constructs a new latent space in addition to the original
physical space. Here, we took Strategy 2 in Sec[2.5]for the training: we simultaneously train NNs
for the 100, nonlinear observation operator ¢, the dynamics matrix A, and the emission model’s
standard deviation. We compare the performance of DBF with the classical DA algorithms (EnKF,
ETKEF, PF), state-of-the-art assimilation methodologies (PFF |Daum & Huang|2007; [Hu & van
Leeuwen|[2021}, KalmanNet Revach et al.|[2022)), and DVAE-based approaches (deep Kalman Fil-
ter; DKF, [Krishnan et al.|2015; 2016) variational recurrent neural network; VRNN, |Chung et al.
2015 and stochastic recurrent neural network; SRNN, [Fraccaro et al.|2016). DBF and other DVAEs
are trained by optimizing the evidence lower bound (ELBO), as described in Sec.
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For all experiments, we generate random initial conditions and evolve them using the problem dy-
namics. Synthetic observations are produced by applying the observation operator with additive
noise. Noise levels and observation operators are detailed in the section for each problem and in
Secs.[B.1][B-2] and [B.3|the appendix. Further training details are also provided in Sec. [B}

3.1 LINEAR DYNAMICS: TWO-BODY MOVING MNIST

This experiment demonstrates DBF’s ability to handle linear dynamics where key parameters of the
observation operator are unknown. The dataset consists of 2D figures containing two embedded
images, each moving at a constant speed and bouncing off frame edges. The system’s physical state
is described by eight variables: the positions (x,y) and velocities (v, v,) of the two embedded
images. The dynamics matrix is block-diagonal, composed of four (two-body times two dimensions)
translation matrices, A;.: Ay = (1) 1 NTES ft . Observations are corrupted by additive
Gaussian noise with a standard deviation of o = 50 per pixel, where the original pixel values range
from 0 to 255 (see panel (a) of Fig. [2]for an example of the data provided).

The aim is to show that DBF can track the linear dynamics while estimating unknown system pa-
rameters. DBF learns the pixel values of the embedded images from noisy observations, while
maintaining consistency with physical motion. The observation model contains 1,568 unknown pa-
rameters, corresponding to the number of pixels in the images. In classical DA algorithms, it is not
possible to train unknown system parameters. However, it may be possible to infer these parameters
by incorporating them as new physical dimensions. We have adopted this strategy for classical DA
algorithms (EnKF, ETKF, and PF). For these, we tested at three different model noise levels (o
of 1, 0.1, and 0.01) and chosen the best parameter. While DVAE generates latent variables, they are
different from the state variables of the original state-space model: therefore, they cannot infer the
position or velocity from those images. We were unable to compare with KalmanNet as the high
observation dimensions of 23, = (44 x 44)? inhibits the training even with the batch size of one.

Fig. 2] summarizes the experiment. Panel (a) shows an example from the test set, illustrating the
challenges posed by strong noise and overlapping images. Panel (b) presents the DBF learning pro-
cess. In the rightmost table, we compare the success rates of DBF against model-based approaches
(EnKF, ETKF, PF). We define success as achieving a root-mean-square error (RMSE) of less than
1.0 for both position (1, y1, 22, y2) and velocity (vy,, Uy, , Vs, , Vy,) oOf the two digits over the fi-
nal ten steps. DBF successfully performs assimilation without explicit knowledge of the images,
while all the other model-based approaches fail. The KF-inspired approaches (EnKF, ETKF) failed
because of very strong non-Gaussianity in the observation process and the high system dimension.
Similarly, PF underperformed because the number of particles (10,000) was insufficient for the prob-
lem dimension (z4;, = 8 and two digits images 2 x 28 x 28 = 1,568). Figures for visualizing the
assimilation results for all the algorithms are given in the appendix (Fig. 7).

Panel (b) of Fig. 2] illustrates the evolution of the estimated figures. Initially, DBF assumes two
random shapes. “Iterations” in panel (b) means the number of parameter update steps the DBF
has undergone. As training progresses, it first identifies one of the numbers (“9”) and subsequently
detects the second shape (“5”). By the end of the training process, DBF nearly perfectly estimates
the parameters of the observation model, including the positions of the figures, which is crucial for
adjusting their reflective behavior.

b
iter 0 iter 300( ) iter 1000 final Method SUCCGSS rate

9 DBF 100% (50/50)
EnKF 0% (0/50)

ETKF 0% (0/50)

g PF 0% (0/50)
gl & .

