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ABSTRACT

Foundation models, a cornerstone of recent advancements in machine learning,
have predominantly thrived on complete and well-structured data. However, wear-
able sensor data frequently suffers from significant missingness, posing a sub-
stantial challenge for the training of generalist models in this domain. This paper
introduces Adaptive and Inherited Masking (AIM), a novel self-supervised learning
(SSL) approach that learns robust representations directly from incomplete data
without requiring explicit imputation. Leveraging ATM, we develop AIM_FM, a
foundation model pre-trained on 40 million hours of fragmented multimodal wear-
able sensor data. We find that with ATM this model exhibits improved scaling and
performance across a diverse range of tasks as compared to current state-of-the-art
wearable-sensor foundation models trained on imputed data. Critically, ATM_FM
maintains high performance even under targeted missingness scenarios (e.g., absent
sensors, contiguous missingness). We will release our metabolic study dataset with
reproducible training+evaluation code.

1 INTRODUCTION

Missingness is a natural, and often unavoidable, artifact of data in a variety of domains. Sensor
systems are prone to incomplete data streams due to strategic intermittent deactivation for energy
conservation, environmental noise, sensor obstruction, or hardware malfunctions (Du et al., 2020;
Bihr et al., 2022; Decorte et al., 2024). Missing data is especially prevalent for mobile and wearable
sensors. In addition to the aforementioned causes, user compliance issues (e.g., improper/insecure
device attachment) and challenges unique to mobile devices (e.g., data transmission failures, battery
charging periods) further exacerbate this problem (Rahman et al., 2017).

Self-supervised learning (SSL) has emerged as a powerful method for learning transferable repre-
sentations for biosignals (Logacjov, 2024) by exploiting the inherent structure within unlabeled data
(Ericsson et al., 2021). When applied at sufficient scale, these methods result in models with learned
representations capable of generalizing to diverse downstream tasks, referred to as foundation models
(FM) (Oquab et al., 2023; Team et al., 2023). These methods have enabled the development of
wearable sensor FMs useful across a number of health prediction tasks (Narayanswamy et al., 2024a;
Xu et al., 2024; Saha et al., 2025; Abbaspourazad et al., 2023).

Unfortunately, state-of-the-art (SOTA) time-series SSL approaches require fully-observed data,
making it challenging to appply them directly to biosignals collected from wearables. A subset of
wearable sensor FMs have therefore focused on short context windows (i.e. <60s (Abbaspourazad
et al., 2023), 2.56s (Xu et al., 2024), 10s (Pillai et al., 2025)), where incomplete observations are
easily filtered out. However, many critically-important physiological and behavioral patterns (e.g.,
circadian rhythms (Zielinski et al., 2014) and activity profiles (Hecht et al., 2009)) require the analysis
of longer (hours, days) context windows, where filtering would be ineffective. This is highlighted
in our data (detailed in Section 3), where 100% of the day-long samples contain some amount
of missingness. While other works have used imputation (e.g. mean filling, linear interpolation)
to address this challenge in developing long-context wearable FMs (Narayanswamy et al., 2024a;
Erturk et al., 2025), prior work has established the difficulty of performing accurate and non-biased
imputation in the face of substantial missingness (Xu et al., 2022; Shadbahr et al., 2023). Thus, there
is a clear need for an approach to pre-training on time series data which is robust to data missingness.
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Figure 1: Representative Example of the Sensor Data. Our day-long wearable sensor data
is composed of 26 features, derived from 5 sensors (PPG, Accelerometer, Altimeter, EDA, and
Temperature). Such multimodal long-context data contains complex missingness patterns (shown in
white). Missingness modes include sensor(s) being off/unavailable, periods where all measures are
unavailable (device is off body), and measurements that are filtered out due to being clearly spurious.

The Masked Autoencoder (MAE) SSL method learns a strong generalizable representation by
introducing mask tokens to replace existing samples and then learning to reconstruct them (He et al.,
2022b; Narayanswamy et al., 2024a). Our key intuition is that we can co-opt this masked token to
also represent the existing missingness that is naturally present in wearable sensor data. This unified
treatment of missingness (natural and artificial) within a single MAE framework enables, for the first
time, robust SSL without imputation, thereby avoiding any associated imputation biases that may
occur (Shadbahr et al., 2023). However, the standard MAE cannot be applied with this idea because
the natural missing data patterns are highly variable, and the standard MAE approach assumes that
the masking ratio is fixed in order to ensure consistent batching for effecient scalability.

In this paper, we propose Adaptive and Inherited Masking, ATM, an SSL approach that learns
representations directly from incomplete multimodal wearable sensor data with complex missingness
patterns. Extending masked (MAE) pre-training (He et al., 2022b), AIM is able to flexibly handle
variable mask tokens while retaining the computational advantanges of the original MAE framework
that allows it to conduct large-scale pre-training. The learnable mask token is shared to represent two
different types of missingness: Inherited missingness, which is a mask inherited from the natural
missingness, and Artificial missingness, which is a mask applied on observed data to formulate the
masked-reconstruction SSL task. Futhermore, ATM’s flexibility of variable missingness enables the
use of a diverse mix of artificial masking strategies that, for the first-time, utilize strategy-specific
masking ratios, mimicking real-world structured failure modes common to wearable sensor data.

The key contributions of our work are:

1. We propose AIM, to the best of our knowledge, the first SSL methodology to learn representations
directly from incomplete multimodal sensor data. AIM jointly models inherited (real-world)
masking with a diverse mix of artificial masking strategies with strategy-specific ratios to learn
the complex missingness patterns in wearable sensor streams.

2. After pre-training on 40m hours of fragmented wearable data, ATM_FM is a foundation model
that exhibits improved scaling and downstream performance on a diverse range of task semantics
(cardiovascular, mental health, motion, demographics, metabolics). We benchmark against 3
general SSL methods and 4 SOTA wearable-specific methods that had been trained on imputed
data. In so doing, we demonstrate that the standard practice of imputation pre-processing, used by
SOTA wearable FMs, is not only unnecessary, but is actually suboptimal.

3. We evaluate the robustness of ATM_FM across a wide range of targeted missing scenarios, drop-
ping out specific sensors or time windows, and we demonstrate 73% less average performance
degradation as compared to baselines pre-trained with imputed data.

4. We will release our full metabolic study dataset (used for anxiety, hypertension, insulin resistance,
age, and BMI tasks), the ATM_FM model weights trained on this data, and a codebase with the
full reproducible evaluation code upon acceptance. See Reproducibility Statement for details.



2 RELATED WORK

Self-Supervised Learning for Time-Series Foundation Models. Time-series FMs typically leverage
one of two classes of SSL pre-training. The first body of work applies a constrastive objective where
data pairs are typically generated via augmentations (Tang et al., 2020), sampling using temporal
proximity (Tonekaboni et al., 2021), subject labels (Abbaspourazad et al., 2023), domain knowledge
(Pillai et al., 2025), or motif similarity (Xu et al., 2023; 2024). While powerful, these methods rely
on strong assumptions to currate pairs. A second line of work implements a generative objective,
often masked reconstruction (He et al., 2022b). These works typically focus exclusively on complete
univariate signals (Dong et al., 2023; Li et al., 2023; Chien et al., 2022), model highly correlated
channels from a single modality (Na et al., 2024), or focus on task-specific forecasting without
learning transferrable embeddings (Ansari et al., 2024; Nie et al., 2022; Das et al., 2024).

The recent past has seen large-scale SSL extended to long-context multi-modal wearable sensor
data (Narayanswamy et al., 2024a; Erturk et al., 2025). However, these SOTA wearable FMs opt to
use naive imputation to handle their ubiquituous missingness. In contrast, ATM_FM leverages masked
reconstruction pre-training to jointly model existing missingness, and in so doing demonstrates the
utility of "respecting" missingness as a natural artifact of sensor data.

Self-supervised Learning for Other Incomplete Data. SSL methods for other incomplete data have
typically focused on tabular inputs with simple, point-wise missingness (Ucar et al., 2021; Chang
et al.) or irregularly-sampled time-series (Beebe-Wang et al., 2023). These domains differ from
wearable sensor data in the structure of their input features and in their exibited missingness patterns.
Even so, these SSL methods rely on listwise deletion or imputation as a standard solution to data
missingness. In comparison, AIM provides a more principled alternative to data imputation for SSL.

Supervised Learning for Incomplete Data. A majority of these works focus on supervised impu-
tation, and there are many on multivariate time-series imputation (Yoon et al., 2018; Qin & Wang,
2023; Dai et al., 2024). A few works have investigated how modeling existing missingness can help
aid in improving imputation accuracy (Du et al., 2023; Wei et al., 2024). For supervised classification,
a handful of works have explored how imputation can introduce bias in classifiers trained on the
imputed data (Jungo et al., 2024; Shadbahr et al., 2023; Xu et al., 2022), and a few have proposed
methodologies for learning supervised classifiers directly on the missing data (Ghahramani & Jor-
dan, 1993; Ipsen et al., 2022). AIM extends these ideas to learn a representation directly from the
incomplete data, resulting in improved generalizability and downstream performance.

3 LARGE SCALE INCOMPLETE WEARABLE DATA
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Figure 2: Distribution of Missing-
ness % Per Sample. Mean 49%,
Minimum 2%, Maximum 80%.

