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Abstract

In crowdsourcing scenarios, we can obtain multi-
ple noisy labels from different crowd workers on
the Internet for each instance and then infer its
unknown true label via a label integration method.
However, noisy labels often have a serious negative
impact on label integration. In this case, most ex-
isting works always focus on designing more com-
plex label integration methods to infer unknown
true labels more accurately from multiple noisy
labels, but little attention has been paid to another
perspective, i.e., purifying noisy labels before label
integration. In this paper, we aim to purify noisy
labels for existing label integration methods and
propose a label consistency-based worker filtering
(LCWF) algorithm. In LCWF, we consider that if
all low-quality workers are filtered out and only
high-quality workers remain, the label consistency
should be high. Therefore, we utilize label con-
sistency to filter out low-quality workers. Firstly,
we directly transform the worker filtering problem
into a discrete optimization problem and utilize
label consistency to define the fitness function for
this problem. Then, we search for the optimal so-
lution to this problem by a genetic algorithm. Fi-
nally, we filter out all labels from low-quality work-
ers according to the optimal solution we obtained.
Experimental results on simulated and real-world
datasets demonstrate that LCWF can effectively
purify noisy labels and improve the integration
accuracy of existing label integration methods.

1 INTRODUCTION

Supervised learning has been proven to be incredibly pow-
erful in various fields due to its ability to learn from labeled
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data [Jiang et al., 2019a, Zhang et al., 2023a]. In supervised
learning, a large amount of high-quality labeled data is an es-
sential requisite for effective model learning [Wang and Wu,
2021, Chen et al., 2022b]. Traditionally, labeling tasks are
primarily performed by experts in the field or well-trained
workers. The labels obtained by this way show high quality,
but result in high economic and time costs [Li et al., 2016,
Xu et al., 2021, Zhu et al., 2023].

Fortunately, the advent of crowdsourcing has provided a
cost-effective and convenient way for extensive label collec-
tion [Liang et al., 2022, Zhang, 2022]. Through crowdsourc-
ing platforms [Buhrmester et al., 2011] such as Crowdflower,
Click-worker and Amazon Mechanical Turk (AMT), we can
post crowdsourcing tasks and then obtain a large number
of labels from hired crowd workers at a low cost [Chen
et al., 2022a, Tong et al., 2020]. However, due to the lack of
experience, well-training, etc., the quality of labels obtained
from an individual crowd worker on the Internet is usually
poor [Rodrigues and Pereira, 2018, Chen et al., 2020]. To
address this problem, repeated labeling is proposed [Sheng
et al., 2008], in which multiple noisy labels are provided
by different crowd workers for each instance and then its
unknown true label can be inferred via a label integration
method [Ma et al., 2015].

In the past few years, although many works have proved the
effectiveness of label integration, the integration accuracy
of existing label integration methods is still far from perfect.
This is primarily due to the serious negative impact from
noisy labels. In this case, lots of efforts have been made
by researchers on designing more complex label integra-
tion methods to infer unknown true labels more accurately.
These label integration methods include: majority voting
(MV) [Sheng et al., 2008], Dawid-Skene (DS) [Dawid and
Skene, 1979], ZenCrowd (ZC) [Demartini et al., 2012], gen-
erative model of labels, abilities, and difficulties (GLAD)
Whitehill et al. [2009], ground truth inference using cluster-
ing (GTIC) [Zhang et al., 2016], iterative weighted majority
voting (IWMV) [Li and Yu, 2014], label similarity-based
weighted soft majority voting (LSWSMV) [Tao et al., 2020],



differential evolution-based weighted soft majority voting
(DEWSMV) [Tao et al., 2021], multiple noisy label dis-
tribution propagation (MNLDP) [Jiang et al., 2022], label
augmented and weighted majority voting (LAWMV) [Chen
et al., 2022c], attribute augmentation-based label integration
(AALI) [Zhang et al., 2023b], instance redistribution-based
label integration (IRLI) [Zhang et al., 2024], etc.

As mentioned above, most existing works always focus on
designing more complex label integration methods to infer
unknown true labels more accurately from multiple noisy la-
bels, but little attention has been paid to another perspective,
i.e., purifying noisy labels before label integration. In theory,
noisy labels are usually from low-quality workers. If we are
able to filter out all low-quality workers, we can purify most
of the noisy labels and subsequently reduce their negative
impact on label integration. Therefore, in this paper, we aim
to purify noisy labels by worker filtering to improve the
performance of existing label integration methods.

