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Abstract

Neural Audio Codecs, initially designed as a compression technique, have gained
more attention recently for speech generation. Codec models represent each au-
dio frame as a sequence of tokens, i.e., discrete embeddings. The discrete and
low-frequency nature of neural codecs introduced a new way to generate speech
with token-based models. As these tokens encode information at various levels
of granularity, from coarse to fine, most existing works focus on how to better
generate the coarse tokens. In this paper, we focus on an equally important but
often overlooked question: How can we better resynthesize the waveform from
coarse tokens? We point out that both the choice of learning target and resynthesis
approach have a dramatic impact on the generated audio quality. Specifically,
we study two different strategies based on token prediction and regression, and
introduce a new method based on Schrödinger Bridge. We examine how dif-
ferent design choices affect machine and human perception. Audio demo page:
https://alexander-h-liu.github.io/codec-resyn.github.io/

1 Introduction

Neural Codec models [1–3] initially emerged as compression techniques for audio compression.
Despite being originally proposed for compression, neural audio codec models significantly impacted
speech and audio modeling [4] due to their discrete and low-frequency nature. Having a tokenized
representation of audio introduces many benefits. For example, token-based modeling approaches
similar to language models can be adopted for audio generation: VALL-E [5], Speech-X [6], Audi-
oLM [7], MusicLM [8] and MusicGEN [9], just to name a few. Besides audio generation tasks, audio
codecs can also be applied to cross-modality applications, e.g., making audio and large language
model (LLM) integration seamless [10].

As shown in Fig. 1, codec models are trained to compress audio into discrete tokens at a low frequency
rate to reduce the cost of transmission and storage. Formally, an encoder would first encode a slice
(typically around 10 to 20ms) of signal s into a latent d-dimensional embedding z ∈ Rd. z will
then be iteratively quantized through N Residual Vector Quantization [11, 12] (RVQ) layers into
x1, x2, ..., xN where

xi = argmin
q∈Qi

∥(z −
i−1∑
j=1

xj)︸ ︷︷ ︸
residual

)− q∥, (1)
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Figure 1: (Left) Illustration of neural codec compression with
N = 3. RVQ stands for Residual Vector Quantization. (Right) Codec
resynthesis methods that generates audio from the first RVQ code x1.
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Figure 2: SI-SNR and ESTOI [15] of decoded
audio. See §A.1 for data and metric description.

and Qi ∈ RV×d is the codebook containing V codes (d-dimensional vectors) of the i-th RVQ layer.
Notice how each quantized embedding xi is a code within the corresponding codebook Qi. The
input audio can therefore be compressed into a sequence of discrete variables which are the indices
of the codes in their corresponding codebook. The bandwidth of neural audio codec models can be
controlled by varying the number of codebooks N and the size of each codebook V . The goal of
audio codec models is to restore the input signal with the quantized embedding and a decoder such
that s ≈ Decoder(

∑N
i=1 xi).

Due to the hierarchical structure of RVQ layers, the information carried by the first layer RVQ code x1

is at a coarse level2, and that of the remaining layers x2:N gradually becomes more fine-grained [7].
Recent speech generation models [5–7, 10, 13, 14] have chosen to prioritize generating the coarse
embedding x1. With the generated coarse embedding x1, the final step to synthesize audio is treated
as a separate follow-up question and has received less attention. Solutions are often ad-hoc, for
example, training a coarse-to-fine codec predictor with task-specific information like text and enrolled
audio recordings [5, 6], or building a text-and-audio-conditioned codec vocoder [10].

In this work, we aim to study a question that has been overlooked in codec-based speech generation
thus far – How to resynthesize speech using only the coarse representation? We focus on unconditional
resynthesis that assumes only the coarse embedding x1 is available, and no other task-specific
information (such as transcription, speaker, or audio prompt) of the target speech is given. This
assumption allows us to develop general methods not restricted to tasks or data annotation. We refer to
the problem as Codec Resynthesis since the ultimate goal is to resynthesize audio from limited codes.
Starting from coarse-to-fine resynthesis, we take a deep dive into unconditional codec resynthesis.
With the insight into the learning target, we show how regressing continuous embedding instead of
tokens is better. We further improve the modeling approach, introducing a discrete-to-continuous
Codec Schrödinger Bridge. Finally, we present the strengths as well as the limitations of different
methods, along with more challenges in codec resynthesis.

