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Abstract

In this work, we propose a novel method named Automated Process-Supervised
Verifier (AUTOPSV) to enhance the reasoning capabilities of large language mod-
els (LLMs) by automatically annotating the reasoning steps. AUTOPSV begins by
training a verification model on the correctness of final answers, enabling it to gen-
erate automatic process annotations. This verification model assigns a confidence
score to each reasoning step, indicating the probability of arriving at the correct
final answer from that point onward. We detect relative changes in the verification’s
confidence scores across reasoning steps to automatically annotate the reasoning
process, enabling error detection even in scenarios where ground truth answers
are unavailable. This alleviates the need for numerous manual annotations or the
high computational costs associated with model-induced annotation approaches.
We experimentally validate that the step-level confidence changes learned by the
verification model trained on the final answer correctness can effectively iden-
tify errors in the reasoning steps. We demonstrate that the verification model,
when trained on process annotations generated by AUTOPSV, exhibits improved
performance in selecting correct answers from multiple LLM-generated outputs.
Notably, we achieve substantial improvements across five datasets in mathemat-
ics and commonsense reasoning. The source code of AUTOPSV is available at
https://github.com/rookie-joe/AutoPSV.

1 Introduction

Large language models (LLMs) have shown impressive performance on various reasoning tasks [1–
4]. Prior efforts primarily focus on specific prompting techniques, such as few-shot prompting
with intermediate steps and augmented demonstrations [5–8]. While these methods have shown
promise, their effectiveness is often task-specific, and designing prompts can be labor-intensive,
leading to inconsistent results [9, 10]. Another approach to improve reasoning in LLMs is through
instruction tuning or knowledge distillation [11–14]. These methods typically involve fine-tuning
LLMs and require a large set of examples annotated with chain-of-thoughts (CoT; [5]). However,
these approaches can be resource-intensive and may not always produce reliable results.

To address these challenges, verification techniques have emerged as a promising solution [15, 16].
Verification models are trained to evaluate and potentially correct the reasoning process generated
by LLMs. This approach aims to mitigate the risk of relying solely on the top-1 result, which may
not always be reliable [17, 18]. By reranking candidate responses, verification models can ensure
higher accuracy and consistency in LLM outputs, and provide valuable feedback for improving
LLMs [19, 20] further.
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Verification models generally fall into two training paradigms: outcome supervision and process
supervision. In outcome supervision, the training annotations rely on the correctness of the final
answer [21, 22], while in process supervision, the annotations are based on evaluations of each
reasoning step [23, 19]. However, process supervision is demanding in terms of annotations. Typically,
it relies on either expensive and highly skilled human evaluators [23, 16] or model-induced process
annotations [18, 17] to estimate the future correctness of the current reasoning step using Monte Carlo
tree search [24, 25]. In contrast, outcome supervision only requires annotations for the output, making
it more economical in terms of annotation effort but less effective. That being said when answers
involve multiple reasoning paths, all aforementioned model-induced methods require numerous
samples to ensure accurate estimations.

In this paper, we introduce Automated Process-Supervised Verfier (AUTOPSV), a novel approach
that synergistically combines the strengths of both process supervision and output supervision. Our
method begins by training an outcome-supervised verification model using outcome supervision
annotations. This model then assigns confidence scores to each intermediate reasoning step, estimating
their likelihood of contributing to a correct final answer. A distinguishing feature of AUTOPSV is its
ability to automatically generate process annotations through relative step-level confidence change
analysis, significantly reducing annotation effort while maintaining supervision quality without
requiring ground truth answers. These automatically generated process annotations subsequently
serve as training data for developing an enhanced verification model that leverages both process-level
and outcome-level supervision signals. The complete framework of AUTOPSV is illustrated in
Figure 1. We conduct extensive experiments across five datasets, including mathematical reasoning
benchmarks and commonsense reasoning tasks. The results demonstrate that our method effectively
improves the reasoning capability of the model with our highly efficient labeling scheme for process
supervision. Our contribution is summarized as follows:

• We introduce AUTOPSV to automate the labeling of process data to enhance LLMs’ reason-
ing capabilities. By combining the strengths of output and process supervision, AUTOPSV
effectively identifies variations in model confidence to annotate the correctness of intermedi-
ate reasoning steps, enabling efficient automatic labeling for process supervision.

• Comprehensive experiments demonstrate that AUTOPSV significantly improves the perfor-
mance and scalability of verification models in mathematical and commonsense reasoning
tasks. This approach greatly reduces the need for manual intervention and extensive compu-
tational resources, making it a valuable tool for enhancing LLM capabilities.

• AUTOPSV’s versatility is evident in its applicability to both labeled and unlabeled dataset
settings after completing the training process. This flexibility and generalizability highlight
the method’s potential for widespread adoption in various LLM applications.

2 Related Works

Improving Reasoning Abilities of LLMs To enhance the reasoning capabilities of LLMs, prior
research primarily focuses on specific prompting techniques [26]. Existing efforts include few-shot
prompting with intermediate steps augmented demonstrations [5–7, 27] or zero-shot prompting
with specific instructions [28, 29]. Although these methods have shown promising results, their
effectiveness is often constrained by their task-specific nature and the labour-intensive process of
designing prompts, leading to inconsistent outcomes across different tasks [9, 10]. Another strategy to
facilitate reasoning involves instruction tuning or knowledge distillation, which elicits reasoning paths
from LLMs without explicit prompting [11–13, 30]. These approaches typically involve resource-
intensive fine-tuning over LLMs and require a large set of examples annotated with chain-of-thoughts
(CoT). Unlike methods that directly modify parameters or prompts, AUTOPSV focuses on training
an additional verification model to select the desired output from the original model’s output. This
approach is further discussed in the context of process supervision in the following paragraph.