To this end, we propose a label consistency-based worker
filtering (LCWF) algorithm. In LCWF, we consider that
if all low-quality workers are filtered out and only high-
quality workers remain, the label consistency should be
high. Therefore, we utilize label consistency to filter out low-
quality workers. Firstly, we directly transform the worker
filtering problem into a discrete optimization problem and
utilize label consistency to define the fitness function for
this problem. Then, we search for the optimal solution to
this problem by a genetic algorithm. Finally, we filter out
all labels from low-quality workers according to the optimal
solution we obtained. In general, the contributions of this
work can be summarized as follows:

1. We propose to purify noisy labels before label inte-
gration to infer unknown true labels more accurately.
Different from most existing works focusing on de-
signing more complex label integration methods with
better performance, we aim to purify noisy labels for
existing label integration methods, which provides a
new perspective for improving the performance of label
integration.

2. We propose a label consistency-based worker filtering
(LCWF) algorithm to purify noisy labels for existing
label integration methods. In LCWF, we transform the
worker filtering problem into a discrete optimization
problem and utilize label consistency to define the fit-
ness function. Then, a genetic algorithm is used to
search for the optimal solution to this problem.

3. We conduct extensive experiments to evaluate the pro-
posed LCWF on real-world and simulated datasets.
The experimental results show that LCWF can effec-
tively purify noisy labels and improve the integration
accuracy of existing label integration methods.

The rest of this paper is organized as follows. Section 2 de-
scribes the work related to this paper. Section 3 introduces

the proposed LCWF in detail. Section 4 reports the exper-
iments and results on real-world and simulated datasets.
Section 5 summarizes this paper and outlines the research
directions of future work.

2 RELATED WORK

To infer unknown true labels from multiple noisy labels in
crowdsourcing, label integration has attracted a great deal
of attention from researchers. A variety of label integration
methods have been proposed for better performance [Sheng
and Zhang, 2019].

MV [Sheng et al., 2008] is the simplest label integration
method, which regards the label with the highest votes as
the integrated label directly. However, MV ignores the dif-
ference in the label quality of crowd workers, so its per-
formance is very limited. After MV, more complex label
integration methods have been proposed one after another
for better performance. Specifically, DS [Dawid and Skene,
1979] jointly estimates the confusion matrix of each worker
and the integrated label of each instance by the EM algo-
rithm [Singh, 2006]. ZC [Demartini et al., 2012] uses a
two-element parameter to iteratively estimate the reliabil-
ity of each worker. GLAD [Whitehill et al., 2009] builds a
probability model to infer the integrated labels, the labeling
difficulty of instances and the professional level of crowd
workers. GTIC [Zhang et al., 2016] uses the K-means algo-
rithm to cluster all instances into distinct clusters and then
assigns the same class label to instances within the same
cluster. IWMV [Li and Yu, 2014] first uses original inte-
grated labels obtained by MV to estimate the label quality
of each worker, and then iteratively updates both the label
quality and the integrated label.

In recent years, more label integration methods have been
proposed from various novel perspectives, and they have
further improved the performance of label integration. For
example, DEWSMV [Tao et al., 2021] defines three ob-
jective functions to optimize the label quality of workers
when labeling different instances by a differential evolution
(DE) algorithm. Jiang et al. [2022] propose MNLDP, which
first converts multiple noisy labels to multiple noisy label
distributions and then optimizes the weights of the nearest
neighbors. Finally, each instance obtains a portion of multi-
ple noisy label distributions from its nearest neighbors while
retaining a portion of its own. Chen et al. [2022c] propose
LAWMV, which finds neighbors by the KNN algorithm to
augment each instance’s multiple noisy labels and obtains
the integrated labels by weighted majority voting. Zhang
et al. [2023b] propose AALI, which designs an attribute aug-
mentation method to enrich the original attribute space and
builds multiple component classifiers on reliable instances
to predict the integrated labels.