2 Neural Codec Resynthesis
We consider codec resynthesis at the sequence level with non-autoregressive models, i.e., generating
complete speech from the sequence of discrete embeddings (x(1)

1 , ..., x
(l)
1 , ..., x

(L)
1 ) where L is the

sequence length. We shorthand xi ≡ x
(1:L)
i hereafter for simplicity.

Coarse-to-fine Resynthesis. Due to the hierarchical structure of RVQ layers, each RVQ code xi

depends on all the codes from prior layers x1:i−1. A simple method for codec resynthesis is therefore
to iteratively predict the RVQ codes x2:N given the first x1. This can be achieved by training a model,
parameterized by θ, to maximize

N∑
i=2

pθ(xi|x1:i−1, i) (2)

where pθ(xi|·) is a categorical distribution over codebook Qi. The process can be viewed as a
coarse-to-fine prediction since the later RVQ codes encode fine-grained audio information. We note
that similar coarse-to-fine models have been studied in prior works where they are autoregressive [7]
or text-and-audio-conditioned [5, 6].

2In practice, the set of coarse tokens can be defined as the first c RVQ codes x1:c. This work considers the
most common case c = 1 without loss of generality since all methods can be extended to c > 1.
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Is predicting the remaining RVQ codes x2:N necessary? While it is reasonable to resynthesize
speech in a coarse-to-fine manner, modeling codes from all RVQ layers introduces a multi-task
learning overhead during training and the risk of error propagation during inference. Prior work [9]
attempted to address the issue through parallel prediction but found coarse-to-fine prediction worked
best empirically.

To find an alternative, we take a closer look at the quality of the audio decoded from representations
at different layers of the codec model. Results are shown in Fig. 2. As expected, audio quality
gradually improved when involving more fine-grain embeddings. However, a key observation is that
the pre-quantized embedding z, although never used as decoder input during training, yields the best
audio quality. Since the ultimate goal is to generate high-fidelity audio, this observation suggests that
predicting the remaining RVQ codes x2:N may not be necessary.

One-step Resynthesis. In light of our previous finding, we can train a one-step resynthesis model
that simply predicts z directly from x1 through a regression model fθ that minimizes

∥fθ(x1)− z∥. (3)

We refer to this regression-based method as one-step resynthesis since projecting x1 to z requires only
a single forward pass of the model, and the result can be directly applied for decoding. Conversely,
the coarse-to-fine method requires N − 1 iterations to acquire x2:N . Prior work has found one-step
resynthesis to be beneficial with audio and text conditions available [10], but it is unclear whether
unconditional resynthesis is possible.

Codec Schrödinger Bridge Resynthesis. Although one-step generation sounds appealing, recent
trends in generative models suggested iterative models, such as diffusion model [16], tend to syn-
thesize data of better quality. From the output audio of one-step resynthesis (see demo page), we
also find it results in robotic-sounding artifacts in the speech. This motivated us to explore iterative
methods operating in the continuous embedding space to learn the mapping between x1 and z.

The Schrödinger Bridge (SB) problem [17] aimed to find the entropy-regularized optimal transport
between two arbitrary distributions, px0 and px1 . The solution to SB can be expressed by the following
forward (4a) and backward (4b) stochastic differential equations (SDEs) [18]:

dxt = [ft + βt ∇ logΨt]dt+
√
βtdWt, x0 ∼ px0

, (4a)

dxt = [ft − βt ∇ logΨ̂t]dt+
√
βtdW t, x1 ∼ px1 , (4b)

where the T -step stochastic process is represented by xt with t ∈ {0, 1
T ,

2
T , ..., 1}, ft(xt) is the

linear drift, βt ∈ Rd is the diffusion, Wt,W t ∈ Rd are the standard and reversed Wiener process.
The terms ∇ logΨt(xt) and ∇ logΨ̂t(xt) are the forward and backward non-linear drifts for SB with
Ψ, Ψ̂ being the solution to the following coupled PDEs{

∂Ψ
∂t = −∇Ψ⊤f − 1

2β∆Ψ
∂Ψ̂
∂t = −∇ · (Ψ̂f) + 1

2β∆Ψ̂
s.t.Ψ0Ψ̂0 = p0,Ψ1Ψ̂ = p1. (5)

SB provides a general mathematical framework for distribution mapping, but solving it can be
challenging in practice since Ψ and Ψ̂ are often intractable in real world applications.