From Outcome to Process Supervision Recent efforts have focused on enhancing the reasoning
capabilities of LLMs through the use of verifiers to select the best answer from multiple candidates.
There are two main types of verifiers: the Outcome-Supervised Verifier (OSV) and the Process-
Supervised Verifier (PSV). The OSV is supervised with a signal based on the final answer [21, 22],
while the PSV is with detailed feedback which requires evaluating individual reasoning steps [15,
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Problem:
Anna spent 1/4 of her money, and now she 
has $24 left. How much did she have 
originally?

Solution Steps:

Suppose Anna originally had $x. 
She spent 1/4 of her money, 
which is $x/4. 

This leaves her with $x - $x/4 = 
$3x/4. Since $3x/4 = $24, we 
can solve for x:

Since $3x/4 = $24, we can 
solve for x: 3x/4 = 24, x = 48. 
The answer is $48.
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Figure 1: An overview of AUTOPSV. It utilizes an outcome-supervised verifier to automatically
generate process annotations for each reasoning step by detecting its own confidence variations,
without relying on ground truth annotations. AUTOPSV efficiently produces annotations serving as
process supervision during the LLM training, which sidesteps costly annotations.

19, 16, 23]. Despite the time-consuming annotation cost, the PSV offers several advantages that
make it preferable to the OSV. It can provide fine-grained feedback by pinpointing the location of
errors, which is valuable for reinforcement learning and automatic correction [16, 20]. To alleviate
the extensive human annotation, recent approaches [17, 18] propose a machine annotation framework
using Monte Carlo Tree Search [24, 25]. This process demands a lot of computing resources,
potentially imposing a limitation on the usage. AUTOPSV is more efficient, as it utilizes an outcome-
supervised verification model to assign confidence to each reasoning step and calculate relative
step-level confidence changes, eliminating the need for additional sampling or manual labeling.

3 AUTOPSV

In this section, we introduce the main problem that this paper focuses on in Section 3.1. We
then discuss the motivation behind why we believe it is necessary to train a verification model
in Section 3.2. Finally, we describe how we accomplish the transition from outcome supervision to
process supervision during the training of the verification model in Section 3.3.

3.1 Problem Setting

Objective Our research addresses the challenge of response selection from multiple candidates
generated by a Large Language Model (LLM). Specifically, given an LLM acting as a response
generator, we seek to develop an effective method for identifying the correct response among multiple
generated solutions. Our primary goal is to maximize the probability of selecting an accurate solution
from the available candidates.

Notation We define q as the input question presented to the model, and S
(1:t)
i as the sequence of

intermediate reasoning steps up to step t for the i-th solution to question q. The binary correctness
label for the i-th solution is denoted as yi, and Q represents our training question dataset. This
formalization enables us to systematically approach the response selection problem while maintaining
mathematical rigor in our methodology.

3.2 Motivation

Response selection methods can be broadly divided into two categories: models specifically fine-tuned
for the selection task and those that employ various prompting strategies.

In our exploration, we initially investigate whether existing open-source LLMs could serve as effective
selection agents to evaluate model outputs and choose the correct response without fine-tuning. We
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choose Mixtral-Instruct [31] as the response generator, and its response results are listed Table 1.
Our objective focuses on identifying the correct response from five candidate solutions.

To establish robust conclusions, we evaluate selector models ranging from 7B to over 70B parameters,
applying various prompting strategies. The results, tested on the GSM8K test set [21], are presented
in Table 2. Notably, even models exceeding 70 billion parameters demonstrate suboptimal selection
performance when relying solely on prompting without fine-tuning.

Table 1: Performance of Mixtral-Instruct on GSM8K. All results are reported in accuracy (%).

Response Generator Model Size (Parameters) Pass@1 (%) Pass@5 (%) Self-Consistency (%)

Mixtral-Instruct [31] 8 x 7B (MOE) 62.55 82.31 69.06

Table 2: Comparison of different selection methods across various model sizes for selecting a response
from candidate responses generated by Mixtral-Instruct. All results are reported in accuracy (%).

Selector Model Size Prompt Strategy
Pairwise Classification Classification + CoT Scoring Scoring + CoT

Mistral-Instruct [32] 7B 60.73 61.18 64.82 61.49 69.75
Mixtral-Instruct [31] 8×7B 58.83 59.14 67.40 61.79 65.58
Llama2-chat [33] 70B 59.28 62.70 66.79 59.74 62.93
Qwen [34] 72B 59.14 66.64 69.52 61.86 65.88

Based on these findings, our research focuses on training dedicated verification models and enhancing
their response selection capabilities.

3.3 Training Methodology

AUTOPSV integrates outcome supervision with process supervision to create an effective training
methodology. Below, we detail each component of our approach.

Outcome-Supervision We begin by training an outcome-supervised verification (OSV) model,
denoted as fθ(·), where θ represents the optimized parameters. The training utilizes Mean Squared
Error (MSE) loss for each solution step:

L(S(1:t)
i , yi; q) =

(
fθ(S

(1:t)
i ; q)− yi

)2

(1)

The complete objective function across all training questions Q is:

Ltotal(Q) =
1

|Q|
∑
q∈Q

1

n

n∑
i=1

mi∑
t=1

(
fθ(S

(1:t)
i ; q)− yi

)2

(2)

Where n represents solutions per question and mi denotes steps in the i-th solution. The OSV output
approximates the expected correctness probability, as formalized as follows:

Theorem 1 For a model trained with outcome supervision, fθ, characterized by optimally tuned
parameters θ, the assigned score for the sequence S(1:t) is an estimation of the likelihood of ultimately
deriving a correct answer, denoted by â, based on the progression observed in S(1:t) and the pertinent
question q. This is mathematically represented as:

fθ(S
(1:t); q) ≈ p(â|S(1:t), q)

The proof follows from optimizing the MSE loss in equation (2), with details in [22].