Although label integration is often effective, a certain level



of noise still remains in the integrated labels. To our knowl-
edge, since Li et al. [2016] propose to employ noise filters to
filter the noise in integrated labels, plentiful works has been
developed on noise handling after label integration. Noise
handling consists of two steps: noise filtering and noise cor-
rection. Representative works on noise filtering include: CF
[Gamberger et al., 1999], MVF [Brodley and Friedl, 1999],
IPF [Khoshgoftaar and Rebours, 2007], etc. Representative
works on noise correction include: PL [Nicholson et al.,
2016], STC [Nicholson et al., 2016], CTNC [Dong et al.,
2022], DVNC [Ji et al., 2023], etc.

However, the goal of these works is to purify the noise that
is still present in the integrated labels after label integra-
tion, and the work aiming to purify the noise in the crowd
labels before label integration is still limited. As we have
analyzed, filtering low-quality workers can be an effective
way to purify noisy labels. There exists a few works focus
on worker filtering in crowdsourcing. For example, Raykar
and Yu [2012] define the worker who assigns labels ran-
domly for each instance as a spammer, and then propose an
empirical Bayesian algorithm called SpEM to iteratively fil-
ter out the spammers. However, low-quality workers are not
just likely to provide random labels. Therefore, this method
cannot identify all low-quality workers. In addition, Dekel
and Shamir [2009] evaluate the quality of each worker and
filter out the low-quality ones with a very simple algorithm.
But they only focus on the setting of a single noisy label per
instance and binary classification problems. Therefore, in
this paper, we aim to purify noisy labels for existing label
integration methods and propose a label consistency-based
worker filtering (LCWF) algorithm. Different from above
works on worker filtering, LCWF considers low-quality
workers without specific assumptions on their labeling strat-
egy and is applicable to multi-class classification problems.
We will describe LCWF in detail in Section 3.

3 LABEL CONSISTENCY-BASED
WORKER FILTERING

3.1 MOTIVATION

In crowdsourcing scenarios, a crowdsourced dataset is usu-
ally denoted by a set D = {(xi,Li)}Ni=1, where N denotes
the number of all instances in D, xi denotes the i-th in-
stance and Li = {lir}Rr=1 denotes a multiple noisy label set
associated with xi. In Li, lir denotes the label of xi from
the worker ur (r = 1, 2, . . . , R) and takes the value from
a fixed set {c1, c2, . . . , cQ,−1}, where R and Q denote the
number of all workers and all classes, respectively. When
lir takes as -1, it denotes that ur does not label xi. To infer
the unknown true label yi for the instance xi, label integra-
tion is usually used to obtain an integrated label ŷi from Li,
which is expected to be as consistent as possible with yi.

Table 1: Multiple noisy labels of five instances.

u1 u2 u3 u4 u5

x1 c1 c1 c1 c2 c1
x2 c1 c1 c2 c3 c2
x3 c1 c1 c1 c1 c3
x4 c1 c2 c1 c1 c3
x5 c1 c1 c1 c1 c2

Table 2: Multiple noisy labels after filtering out a
low-quality worker u5.

u1 u2 u3 u4

x1 c1 c1 c1 c2
x2 c1 c1 c2 c3
x3 c1 c1 c1 c1
x4 c1 c2 c1 c1
x5 c1 c1 c1 c1

Table 3: Multiple noisy labels after filtering out a
high-quality worker u1.

u2 u3 u4 u5

x1 c1 c1 c2 c1
x2 c1 c2 c3 c2
x3 c1 c1 c1 c3
x4 c2 c1 c1 c3
x5 c1 c1 c1 c2

As mentioned above, in this paper, we aim to purify noisy
labels before label integration to improve the performance of
existing label integration methods. As noisy labels usually
from low-quality workers, we consider to purify noisy labels
by filtering out low-quality workers. So the key problem we
have to solve is how to identify the low-quality workers.