Pre-training Data. For pre-training, we used a de-identified dataset collected between [3/1/2024-
6/1/2024]. The dataset included 1,601,088 instances of day-long data with 40 million total hours. This
data originates from 27,137 unique individuals, with a mean of 59 days contributed per participant.
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Figure 3: AIM Pre-training [A-F] and Evaluation [G,H] Methodology. Our mask is
the union of [A] inherited missingness from real-world noise and [B] artificial masking of observed
data. Both are via a shared learnable mask token. Because the inherited mask introduces variable
masking, [C] we first remove D (size of artificial mask) tokens and [D] then use an attention mask
to remove the remaining. [E] Dropped tokens are reinserted before [F] the final reconstruction.
[G] Reconstruction error is computed only on artificial masks with known ground truth. [H] For
discriminative tasks, a linear probe is trained on a pooled representation of the non-missing data.

Downstream Activity Study Data. This data originates from the same source as our pre-training
data. We randomly sampled up to 5,000 examples for each of 20 activities for training and up to
1,000 examples of each activity for testing. These self-reported activities span common exercises like
walking, gym-based training like weight lifting, and sports like skiing. In total, 104,086 activities
were sampled from 46,199 people. The mean duration per activity was 66 minutes.

Downstream Metabolic Study Data. This data originates from an IRB approved observational
study, in which participants consented to data sharing. In total, the data comprises 5.8M person-hours
of wearable sensor data (241,532 day-long instances), collected from 1,250 individuals. Downstream
targets include self-reported medical conditions (hypertension, anxiety) and demographics (age,
BMI), as well as insulin resistance measurements, which were calculated from fasting insulin and
glucose lab tests. Upon acceptance, we will release this data, AIM_FM model weights trained on this
data, and a codebase for reproducible evaluation of downstream targets. This release will provide a
valuable community resource by expanding the data available for wearable foundation model training
by several orders of magnitude and providing a unified benchmarking task.

4 METHOD

Motivation. While missingness is ubiquitous in wearable sensor data, SOTA FMs fail to gracefully
handle this and instead opt to naively apply simple imputation methods (Narayanswamy et al., 2024a;
Erturk et al., 2025), which can potentially bias the model (Shadbahr et al., 2023). Our key insight
is to inherit these pre-existing missingness patterns to be used in conjunction within an masked
pre-training framework (He et al., 2022a). By treating inherited missingness as a natural artifact of
sensor data, equal to the artifical masks used as reconstruction targets, ATM establishes missingness
as an inherent structure embedded in the learned representation during pre-training.

ATM first takes an input matrix of sensor features, which are then tokenized to be X € REXNxE (B
is batch size, IV is number of tokens, and E is embedding dimension). We then define a binary vector
mask, M € {0,1}2*Y (where 1 is masked and 0 is non-masked) equal in length to the number of
tokenized sensor inputs, where masked tokens are ignored by the encoder. Our method sets M as the

union of the inherited and artificial masks such that: M = Minherited / pgartificial

inherited artificial -
M M ,

The inherited mask, , represents inherent missingness. The artificial mask, is
simulated missingness on observed data used in the reconstruction training objective. Critically,
the inclusion of the inherited mask ensures that the encoder exclusively learns representations from
reliable, observed, sensor data without contamination from imputation artifacts.



Table 1: Pre-training Masking % Sweep. Each table shows the effect of varying a given pre-training
strategy’s mask % on its generative evaluation counterpart. The gray row highlights the best
pre-training ratio. The best results balance consistent performance across eval ratios and prefer higher
pre-training % when results are similar, in order allow for better effeciency with a higher removal
D. Thus, our pre-training masking mix is 80% random, 50% temporal slice, and 50% sensor slice.

(a) Random Imp Pre-train (b) Temporal Slice Pre-train (c) Signal Slice Pre-train

PT Mask % Eval Ratio PT Slice % Eval Amount PT Slice % Eval Amount

30% 50% 80% 1I0m 30m 60m 180m 2/26  6/26 12/26  24/26
90% 0.13 0.14 0.20 70% 023 034 041 0.56 70% 0.19 023 028 0.43
80% 0.10 0.12 0.19 60% 026 036 042 0.57 60% 0.18 022 027 0.45
70% 0.10 0.12 0.19 50% 0.23 033 040 0.55 50% 0.17 021 027 0.48
60% 0.10 0.12 0.19 40% 0.22 033 040 0.56 40% 0.17 021 027 0.56
50% 0.09 0.12 0.20 30% 022 033 040 057 30% 0.16 021 0.30 0.63

Metrics: Mean Squared Error

Background. The original MAE work (He et al., 2022a) implements masking through the re-
moval mask, where masked tokens are removed from the token sequence processed by the en-
coder. By dropping D tokens per sample, the removal mask reduces the computation of the trans-
former encoder from O(N?) — O((N — D)?) (25x less compute when masking 80% of tokens).
Though computationally efficient, the removal mask generally requires a fixed value D such that
SN My, = DV be[1,B]. This is to ensure that the masked input X[M] € RB*(N=D)xE feq
to the transformer encoder is of a fixed size. Consequentially, prior MAE-based SSL methods have
traditionally required fixed masking ratios (He et al., 2022a; Narayanswamy et al., 2024a; Girdhar
et al., 2023; Huang et al., 2022; Tong et al., 2022).

Unfortunately, modeling sensor missingness via fixed removal amount poses a significant challenge as
missingness is naturally variable. This can be addressed by passing all tokens to the encoder and using
an attention mask instead. An attention mask method would use the transformer’s innate attention
mechanism, setting the attention weights for masked tokens to zero, preventing them from contributing
to the encoder output (Vaswani et al., 2017; Du et al., 2023). While flexible, passing all tokens
through the encoder is computationally prohibitive for long sequences and large scale pre-training.

Taking AIM with Adaptive Inherited Masking. The key insight of ATIM is to unify the efficiency of
the removal mask with the flexibility of attention masking. This hybrid strategy allows for the handling
of data with variable, inherited missingness while retaining the computational advantages of the orig-
inal MAE framework. The process, visualized in Fig. 3, operates as a two-stage approach to handle
the total set of masked tokens (which includes inherited and artificial masked tokens). First, to guar-
antee efficient computation, D tokens, a subset of all masked tokens, are removed from the sequence
fed to the encoder. D is determined as the lower bound of possible masked tokens, and can be set to
the artificial mask ratio during training. Second, remaining masked tokens, not previously removed,
are masked via the encoder’s attention mechanism. Specifically, for this variable number of tokens,
the attention weights are set to 0, preventing these tokens from contributing to the encoder’s internal
representation. In this way AIM extends masked pretraining to support variable inherited and artificial
missingness while retaining the computational benefits of MAE needed for scalable pre-training.

AIM Enables Complex Masking Mixtures. As previously discussed, MAE-based methods have
traditionally been constrained to fixed masked ratios, and by convention have used only one fixed
masking strategy (He et al., 2022a; Narayanswamy et al., 2024a; Girdhar et al., 2023; Huang et al.,
2022; Tong et al., 2022). AIM eliminated this requirement by efficiently handling variable masking
through a combination of removal and attention masking, enabling a novel heterogenous mixture of
artificial masking strategies and ratios, simulating the complex modes of data loss seen in real-world
sensor streams (Fig. 1). For instance, as determined in Table 1, random masking benefits from a high
80% ratio, as tokens are easily reconstructed from neighbors, while the more challenging slice objec-
tives benefits from a lower 50% ratio. Specifically, during training, each input window randomly uses
one of the following three distinct masking strategies to model domain specific missingness patterns:

1. Random Imputation Pre-training: Drops a percentage of total tokens in a point-wise fashion to
simulate sensor noise where individual channels fail at random times.

2. Temporal Slice Pre-training: Drops all sensor channel data for a percentage of total time slices.
This models "off body" events, where a wearable is temporarily removed.

3. Sensor Slice Pre-training: Drops a percentage of sensor channels entirely across all time points.
This simulates "sensor off" events, for instance, to conserve battery life.



AIM is a Unified Framework for Pre-training and Evaluation. ATM provides a unified framework
that consistently handles missing data during both pre-training and evaluation. The full pre-training
procedure can be seen in Fig. 3 [A-G]. AIM does not differentiate between inherited or artificially
masked tokens, encouraging the model to understand fragmentation as an innate aspect of multimodal
sensor data. Crucially, ATM’s adaptive masking can also be leveraged during evaluation, as illustrated
in Fig. 3 [G,H]. The AIM pre-trained model is able to operate directly on incomplete multimodal
sensor data by dynamically attending only to observed segments. This eliminates the need to impute
or discard missing values, and thus ensures generalization from pre-training to downstream inference.

5 EXPERIMENTS

Here, we describe our experimental design. See Appendix A.3 for additional implementation details.

Pre-training. We pre-train ATM_FM on minutely multimodal wearable data (A € RN *T*5) where
S = 26 sensor features, 7' = 1440 minutes, and N = 1,601, 088 is the total dataset size. Each signal
modality is tokenized with a shared 1D convolution with a kernel size and stride of 10 minutes. The
tokenized output is of size 144 x 26, for 3,744 total tokens. A 2D sinusoidal positional embedding is
used to encode time and signal identity and is added to the token representations before being passed
to the ViT-1D encoder/decoder. ATM_FM has 25M parameters, 384-d hidden size, 12 encoder layers,
and 4 decoder layers. Following Section 4, we apply a composite mask (80% random, 50% temporal,
50% signal slices) and optimize mean squared error over artificially masked patch reconstruction.
Training is performed on 8x16 Google v5e TPUs with a batch size of 512 for 100K steps.