Figure 2: Figures from the two-body Moving MNIST experiments. Panel (a) displays examples of
the observation data. Panel (b) illustrates the evolution of the observation model parameters (the
embedded images) during training. The table compares the success rates of four methodologies.
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3.2 NONLINEAR DYNAMICS 1: DOUBLE PENDULUM

1.0 (c) (d)

—+— DBF
EnkF KLeym=0.01 | |KLgym=0.36
ETKF

0.8 ‘L
PF =
w06 L\ oc=0.1 KLsym
2 Hﬁ AH ZEL'L' DBF 0.2
04 DKF EnKF 10.2
02 ETKF 0.12
0.0

0 10 20 30 40 50 60 70
steps

Figure 3: A schematic figure (panel a) and results for double pendulum experiments. Panel (b) shows
the RMSE of angle velocities (averaged over w; and ws) over time steps. Panels (c) and (d) show
example histograms for normalized errors in DBF and ETKF samples compared against the unit
Gaussian A (x;u = 0,02 = 1). The small table compares the Jeffreys divergence of normalized
errors and the unit Gaussian between DBF, EnKF, and ETKF predictions.

Table 1: RMSE at the final ten steps of assimilation in double pendulum experiments.
c=0.1 oc=0.3 oc=0.5

0 w 0 w 0 w

DBF  0.03+£0.01 0.21+0.04 0.05+0.02 0.260.05 0.06+0.01 0.36+0.04
EnKF 0.056+0.00 0.33+0.07 0.14£0.01 0.71+£0.09 0.244+£0.01 1.174+0.22
ETKF 0.05+0.01 0.46=£0.08 0.22+£0.05 1414+0.41 0.36+0.08 2.70£1.25
PF 0.05£0.00 0.63+£0.24 0214+0.14 1.414+130 0.32£0.08 2.36=+2.29
PFF 1.27+0.29 1.04£0.15 NA 5.99+1.09 5.88+0.67 NA
KNet NA NA NA NA NA NA
VRNN 0.04£0.01 044+0.19 0.06+0.02 0.35+0.14 0.08£0.04 0.40=+0.16
SRNN 0.06+£0.02 0.52+0.18 0.06+0.02 0.44£0.08 0.08+£0.03 0.52+0.22
DKF 0.124+0.02 2.70£0.28 0.17£0.03 261+0.74 0.23+£0.04 2.61=£0.56

This section presents our experiments with a double pendulum system, selected for its nonlinear and
chaotic behavior. The pendulum consists of two 1 kg masses, P1 and P2, connected by two 1 meter
bars, B1 and B2. One end of the bar B1 is fixed at the origin (“O”), with the other end attached to
P1. Mass P2 is connected to P1 via bar B2. A schematic of the setup is shown in panel (a) of Fig.

We use the angles 67 and 6, and the two angular velocities, wy and wo, as target physical variables.
The latent dimension for DBF, VRNN, SRNN, and DKEF is set to 50. Observation data consists
of the two-dimensional spatial positions of masses P; and P, corrupted by Gaussian noise. The
observation operator combines trigonometric functions for #; and s, creating a highly nonlinear
relationship. Experiments are conducted with noise levels of o = 0.1,0.3, and 0.5 meters, with a
time step of 0.03 seconds between observations. In the emission model p(z;|h;), we assume von
Mises distributions for 61 and 5, while w; and wy follow Gaussian distributions.

Table[T] presents the RMSE between the physical variables and the mean of the filtered distribution.
For both the angles 6 and angle velocities w, we compute the averages of the two variables across
two pendulums. Training for KalmanNet was unsuccessful under all conditions. For the DVAEzs,
we exclude failed initial conditions (2/15 for VRNN and DKF, and 3/15 for SRNN) when calcu-
lating the RMSE. DBF outperforms both model-based and latent assimilation methods across all
settings, showing significant improvements in estimating w, which cannot be inferred from a single
observation. Fig. 3| (b) illustrates an example of RMSE evolution during assimilation, where DBF
consistently outperforms the other methods. The assimilation of w occurs within the first ~ 20 steps,
maintaining an excellent estimation accuracy throughout the experiment.

A key feature of DBF is its ability to generate samples of z; and assess the uncertainty in state
estimates. To evaluate this capability, we analyze the distributions of normalized errors defined as
€normiti = (Zt,samplei — #t,i)/0i, where z; ; represents the true value of dimension ¢ at time ¢,
and 9; is the standard deviation of 2; sampie,i- We collect €,,0rm ¢, across all time steps, focusing
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oni = wp and i = wo, since #; and Oy follow von Mises distributions. If the uncertainty esti-
mates are accurate, €,,rm,¢,; should approximate a Gaussian distribution with a standard deviation
of one. To quantify the accuracy, we compute the symmetric KL divergence (Jeffreys divergence)
K Lgym[p,q] = (KL[p||q] + K Lq||p])/2 between the histogram of €0, ¢,; and a unit Gaussian.
DBF exhibits very low K L, values, indicating accurate error estimation. Panels (c) and (d) dis-
play example histograms of €,,oyy,,¢,; for DBF and ETKF.