Process-Supervision We compute the relative confidence change between steps:

∆t
conf =

fθ(S
(1:t+1); q)− fθ(S

(1:t); q)

fθ(S(1:t); q)
(3)
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∆t
conf represents the relative variation in the model’s confidence score from step t to step t +

1. A negative value of ∆t
conf signifies a reduced confidence in achieving a correct answer after

incorporating information from the (t+ 1)-th step. We denote the process label for the t-th step as yti
and θ as the variation threshold.

For process labeling, we employ the “first error location” strategy [15] with threshold θ:

• If ∆t
conf > θ: yti = 1

• Otherwise: yti = 0 and ∀t′ > t, yt
′

i = 0

The process-supervision loss function is:

Lproc(S
(1:t)
i , yti ; q) =

(
fθ(S

(1:t)
i ; q)− yti

)2

(4)

4 Preliminary Findings

In this section, we present our findings aiming to validate two key aspects: In Section 4.1, we present
a comprehensive analysis of the OSV model, i.e., to validate that the initially trained OSV model is
effective and robust. In Section 4.2, we further introduce a self-designed benchmark for process errors
and calculate ∆t

conf to detect these errors, i.e., to demonstrate the effectiveness and reliability of
relative step-level confidence change in the proposed method. The validation of these two components
serves as a foundation for automatic process labeling via AUTOPSV, as described in Section 3.3.

4.1 Experiment on Outcome-Supervised Verifier Performance

In this section, we validate the effectiveness and scalability of the OSV model. Initially, we fine-tune
a pretrained language model using ground truth data from the GSM8K dataset. Then, we use this
fine-tuned model to generate multiple response samples for the GSM8K training prompts. We label
these samples based on the correctness of their final answers. After this, we train an OSV model
using the method described in Eq. (1).

To evaluate the OSV, we measure its ability to select a sample with the correct final answer from
samples generated by various LLMs, denoted as the Response Generator. Specifically, our task
involves selecting the correct candidate from five responses. We assess the effectiveness of outcome
supervision on two models: Phi2 (OSV (Phi)) [35] and Mistral-7B (OSV (Mistral)) [32]. To explore
the scalability of this outcome-supervised verifier effect, we choose Response Generators of varying
scales, ranging from 7B to 72B parameters, i.e., Mistral-7B-Instruct (Mistral-Instruct) [32], Mixtral
8 × 7B (Mixtral-Instruct) [31] and Qwen-72B-Chat (Qwen) [34]. This allows us to check the
OSV’s generalized ranking capability across different LLM scales.

Table 3: Performance of OSV models across different configurations.

Response Generator Pass@1 Pass@5 SC OSV (Mistral) OSV (Phi)
Mistral-Instruct 42.08 69.90 50.03 60.72 52.61
Mixtral-Instruct 62.55 82.31 69.06 74.07 69.37
Qwen 77.03 91.13 81.27 85.00 84.19

The results demonstrate the effectiveness and scalability of the OSV model in selecting the correct
response among multiple responses generated by different generators. Specifically, the OSV models,
trained using either Mistral or Phi, consistently outperform the self-consistency (SC) baseline across
all generator configurations. The results validate the effectiveness of the OSV model in enhancing
model selection strategies, particularly when applied to larger and more accurate LLM generators.

We further analyze the performance discrepancy between the two OSV models:

Performance Analysis of Different OSVs The performance disparity among the verifiers can be
attributed primarily to variations in model sizes and the quality of their training data. It’s important
to note that the OSV model is continuously trained from the GSM8K fine-tuned model with the
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addition of a value head. This means that the training data for each OSV model is generated from its
corresponding fine-tuned base model. Specifically, the training data for OSV (Mistral) is generated
from the fine-tuned Mistral model, while the training data for OSV (Phi) is generated from the
fine-tuned Phi model.

Table 4: Model sizes and training data accuracy for training OSVs.

Verifier Size Training Data
Quality (acc.%) Quantity (per question)

OSV (Mistral) 7B 0.9914 100
OSV (Phi) 2.7B 0.9605 100

Table 4 presents a consolidated view of the model sizes along with the precision metrics of their
outcome supervision training data.

It is worth noting that while both models are trained on the same quantity of data per question (100
samples), the quality of this data differs due to the capabilities of their respective base models. The
Mistral model, being larger and potentially more capable, generates higher quality training data for
its OSV, which in turn leads to better performance. In our content, we select the OSV (Mistral)
model as the OSV model among other experiment settings due to its superior performance, as
demonstrated Table 3.

4.2 Detecting Calculation Error During Math Reasoning

In this section, we verify the effectiveness and reliability of our method AUTOPSV. Specifically, We
calculate ∆t

conf to identify inaccuracies in the process, as outlined in Eq. (3).

In Section 4.2.1, we introduce the concept of math calculation error and establish a preliminary
benchmark. In Section 4.2.2, we assess the performance of calculating ∆t

conf to detect calculation
errors against our established benchmark.

4.2.1 Math Calculation Error

We outline a method for identifying instances of math calculation error, which we define as occur-
rences where the numerical values on either side of an equals sign within a mathematical expression
do not align. This misalignment indicates a breakdown in logical reasoning, categorizing the instance
as a calculation error in the context of mathematical problem-solving. This process establishes a
benchmark for math calculation error detection with more details in Appendix E.

Math Calculation Error Detection To identify calculation errors in mathematical reasoning, we
monitor the relative step-level confidence changes between the intermediate steps as defined in Eq. (3).
if ∆t

conf ≤ θ, we view the step as “incorrect”. We also provide a detection example in Figure 2 for
better understanding.

4.2.2 Quantitative Results

We introduce three metrics for a thorough evaluation of math calculation error detection: Precision
(Prec.), which calculates the proportion of samples with correct final answers but exhibiting hallu-
cinatory errors during the reasoning process; Recall, which determines the proportion of samples
with math calculation errors that the OSV model successfully identifies through step-level confidence
changes; F1-score, which gauges the verifier’s overall efficacy. In Table 5, we explore how different
threshold (θ) values affect the precision, recall, and F1-score for math calculation error detection.