Baselines. SSL baselines are trained from scratch using the same pre-training set-up, unless otherwise

noted. They include SOTA baselines from the wearable space, as well as common self-supervised

learning methods. Crucially, all baselines use imputed data to meet their complete-input requirement.

* LSM (Narayanswamy et al., 2024a): A SOTA wearable FM leveraging a vanilla MAE framework
with a ViT-2D backbone. It trains on imputed data and relies on a fixed masking stategy and ratio.

* WBM-TST (Erturk et al., 2025): A SOTA wearable FM trained on low-frequency, multimodal
wearable sensing data with a ViT-1D backbone. It pre-trains with subject-aware contrastive learning.

e LIMU-BERT (Xu et al., 2021): An SSL method developed for wearable data. It uses an reconstruc-
tion objective that masks across all signals for given time points.

* RelCon (Xu et al., 2024): A SOTA wearable FM method for high-frequency, uni-modal data.

* SimCLR (Chen et al., 2020) / DINO (Caron et al., 2021) / MSN (Assran et al., 2022): General con-
trastive learning SSL methods with empirically-validated temporal augmentations (Liu et al., 2024).

Downstream Evaluation. We evaluate ATM_FM across three downstream targets: generative, classi-
fication, and regression. For generat ive, we assess reconstruction under structured missingness
patterns: (1) random imputation (30%, 50%, 80%), (2) temporal interpolation (contiguous masked
windows of 10, 30, or 60 minutes), (3) temporal extrapolation (masked window at the end of the
sequence), and (4) signal imputation (masking 2/26, 6/26, or 12/26 channels). Since contrastive
baselines lack reconstruction objectives, we compare against LSM (Narayanswamy et al., 2024a) in
addition to simple imputation methods used in practice—Linear Interpolation, Nearest Neighbors,
and Mean Filling—under the same union masking scheme. We omit MICE (Van Buuren & Groothuis-
Oudshoorn, 2011) as its missingness-at-random assumptions do not hold and its poor performance in
prior work (Narayanswamy et al., 2024a). For classification, we average embeddings over
non-inherited-masked tokens and apply a trainable linear probe; LSM pools across all tokens, and
contrastive methods use the CLS token. We report F;, Accuracy, Balanced Accuracy, and AUROC
on targets including hypertension, anxiety (Metabolics dataset; see Section 3), and 20-class activity
recognition (Activity dataset). For regression, we follow the same setup with a linear regression
probe and report MAE and Pearson correlation on BMI, age, and insulin resistance (Metabolics
dataset). Confidence intervals were calculated via 100 bootstrap iterations.

6 RESULTS AND DISCUSSION

Generalizability Across Generative, Classification, and Regression. ATM_FM learns a generaliz-
able representation, useful for generative, classification, and regression tasks (Tables 2, 3, 4).



Table 2: Generative Task Results

+Random Imp. $Temporal Interp. 4Temporal Extrap. +Signal Imp.
Method 30% 50% 80% ‘ 10m 30m 60m ‘ 10m 30m 60m ‘ 2 6 12
Linear Int. 0.57+.00 0.63+.00 0.79+.01{0.52+.01 0.71+.01 0.85+.01 | 0.75+.02 0.98+.02 1.17+.03 - - -
NN Flll 0.71i.00 0.77i.0ﬂ 095j: 01 065ﬂ:02 0.87i.ﬂl 1.03i.01 O.75i.“2 098i02 1.17i.ﬂ3 - - -
Mean Fill 0.92+.01 0.96+.01 0.95+.01|0.93+.02 0.93+.02 0.96+.01|1.10+.02 1.10x.02 1.094.02|1.24x.05 1.26x+.02 1.27x.02
Limu-bert - - - 1.01+.02 1.06+.02 1.06+.02|1.15+.02 1.16+.02 1.16+.02 - - -
LSM 0.15+.00 0.18+.00 0.29+.00|0.61+.01 0.69+.01 0.72+.01|0.67+.02 0.75+.01 0.78+.01 | 0.68+.04 0.56+.02 0.44+.01
OURS 0.11+.00 0.13+.00 0.22+.00/0.33+.01 0.47+.01 0.55+.00{0.45+.01 0.58+.01 0.69+.01|0.18+.01 0.21+.01 0.26+.01

Metrics: Mean Squared Error | Tasks: Random Imputation (30%, 50%, 80% missing), Temporal Interpolation/Extrapolation (10, 30, 60 missing minutes), Signal
Imputation (2, 6, or 12 out of 26 missing modalities) | Methods: Statistical (Top), Deep Learning (Bottom)

Table 3: Classification Task Results

Hypertension (2) \ Anxiety (2) \ Activity Recognition (20)

Method TR, TAace  TBAce TaUC | TR TAce  'BAce TauC | TR Tacc  TBAce TAUC

ResNet 529+ .003 .587+.003 .516+.003 .624+.004|.655+.003 .651+.003 .645+.003 .709+.003[.721+.007 .T34+.007 . 729+ .007 .965+.002
ViT-1D  .516+.003 .509+.00a .481+.003 .520+.005 |.597+.004 .586+.004 .583+.004 .620+.004 | .367+.00s .374+.008 .351+.008 .863+.004
Limu-bert .599+.003 .596+.004 .561+.003 .635+.004|.640+.003 .641+.003 .632+.003 .693+.004|.190+.006 .219+.00s .191+.006 .7354.004
WBM .582+.004 .572+.00a .542+.004 599+ 004 |.605+.003 .604+.003 597 +.003 .643+.004|.107+.005 .117+.006 .102+.005 611+ 006
RelCon  .564+.004 .565+.005 .530+.005 .590+.006 |.615+.004 .609+.004 .604+.004 .652+.005|.058+.004 .050+.000 .005+.000 5094 005
SimCLR  .524+.003 .548+.004 .501+.003 .568:+.004 | .603+.003 .601+.003 .594+.003 .636+.003|.109+.005 .124+.007 .098:+.005 .652+.005
DINO 536+.004 .504+.004 487+.00a .510+.004|.557+.003 .562+.003 .551+.003 .582+.004|.1104.005 .124+.007 .102+.005 .6354.005
MSN 5554003 .552+.00a .519+.003 5754004 |.547+.004 5514004 515+.003 .5T71+.004|.1444 006 .159+.008 .136+.006 692+ 005
LSM 676+.003 .682+.004 .640+.003 .739+.004|.678+.003 .678+.003 .670+.003 .743+.004|.4704.008 .489+.008 .470+.008 .900+.003
OURS .687+.003 .693+.004 .651+.003 .754+.004 .690+.003 .692+.004 .683+.004 . 7T58+.004(.472+.008 .493+.008 .474+.008 .899+.003

Metrics: Fq Score, Accuracy, Balanced Accuracy, AUROC with Macro One-vs-Rest | Tasks: 20-class Activity Recognition, rest are binary |
Methods: Fully Supervised Training (Top), SSL with Linear Probe (Bottom).

AIM_FM demonstrates a dramatic 35.6%
average gain across the 12 generative

Table 4: Regression Task Results

i’ Age | BMI | Insulin Resis.
tasks compared against LSM, the most N T B Py N T
. . . Method MAE Corr | *MAE Corr | *MAE Corr
closely related work, implying that training
5 4 4 ResNet  7.429+.030 .618+.004|5.067+.028 .515+.005|1.640+.018 .241+.011
Erélvl[{nputed ?ata magl?egaUWVfll%’ l?lztl:l ViT-1D  9.653+.049 .132+.006|6.061+.035 .047+.006 | 1.580+.016 .139+.009
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strategy, AIM’s ability to mix masking
strategies (such as signal/temporal slice
masking) enable strong performance on more strucutured generative tasks such as temporal
interpolation/extrapolation and signal imputation. This demonstrates that ATM has a superior capacity
to model the underlying data distribution.

Metrics: Mean Absolute Error, Pearson Correlation | Methods: Fully Supervised Training
(Top), SSL with Linear Probe (Bottom).

Crucially, these generative gains do not compromise performance on the discriminative tasks.
AIM_FM consistently matches or surpasses LSM, achieving the strongest performance on 14/18
classification+regression metrics across five highly diverse domains: cardiovascular, mental health,
motion, metabolics, and demographics. With a simple linear probe and frozen features, our model
surpasses fully supervised baselines on all tasks but activity. The 95% confidence intervals confirm
that these gains are statistically significant, showing minimal or no overlap on most metrics.

For our other baselines, WBM uses subject-aware contrastive learning and thus performs reasonably
well on subject-level tasks, but struggles on the within-subject activity task. RelCon performs poorly,
showing that wearable SSL methods designed for high-frequency signals may not readily transfer to
our setting. LIMU-BERT performs well, trailing only ATM_FM and LSM. While its reconstructive
objective allows for generative evaluation, its rigid masking strategy (masking all signals at a time
point) makes it incapable of performing random and signal imputation, and it further fails to generalize
to structured generative tasks.

Strong Scaling Performance on 40 Million Person-Hours. Fig. 4 show that ATM_FM scales more
effectively than LSM across 4 different dimensions: subjects, data, compute, and model capacity.
AIM_FM’s trend indicates a more aggressive downwards slope that has yet to saturate. These results
are promising as they indicate that our method has not yet reached its fundamental limits.
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Figure 4: Scaling Performance. Our model achieves better scaling than LSM across all dimensions:
subjects, data, compute, and model size. Our model uses a mixed masking strategy during pre-training,
but here we report only random imputation loss to match LSM.