3.3 NONLINEAR DYNAMICS 2: LORENZ96

observations target

In the final experiment, we focus on state estimation in the
Lorenz96 model (Lorenz, [1995), a benchmark for testing data
assimilation algorithms on noisy, nonlinear observations. The
Lorenz96 model describes the evolution of a one-dimensional ar-
ray of variables, each representing a physical quantity over a spatial
domain, like an equilatitude circle. The dynamics are governed by
the following coupled ordinary differential equations:

time

dz; .
dtl = (21 —2i2)zi1—z+F, i=1,...,N, (10)
where z; is the value at grid ¢, NV is the number of grid points, and F’ “bservation dm.”

is external forcing. For our experiments, we take (F, N) = (8,40). )
) ) ] Figure 4: A Hovmoller dia-
We consider two observation operators. The first adds Gaussian  gram for one of data in the

noise to direct observations: o¢; = z; + €, with noise lev- (et set. The observation op-
els 0 = 1,3,5. The second uses a nonlinear operator: o¢; = erator is nonlinear, o .
min(z/ ;,10) 4 ¢, with the same noise levels. The dynamic range of min(zL.,10) +e.

zg,; 1s around £10, and observations are capped at 10 when z; ; 7

exceeds 1.8. This makes it highly challenging for classical DA

methods, as each observation offers limited information. The filter must integrate data over long
timesteps, where nonlinear dynamics distort the probability distribution. Fig. f]illustrates observa-
tions and target values. All models use 80 observation steps with a 0.03 time interval. The latent
dimension for DBF, VRNN, SRNN, and DKF is set to 800 (for the choice of the latent dimension in
DBE, see Sec. [C). For further details for the experiment, see Sec.[B.3]

Table 2: RMSE at the final ten steps of assimilation in Lorenz96 experiments.
direct observation nonlinear observation

oc=1 oc=3 c=25 c=1 c=3 oc=5

DBF 0.53+0.04 0.82+0.03 1.16+0.07 1.08+0.15 1.29+0.18 1.65+0.17
EnKF 0.31+0.01 0.834+0.10 1.73+£0.12 4.694+0.14 3.934+0.08 3.81+0.07
ETKF 0.30+0.01 1.064+0.15 2424+0.11 457+0.25 4.28+0.04 4.234+0.07
PF 2.80+0.04 3.124+0.06 3.624+0.13 6.05+0.16 4.95+0.12 4.58+0.14
PFF 0.604+0.02 1.00£0.05 2.20+0.09 3.754+0.09 3.85+0.04 3.83+0.11
KNet 0.604+0.02 1.81£0.05 3.02+0.09 2974021 3.47+£0.17 3.99+0.25
VRNN 3.67+£0.06 3.67+£0.06 3.67+0.06 3.69+0.04 251+£0.79 3.67+0.06
SRNN 3.08+0.56 3.63+0.05 3.404+0.29 3.30+0.81 3.62+0.41 2.964+0.32

DKF 3.70 NA NA NA NA NA

Table 2] presents the assimilation performance across different noise levels and observation settings.
DBEF outperforms existing methods in direct observations with o = 3, 5, and across all noise levels
for nonlinear observation cases. In the o = 1 setting with direct observation, traditional algorithms
like EnKF and ETKF outperform DBF.

The superior performance of EnKF and ETKF with direct observations at the lowest noise level
can be attributed to the minimal non-Gaussianity in the posteriors within physical space. Non-
Gaussianity can originate from both the dynamics model (predict step) and the observation model
(update step). In this setting, the linearity of the observation operator prevents non-Gaussianity from
being introduced during the update step, provided that the prior ¢(z¢|o1.4—1) is Gaussian. Addition-
ally, state estimation from each observation is highly accurate due to small noise. As a result, the
prior ¢(z¢|o1.+—1) remains close to a Gaussian distribution, as the locally linear approximation of
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Figure 5: RMSE results for Lorenz96 experiments. Panels (a), (b) show results for direct observation
with ¢ = 1 and o = 5. Panel (c) shows results for nonlinear observation with o = 1.

the dynamics adequately captures the time evolution of probability distributions. The poorer perfor-
mance of EnKF and ETKF in the ¢ = 5 experiment is attributed to the increased non-Gaussianity
introduced during each predict step. Similarly, when the observation operator is nonlinear, each up-
date step introduces substantial non-Gaussianity. This results in a significant drop in performance for
traditional filtering methods across all noise levels. In these scenarios, DBF consistently maintains
an advantage over classical DA algorithms.