The results in Table 5 demonstrate that our method using step-level confidence change effectively
detects calculation errors across threshold values from - 0.5 to - 0.9. As the threshold becomes more
negative (stricter for labeling errors), the precision increases, indicating higher precision in identifying
true errors. However, the recall decreases, meaning fewer actual errors are caught. Importantly, the F1-
score, balancing precision and recall, remains relatively stable across thresholds. This demonstrates
that our method strikes a good balance between detecting real errors and minimizing incorrect
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Table 5: Process Calculation Error Detection Performance with Varying Threshold (θ) Values.

Metric Threshold (θ) Value
0.5 0.6 0.7 0.8 0.9

Prec. 0.85 0.88 0.91 0.93 0.94
Recall 0.90 0.89 0.86 0.83 0.80
F1-Score 0.88 0.89 0.88 0.88 0.86

flagging of valid calculations. Overall, our detection method is effective and robust, performing well
over a range of thresholds without significantly compromising overall detection quality.

We note that setting θ = - 0.5 in our detection methods helps maintain a balance between precision
and recall, which can ensure a balanced distribution of labeled “incorrect” and “correct” responses.

Validation and Foundation for AUTOPSV Our empirical validation of the OSV model encom-
passes two key aspects: its efficacy in response selection (Section 4.1) and its capability in detecting
calculation errors (Section 4.2). These experimental results provide a robust foundation for au-
tomating process annotations using AUTOPSV. Furthermore, Theorem 1 establishes the theoretical
framework for utilizing OSV to estimate the probability of reaching correct final answers from any
given intermediate reasoning step. This convergence of theoretical guarantees and empirical evidence
provides the methodological groundwork for applying AUTOPSV to generate process-supervised
training data in our subsequent experiments.

5 Experiment

In this section, we first introduce the experimental setup in a subsection, which includes the response
generator LLMs and evaluation settings in Section 5.1. We then present the main result of our
process supervision-enhanced verification model on both mathematical and commonsense reasoning
benchmarks, as described in Section 5.2.

5.1 Experimental Setup

Models: We selected three instruction-tuned LLMs of varying sizes, ranging from 7 billion to over
70 billion parameters, to serve as the response generator. Specifically, we used Mistral-Instruct-7B
(Mistral-Instruct), Mixtral-8x7B-Instruct-v0.1 (Mixtral-Instruct), and Qwen-72B-Chat (Qwen).

Datasets: Our evaluation encompasses five benchmarks across two domains: For mathematical rea-
soning, we include GSM8K [21], containing math word problems requiring multi-step reasoning, and
MATH [36], composed of high school-level competition problems covering a range of math subjects.
For commonsense reasoning, we use HellaSwag [37], a dataset for physically situated commonsense
reasoning, Winogrande [38], fill-in-the-blank problems requiring commonsense pronoun resolution
and ANLI [39], a dataset for natural language understanding and reasoning.

Evaluation: For evaluation, we follow the methodology outlined in [40] to ensure consistency
across benchmarks. Our protocol involves:

(i) Our object is to select the correct answer from five candidate responses.

(ii) For OSV models, we use the final value assigned to the whole solution for evaluation, while for
PSV models, we utilize the product of step-level scores as the aggregation function.

(iii) To obtain more reliable pass@k results, we implement the estimation method described in [41].
This involves generating n samples per task (where n > k) and assessing the number of correct samples
that pass unit tests. We then calculate the unbiased estimator for pass@k. For self-consistency (Self-
Cons.) and verifier results, we randomly select k out of n samples and perform separate calculations.
All results are reported with an accuracy of ±0.1 at a 95% confidence level.

Additional details regarding generation hyperparameters and different aggregation functions are
provided in Appendix F.2.
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5.2 Enhanced LLMs Reasoning via Process Supervision

To evaluate the efficacy and scalability of our proposed approach (detailed in Section 5.2), we
conducted comprehensive experiments across mathematics and commonsense reasoning tasks using
five diverse datasets.

Our experimental framework employs an autonomous process-supervision data annotation method
where we calculate ∆t

conf based on model confidence from OSV, using a threshold of θ = -0.5. This
annotated data is then utilized to continuously fine-tune the OSV model, resulting in our enhanced
OSV + PSV model.

We evaluate three distinct approaches: (i) Self-Consistency (Self-Cons.): Our baseline approach
(ii) Outcome-supervised verifier (OSV): Our initial verification model (iii) Process-supervised en-
hanced verifier (OSV + PSV): Our proposed enhancement. For each approach, we assess Pass@5
performance, which represents the upper limit of achievable performance on these benchmarks.

Mathematics Reasoning: As shown in Table 6, the process-supervised enhanced verifier demon-
strates superior performance over the outcome-supervised verifier and Self-Consistency models for
all evaluated response generators on GSM8K. For the MATH benchmark, the process-supervised
enhanced verifier outperforms the other two approaches for Mistral-Instruct and Mixtral-Instruct, but
it is slightly less effective than the Self-Consistency model when applied to Qwen-72b.

Table 6: Results on mathematics benchmarks.

Response Generator GSM8K MATH
Pass@5 Self-Cons. OSV OSV + PSV Pass@5 Self-Cons. OSV OSV + PSV

Mistral-Instruct 69.90 50.03 61.18 61.41 7.7 1.64 5.10 5.30
Mixtral-Instruct 82.30 69.06 74.91 76.04 22.80 10.66 15.2 16.92

Qwen 91.13 81.27 84.91 85.15 56.10 40.10 38.94 39.36

Commonsense Reasoning: According to Table 7, OSV + PSV again leads to the best results among
the three methods for each response generator tested on HellaSwag. For Winogrande, Mistral-Instruct
paired with OSV + PSV achieves the highest performance, whereas, for Mixtral-Instruct and Qwen-
72b, the original OSV without process supervision has a marginal advantage. When looking at the
results of the ANLI benchmark, OSV + PSV is the highest-performing method for Mistral-Instruct
and Mixtral-Instruct. Despite this, for Qwen-72b, the OSV model alone falls slightly behind the
integrated OSV + PSV.