Fortunately, prior work has shown that SB can be tractable for certain applications where paired data
of the two distributions is available [19]. By setting f := 0 (merging linear drift into non-linear drift)
and Ψ̂0 := δx0

(Dirac delta distribution centered around x0), a neural network ϵθ for estimating the
score function ∇ logΨ̂t of the backward SDE (4b) can be trained through minimizing

∥ϵθ(xt, t)−
xt − x0

σt
∥, xt ∼ N (

σ̄2
t

σ̄2
t + σ2

t

x0 +
σ2
t

σ̄2
t + σ2

t

x1 ,
σ2
t σ̄

2
t

σ̄2
t + σ2

t

· I ), (6)

with σ2
t :=

∫ t

0
βτdτ and σ̄2

t :=
∫ 1

t
βτdτ .

For codec resynthesis, we are interested in transporting between the distribution px0 ≡ pz of pre-
quantized embedding x0 ≡ z and the first RVQ code distribution px1

. Since the pair relation (x0, x1)
is available through the audio encoding process, Codec Schrödinger Bridge can be trained directly
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Table 1: Codec resynthesis results. All metrics are the higher the better except WER, see §A.1 for detailed explanation. Best
results are bolded. Number of function evaluations (NFE) reflects the number of forward passes required for synthesis.

Decoder input NFE Intrusive Metrics Perceptual Metrics

SI-SNR (↑) ESTOI (↑) ViSQOL (↑) WER(%; ↓) SIM (↑) MOS (↑)

Baseline
1st RVQ code x1 -5.39 0.56 2.99 24.7 0.217 -

Resynthesis Methods
Coarse-to-fine 7 -3.09 0.71 3.36 22.2 0.469 3.19 ± 0.12
One-step regression 1 -1.12 0.75 3.52 11.5 0.495 3.06 ± 0.13

Schrödinger Bridge

1 -1.38 0.74 3.49 14.5 0.491 2.95 ± 0.14
4 -1.55 0.74 3.47 18.3 0.507 -
7 -1.90 0.73 3.42 19.7 0.506 3.43 ± 0.11

16 -2.30 0.72 3.37 21.1 0.501 3.46 ± 0.11
32 -2.52 0.71 3.33 22.2 0.493 -

Topline
8 RVQ code x1:8 4.34 0.88 4.27 2.7 0.861 -
Pre-quantize emb. z 4.87 0.95 4.55 2.7 0.922 -
Ground Truth - 1.00 5.00 2.4 1.000 3.74 ± 0.11

with Eq. 6. During inference, Codec Schrödinger Bridge can be used to construct the backward SDE
(Eq. 4b) and derive pre-quantized embedding x0 from x1 using DDPM [16]. The backward process
can be simulated with different step sizes by breaking down the schedule from t = 1 to t = 0 into
more/less segments, traversing iteratively from x1 to x0. In practice, smaller step sizes result in better
generation quality [18–20] at a cost of more forward passes through the model.

3 Experiments

Due to space constraints, details on model architecture, training hyperparameters, datasets, and
evaluation metrics are provided in Appendix Section A.1. In Table 1, we report resynthesis results
on LibriSpeech [21] test-clean. The performance baseline is obtained from audio decoded from
the first RVQ code x1 without resynthesis. For resynthesis methods, the decoder of Encodec takes
the resynthesis model output as input. Different toplines should be considered for different methods:
(1) decoding with full RVQ codes x1:8, which is the topline for coarse-to-fine method; (2) decoding
with pre-quantized embedding z, which is the topline for one-step regression and Schrödinger Bridge.
Ground truth is the raw audio used as the reference for intrusive metrics.