The Harm of Imputation. Fragmentation is ubiquitous in wearable sensor data. Literature has shown
that imputation may be finicky and introduce unintended bias (Chowdhry et al., 2021; Heymans &
Twisk, 2022). Unfortunately, the practice of imputing missing data is still standard amongst SOTA
wearable foundation models (Narayanswamy et al., 2024a; Erturk et al., 2025). We demonstrate that
the standard practice of imputation is not only unnecessary, but is suboptimal. In Table 5, removing
inheritance and forcing our model to be trained and evaluated on imputed data leads to performance
degradation across all of the various tasks. Furthermore, this cannot be solved by simply using
"better" imputation methods. Literature has shown that stronger deep learning-based imputation
methods do worse when missingness is not random (Sun et al., 2023), and additional experiments in
Appendix A.4.4 show that using a more complex imputation method during pre-processing actually
degrades the performance of our imputation-dependent baselines.

Mask Mixing is an Almost Free Lunch. ATM

enables the mixing of artificial masking strate- Table 5: Ablation study.

gies by selecting between 80% random impu- Generative (MSE)  Classification (F1)

tation, 50% temporal slices, or 50% signals . .

slices for each sample. In Table 5, when mix- 80% Rand. “60m Temp. 4, oo+ Activity

ing is ablated, a fixed 80% random masking Impute Interp.

strategy is used, matching prior work (Narayan- AIM FM 0.20 0.45 0.683  0.474

m 1., 2024a). We find th latin :

Isl‘lzzslk-}sltrztteagy, mg(ing)degraeges [;jertfoeﬁnillkr)lcf fo% w/o Inherit 0.28 0.62 0.671  0.445

w/o Mixing 0.19 0.58 0.637 0.460

all tasks other than random imputation, where
performance is marginally affected.

Robustness to Targeted Missingness. To simulate real-world failure modes, we evaluate ATM_FM'’s
robustness under targeted missingness, which can be seen in Figure 5. This experiment involves
two scenarios: complete sensor removal, where all features from a specific sensor (e.g., PPG) are
dropped, and temporal window removal, where all sensor data from a contiguous block of time (e.g.,
nighttime) is removed. In these tests, AIM_FM demonstrates substantially greater resilience than the
baseline LSM model. On average, AIM_FM experiences 73% smaller performance drops and retains
15% higher absolute performance across all 12 ablation settings. We investigage the utility of mask
mixing and inheritance in improving robustness in Appendix A.4.3.

Crucially, ATM_FM’s robust behavior is medically coherent, underscoring its reliability. For instance,
hypertension and anxiety predictions show the expected nocturnal advantage, such that the removal of
nighttime signals results in larger degradation than the removal of daytime. This aligns with clinical
literature demonstrating the diagnostic value of nighttime biosignals for hypertension (Yilmaz et al.,
2023; Hansen et al., 2011) and stress prediction (Kinnunen et al., 2020; Fan et al., 2024). Additionally,
our model also demonstrates a larger drop in performance for anxiety prediction after removing
the accelerometry sensor compared to the other sensors. This aligns with research (Sevil et al., 2020;
Wau et al., 2015) that has found that accelerometry was particularly useful for stress prediction.

Limitations and Future Work. This research presents preliminary findings and should not be
interpreted as providing diagnostic tools or recommendations. Our work makes use of minutely
aggregated features, useful in modeling our long context windows, but uncommon in the broader wear-
able sensing space, which focuses primarily on raw high frequency sensor signal. This is a practical
limitation, as data is not stored in its raw form at such scale. Another limitation is the lack of validation
on public data. Most publicly available datasets are lab studies limited in their temporal context and/or
only contain a subset of sensors. For example, although WESAD (Truslow et al., 2024) contains a
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Figure 5: Robustness to Targeted Missingness. In sensor removal, all signals derived from the
specific sensor are removed. In temporal window removal, all signals are removed at a given
timeframe (Morning [8am-12pm], Afternoon [12pm-4pm], Evening [4pm-8pm], Night [§pm-8am]).
The dotted line denotes optimal performance with the model trained on all data. When evaluating
with simulated missingness, our method maintains consistent performance while LSM degrades
significantly. Where our method does show sensitivity, it aligns with domain knowledge. For
example, nighttime BP’s stronger predictive power of hypertension over daytime (Hansen et al., 2011),
accelerometry’s role in distinguishing anxiety from physiological stress responses (Sevil et al., 2020).

variety modalities, it only covers <2 hours of data per subject. Similarly, PAMAP2 (Reiss & Stricker,
2012) only utilizes motion sensors with <1 hour per subject. All of Us (Jeong et al., 2025) does have
real-world day-long sensor data, but is limited to only 2 features. To address this, we will release our
metabolic dataset with our anxiety, hypertension, insulin resistance, age, and BMI prediction tasks.

It should be noted that although our work focuses on multimodal sensor data, AIM is broadly
applicable and domain-agnostic. Even without inherent missingness, ATM can be used to efficiently
handle variable and strategy-specific artificial masking ratios, a capability that standard MAEs lack.
This allows us to tailor the difficulty of the pre-text task for each masking strategies respectively. For
instance, we apply a high ratio for simple point-wise masking, as these tokens are easily reconstructed
from local neighbors, and a lower ratio for our more structured masking, which force the model to
rely on more global context. Future work should explore the application of AIM across different
domains with variable masking ratios.

7 CONCLUSION

In this work, we introduced Adaptive and Inherited Masking, ATM, a novel self-supervised learning
approach designed to learn robust representations directly from incomplete wearable sensor data.
By jointly modeling inherited (real-world) and a mix of artificial masks, ATM eliminates the need
for explicit imputation and effectively internalizes missingness in the learned representation. Using
ATIM, we train AIM_FM, a wearable sensor foundation model pre-trained on 40 million hours of
fragmented wearable sensor data. Our experiments demonstrate that ATM_FM exhibits improved
scaling characteristics, downstream performance, and robustness to challenging missingness scenarios
when compared against state-of-the-art wearable foundaiton models. In so doing we show that missing
data imputation, a standard practice for wearable FMs, is not only uneccessary but is suboptimal, a
finding we hope will help inform time-series models to come.



8 REPRODUCIBILITY STATEMENT

We will release (1) the full metabolic study dataset (used for anxiety, hypertension, HOMA-IR, age,
sex, and BMI tasks), (2) the model weights trained on this data, and (3) a codebase with the full
training methodology, architecture, and reproducible evaluation code, upon acceptance.

This data was collected under informed consent in our IRB-approved study, and participants consented
to data sharing under the following conditions: “Identifiers will be removed from your identifiable
private information or identifiable test results collected during this study and could then be used on
its own or in combination with other data for future research studies, product development, or other
commercial purposes. This data may be distributed to the Sponsor, another Investigator, affiliates,
third parties, or research partners for future research studies without additional informed consent.”
The ability to download our data, model weights, and software will be provided for free to qualified
researchers at accredited institutions upon completion of a data use agreement.

We believe this release will provide an extremely valuable resource to the community. It will
include 5.8M person-hours of wearable sensor data (241,532 day-long instances), including all
derived features from the 5 wearable sensing modalities (i.e. PPG, Accelerometer, EDA, Altimeter,
Temperature). While our consent language does not permit us to release the pre-training dataset
of 40M hours, this approved release will expand the data available for foundation model training
by several orders of magnitude. We hope that the release of this data, our ATIM framework, large
pre-trained models, and a unified benchmarking task will greatly accelerate the development of
reproducible wearable foundation models from real-world sensor data.

9 ETHICS STATEMENT

While consumer health research holds potential for significant positive impact, with so many possible
stake holders, such research must be performed intentionally to ensure that it is safe and fair. Addition-
ally, there exists the unfortunate possibility that bad-actors may attempt to leverage methods, such as
our own, in negligent ways. As researchers in the field, the burden falls to us to consider the implica-
tions of this research, and act to fulfill the positive impacts and mitigate the associated risks. Addition-
ally, we note that we have used LLMs to help edit and polish writing within this submission to help
rewrite specific phrases and assist in framing ideas in a way that reflected the authors’ original intent.
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Al DATA DETAILS

A.l1.1 IMPUTING MISSINGNESS FOR NON ATM MODELS

Although AIM is able to organically handle existing missing values using clever masking, the same
cannot be said for our baseline methods. Furthermore, many standard deep learning frameworks (such
as pytorch, jax, and tensorflow) are unable to handle nan values in model training and evaluation,
causing value errors or propogating nans throughout the network during forward and backward passes.
For this reason we impute missing (nan) values in our data. We use linear interpolation between gaps
and then back and forward fill for missingness at the start and end of the sequence.

A.1.2 DEVICE DETAILS

There are many different types of smartwatches and fitness trackers. Fig. 6 shows the distribution of
different trackers and smartwatches present in our pretraining dataset. Given the scale of our dataset
we are able to train on examples of data from many different devices. Consequently, our model
demonstrates robustness across diverse device types, handling their varying sensor technologies and
differing inherent missingness patterns.
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Figure 6: Device Distribution. The count of each fitness tracker present in our pre-training dataset.