For this purpose, we first anticipate the status when only
high-quality workers remain and then attempt to achieve
this status. Specifically, since it is easier to reach a consen-
sus among high-quality workers, it is natural to note that
if all low quality workers are filtered out and only high-
quality workers remain, the label consistency should be
high. In other words, the multiple noisy labels of each in-
stance should be highly consistent. Let us illustrate this with
a concrete example. Assume that there exists five instances
{xi}5i=1 from a multi-class dataset, and the true label of
these instances is c1. Five different workers {ur}5r=1 have
labeled them, which are shown in Table 1, where we use
red to mark the correct labels and blue to mark the incor-
rect labels. It is obvious that the worker u5 is more likely
to be a low-quality worker since most of the labels from
u5 are incorrect. And other workers are more likely to be
high-quality workers since most of their labels are correct. If
the low-quality worker u5 is filtered out, the multiple noisy
labels become more consistent, as shown in Table 2. On
the contrary, if a high-quality worker u1 is filtered out, the
multiple noisy labels become less consistent, as shown in



Table 3. Therefore, we can conclude that if higher label con-
sistency is obtained after worker filtering, the workers who
are filtered out are more likely to be low-quality workers.

It should be noted that, this conclusion is based on the
assumption that there are more correct labels than incorrect
labels. In fact, for a valuable crowdsourcing dataset, the
proportion of correct labels really should be larger than
the proportion of incorrect labels, and only based on this
MV and most label integration methods can be performed
effectively [Sheng et al., 2008, Karger et al., 2014]. So
in this general crowdsourcing scenarios we focus on, the
conclusion above can be made. Inspired by this conclusion,
we attempt to identify low-quality workers by maximizing
the label consistency after worker filtering. At this point,
we have transformed the worker filtering problem into a
discrete optimization problem with the goal of maximizing
the label consistency after worker filtering.

In the past years, how to solve discrete optimization prob-
lems has already been widely studied, and various corre-
sponding algorithms have been proposed, among which ge-
netic algorithm (GA) [Holland, 1992] is a well-known one.
Due to its powerful characteristics, GA has been applied suc-
cessfully to a variety of discrete optimization problems, and
various variants of GA have been proposed by researchers,
which can broadly be classified into five main categories:
real and binary coded [Shukla et al., 2019], multi-objective
[Emmerich and Deutz, 2018], parallel [Harada and Alba,
2021], chaotic [Wang and Sobey, 2020], and hybrid GAs
[El-Mihoub et al., 2006]. Although these variants of GA
can deal with different scenarios well, them are relatively
complex to be applied to solve the problem of this paper. In
this paper, we just carry on the standard GA to identify and
then filter out low-quality workers.

3.2 THE PROPOSED LCWF

How to perform GA to identify the low-quality workers is
the core problem we need to solve in this section. Generally
speaking, although the details of different implementations
of GA is various, they commonly share the same structure
as follows: The algorithm operates by iteratively updating a
pool of hypotheses, called the population. On each iteration,
each member within the population is evaluated according
to a fitness function and improved by three evolutionary
operators: selection, crossover, and mutation. We follow the
general structure of GA and adapt it to identify low-quality
workers as follows:

Initialization: Firstly, we initialize a pool of hypotheses
to form an initial population. We represent a hypothesis
by a binary bit string, which corresponds to a solution for
worker filtering. Specifically, for the k-th hypothesis hk in
the population P = {hk}Kk=1, where K denotes the popula-
tion size, we represent hk as {hk1, hk2, . . . , hkr, . . . , hkR},

where hkr ∈ {0, 1}. If hkr is 0, it means that the r-th worker
ur is identified as a low-quality worker. We randomly gen-
erate K hypotheses to P . In this way, we obtain the initial
population P for the following evolutionary operators.

Selection: The selection operator is often used to select a
certain proportion of hypotheses from the current population
to the next generation or to produce offspring as parents.
The probability of a hypothesis being selected is closely
related to its fitness. Specifically, the hypothesis with higher
fitness is more likely to be selected. In LCWF, we apply
the roulette wheel selection as the selection operator. The
probability of the hypothesis hk being selected is calculated
as follows:

Pr(hk) = f(hk)/

K∑
k=1

f(hk), (1)

where f is a fitness function that assigns a fitness for a
given hypothesis. According to the probability calculated by
Eq.(1), in each generation, we select (1− s) ∗K members
of P to the next generation directly, where s is the fraction
of the population to be replaced by crossover.

Crossover: Crossover is a crucial operator for the produc-
tion of offspring in GA. In the crossover operator, the bit
at each position r in each offspring is from the bit at the
position r in one of the two parents. In LCWF, for each
pair of parents, we produce two offspring by applying the
uniform crossover operator. Firstly, for each position r, we
randomly decide whether we need to swap the bit at the po-
sition r in parents. Then, after all bits have been determined,
we copy the parents directly to the offspring. According to
the probability calculated by Eq. (1), in each generation, we
select s ∗K/2 pairs of hypotheses from the population P
to produce offspring by the crossover operator, and then we
add these offspring to the next generation.