Table 7: Results on commonsense reasoning benchmarks.

Response Generator HellaSwag Winogrande ANLI
Pass@5 Self-Cons. OSV OSV + PSV Pass@5 Self-Cons. OSV OSV + PSV Pass@5 Self-Cons. OSV OSV + PSV

Mistral-Instruct 76.84 40.30 73.81 74.45 91.16 58.64 79.16 79.98 73.4 45.6 59.8 59.3
Mixtral-Instruct 84.05 73.67 82.83 83.62 79.16 68.75 73.40 73.88 68.4 59.0 62.9 64.0
Qwen-72b 95.28 85.44 93.08 93.99 88.63 72.21 80.34 79.32 82.4 63.8 69.1 71.4

Conclusion: Our experimental results indicate that the process-supervised enhanced verifier (OSV
+ PSV) consistently outperforms or matches the baseline models across most mathematical and
commonsense reasoning tasks. By leveraging automatic process annotations, our approach enhances
the model’s capacity to verify reasoning processes, resulting in improved accuracy and robustness
across a wide range of benchmarks and response generators.

6 Analysis

In Section 6.1, we compare our process annotation method, AUTOPSV with two other model-
induced annotation methods to showcase the effectiveness and efficiency of our proposed approach.
In Section 6.2, we validate the data quality constructed via AUTOPSV as described in Section 5.2.
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6.1 Advantages of AutoPSV in Labeled and Unlabeled Settings

Aside from the labeling method defined by Eq. (3) in AUTOPSV, another labeling strategy is the
Monte Carlo Tree sampling estimation (MCTS), as described in [17, 18]. To better demonstrate
the effect of our method, we make a comparison with this approach and conduct experiments on
mathematical benchmarks across both labeled and unlabeled settings (i.e., whether the ground-truth
answers to the questions are provided).

Performance in Labeled Settings We first evaluate the performance of AutoPSV in labeled
settings. We follow the experimental settings described in [17, 18] to ensure a fair comparison. More
implementation details are provided in Appendix F.3. Table 8 presents a comparison of process
labeling methods across different response generators on the GSM8K and MATH datasets.

Table 8: Comparison of process labeling methods’ performance across different response generators
on GSM8K and MATH datasets. The table evaluates the Pass@5, Self-Consistency (Self-Cons.), and
response selection performance of models fine-tuned using process annotations labeled by MCTS
and AUTOPSV.

Response Generator GSM8K MATH
Pass@5 Self-Cons. Process (MCTS) Process (AUTOPSV) Pass@5 Self-Cons. Process (MCTS) Process (AUTOPSV)

Mistral-Instruct 69.90 50.03 54.13 55.32 7.7 1.64 3.3 3.24
Mixtral-Instruct 82.30 69.06 72.36 72.12 22.80 10.66 12.18 12.54
Qwen-72b 91.13 81.27 82.17 82.83 56.10 40.10 36.88 37.10

The experimental results shown in Table 8 suggest that our proposed method for process labeling,
which relies on detecting changes in model confidence, performs competitively with the MCTS
method from [18, 17]. In some cases, our method even outperforms the MCTS method, especially on
the more challenging MATH benchmark.

A key advantage of AutoPSV is its computational efficiency. As shown in Table 9, our method
requires significantly fewer tokens for process labeling compared to MCTS-based methods.

Table 9: Comparison of annotation costs between MCTS and AUTOPSV for process labeling on the
GSM8K and MATH datasets. Annotation cost represents the processed tokens into a model when
generating process annotations, encompassing both input and output tokens.

Dataset #Questions #Solution Statistical Annotation Cost
#Steps(Avg.) #Steps(Overall) #Tokens(Avg.) #Tokens(Overall) Process (MCTS) Process (AUTOPSV)

GSM8K 7,473 4.47 334,358 126 9,379,258 2,808 127
MATH 7,498 16.00 1,200,177 272 1,621,515,894 21,626 273

This efficiency stems from AutoPSV’s ability to generate process annotations without requiring
multiple samples for each reasoning step, making it particularly suitable for large-scale applications
or scenarios with limited computational resources.

Performance in Unlabeled Settings To further demonstrate the flexibility of AutoPSV, we evaluate
its performance in unlabeled settings. We generated an additional dataset of 7,000 unlabeled math
problems using the Evol-Instruct method from WizardLM [42]. These problems, created by LLMs
without accompanying gold solutions, represent a challenging scenario for traditional supervision
methods. We then conducted an experiment incorporating these unlabeled questions alongside
the GSM8K dataset. Table 10 compares various methods across different response generators.
In this context, OSV+PSV (GSM8K) refers to the original AutoPSV setting, while OSV+PSV
(GSM8K+WizardLM) includes process annotations sourced from both GSM8K and WizardLM
unlabeled questions. Notably, both MCTS and OSV-only training cannot leverage these unlabeled
data, highlighting another key advantage of AutoPSV.

Table 10: Performance enhancement of our proposed AutoPSV method in unlabeled settings, where
both MCTS and OSV-only training are unable to utilize unlabeled data.

Response Generator Pass@5 Self-Cons. OSV (GSM8K) MCTS (GSM8K) OSV+PSV (GSM8K) OSV+PSV (GSM8K+WizardLM)

Mistral-Instruct 69.90 50.03 61.18 60.82 61.41 63.11
Mixtral-Instruct 82.30 69.06 74.91 75.10 76.04 78.15
Qwen 91.13 81.27 84.91 84.85 85.15 86.77
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The results demonstrate that the addition of unlabeled data leads to noticeable improvements across
all response generators. For instance, the performance of Mistral-Instruct improves from 61.18
(OSV) to 63.11 (OSV+PSV with GSM8K+WizardLM). These results further underscore the value
of the AutoPSV approach, particularly its ability to effectively utilize unlabeled data for enhanced
performance.