We observe that training DVAE-based methods is setting max[abs(eig)]

highly unstable, while that for DBF exhibits stability. Do=1 1016% 5
Dynamics in DVAEs are modeled by RNNs, which D’ Z _ 3 1'812 + 8882
often suffer from unstable training due to exploding D, o=5 1'011 + 0'001

or vgmshmg grad}ents. In contrast, DBF gmploys N.o—1 1L012L0.003
matrix multiplication for dynamics. If the eigenval- _
: . N,oc =3 1.008 £0.004

ues of the matrix exceed one by a large margin, the o8 o9 10 11 _

L abs(eigenvalue) N, c=25 1.004 £+ 0.001
model predictions, and consequently the loss func-
tion, would explode irrespective of inputs. Fig. [ ) ’
shows the histogram of the absolute values of eigen- Figure 6: Hlstogra.miof 800 eigenvalues Qf
values at the end of training, which are distributed the dynamics matrix in Lorenz96. D for di-
around or below one, indicating stable training. rect and N for nonlinear observations.

4 LIMITATION

DBF’s learning of 100 requires a training phase, unlike classical model-based data assimilation
methods. Specifically, when dealing with nonlinear dynamics, DBF requires either: (i) a pair of
(21, 0¢) generated from the original SSM, (ii) a pair of (2, 0;) obtained via, e.g., retrospective re-
analysis (ERAS; Hersbach et al.|2020|in weather forecasting), or (iii) a pretrained Koopman operator
and observed data o;.

In the Lorenz96 experiment, DBF’s performance with direct observation with ¢ = 1 falls short
compared to EnKF and ETKF. In this setting, the non-Gaussianity of posteriors is weak, resulting in
minor approximation errors due to Gaussian assumptions. Consequently, a model-based approach
may be more advantageous in such situations, as it leverages complete SSM knowledge without
introducing training biases.

5 CONCLUSION

We propose DBF, a novel DA method. DBF is a NN-based extension of the KF designed to handle
nonlinear observations. While constraining the test distributions to remain Gaussian, DBF enhances
their representational capacity by leveraging nonlinear transform expressed by a NN. DBF is the first
“Bayes-Faithful” amortized variational inference methodology, constructing test distributions that
mirror the inference structure of a SSM with the Markov property. This structured inference enables
analytical computation of test distributions, preventing the accumulation of Monte Carlo sampling
errors over time steps. DBF exhibits superior performance over existing methods in scenarios where
posterior distributions become highly non-Gaussian, such as in the presence of nonlinear observation
operators or significant observation noise.
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Reproducibility Statement We have provided the source code to reproduce the experiments for
double pendulum (Sec. and the Lorenz96 (Sec. in the supplementary material. The hy-
perparameters for the training are provided in Table [3|in the appendix. Generation method of the
training and test dataset, the dynamics model, the observation model, and the architectures are de-

tailed in the appendix: Sec. and[B.3]
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A DERIVATION OF THE EVIDENCE LOWER-BOUND AND THE ASSOCIATED
MONTE-CARLO SAMPLING

A.1 LINEAR DYNAMICS CASE

Following the definition of the probability density,
p(or, hilor:i—1) = p(og|o1.4—1)p(hilor.t) (11)

Using Eq. [IT]at the third equality,

T
1OgP(OLT) = Zlogp(0t|01:t—1)
T
- > / 4(elore) log p(orlore_1 ) dhy

p(ot, hlor:e—1)
= g ht|o1.+) log ——————————=dh
/ t| lt S — 7~ (hf|01t) t

_ p(oy, ht‘Olztfl) Q(ht‘Olzt)
- Z/q(hﬂom)log[ Q(ht|01:t) p(ht|01:t):|dht

= Z/ ht|01t IOg[ (OtE:;zll;) 1):|dht+KL[(](ht|01:t)||p(ht|01:t)]

T

= Z Lerpo.t + KL[g(hi|o14)|[p(hi|o1:4)]
=1

Y

Z LpLpos (12)

p(og, hy |01:t—1):|
— "7 1dh
(ht|01:t) !
(ht ‘01:t71)P(0t|ht)
Q(ht|01:t)

q(helo1.e) IOgP(0t|ht)dht+/Q(ht|01:t)

Lerpoy = q(h¢lor log[

q(h¢lor:) log { } dhy

p(ht|01:t—1)dh
q(ht|or:t)

q(h¢lor:t) log p(og|he)dhy — K L{q(he|o1.e)|p(he|o1:c—1)] (13)

I
\\\\

t

The true prior at step t (p(h¢]o1.t—1)) on the right hand side of Eq. [I3|could be replaced with the
prior computed from the test distribution ¢(h¢|o1.;—1) when training.