The pre-quantized embedding is consistently a better target. As in the findings shown in Fig 2,
the results in Table 1 indicate that pre-quantized embedding z not only provides a higher performance
upper bound (see toplines), but also results in better models when used as a learning target. The one-
step regression model performs better on all intrusive metrics at a significantly lower inference cost
(NFE=1). In addition, Schrödinger Bridge consistently performs better than the coarse-to-fine model
in both objective and subjective metrics at the same (NFE=7) or lower (NFE=4) inference cost. In
short, pre-quantized representations of codec models are better than tokens for resynthesis.

A good objective score does not imply better audio quality. It is worth noting that the one-step
regression model is considered the best model in terms of WER and all intrusive metrics in Table 1,
including SI-SNR and ViSQOL that are commonly adopted for codec model development [2, 3].
However, this result contradicts human perception as reflected by MOS. In fact, resynthesized speech
from one-step regression exhibited a lot of artificial sounding and robotic voices (see audio samples on
the demo page), resulting a similar MOS to the coarse-to-fine model. In contrast, Codec Schrödinger
Bridge significantly reduced the artifacts when taking a smaller step size (more NFE as a trade-off),
resulting in more natural output as reflected by MOS. This finding suggests that the well-known
concept that denoising methods like diffusion [16] are strong in generating high-fidelity data also
holds for codec resynthesis.

Iterative methods improve sound quality, not content. Next, we are interested in finding out the
reason why iterative methods provided a better MOS yet worse WER. Interestingly, we found that
speech intelligibility (as measured by Whisper) does not increase as a function of NFE as shown in
Fig. 3. This is surprising since single NFE degenerates these iterative methods into one-step methods.
For the coarse-to-fine model, single NFE predicts only the second RVQ code x2, which suggests that
the (predicted) fine-grain representation x3:8 actually introduces more noise than signal with regard to
content. Single NFE Schrödinger Bridge is conceptually the same as the one-step regression model,
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Figure 3: Word error rate (WER) and speaker similarity
(SIM) w.r.t. different NFEs for iterative methods.

Table 2: Codec resynthesis result with different amounts
of training data. LibriLight [22] (LL) contains more than
60k hours of speech. It is more than 62.5x larger than Lib-
riSpeech [21] (LS) which contains 960 hours of speech only.

Decoder input
Training data

LL (60k hours) LS (960 hours)

WER(%) SIM WER(%) SIM

Coarse-to-fine 22.2 0.469 24.6 0.435
One-step 11.5 0.495 28.8 0.233
SB (NFE=1) 14.5 0.491 16.0 0.482
SB (NFE=7) 19.7 0.506 22.7 0.485

which results in 14.5% WER that is closer to that of the latter 11.5% (Table 1). This indicates that
the content of speech is harder to preserve through a more sophisticated backward process. We note
that the problem could potentially be solved with ad-hoc model design for specific applications, e.g.,
conditioning the coarse-to-fine model with phone sequence [5]. On the other hand, speaker similarity
generally improved as NFE increased, and we hypothesize that naturalness plays an important role.
The difference in reference-free MOS between different NFEs with Schrödinger Bridge in Table 1
also supported this hypothesis.

Iterative methods are less prone to overfitting. In Table 2, we report the results of training models
on LibriSpeech (960 hour) instead of LibriLight (60k hour) to observe model behavior when massive
training data is not available. Surprisingly, the one-step method suffered significantly from the lack
of training data, resulting in the worst WER and SIM. In contrast, the coarse-to-fine and Schrödinger
Bridge models have significantly less loss in performance. In practice, we also found that the one-step
regression model overfit the smaller training set after 300k updates (best result reported), whereas
both the coarse-to-fine and Schrödinger Bridge model consistently improved throughout the 500k
training steps. These results suggest that iterative methods that partition the task into smaller subtasks
are less prone to overfitting and more robust to low-resource scenarios.

4 Conclusion
Summarizing different methods. We first conclude that among the methods explored in this
work, coarse-to-fine generation is the least ideal method with poor audio quality and high inference
cost. The one-step regression model is efficient and effective in subjective metrics but results in
worse objective scores and robustness. Codec Schrödinger Bridge falls slightly behind but can be
particularly useful for generating high-fidelity audio. Finally, we note that while a clear improvement
is made by all three methods over the baseline, results suggest that these methods still have much
room for improvement.