A.1.3 SENSOR DERIVED MINUTELY FEATURES

Our wearable devices utilize 5 different sensors: Photoplethysmography, Accelerometer, Skin
Conductance (electrodermal activity or EDA), Temperature, and Altitude. Each of these sensors
collects raw waveform signals at 100 Hz, 25 Hz, 200 Hz, 6 Hz, amd 10 Hz respectively, but we
do not use the signals at this high resolution because (1) due to practical reasons (i.e. prohibitive
storage costs and battery drain), data is not stored in this raw form at our scale, and (2) it is
computationally impractical to learn models on raw waveforms across an entire day (i.e. 200 Hz
for 1 day is 7" = 17million time-points, per instance). As such, various features are curated from
the raw waveforms as minutely aggregrated features and saved to be used as inputs into our model.
Each of these features are grounded in the domain literature, based on prior work that has shown their
clinical effectiveness. For example, heart rate variability metrics like RMSSD (DeGiorgio et al., 2010)
or Shannon Entropy of RR intervals (Afdala et al., 2017) have well-established prognostic value
for cardiovascular health, while accelerometry features like jerk ratio (Pan et al., 2020) effectively
characterize movement quality.

Each of the derived features, as well as their base sensor origin, can be found in Table 6 below. For
the targeted sensor removal experiments, as well as any other descriptions of the sensor as a whole,
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we refer to the sensor as all features derived from the sensor. For example, when removing the PPG
sensor in the targetted missingness experiment, we remove all PPG-derived features, from Heart Rate
to Shannon Entropy RR Differences.

Table 6: Sensor Feature Definitions and the Sensor they are Derived From.

Feature Unit Definition
Photoplethysmography
Heart Rate  Beats/Min Mean of instantaneous heart rate.
Heart Rate at Rest ~ Beats/Min Mean of heart rate at rest.
RR Percent Valid % % of 5-minute window with valid RR intervals.
RR 80°" Percentile ~ Msec 80" percentile of 5-minute window of RR ints.
RR 20%" Percentile ~ Msec 20" percentile of RR ints.
RR Median  Msec Median RR interval.
RMSSD  Msec Root mean squared st. dev. of RR ints.
SDNN  Msec Standard deviation of RR intervals.
Shannon Ent. RR  Nats Shannon entropy of the RR intervals.
Shannon Ent. RR Diffs  Nats Shannon entropy of the RR interval differences.
Accelerometer
Step Count  Steps Number of steps.
Jerk Autocorrelation Ratio  a.u. Ratio of lag=1 autocorrelation to energy in 1st 3-axis
principal component.
Log Energy a.u. Log of sum of 3-axis root mean squared magnitude.
Covariance Condition  a.u. Estimate of condition number for the 3-axis covariance.
Log Energy Ratio  a.u. Log of ratio of sum of energy in 1st 3-axis principal
component over energy of 3-axis root mean squared
magnitude.
Zero Crossing St.Dev.  Seconds Standard deviation of time between zero crossing of 1st
3-axis principal component.
Zero Crossing Average  Seconds Mean of time between zero crossing of 1st 3-axis princi-
pal component.
Axis Mean a.u. Mean of 3-axis
Kurtosis  a.u. Kurtosis of 3-axis root mean squared magnitude.
Sleep Coefficient  a.u. Sum of 3-axis max-min range with 16 log-scaled bins.
Skin Conductance
Skin Conductance Value  pSiemens Center of linear tonic SCL value fit.
Skin Conductance Slope  ©S/Min Intraminute slope of SCL values.
Lead Contact Counts  Counts Number of times sensor leads contacted the wrist in a
minute.
Skin Temperature
Skin Temperature Value ° C Mean value of skin temperature.
Skin Temperature Slope  ° C/Min Slope of skin temperature.
Altimeter

Altitude St.Dev. Norm  Hectopascals  Standard deviation of altimeter readings.

A.14 DEMOGRAPHIC BREAKDOWN

A statistical breakdown of our datasets, by demographic features can be found in Table 7. A subset of
these, age and BMI, represent two of the regression tasks used to validate our method.

A.1.5 DISCRIMINATIVE TASK LABEL BREAKDOWN
Table 8 shows label and data breakdown of the discriminative tasks used to validate our method.

These tasks include 20-class activity recognition (Table 8(a)) from the activity dataset, and binary
anxiety and hypertension classification (Table 8(b.i)) from the metabolic dataset.

A.1.6  ACQUISITION AND APPROVAL

The data used for training in our analysis was curated from a large corpus of historical wearable
data collected with consent from partcipants for these data to be used in research. Specifically, the
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Table 7: Demographics of our Various Datasets.

Pre-training Downstream Activity Downstream Metabolic
Category Train (%) Val (%) Train (%) Val (%) Train (%) Val (%)
Sex
Male 37,352 (68.1) 3,657 (63.8) 27,653 (73.1) 6,092 (73.0) 551 (44.1) 258 (35.4)
Female 23,041 (38.1) 2,065 (36.0) 10,145 (26.8) 2,248 (26.9) 670 (53.6) 455 (62.4)
Not Specified 48 (0.1) 10 (0.2) 24(0.1) 3(0.1) 0(0) 0 (0)
Age
18-39 28,519 (47.2) 2,583 (45.1) 19,340 (51.1) 4,492(53.8) 415(33.2) 223(30.6)
40-59 24,888 (41.2) 2,433 (42.4) 15,309 (40.5) 3,172(38.0) 637 (51.0) 384 (52.7)
60-79 6,473 (10.7) 664 (11.6) 2,875 (7.6) 618 (7.4) 198 (15.8) 121 (16.6)
>80 364 (0.6) 39 (0.7) 120 (0.3) 31(0.4) 0 (0) 1(0.1)
Not Specified 197 (0.3) 178 (0.5) 30 (0.4) 0 (0) 0 (0) 0 (0)
BMI
Healthy (<25) 22,425 (37.1) 2,173 (37.9) 15,942 (42.2) 3,685(44.2) 319 (25.5) 188(25.8)
Overweight (25-30) 20,242 (33.5) 1,952 (34.1) 14,154 (37.4) 3,017 (36.2) 343 (27.4) 206 (28.6)
Obese (>30) 14,799 (24.5) 1,330 (23.2) 6,131 (16.2) 1,316(15.8)  481(38.5) 274 (37.6)
Not Specified 230 (0.4) 14 (0.2) 81 (0.2) 18 (0.2) 49 (3.9) 28 (3.8)
Total 60,440 (100) 5,732 (100) 37,822 (100) 8,343 (100) 1,250 (100) 729 (100)

Table 8: Discriminative Task Dataset Distribution

(a) Activity Recognition Dataset

(b.i) Metabolic Dataset Classification Tasks

Task / Label Train (%) Test (%) Task / Label Train (%) Test (%)
Activity Anxiety
& Walk 4,434 (6.0) 874 (5.8) Positive 55,030 (36.4) 34,749 (38.5)
& Bike 4,363 (59) 858 (56) Negative 96,316 (636) 55,437 (615)
» Sport 4,433 (6.0) 902 (5.9) Hypertension
& Run 4,023 (5.4) 790 (5.2) Positive 36,349 (24.0) 23,353 (25.9)
% Aerobics 4,417 (6.0) 906 (6.0) Negative 114,997 (76.0) 66,833 (74.1)
fif Elliptical 4,402 (5.9) 879 (5.8) Total 151,346 (100) 90,186 (100)
¥ Spinning 4,402 (5.9) 858 (5.6)
® Weightlifting 4,335 (5.9) 841 (5.5)
2 Swim 4,280 (5.7) 867 (5.8)
% Hike 4,062 (5.5) 841 (5.5)
s Tennis 4,138 (5.6) 815 (5.4)
& CrossFit 4,305 (5.8) 887 (5.8)
>: Pilates 4,365 (5.9) 846 (5.6)
£ Stairclimber 4,272 (5.8) 834 (5.5)
x Dancing 4,288 (5.8) 826 (5.4)
& Indoor climbing 3,520 (4.8) 853 (5.6)
X Golf 3,003 (4.1) 710 (4.7)
¥ Skiing 1,594 (2.1) 420 (2.8)
x Snowboarding 662 (0.9) 167 (1.1)
4 Kayaking 732 (1.0) 212 (1.4)
Total 74,030 (100) 15,186 (100)
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consent language described use of the data for developing new health features and algorithms and
being included in publications:

REDACTED will collect and use your data to research and develop new health and wellness products
and services for you and others. This data includes your: Health and wellness data, such as steps,
heart rate, and sleep data. Your data may also be used to generate findings that could be included in
publications (such as scientific journals) to contribute to general knowledge about health and science.
For example, activity, heart rate, and sleep data contributed to published findings that Fitbit devices
could help detect flu outbreaks. None of the data used for these purposes will include your name,
email, or other information that directly identifies you.

The use of data for pretraining in this manner was approved as exempt under 45 CFR § 46.104(d)(4)
"because the research involves the use of identifiable private information/biospecimens; and infor-
mation, which may include information about biospecimens, is recorded by the investigator in such
a manner that the identity of the human subjects cannot readily be ascertained directly or through
identifiers linked to the subjects, the investigator does not contact the subjects, and the investigator
will not re-identify subjects."”

The Metabolic downstream dataset for anxiety and hypertension prediction came from an IRB
approved study (protocol number removed for anonymization). The core objective of this study
as described in the IRB protocol was to: "Evaluate the feasibility of using the data provided by
wrist-worn wearable devices to develop algorithms and scores to assess metabolic health."”

In the consent for the observational study, participants were informed that data on up to 7,500
participants in the United States would be collected. We used a mobile study platform that allows
participants to enroll, check eligibility and provide full informed consent. The same mobile application
enables the collection of Fitbit data using Fitbit devices or Pixel watches and allows participants
to complete questionnaires. The participants reported their anxiety, depression and hypertension
diagnoses through this app. Data was de-identified and stored in accordance with the approved IRB
protocol. The participants were compensated with a free set of lab tests from Quest Diagnostics for
participating in the study.