A.2 NONLINEAR DYNAMICS CASE

P(0t, 2, he|o1:4—1, 21:0—1) = P04, 2¢|01:4—1, 21:6—1)D( Pt |01, 21:4) (14)
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The derivation proceeds parallel to the linear case. Using Eq.[T4]at the third equality,
T

1ng(01:Ta Z1:T) = Z 10gP(0t, Zt \01:t71, 21:t71)
t=1

T
= Z/Q(ht|01:t)Ing(OtaZt|01:t—1azlzt—1)dht
t=1

a (o¢, zt, helo z )
_ Z/q(ht|01:t)10gp ty 2ty ¢]01:4—15 21:4—1 dh,
=1 p(ht‘olztazlzt)

T
p(0g, 2, he|ore—1, 21:0—1)  q(helor:e) }

= htlo1.¢) lo dh
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T
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=1
T
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The true prior at step ¢ (p(h¢|o1.4-1,21.4—1)) on the right hand side of Eq. could be replaced
with the prior computed from the test distribution q(h:|o1.;—1) when training. The last term of the
equation (log p(o0¢]z;)) can be neglected as it does not affect the new latent variables /.

A.3 COMPARISON TO OTHER DVAES IN TERMS OF MONTE-CARLO SAMPLING

The crucial difference from other DVAEs is that the Monte-Carlo samplings in DBF
are not nested with each other. In DVAE, we need to evaluate an integral term
J a(hi.r|or.r)log p(or.r, hi.r)dhy.r, where g(hy.r|o1.7) = [, ¢(he|hi—1, 0;). Although the log-
term could be factorized as ), log p(o¢|h:) + log p(he|hi—1) thanks to the Markov property, we
need MC (nested) sequential sampling over h1.p if we want to evaluate the term at ¢t = 7. On the
other hand, ELBO in DBFis ), [ q(h¢|o1.)log p(2¢|hi)dhe+ K Lig(hi|o1.¢)|q(hi|o1..—1)] because
DBEF takes the lower limit of ) , log p(0¢|01.4—1). Thanks to the analytic expressions of g(h¢|o1.+)
and g(h¢|o1.1—1), the KL term can be computed analytically. A MC sampling is needed to compute
[ q(ht|o1.+) log p(2¢|hi)dhy but this is independent from other timesteps.

B SETTINGS AND ADDITIONAL RESULTS FOR EXPERIMENTS

parametrization of the dynamics matrix We have parametrized the dynamics matrix A follow-
ing |Lusch et al|(2018): we consider that hg;,,, /2 complex eigenvalues A;(0 < i < hgsm/2) char-
acterize A. Namely, A is a block-diagonal matrix of hg;,,, /2 blocks. Each block consists of 2 x 2
matrix, whose components are:

Apiock = exp(p;) <Cos(wi> _Sin(wi)> ) (17)

sin(w;)  cos(w;)
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where p; = Re[)\;] and w; = Im[);]. In contrast to|Lusch et al.|(2018)), we apply the same dynam-
ics matrix at any positions on the latent space. We consider that this representation is sufficiently
expressive, as it can express any matrix on a complex number field that is diagonalizable.

One key advantage of DBF is that augmenting the latent dimension only results in a linear increase in
computational demand. This scaling is due to the efficient parametrization of the dynamics matrix,
where the block-diagonal structure allows operations to scale linearly with the latent dimension.
In contrast, methods such as Sequential Monte Carlo (SMC) suffer from exponential increases in
computational demand as the latent space grows, assuming that the same density of particles must
be maintained to capture posterior distributions. This makes DBF particularly well-suited for high-
dimensional systems where traditional methods struggle with computational complexity.

Computational resources We conduct experiments on a cluster of V100 GPUs. Each GPU has
memory of 32GB.

hyperparameters for training For all experiments, we have used Adam optimizer with default
parameters. Table |3| shows hyperparameters employed in our experiments. Trainings for moving
MNIST and double pendulum are conducted with one GPU, while that for Lorenz96 is with eight
GPUs.