Rethinking the evaluation metrics. We note that the ultimate goal of codec resynthesis is finding
the mapping between a coarse-level codec and realistic audio, which can be a one-to-many mapping.
In other words, any resynthesized codec embedding that decodes into realistic audio should be
considered a success, the “ground truth” should only be used for training but not evaluation. This is
especially true for applications like text-to-speech. Therefore, intrusive metrics are not ideal for the
task. While reference-free machine perceptual metrics like WER can be a good alternative, it does
not reflect human preference. Finding a better automatic subjective metric that better reflects human
preference is still an important open question.

Revisiting token-based and bridge-style generation. Recent token-based models [5, 6] and bridge-
style models [23–25] each have their strengths in speech generation. While they appear as two distinct
concepts, our findings suggest it is possible to combine the advantages of the two different methods,
as demonstrated by the proposed Codec Schrödinger Bridge.

Limitations. We left exploring the generalizability of codec resynthesis as an important future work.
For example, the multilingual setup is expected to be even more challenging. Besides speech, sound
and music are also common uses of audio codec models. Generalizing codec resynthesis beyond
speech can potentially reduce the burden of more audio generative models, e.g., music generation
model [9] that have to autoregressively generate codec both left-to-right and course-to-fine.

Acknowledgments. The authors would like to thank Guan-Horng Liu for the helpful discussion, Roham
Mehrabi and Pei-Ling Chiang for setting up human evaluation on AmazonTurk.
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A Appendix

A.1 Experiment Setup

Model. The 6kbps Encodec [2] is used for the codec model with d = 128 dimensional embedding
at 75Hz, N = 8 RVQ layers each with a codebook of size V = 1024. For all three methods,
the input is the discrete embedding x1 of the first Encodec RVQ layer. We trained a 12-layer
Transformer Encoder [26] with a 16-head self-attention, an embedding dimension of 1024/4096
for self-attention/feedforward layers, and a 0.05 layer dropout. For the coarse-to-fine model, we
used a learnable stage embedding to encode the state i. For the Schrödinger Bridge model, we used
sinusoidal positional embedding [26] to encode the timestep t. Adaptive LayerNorm [27] is used to
normalize the output of each layer conditioning on the stage or time embedding. We used the Adam
optimizer with a weight decay of 0.01 to train each model for 1M steps, with learning ramping up in
32k steps and then linearly decaying to 0 for the remaining steps. The peak learning rate for each
method is swept, 1e-4/5e-4/5e-4 is used for the coarse-to-fine/one-step/SB model based on validation
loss. Models have around 210M parameters, and training takes 9 days on 4 A6000 GPUs. For the
Schrödinger Bridge model, we set T = 1000 and βt followed a symmetric noise scheduling [20]
peaking at 0.3. Additionally, we found that conditioning the model on initial point x1 (by projecting
and adding it to the Transformer input) regardless of t helpful.

Data. All models are trained on LibriLight [22], an audiobook corpus with 60k hours of English
speech. The dev-clean / test-clean subset of LibriSpeech [21] is used for validation/evaluation
respectively. Each audio is randomly cropped to equal length to form an 800-second batch.

Evaluation Metrics. To assess the quality of the resynthesized speech, the following metrics were
used: Scale-Invariant Signal-to-Noise Ratio (SI-SNR); Extended Short-Time Objective Intelligibility
(ESTOI; [15]); ViSQOL [28], an intrusive perceptual metric that estimates mean opinion score based
on spectral similarity; Word Error Rate (WER) comparing the recognition result of Whisper v2 [29]
on resynthesized speech versus ground truth transcriptions; Speaker Similarity (SIM), the cosine
similarity between the speaker embedding of ground truth and resynthesized speech extracted by
ECAPA-TDNN[30, 31]; Subjective Mean Opinion Score (MOS) assessing audio naturalness and
quality on a scale of 1 to 5, with increments of 1. We randomly selected 40 sentences from the test
set and collected 10 ratings for each model for each sample. We followed the standard approach to
collect ratings through AmazonTurk [32, 33] with the reward of $0.05 per rating. Each worker rated
8 sentences and for each sentence audio from 6 different systems were presented. We reported the
average rating for each system on a 95% confidence interval.
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