In summary, AutoPSV offers several key advantages over MCTS-based methods:

Consistent Performance with Computational Efficiency: AutoPSV demonstrates robust, consistent
improvements across different response generators and datasets. Its ability to efficiently generate
process annotations—without the need for extensive sampling like MCTS—makes it particularly
well-suited for large-scale applications and environments with limited computational resources.

Leveraging Unlabeled Data for Enhanced Performance: Unlike MCTS, which relies on ground
truth labels, AutoPSV can effectively utilize unlabeled data. This capability not only enhances model
performance in real-world settings but also offers scalability in scenarios where labeled data is scarce.
The flexibility to harness unlabeled data ensures that AutoPSV can drive significant improvements
even in data-constrained situations.

6.2 Outcome-Supervised Verification vs. Process-Supervised Verification

We apply the OSV to relabel the process-supervised training data as in Section 5.2. We then retrain
a new model using this relabeled data. This experiment highlights the performance gap between
outcome-supervised and process-supervised training.

Table 11: Experimental results showing the performance of OSV models across different configura-
tions tested on GSM8K test sets.

Response Generator Pass@1 Pass@5 SC OSV PSV
Mistral-Instruct 42.08 69.90 50.03 60.72 59.14
Mixtral-Instruct 62.55 82.31 69.06 74.07 71.39
Qwen-72b 77.03 91.13 81.27 85.00 83.70

The experimental results in Table 11 reveal that retraining the model with process supervision
from AUTOPSV still yields better performance than self-consistency across three different response
generators. We also noticed a small performance gap between the PSV and OSV. It is worth noting
that our PSV was trained using data from the OSV. The small performance gap between the PSV
and OSV models demonstrates that the relabeled process-supervised training method successfully
inherits information from the outcome-supervised model without requiring ground truth annotations.
This ablation study further provides quality assurance for automatic process labeling via AUTOPSV.
Moreover, OSV training is limited to labeled datasets, while AUTOPSV demonstrates superior
performance by utilizing both labeled and unlabeled data as shown in Table 10. This comparison
further highlights the versatility and effectiveness of AUTOPSV in real-world scenarios where ground
truth annotations may be scarce or unavailable.

7 Conclusion

In conclusion, we propose a novel method for automatic process labeling in LLMs by detecting relative
changes in model confidence. Our experimental results demonstrate that AUTOPSV significantly
enhances the precision and scalability of the verifier models in various reasoning tasks, ranging from
mathematical to commonsense reasoning. AUTOPSV therefore has the potential to considerably
enhance existing LLMs’ performance while drastically reducing the need for intensive computation
and manual intervention. For future work, we aim to utilize the automatically constructed PSV to
supervise the generator using step-wise proximal policy optimization, to enhance the accuracy of the
generator’s output during greedy decoding without the need for subsequent reranking. This avenue of
research could lead to even more advancements in the capabilities of LLMs and their application in
reasoning tasks. The limitations and broader impact of the paper are discussed in Appendix A and B.
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A Limitations

AUTOPSV is a promising solution for enhancing the reasoning capabilities of LLMs. However, it
is important to acknowledge several potential limitations of the method. Firstly, while AUTOPSV
aims to reduce the need for manual intervention, there is still a risk of inaccurate annotations. The
relative step-level confidence change used to produce process annotations is an estimation and may
not always accurately represent the actual correctness of a reasoning step. This could compromise
the quality of the annotations and, in turn, the effectiveness of the method. Secondly, the success
of AUTOPSV is heavily dependent on the performance of the verifier. If the model is not accurate
enough in its step-level scores, the quality of the process annotations generated by AUTOPSV could
be compromised. Thirdly, AUTOPSV is specifically designed to improve the reasoning capabilities of
LLMs. Therefore, its applicability may be limited to tasks that involve complex multi-step reasoning.
It is unclear how well the method will scale or generalize to other tasks or domains that do not involve
intensive reasoning. This is an important consideration for future research and development of the
method.
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B Broader Impact

Positive Societal Impacts The proposed AUTOPSV has the potential to bring about several positive
societal impacts. By enhancing the reasoning capabilities of LLMs, AUTOPSV can lead to more
accurate and reliable information, which in turn can support better decision-making in various sectors,
including healthcare, education, and finance. Moreover, AUTOPSV combines the strengths of output
supervision and process supervision to automatically annotate reasoning steps, significantly reducing
the time, effort, and cost associated with manual annotation. This makes the process of training LLMs
more efficient and accessible. Additionally, the process supervision data generated by AUTOPSV
can improve the performance and scalability of verification models, allowing for the development of
more complex and sophisticated LLMs capable of handling a wider range of tasks and applications.

Positive Societal Impacts However, AUTOPSV also presents several potential negative societal
impacts. The automation of the annotation process could lead to job displacement for individuals
currently employed in this role. There is also a risk that AUTOPSV and the enhanced LLMs could
be misused, for instance, to spread misinformation or manipulate public opinion. The increased
reliance on LLMs for decision-making could potentially result in a decrease in critical thinking and
problem-solving skills among individuals. Furthermore, the use of LLMs in various sectors could
lead to privacy and security issues, as these models often require large amounts of data for training.

C More Related Work

Learning From Feedback Improving LLMs through learning from feedback has become a preva-
lent strategy, notably through reinforcement learning from human feedback, which seeks to align
LLMs with human values by refining their outputs based on feedback [43–45]. However, this
method faces challenges such as high costs due to manual labor and a lack of real-time feedback
capabilities [46, 47]. An alternative strategy involves using self-correcting LLMs, which rely on
automated feedback to iteratively adapt and understand the consequences of their actions without
heavy reliance on human intervention. This feedback can be derived from outside sources such
as other models [48, 49], tools [50, 51], knowledge bases [52, 53], evaluation metrics [54, 55] or
generation logits [56].