Table 3: Hyperparameters for training

Ir batch size  hgim  Ndatatrain Epochs  train time per model
moving MNIST 1073 64 8 480,000 2 3hrx 1GPU
double pendulum 1073 256 50 1.0 x 107 1 6hrx 1GPU

Lorenz96 3 x 1073 64 800 2.6 x 107 1 15hrx 8GPUs

B.1 MOVING MNIST

Dataset: The dataset consists of a series of 2D images, where each pixel has a dynamic range from
0 to 255. The training set contains 480,000 initial conditions, while the test set consists of ten initial
conditions, with both datasets comprising 20 time steps each. The number of training samples and
epochs is sufficiently large to ensure that the training converges effectively. A Gaussian noise with a
standard deviation of o = 50 is added to all pixels. The MNIST images of the digits “9” (data point
5740) and “5” (data point 5742) move at constant speeds until they reach the edges, where reflection
occurs.

Training: The network weights for G are fixed during the first epoch to facilitate the learning of
fo and the image tensor for the observation model. Subsequently, G is trained during the second

epoch. In total, DBF undergoes training for two epochs.

Dynamics model: Constant velocity model. The exact dynamics matrix we have used is:

241 = Fz (18)
1000d 0 0 0 1
01000 d 0 0 Yot
00100 0 d 0 T
looo1 0 0 0 a Yot

F=loooo 1 0 0o of* |u, | (19)
00000 1 0 0 vy
00000 0 1 0 V!
00000 0 0 1 Vg

and true observation model:
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Table 4: List of hyperparameters for moving MNIST experiment.

parameter value
R diag[e"]
Q diag[e™?]

P (z¢ mod 16) if x//16 is even same for 20)
79— (zymod 16) ifx//16isodd Y
ot = h(z),dim(o;) =44 x 44, a 28 x 28 image is embedded at(Z;, §z). (1)

The formulation above addresses image reflection through the observation operator, resulting in lin-
ear dynamics while permitting multiple solutions for each observed figure. This approach presents
significant challenges for the EnKF, which assumes a single-peak Gaussian distribution in the as-
similating space. To ensure a fair comparison, we revise the dynamics and observation models to
allow for a single solution for each figure. This adjustment notably enhances the performance of the
EnKeF if the image is provided. However, even with this modification, the EnKF fails to accurately
estimate the position, velocity, and the embedded image.

Network architecture: f,: Two-dimension convolutional NNs. Below is the list of layers.

* convl: nn.Conv2d(1, 2, kernel_size=3, stride=2, padding=1)
e conv2: nn.Conv2d(2, 4, kernel_size=3, stride=2, padding=1)
* conv3: nn.Conv2d(4, 4, kernel_size=3, stride=1, padding=1)
* conv4: nn.Conv2d(4, 4, kernel_size=3, stride=1, padding=1)
e fc: nn.Linear(11 x 11 x 4, 8)

The input image, sized 44 x 44, is sequentially processed by convolutional layers (convl, conv2,
conv3, and conv4). The output is then flattened to serve as the input for the fully connected layer
(fc). Ultimately, this process yields eight variables for fy(o;). The network Gy follows the same
architecture as fp, but it produces only the diagonal components of G (0;) through the NN.

Example figures: In Fig. 8] we show example images for observations and all the algorithms in
image-informed setting.

Table 5: The success rates of different methodologies in the two-body moving MNIST problem. For
the model-based approaches, we used the same dynamics and observation models that generated the
data. For DBF, the model was initialized with random image tensors and trained solely on the data.

Method  Success rate

DBF 100% (50/50)

EnKF 58% (29/50)
ETKF 0% (0/50)
PF 0% (0/50)

B.2 DOUBLE PENDULUM

Dataset: The dataset consists of 2D coordinates representing the positions of two weights. The
training set includes 10, 240, 000 initial conditions, while the test set contains 10 initial conditions.
The number of training samples is sufficiently large to ensure that the training converges. During
DVAE training, we observed that some initial conditions resulted in training failure due to instability;
however, we maintained the total number of training samples since the training was successful for at
least one initial condition. Both datasets comprise 80 time steps. Numerical integration is performed

17
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Figure 7: Example figures for two-body moving MNIST experiment. This is the setting explained in
the main text. For all algorithms, the two embedded images are not explicitly informed: algorithms
need to deal with many unknown parameters in the observation model.
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Figure 8: Example figures for two-body moving MNIST experiment. For model-based approaches
(EnKF, ETKF, PF), contrary to the experiment reported in the main text, the true images are in-
formed. In data O, both DBF and EnKF successfully determine and follow the position of the two
images. On the other hand, in data 20 and 27, EnKF estimate becomes unstable soon after the two
letters overlap. Even in that situation, DBF stably follows the positions of the embedded images.
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Table 6: List of hyperparameters for double pendulum experiment.

parameter value
Rinit diag[1]
Q diag[e %]
initial concentration parameter ed

using the solve_ivp function in SciPy, with relative tolerance (rtol) set to 10~2 and absolute
tolerance (atol) set to 1072,

A schematic figure explaining the problem setting is presented in panel (a) of Fig. [3|in the main text.