A2 MISSINGNESS VISUALIZATIONS

A core property of these data is that they are fragmented, and the missingness has several modal
types. Three very common modes occur: 1) When the device is being charged or off all sensor
stop recording data (device off), 2) when the device is in certain operation modes (e.g., when in
sleep mode) certain signals stop being recorded (sensor off) and 3) when there is noise in the sensor
data spurious values (e.g., values that are not physiologically possible - HR=0) are filtered out. The
following sections demonstrate additional visualizations of the missingness patterns present from
these mechanisms.

A.2.1 ADDITIONAL EXAMPLES OF DATA WITH EXISTING MISSINGNESS

In order to demonstrate the ubiquity and broad range of missingness patterns found within the data, we
randomly sample an additional 8 data examples, shown in Fig. 7. These examples further demonstrate
how some patterns are consistent across users, such as increased missingness during early morning
hours (12am-6am) (reflecting device removal during sleep) or correlated missingness dropout across
various sensor channels. However, it should be noted that all samples exhibit unique missingness
signatures with no two patterns being identical with vastly differing missingness percentages (27-
63%) and demonstrating the ubiquity of real-world missingness. These findings motivated our
development of AIM’s flexible masking approach, which explicitly models such heterogeneous
missingness patterns during pre-training.

A.2.2 PREVALENCE AND LENGTH OF MISSINGNESS

In Fig. 8, we demonstrate the prevalence of missingness as well as the length of the missingness,
broken down across each sensor type across all 1.6 million instances of pre-training data. As
we can see, each sensor has very different patterns of missingness, and across all sensors, their
missingness presents as long extended gaps, making them non-trivial to reconstruct over. Notably, the
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A.3 MODEL HYPERPARAMETER AND IMPLEMENTATION DETAILS

A.3.1 PRE-TRAINING SET-UP.

We pre-train our models on a large set of wearable minutely sensor data described. The raw
multimodal sensor data input can be denoted by A € R”*%, S = 26, which is the full number
of signals in our multimodal data. These signals are derived from 4 different wearable sensors:
Accelerometry, PPG, EDA, and Temperature. In our setting, we set 7' = 1440, which is composed
of all minutes from a full 24 hour day, from midnight to midnight local time. We use this window
size as days normally have a consistent structure, allowing for a more meaningful absolute positional
embedding than if an arbitrary window size was set (e.g. 300 minutes (Narayanswamy et al., 2024a)).

Our model was pre-trained with a ViT-1D (Dosovitskiy et al., 2020; Abbaspourazad et al., 2023)
encoder backbone by using a 1D patch size of 10 time-steps (i.e. 10 minutes). This results in a total of
3744 tokens (the 1440 minutes are reduced to 144 tokens per signal. With 26 signals, 26%*144=3744
is the final number of tokens). Similar to prior work (Na et al., 2024), each signal channel is patched
with a shared kernel, and we utilize a 2D positional embedding to encode information about the
temporal position and signal channel. The ViT model had 25 million parameters with an encoding
dimensionality of 384, 12 encoder layers, and 4 decoder layers. Our mask is a union of the inherited
mask with an artificial masking mix of 80% random imputation, 50% temporal slices, and 50% signal
slices. Our primary pre-training objective is to optimize the signal reconstruction loss (i.e. mean
squared error), averaged over the artificially masked patches. The model was pre-trained on 8x16
Google v5e TPUs with a total batch size of 512 across 100,000 training steps. The training process
uses the AdamW optimizer with a base learning rate of 5e — 3, weight decay set to 1e — 4, and betas
set to 0.9 and 0.95. Gradients were clipped at 1.0. A linear warm-up schedule is applied for the first
5% of total steps, followed by a cosine learning rate decay to zero.

Our SSL baselines include LSM (Narayanswamy et al., 2024a), SimCLR (Chen et al., 2020), DINO
(Caron et al., 2021), and a Masked Siamese Network (MSN) (Assran et al., 2022). LSM is an MAE
(He et al., 2022b) approach with 0.8 random masking ratio with no inherited masking. SimCLR,
DINO, and MSN are augmentation-based contrastive approaches, and we utilize a set of common
time-series augmentations (Tang et al., 2020; Liu et al., 2024; Zhang et al., 2022; Rommel et al.,
2022): jittering, scaling, and time flipping. Each augmentation has a 0.5 probability of being applied.
Jittering was implemented as a random sample from a gaussian distribution with zero-mean and a
uniformly randomly sampled standard deviation frp, O to 0.5, per value in the time-series. Scaling
was implemented by multiplying all of the data input with a scale, uniformly sampled from 1.1 to 1.5.
For DINO, we omit scaling as the model was unable to converge.

Each of these baselines were all pre-trained from scratch, following the same previously stated
training conditions, unless stated otherwise. All baselines expect full, complete data as input, and as
such, they utilize the imputed version of our sensor dataset. LSM was trained with a ViT-2D with a
2D patch size of (10,2), in order to match their image-based encoding approach, and all other ViT
parameters remain constant.

A.3.2 DOWNSTREAM EVALUATION

We group our downstream evaluation into three sections based on the target: generative, classification,
and regression.

In our Generative Evaluation, we evaluate how well our model is able to reconstruct different
types of structured missingness patterns that mimic real-world missingness patterns: (1) Random
Imputation, where a [30%, 50%, 80%] of tokens is masked out, (2) Temporal Interpolation, where all
signals in a contiguous temporal window of length [10, 30, 60 minutes] is completely masked out,
(3) Temporal Extrapolation, which is similar to interpolation, but the window is necessary at the end
of the time-series, and (4) Signal Imputation, where all time points for a random set of [2/26, 6/26,
12/26] signal channels is masked. Reconstruction performance was calculated with mean squared
error (MSE) on the artificially masked tokens, averaging only over the data points that have a ground
truth.

Our deep learning baselines include the LSM model (Narayanswamy et al., 2024a), another MAE-
based model, which can be used to evaluate these generative tasks out-of-box by setting the artificial
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masking procedure to match the proposed tasks. Our AIM model is done in the same way, but the
full encoder mask includes the inherited mask as well. Unfortunately, the contrastive SSL baselines
are unable to provide generative performance metrics because they do not utilize a reconstruction
objective. Instead, we use alternative simple generative baselines, which match practical applications.
Many application-focused biosensor algorithms will employ simple imputation methods (Pires et al.,
2020; Xu et al., 2022; Srimedha et al., 2022; Wu et al., 2020; Amiri & Jensen, 2016) as quick
data preprocessing methods. Thus, we choose to include these additional methods as baselines:
Linear Interpolation, K-Nearest Neigbhors, and Mean Filling. Similar to our method, we run these
baselines with a union mask of the mask inherited from existing missingness and the artificial mask.
MICE (Van Buuren & Groothuis-Oudshoorn, 2011) is another popular, simple baseline designed for
multivariate data, but we opted to not include it due to our existing missingness patterns violating
the Missingness At Random assumption, and prior work demonstrate a relative poorer performance
compared to nearest neighbor and linear interpolation (Narayanswamy et al., 2024a).

In our Classification Evaluation, we evaluate how well our model’s embedding representation is
able to capture discriminative features. During evaluation, our model calculates the embedding on
all non-inherited-masked tokens and uses an average pooling followed by a trainable linear probe
to classify each of the prediction targets. For the LSM model, because it is unable to represent the
inherited mask, the embedding for all tokens is pooled, such that tokens that were part of the existing
missingness but have been filled with imputation will be included. For the contrastive methods, the
learned CLS token is used as the pooled representation. We report performance with F1 score as it
balances precision and recall for class-imbalanced targets, Accuracy as a straightforward measure
of overall correctness, Balanced Accuracy to account for potential class imbalance, and AUROC to
evaluate the model’s ranking capability across all classification thresholds. The prediction targets are
hypertension, anxiety, which originate from the Metabolics dataset and 20-class activity recognition,
which originates from the Activity dataset.

The linear probe was trained by freezing the learned ViT backbone, averaging over the entire
embedding and training a logistic regression head ontop of it. For our 2TM model specifically, with
the inherited mask, the average was only done over the non-masked tokens. Training was done with a
batch size of 512, across 500 training steps with an AdamW optimizer with a base learning rate of
5e — 3, weight decay set to 1e — 4, and betas set to 0.9 and 0.95. Gradients were clipped at 1.0. For
activity specifically, training steps and learning rate were increased to 1000 and le — 1 to achieve
better convergence.

Additionally, we include two extra supervised baselines, ViT-1D (Dosovitskiy et al., 2020) and a
ResNet (He et al., 2016), that are trained end-to-end for each of our tasks. ViT-1D is a transformer-
based architecture that follows the same architecture as our AIM with 25 million parameters, but with
randomly initialized weights, trained end-to-end. ResNet is a strong CNN-based architecture that has
seen broad success throughout the health biosignal time-series domain (Xu et al., 2024; Pillai et al.,
2025; Abbaspourazad et al., 2023; Mekruksavanich et al., 2022). This model was a ResNet-50 (He
et al., 2016) with 25 million parameters, in order to match the ViT model. Specifically, it contains 50
layers, with 64 filters that double after each residual block, with a final average pooling and logistic
regression head. Both models are trained with a batch size of 512, across 500 training steps with an
AdamW optimizer with a base learning rate of e — 3, weight decay set to 1le — 4, and betas set to
0.9 and 0.95. Gradients were clipped at 1.0. A linear warm-up schedule is applied for the first 5% of
total steps, followed by a cosine learning rate decay to zero. Because these models do not handle
missingness, they were trained directly on the imputed data.