External feedback leverages external perspectives to identify errors and verify factual accuracy,
offering insights that may not be recognized by the LLM alone. Conversely, feedback can also be
internally generated, where the LLM evaluates and refines its output iteratively until a desired quality
is achieved [57–60]. This self-improvement mechanism is particularly valuable in scenarios where
external feedback is scarce or restricted [61, 62]. However, recent effort [63] suggests that LLMs
struggle to independently identify and correct errors through self-generated prompts.

D Vanilla Evaluation Methods Description

Classification: For this method, the evaluator is presented with multiple answers for a given question
and is required to choose the best answer among them. The selection is made based on the evaluator’s
judgment of which answer most accurately addresses the question or provides the most relevant
information.

Given the following question: ’[question]’, and these five answers:
1. [answer]
2. [answer]
3. [answer]
4. [answer]
5. [answer]
Which answer is the best? Please provide the number of the best answer. You should strictly
follow the output format requirements and not output any other content.
Example: Answer [number] is better. Let’s Begin!

Classification + COT: In Classification + COT, the evaluator must not only identify the best answer
but also analyze and compare all provided answers before making their decision. This method
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requires a deeper examination of the content and context of each answer to determine its quality and
relevance to the question.

Given the following question: ’[question]’, and these five answers:
1. [answer]
2. [answer]
3. [answer]
4. [answer]
5. [answer]
Which answer is the best? Please analyze and compare the provided answers and then identify
the number of the best answer. You should strictly follow the output format requirements and
not output any other content.
Example: Comparison and Analysis: [analysis]. Best answer: [number]. Let’s Begin!

Scoring: In the Scoring method, the evaluator assigns a numerical score to each answer based on
its quality or relevance to the given question. The scores typically range from 1 to 10, with 10
representing the highest quality or most relevant answer.

Given the following question: ’[question]’, please score these five answers on a scale from 1
to 10, where 10 is the best:
1. [answer]
2. [answer]
3. [answer]
4. [answer]
5. [answer]
Please provide a score for each answer. You should strictly follow the output format require-
ments and not output any other content.
Example: Answer i: [score]. Let’s Begin!

Scoring + COT: Similar to Scoring, Scoring + COT also involves assigning numerical scores to each
answer. However, in Scoring_cot, the evaluator is required to provide an analysis of each answer
before assigning a score. This analysis informs the scoring process and ensures a more informed
evaluation of each answer.

Given the following question: ’[question]’, please score these five answers on a scale from 1
to 10, where 10 is the best:
1. [answer]
2. [answer]
3. [answer]
4. [answer]
5. [answer]
Please analyze each answer, and then provide a score for each answer. You should strictly
follow the output format requirements and not output any other content.
Example: Answer i: analysis: [analysis]. score: [score]. Let’s Begin!

Pairwise Comparison: In this method, the evaluator is presented with pairs of answers for a
given question and is tasked with determining which answer is better in each pair. The evaluator
compares the content or quality of each answer and selects the one they deem superior. The Pairwise
Comparison method differs from other evaluation methods in that it evaluates two candidate answers
at a time and chooses the winner to proceed to the next comparison with the next candidate answer.
For a set of n candidates, this method conducts n-1 pairwise comparisons. To mitigate the potential
order preference bias exhibited by LLMs, we adopt a method similar to [64] which shuffles the
positions of two answers during prompting. This ensures a fair evaluation process by eliminating any
bias toward the position of the answers.
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Given the following question: ’[question]’, compare each pair of answers and decide which
one is better:
Compare 1. [answer1] with 2. [answer2]
For the comparison, indicate the better answer with its number. You should strictly follow the
output format requirements and not output any other content.
Example: Answer i is better. Let’s Begin!

By employing these different evaluation methods, we aim to comprehensively assess the quality and
relevance of the answers generated by our models for various questions. Each method offers a unique
perspective and contributes to a more thorough evaluation process.

E Math Calculation Error Benchmark

Methodology We utilize the LlaMA2-chat model (LlaMA) for mathematical reasoning step genera-
tion. Using regular expressions, we extract computational steps and evaluate expressions to the left of
the "=" sign using Python’s eval function to verify their correctness against right-hand side results.
We term this process "Math Calculation Error Detection" and present the results in Table 12.

Table 12: Performance of the LlaMA model on GSM8K training data, evaluated through few-shot cot
prompting strategy.

Model Pass@5 (%) Self-Consistency (%) Math Calculation Error Detection (%)

LlaMA 0.4791 0.2881 0.1824

Data Processing Non-computational expressions (e.g., "x + 1 + 2 = 4") that cannot be evaluated
due to unsolvability or incorrect formatting are excluded from the ground truth data. This ensures our
ground truth accurately reflects only computational errors during reasoning. While DeepMind [15]
employs human labelers for "trace errors" annotation, our automated approach using Python’s eval
function provides a scalable alternative.

Error Detection Example To demonstrate our calculation of ∆t
conf for math calculation error

identification, we present an example in Figure 2. The red highlights indicate calculation errors in the
reasoning process, detected through significant decreases in model confidence.

F Experiment Details

F.1 Training Hyperparameters

Computing Infrastructure Our experiments were conducted using 8 NVIDIA A100 GPUs, each
with 40GB of memory. All models underwent full-parameter fine-tuning using the AdamW optimizer.

Verifier Training Configuration For both process-supervised and outcome-supervised methods,
we maintain consistent training parameters as detailed in Table 13. The training process spans 1
epoch with a batch size of 512 and a learning rate of 2 × 10−6, incorporating a 3% learning rate
warmup period.

Table 13: Verifier Training Hyperparameters.