Dynamics model is described in https://matplotlib.org/stable/gallery/animation/double_pendulum.html.
The length of the bars is 1 [m], and the positions of the two pendulum weights are observable with
Gaussian noise of 0 = 0.1,0.3, or 0.5 [m]. The observation interval is 0.03 [s]. The task is to
predict the positions of the two weights in the successive ten frames.

Network architecture: fy: A sequence of ten “linear blocks” composed of fully connected layers,
layer normalizations, and skip connections. Namely, each linear block has three components:

e fc: (input dimension)x (output dimension) linear layer,
* norm: layer normalization,

* skip: skip connection.

Taking four observation variables as input, the first linear block expands the dimensionality to 100.
The intermediate linear blocks maintain these 100-dimensional variables. The final linear block re-
duces the 100-dimensional input to a 50-dimensional output, representing 50 latent space variables.
The ReLU activation function is applied throughout the network. The structure of Gy mirrors that
of fy, while ¢y serves as the inverse of fy. The initial eigenvalues are randomly sampled from the
range between € and e%-°.

Training: All training variables (network weights for the IOO (fy, Gg), the emission model op-
erator ¢, eigenvalues \ for the dynamics matrix A, Gaussian noise parameter ¢ for angular velocity
w, and the concentration parameter for Von Mises distribution used for angular coordinate ) are
trained together.

Examples: Here, we show examples for assimilated 6 and w in Fig.[9} Also, we give an additional
figure for the RMSE of 6 for various methods.

B.3 LORENZ96

Dataset: The dataset consists of physical and observed variables sampled at 40 grid points. The
training set includes 25,600,000 initial conditions, while the test set contains 10 initial conditions.
The number of training samples is sufficiently large to ensure that the training converges in most
cases. The original datasets comprise 80 time steps. Numerical integration is performed using the
solve_ivp function in SciPy, with a relative tolerance rtol = 10~2 and an absolute tolerance of
atol = 102. Gaussian noise with standard deviations of ¢ = 1,3, or 5 is added to all measure-
ments.

For KalmanNet, we attempted to train with 25,600,000 and 400,000 initial conditions; however, the
process was terminated due to memory limitations. Consequently, we report results using a dataset
size of 120,000. For DKF, VRNN, and SRNN, we also tried training with 25,600,000 conditions,
but all models encountered a RuntimeError due to instability during the backward computation. To
obtain results, we reduced the number of training samples to 512,000. With this adjustment, both
SRNN and VRNN successfully completed the training procedure for some initial conditions.

A physical quantity z; is defined at each grid point j(1 < j < 40). The time evolution of this
quantity is described by the following set of differential equations:
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Figure 9: Results for five example data in test set. Two left columns show evolution of #; and 62
(rad) (, therefore, the values are cyclic with the period of 2 ~ 6.3, and we corrected for those
periodic shifts) and the two right columns show w; and ws (rad/s).
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Figure 10: Assimilation results for the angle variable . All models successfully determine the angle
coordinate in spite of the strong nonlinearity in the observation (trigonometric function). Among
these, performance of DBF is the best.
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Table 7: List of hyperparameters for Lorenz96 experiment.

parameter value
Rinit diag[1]
Q diag[e™®]

dz(t); )
% = (zj41 — 2j—2)zj—1 — z; + F, (1 < j < 40) (22)
In this equation, the driving term F' is set to 8. The first term models the advection of the physical
quantity, while the second term represents its diffusion along a fixed latitude. With these parameters,
the evolution of the physical quantity exhibits chaotic behavior.

Network architecture: The NN fy consists of ten convolutional blocks followed by a fully con-
nected layer. Each convolutional block comprises a 1D convolution, layer normalization, and a skip
connection:

e convld: nn.Convl1d( ¢y, cout, kernel_size=5, padding=2, padding_mode="circular”, )
* norm: layer normalization,

* skip: skip connection.