In our Regression Evaluation, we utilize the same evaluation procedure described in classification,
only instead the linear probe is specifically a linear regression. We report performance with MAE as it
provides an interpretable deviation from the correct value, as well as Pearson Correlation Coeffecient,
as it is a common metric for evaluating how well a regressor is able to capture the trend of the target
(Xu et al., 2024; Yuan et al., 2024). The prediction targets are BMI and Age.

The linear probe was trained by freezing the learned ViT backbone, averaging over the entire embed-
ding and fit a linear regression head ontop of it using Scikit-Learn’s LinearRegression implementation
out-of-box. The supervised baselines were trained in an identical way as done in the classification
evaluation, but using a linear regression head instead of logistic regression.
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A4 ADDITIONAL RESULTS

A.4.1 CONFUSION MATRICES

Fig. 9 illustrates the utility of ATM learned embeddings for downstream applications. Specifically,
this confusion matrix shows the performance of ATM, post-trained on the 20-class activity recognition
task using a linear probe. It is clear that the embedding are useful in discriminating between a
large number of activities, even those which may be semantically clustered, such as skiing and
snowboarding. Future work may explore how to expand to even more activities and behavioral events,
and investigate the utility of large-scale pre-training in address long-tail task labels.

Walk (873) 4% 4% 4% 2% 2% 2% 3% 2% 10% 1% 1% 4% 1% 2% 3% 1% 0% 0% 2%
@ (@7 (@5 (19 @) (18 (4) (4 (6 (5 (0 (G2 (12 (19 2 @O @ @ 07
Bike (858) 2% 2% 2% 2% 2% 2% 2% 2% 1% 1% 2% 1% 1% 3% 1% 1% 1% 4%
(28) @) (14 (13 (15 (18) (18) (18) (20) (5 () (17) (10) (6) @) (@ (N @ G
Sport (900) 4% 3% 8% 1% 1% 1% 2% 3% 10% 3% 1% 1% 2% 4% 6% 0% 2% 2%
por @7 (@) (6) (75 () (9 (10 (17) (4) ©93) (6 @) O (17) (35) (50) (4) (16) (1)
Run (790) 3% 2% 2% 3% 1% 2% 2% 3% 1% 2% 1% 1% 4% 3% 1% 0% 0% 2%
u @) (16) (18) @5 @ (15 (13) @) (10 (19 © @0 ©G3 @2 @ @ O )
Aerobics (905) 4% 3% 15% 6% 28% 2% 1% 1% 3% 2% 5% 3% 4% 1% 15% 2% 1% 0% 0% 1%
erodics (40) (30) (134) (56) (251) (17) (1) (1) (30) (19) (45) (30) (38) (8 (134) (2 (9 (4 (@ (3)
Elliptical (878) 6% 3% 2% 6% 3% 3% 10% 6% 4% 3% 1% 3% 5% 9% 4% 2% 0% 0% 1% 3%
ptica @9) @) (4 (49 (22) (274) (88) (52) (4) (25 (6) (220 (45 (@) @) (17 3 () (6 (30)
Spinning (857) 3% 2% 1% 2% 0% 6% 4% 2% 2% 1% 3% 5% 12% 2% 3% 1% 0% 2%
pInning (22 (15 (® (00 @) (8 (38) (14) (15 (7) (26) (41) (104) (16) (29 (6) @ 19
. . 3% 1% 1% 3% 0% 1% 4% 1% 2% 1% 10% 8% 8% 2% 12% 1% 1% 2%
Weightifting 841 o) 12) (8 (@8 @ (1) @) . (12 (16 (0) (83 (0 (5 (7 (104 () ® (4
Swim (866) 3% 2% 1% 3% 2% 3% 1% 2% 3% 1% 3% 2% 0% 0% 0% 10%
_ wim (26) (20) (9 (26) (0) (26) (8) 7 @ @ @ @y O @ O @)
3 Hike 840)| 7% 4% 1% 5% 1% 4% 1% 1% 2% 2% 3% 1% 2% 1% 1% 3%
© 61 @5 (10) (44 (9 (@30) (12) ® (13 (16 (26 (10) (15) (6) (8) (26)
(0] Tennis (814) 2% 1% 8% 1% 4% 1% 1% 3% 1% 1% 6% 5% 2% 0% 0% 3%
E (20) (10) (65 (1) (33) (5) (5) (28) (8) @ @47 @7 @15 @ 3) (24
= CrossFit (884) 1% 3% 3% 6% 1% 2% 2% 15% 2% 2% 2% 28% 8% 5% 4%  12% 1% 1% 3%
! (6) (23) (24) (83) (10) (16) (19) (130) (18) (14) (21) (248) (71) (42) (32) (107) (7) (13)  (30)
Pilates (845) 3% 1% 0% 1% 2% 1% 5% 3% 1% 3% 2% 4% B 3% 7% 4% 1% 0% 0% 2%
ates @ @ G (© (8 (@ (@8 @4 ) @5 4 @3) (O 9 6N G @ @) @ @)
Stairclimber (834) 3% 2% 1% 5% 1% 8% 12% 12% 2% 2% 1% 6% 9% 21% 6% 5% 1% 0% 2% 2%
@3) (18) (8 (45 (1) (67 (102) (104) (14) (14 (5) (47) (77) (172) (47) (43) (&) () (15) (15
Dancing (825) 3% 1% 2% 7% 9% 2% 1% 2% 2% 1% 3% 3% 9% 2%
ancing (26) (120 (18) (88) (77) (16) (120 (16) (16) (12) (28) (28) (78) (15)
S 3% 5% 3% 2% 1% 1% 4% 9% 1% 2% 1% 5% 6% 4%
Indoor climbing 853): 22) (a¢) (25 (15 (0) (6) (1) (76 (12 (14 (10) (46) (48) (30)
Golf (708) 2% 1% 9% 2% 0% 1% 1% 2% 2% 5% 4% 2% 1% 1%
© (14 9 62 (16) () (&) (@ (6 (15 (32) (@8) (13) (&) @
" 1% 1% 1% 0% 0% 1% 1% 1% 0%
Skiing (420)1 (3 @ @ m @ @ ® ®
. 1% 1% 1% 3% 1% 1% 1%
Snowboarding (167) OO ) ® a OO
. 2% 5% 4% 3% 2% 3% 0% 4% 2% 1% 4% 1%
Kayaking @12 'y . ® @ B © O ® @ @ ® @
x 2 3 = § = 3. @ 3 2 2 2 o s 2 3 =3 2 2
2 8§ g 8 g £ &8 2 3 8 g 2 32z 318 3 ¢ g § &
= T e ¥ g 5§ 3 5 & T 2 7 o2 & B 3I T 2 3§ @
3 2 & & 8 & 5 8 F g &
R 3 ® E a &
e e = [
o a
o
«
Predicted

Figure 9: Activity Recognition Confusion Matrix. The results of a linear probe applied to ATM for
the 20-class activity recognition task. Rows add up to 100%.

A.4.2 RECONSTRUCTION EXAMPLES

Fig. 10 shows various reconstruction examples for a specific sensor signal. Here we can clearly see
Our ATM approach leads to much stronger performance, across different generative tasks.
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Figure 10: Reconstruction Examples for 2/26 Sensor Signal Imputation (Row 1), 3 Hour
Temporal Interpolation (Row 2), 3 Hour Temporal Extrapolation (Row 3). Red highlighted
regions demonstrate regions of artificial masking. Orange shows original data with imputation (i.e.
the first 400-500 steps of the each row were originally missing, then imputed, as demonstrated by the
straight line) and blue shows the reconstructed data.

A.4.3 DISENTANGLING ROBUSTNESS

To disentangle the benefits of inheritance versus our masking mix, we conducted a new ablation study.
We fully pre-trained and evaluated two ablated models:

* InheritOnly: Uses inherited masking, but with only a simple 80% random artificial mask.

* MixOnly: Uses our diverse mix of artificial masks (80% random, 50% temporal, and 50%

signal-slice), but no inherited masking.

The results of this robustness evaluation, with 95% CIs from 100 bootstrap iterations, are shown
in Table 9. "No rm" denotes baseline performance, while subsequent rows show performance after
targeted data removal.