Hyperparameter Global Batch Size LR Epo. Max Length Weight Decay Warmup Ratio

Value 512 2× 10−6 1 2048 0 0.03

SFT Model Prerequisites Prior to verifier training, we establish a supervised fine-tuning (SFT)
model. This model serves to generate responses and facilitate outcome supervision labeling by
validating final answer correctness. The SFT model’s training parameters are specified in Table 14.
For comprehensive details regarding OSV implementation, refer to [22].
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Question:
Randy just turned 12 and started playing the piano. His friend Sheila told

him about the 10,000− hour rule which says, after 10,000 hours of
practice, you become an expert or master in your field. If Randy wants
to become a piano expert before he is 20, how many hours a day will he
need to practice if he practices every day, Monday − Friday, and takes
two weeks off for vacation each year?

Solution:
If Randy wants to become a piano expert before he is 20, he will need to

practice for 10,000 hours in total. Since he is 12 now, that means he
will need to practice for 10,000/20 = 500 hours a year. [0.2]

If he practices every day, Monday − Friday, that means he will need to
practice for 500*52 = 500*52=260 260 weeks [− 0.6].

Since he takes two weeks off for vacation each year, that means he will need
to practice for 260/52 = 5 hours a day [0.1].

The answer is 5.

Figure 2: A data example during math calculation error detection. We apply the OSV model to
detect calculation errors by calculating the step-level confidence change at each step, denoted inside
the brackets [ ] for the step containing calculations. The ground truth location of the math calculation
error is marked in red.

Table 14: SFT Training Hyperparameters.

Hyperparameter Global Batch Size LR Epo. Max Length Weight Decay Warmup Ratio

Value 128 5× 10−6 2 2048 0 0.03

F.2 Generation Settings

Parameter Settings We employ two distinct temperature configurations: temperature = 0.0 for the
greedy decoding strategy and temperature = 0.7 for the pass@k evaluation strategy.

Pass@k Evaluation Protocol To ensure unbiased estimation of pass@k metrics, we follow the
methodology established in [41]. We generate n = 20 samples per problem instance and evaluate
each sample against unit tests to determine correctness. The unbiased estimator for pass@k is then
computed based on these results. This entire process is repeated 5 times to establish 95% confidence
intervals, as detailed in Section 5.1.

Score Aggregation Methodology Our primary aggregation mechanism employs a multiplicative
approach for step-level scores. This method computes the product of confidence scores across all
steps, yielding a compound probability that represents the overall likelihood of solution correctness.

Comparative Analysis of Aggregation Functions Following [16], we conducted a comparative
analysis of different aggregation strategies. While our primary approach utilizes the product of
step-level scores, we also investigate the minimum of step-level scores as an alternative approach.
The comparative results for these aggregation functions on the GSM8K dataset are presented below:

As shown in Table 15, the choice of aggregation function can have a slight impact on the results, with
the product function generally performing comparably or slightly better than the minimum function
across different response generators.
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Table 15: Comparison of aggregation functions on GSM8K dataset.

Response Generator Product Minimum

Mistral-Instruct 60.72 61.17
Mixtral-Instruct 74.07 72.45
Qwen 85.00 84.28

F.3 Process-Supervision Labelling Strategy

Overview Our implementation encompasses two distinct labelling methodologies: our proposed
approach (Process Ours) and a comparative Monte Carlo Tree Search approach (Process MCTS).

Implementation Procedure The procedure consists of the following sequential stages:

1. Initial Generator Training: We conduct supervised fine-tuning of a generator using a
combined dataset of approximately 15,000 problems from GSM8K and MATH.

2. Sample Generation: The trained generator produces 10 distinct solution attempts for each
unlabeled prompt within the training datasets. Each solution receives a binary label (0 or 1)
based on the correctness of its final answer.

3. Method-Specific Processing:
(a) Process Ours:

• Train an output-supervised verifier using the complete set of 150,000 generated
samples (15,000 × 10)

• Relabel samples using a relative confidence change criterion (as defined in Equation
3)

• Retrain the verifier using these refined labels
(b) Process MCTS:

• Decompose each of the 150,000 samples into constituent reasoning paths
• For each incomplete reasoning path, generate eight complete path variations
• Compute the accuracy for each complete path
• Calculate the proportion of correct paths to determine the final label
• Retrain the verifier using these MCTS-derived labels

Technical Note While our main experimental results employ 50 samples per problem, we restrict
this implementation to 10 samples due to computational constraints. The full MCTS labeling process
for 50 × 15,000 samples would require approximately 10-12 days of computation time.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the “abstract” and “introduction” sections accurately
reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide the limitations in the “Limitations” section attached in the Ap-
pendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper focuses on exploring a novel process-supervision approach to
enhance verifiers, and as such, it is primarily based on experimental results rather than
theoretical proofs. The paper does not introduce new theoretical results; instead, it relies
on theorems that have already been proven in previously published literature. These refer-
enced theorems are clearly cited in the “Method” section of the paper, indicating that the
authors have not provided new proofs but have utilized established results to support their
experimental work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper includes all the necessary information required to reproduce the
main experimental results. This information is detailed within the “Experiment” section
and the “Appendix” of the paper, ensuring that readers have access to the methodologies,
parameters, and data needed to validate the main claims and conclusions presented.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the training scripts in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides comprehensive details regarding the training and testing in
the “Appendix” due to the page limit.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We mentioned in “Experiment” section that The results are presented with an
accuracy of ±0.1, calculated at a 95% confidence level.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include sufficient information regarding the computer resources required
to reproduce the experiments in “Experiment” and “Appendix”.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: We discuss the societal impact of the work in the “Broader Impact” section
attached in the Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not present any high-risk data or models that could be prone to
misuse, as it is focused on enhancing the performance of Language Model Support Systems
(LLMS) within the field of Natural Language Processing (NLP).
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, all experiments conducted in the paper utilize open-source models. Proper
references and citations are included in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the code in the supplementary materials and include a README
file with details about data annotation, training, and limitations.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

27

paperswithcode.com/datasets


Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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