The first convolutional block has ¢, = 1 and ¢, = 20, expanding the input by a factor of 20 in
the channel dimension. The subsequent eight layers maintain 20 channels. Finally, the 20 channels
and 40 physical dimensions are flattened into 800-dimensional variables, which are then fed into a
fully connected layer of size 800 x 800. For all layers, the activation function used is ReLU. The
function Gy is structured identically to fy, while ¢y represents the inverse of fj.

Training: All training variables, including the network weights for the inverse observation opera-
tor fg and G, the emission model operator ¢, the eigenvalues A for the dynamics matrix A, and the
Gaussian noise parameter o, are trained concurrently.

Examples: We show an example figure for assimilation experiment with DBF in Fig.[T1]

C TRAINING STABILITY

We observe that the training of our proposed method is stable compared to RNN-based models.
Fig.[12]shows the evolution of the real parts of eigenvalues. Although we do not impose constraints
on the real parts of eigenvalues, the values only marginally exceed one. Therefore, long-time dy-
namics is stable during training.

D HYPERPARAMETER STUDY ON THE LATENT DIMENSIONS

D.1 ACCURACY-COMPUTE TRADE-OFF IN DBF

The dimension of the latent variables is a hyperparameter. We have tested the performance and
computation (both training and inference) time for Lorenz96 problem. The observation operator is
the nonlinear operator and the observation noise is o = 1.

Figs. [I3] [I4] show the relation between the RMSE and the latent dimensions of the system. Here,
we show results with 1.0 x 107 training data. The dimensionality of the latent variables can be
either larger or smaller than that of the physical variables, but there is a trade-off: up to a certain
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estimate

time

observation dim.

Figure 11: An example of assimilation output in the experiment with nonlinear observation operator.
The observation is not very informative due to low threshold for saturation in the observation oper-
ator (o;,; = min(z} ;,10) + €,, all cells with z; ; > 1.8 are just observed as 10 + ¢). In the first 20
steps, the model output resembles little with the target. However, as the step proceeds, the estimated
state begins to capture features of the true state. Even with such a poor observation operator, DBF
finds a latent space representation that captures the evolution of the true state.

0.8 0.9 1.0 11 0.8 0.9 1.0 11 0.8 09 1.0 11 0.8 09 1.0 11 0.8 09 1.0 11 0.8 0.9 1.0 11
abs(eigenvalue) abs(eigenvalue) abs(eigenvalue) abs(eigenvalue) abs(eigenvalue) abs(eigenvalue)

Figure 12: Evolution of histograms for the real parts of 800 complex eigenvalues in Lorenz96 exper-
iment. Initially, eigenvalues are taken as one. As the model learns the dynamics, eigenvalues lower
than 1.0 appear. However, the largest eigenvalue \,,,, mostly remains less than 1.02.
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Figure 13: Left panel: RMSE as a function of the latent dimensionality of DBF. Right panel: the
inference time as a function of the latent dimensionality of DBF.
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Figure 14: Left panel: the training time for 1.0 x 107 initial conditions as a function of the latent
dimension. Right panel: RMSE as a function of the training time for five different numbers of latent
dimensions.

latent dimensionality, increasing the dimension improves performance at the cost of longer com-
putation time. Beyond that point, increasing the latent dimensionality no longer improves perfor-
mance but only increases training time (although inference time remains relatively short compared
to model-based approaches). Therefore, the optimal balance depends on the specific problem. For
the Lorenz96 system, a dimensionality of 800 was a reasonable trade-off among 20, 80, 200, 800,
and 2,000 dimensions. As shown in the figure, the RMSE changes by only 7 percent (1.31 vs 1.23)
in the range from 200 to 2,000 dimensions, indicating that the impact is not critical in this range.

D.2 COMPARISON TO THE PF
The PF also has the trade-off. Although RMSE improves slowly as we increase the number of

particles, the RMSE was poor (3.64) even with massively large number of particles (100,000) with
very long inference time (2,000 seconds per initial condition)
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Figure 15: Left panel: the performance of PF as a function of the particles used. Right panel: RMSE
as a function of the inference time for the DBF and the PF. For the DBF, the latent dimensions are
20, 80, 200, 800, and 2,000. For the PF, the number of particles are 20, 200, 2,000, 20,000, 100,000.
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0

model(hdim=800)
o -

Figure 16: the performance of DBF for a low latent dimension case (dim(h;) = 20) and a high
latent dimension case (dim(h;) = 800). Even with the latent dimensions (20) smaller than that of
the original state space (40), DBF shows the skillful assimilation. With higher latent dimensions

(800), the performance further improves.
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