Table 9: Ablation with Robustness Experiment

Hypertension ‘ Anxiety ‘ Activity

Method InheritOnly MixOnly ‘ InheritOnly MixOnly ‘ InheritOnly MixOnly

No rm 0.637 £0.003  0.644 £ 0.003 | 0.663 +0.003  0.671 +0.003 | 0.460 +0.008  0.445 £ 0.007
rmACC 0.6224+0.003 0.614 £0.004 | 0.598 £0.004 0.603 4= 0.004 | 0.230 £ 0.006 0.243 £ 0.006
rmPPG 0.601 +0.003 0.609 £0.003 | 0.662+0.003 0.661 4 0.003 | 0.477 +£0.009 0.393 £ 0.008
rmEDA 0.638 = 0.003  0.645 £0.003 | 0.661 £0.003 0.670 40.003 | 0.478 +0.008  0.445 £ 0.008
rmTEMP 0.633 £0.003 0.644 £0.003 | 0.662+0.003 0.667 4 0.003 | 0.455 4+ 0.009 0.427 £ 0.008
rmNight 0.6154+0.003 0.621 £0.004 | 0.641 £0.003 0.63540.003 | 0.453 +0.009  0.403 £ 0.008
rmMorning 0.635+0.003 0.643 £0.004 | 0.661 £0.003 0.669 & 0.003 | 0.404 +0.008 0.381 £ 0.007
rmAfternoon  0.634 +0.003  0.643 +0.004 | 0.664 +0.003 0.671 £0.003 | 0.416 £0.008 0.388 4 0.007
rmEvening 0.633 £0.003 0.639 £0.003 | 0.662+0.004 0.670+0.003 | 0.396 +0.008 0.371 £ 0.008

Metrics: F; Score

The results reveal a clear and informative trade-off. InheritOnly is significantly more robust for
Activity recognition, maintaining higher performance across most removal scenarios. The one
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exception is a large performance drop when accelerometry data is removed (rmACC). This is an
expected and desirable outcome, as it confirms the model correctly learns to depend on this key
modality. Conversely, MixOnly more consistently outperforms InheritOnly on the Hypertension and
Anxiety prediction tasks, achieving higher baseline scores and retaining its advantage after most
removals.

We hypothesize that this phenomena occurs due to the differences in local versus global temporal
information. In our day-long time-series, activity recognition needs to isolate local temporal in-
formation, and thus, inheritance is useful for helping the model identify specific local missingness
structures that are more systematically related to the activity and the behavior of the device (e.g.,
motion artifacts). Hypertension and anxiety are global, subject-level states that require synthesizing
information over a full day. For this, our masking mix is more beneficial, as its temporal and signal-
slice strategies explicitly train the model to reconstruct long-range context,handling the loss of entire
modalities and incorporating data that is not specific to any one activity; this is probably more useful
for forming global representations.

A.4.4 STRONGER IMPUTATION MAY INSTEAD HURT PERFORMANCE

Prior works have found that stronger imputation methods may introduce unintended bias [1, 2], a
plausible reason as to why simple imputation remains the standard approach (Goyal et al., 2019;
Erturk et al., 2025). To test this, we re-train + re-evaluate all baselines with quadratic interpolated
data and compare it against mean imputed data. Evaluations cover 5 classifcation and regression
tasks derived from our metabolic study dataset.

Table 10: Downstream Performance after Re-training and Re-evaluating with Quadratic In-
terpolation. Numbers indicate the performance after re-train and re-evaluating. The amount of
degradation, compared to the results with mean imputation are shown in the (). If this was a perfor-
mance loss, then it is marked with an underline.

Hypertension (2) | Anxiety (2) | Age (R) | BMI (R) | InslinResis. (R)
Method Ry TAce TBAcc tauc | 'R TAce TBAcc TAUC | ‘MAE TCor | +MAE fCor | +MAE *Corr
ResNet 0.49(—0.04) 0.58(—0.01) 0.49(—0.0 (—0.01)]0.63(—0.03) 0.64(—0.01) 0.63(—0.02) 0.70(=0.01)| 7.58(0.15) 0.60(=0.02)| 5.19(0.12) 0.49(—0.02)|1.59(—0.05)  0.24(0
( 0.00)"|70.59(0)  0.58(—0.01) 0.57(—0.01) 0.61(—0.01)| 9.75(0.09) 0.08(—0.05)|5. 0.09) 0.04(—0.01)| 1.62(0.03) 0.07(—0.07

ViT-1D 0.42(—0.10) ~ 0.51(0)  0.42(—0.01

LIMU-BERT
BSD

RelCon

SimCLR

Dino

MSN

LSM

Ours (No Impute)

01)]0.63(—0.01) 0.64(—0.01) 0.63(—0.01) 0.69(—0.01)
2) | 0.63(0.03)  0.64(0.03) 0.63(0.03) 0.68(0.04) |8.561 05
)| 0.61(0) 0.61(0) 0.60(0) 0. 9.03(0.11
0.60 %) 0.60(0.05) 0.60(0.09) 0.64(0.07) [9.12(—0.09) 0.35(
0.58(0.08 0.61(0.10) 19.40(—0.29) 0.
.57(0.02)  0.57(0.02 . 0.60(0.02) | 9.58(0.1¢
.. ))[0.61(—0.07) 0.61(—0.07) 0.60 1) 0.65(—0.09)] 9.13(2.72
0.75 0.69 0.69 0.68 0.76 6.49

3)| 1.61(0.01) 0.2

0.69 0.67 155 0.32

The results indicate that more complex imputation was largely detrimental. 6/9 baselines had
performance degradation on at least 10/12 metrics across the tasks. SimCLR and WBM, showed
mixed improvements with performance still degraded on the Hypertension and HOMA-IR tasks,
respectively. Crucially, no baseline was able to achieve better performance than our model, which
does not require imputation. We conclude that poor baseline performance cannot be primarily
attributed to naive imputation strategies.

A5 ADDITIONAL DISCUSSIONS

A.5.1 THE UTILITY OF DAY-LEVEL FEATURES

Traditionally, generalist methods for time-series health signals have focused on small windowed
segments of data on the order of seconds or sub-seconds (Abbaspourazad et al., 2023; Xu et al., 2024;
Narayanswamy et al., 2024b; Yuan et al., 2024). Such methods allow for fine-grain activity and
physiological tracking. An adjacent body of work has explored the utility of longer observations,
on the order of hours (Spathis et al., 2021; Narayanswamy et al., 2024a), enabling more complex
person-level insights. In this work seek to expand the observation window to encode a high-level
of context. Day level features allow models to learn relationships not possible from shorter spans,
for example, how a person’s activity during the day may affect their night-time resting heart rate.
Looking forward, we intend to continue exploring how best to encode large context windows to
include known week, seasonal, and year level periodicities.
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A5.2 PERSON-LEVEL VERSUS EVENT-LEVEL PERFORMANCE

Analysis of the discriminative results (classification and regression) presented in the main body
of the paper, raise an interesting question: how do generative pre-training affect performance on
person-level and event-level tasks. For person-level tasks (hypertension, anxiety, age, BMI) we find
that ATM consistently outperforms supervised baselines while only using a simple linear probe. In
contrast, we find for the event-level task (20-class activity recognition), ResNet50, a supervised
baseline performs extremely well, and likely a fully-finetuned ATM model is needed to surpass it.
This suggest that while supervised methods easily capture event-level features (e.g., sudden heart
rate changes due to activity), they struggle to learn slow-changing, near-constant day-level features
more-relevant to person-level tasks. This highlights how method, like are own, learn a more complex
representation of the data via generative pre-training. We further concede that our contrastive SSL
baselines fail to fully realize the gains of pre-training. We hypothesizes that more complex time-series
augmentations are needed to leverage their effect.

A53 LIMITATIONS AND FUTURE WORK

Here we expand upon the limitations and future work introduced in the main body of the paper.

Generalizing to New Devices. Though many commodity wearables host a similar suite of sensors
there are inevitable differences between these software-hardware systems. We acknowledge that our
methods focuses on a small subset of such devices. Future work will explore the generalizability of
our methods to additional devices and datasets, and investigate the extent to which device specific
missingness patterns result in a distribution shift.

Generalizing to Open Data. Most publicly available wearable datasets (e.g. WESAD (Schmidt
et al., 2018), PAMAP2 (Bleser et al., 2015)) are composed of high-frequency raw signals that are
very limited in their temporal context with only a subset of the sensors we have available. Thus, they
are unable to shown to be used in our setting of day-level context. All of Us (Jeong et al., 2025)
demonstrates an interesting avenue to apply our work. Although limited to only the Heart Rate and
Step Count channels (compared to our 26 channels), the dataset contains with long context windows
and minutely data, and presents an interesting direction in future work to apply our ATM method.

Data and Feature Scales. Time-series analysis often requires explicit assumptions regarding data
scale. As such, our method focuses on day-long samples. We acknowledge that such data disregards
known periodicities (e.g., weekly, seasonal, etc.). Future work will explore combining our fine-
grained behavioral and physiological modeling with insights from longer windows. Furthermore, our
method utilizes minutely aggregated features as opposed to the raw sensor feeds common in sensing
research. This is a practical limitation, as data is not stored in its raw form at this scale.

Handling Sensor Feature. Our method utilizes 26 features derived from a set of 5 sensors, and
regards each feature as independent in the modeling. In reality there are significant correlations
between features from the same sensor (e.g., heart rate and heart rate variability). More work can be
done to explore how best to combine these multimodal features — potentially sensor-specific encoders,
cross-attention, or special class tokens per-sensor feed.

A.5.4 BROADER IMPACT

Personal and ubiquitous health technologies, including smart phones and wearables, have the potential
to scale to billions of individuals. Such devices allow for significant self- and longitudinal tracking,
and in so doing may augment the current paradigm of clinical healthcare. To-date, consumer health
technologies focus on low-level insights, such as steps, resting heart-rate, and sleep staging, which
allow users to reason on personal higher-level insights (e.g., "my resting heart-rate has been elevated
ever since I fell sick").

In contrast, our method, trained on day-level samples, learns behavioral and physiological patterns
useful in deriving more complex insights. For example, our method shows the potential to predict
anxiety and hypertension, insights that humans and commercial algorithms would struggle to derive
given only sensor data. We believe this line of work will one day enable people to make the most of
their tracked wearable data, better understand their behavior and physiology, and in so doing receive
more proactive and better informed care.
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