Mutation: The mutation operator is a useful approach to
maintain the diversity of the population and escape from the
local optimum. In each generation, we randomly select m
percent of hpotheses to mutate. Specifically, we invert one
randomly selected bit in their representation. That is, if the
randomly selected bit is 1, we invert it to 0, Otherwise 1.

Now, the only left problem is how to design the fitness
function, which is critical to LCWF. In the previous subsec-
tion, we have analyzed that the goal of GA is to maximize
the label consistency after worker filtering. Thus, our fit-
ness function should satisfy the following principle: For the
hypothesis hk and its corresponding dataset Dk, which is
constructed by filtering out some workers according to hk,
if hk can lead to high label consistency of Dk, it should be
given a high fitness, otherwise a low fitness. To satisfy this
principle, for the r-th remained worker ur in the dataset Dk,
we calculate LCr to measure the label consistency of ur

with other remained workers as follows:



LCr =
1

|Dkr|

|Dkr|∑
i=1

Rk∑
r′=1

lir′ ̸=−1

(I(lir = lir′)− I(lir ̸= lir′)),

(2)
where Dkr is a dataset only containing all instances that
have been labeled by ur in Dk. Rk is the number of all
workers in Dk. I(·) is an indicator function that outputs 1 if
the condition in the parentheses is true and 0 otherwise.

As we can see, the more consistent labels with other re-
mained workers, the higher the LCr. At the same time, the
fewer inconsistent labels with other remained workers, the
lower the LCr. So the higher LCr indicates a higher level
of label consistency of the remained worker ur with other
remained workers. What’s more, the positive and negative
values of LCr are also indicative. When LCr is positive,
it indicates that the labels from the remained worker ur

are generally consistent with those from other remained
workers. Thus, the existence of worker ur has improved the
label consistency of Dk. So, it is more likely that the worker
ur should indeed be remained. On the contrary, if LCr is
negative, it indicates that the existence of the worker ur has
damaged the label consistency of Dk. So, it is more likely
that the worker ur should actually be filtered out.

If all remained workers have a high level of label consistency
with other remained workers, the fitness of this hypothesis
should be high. So, for the hypothesis hk, we sum up the
label consistency of each remained worker with other re-
mained workers to calculate its fitness as follows:

f(hk) =

Rk∑
r=1

LCr. (3)

It should be noted that, the fitness f(hk) calculated by Eq.
(3) may be negative, which is not hoped in the definition of
the fitness function. So we restrict the minimum value of the
fitness to 0. That is, when the calculated fitness is less than
0, we directly set it to 0. What’s more, there may exist some
hypotheses that cause certain instances to have no labels
after worker filtering. Since not all label integration methods
can handle this situation, we also directly set the fitness of
these hypotheses to 0.

Now, GA can be performed to identify the low-quality work-
ers who should be filtered out. Furthermore, to guarantee
the global convergence of LCWF, we have also adopted the
widely used elitism strategy [Ahn and Ramakrishna, 2003]
based on the standard GA. According to the elitism strat-
egy, the best hypothesis in the current population will be
copied directly into the next generation to replace the worst
hypothesis, without any evolutionary operation.

Finally, when the number of generations reaches the max-
imum number of generations T , we can obtain an optimal

Algorithm 1 LCWF (D, f , K,T , s, m)

Input: D: A crowdsourced dataset.
f : A fitness function.
K,T, s,m: The predefined parameters.

1: Initialize: Randomly generate K hypotheses to P .
2: Evaluate: For each hk in P , compute f(hk) by Eq. (3).

3: for t = 1 to T do
4: Create a new generation P t:
5: Select: Select (1 − s) ∗K members of P to P t ac-

cording to the Eq. (1).
6: Crossover: Select s ∗K/2 pairs of hypotheses from

P according to the Eq. (1). For each pair of hypothe-
ses, produce two offspring and add them to P t.

7: Mutate: Randomly select m percent of hypotheses
from P t to mutate.

8: Update: Find the best hypothesis hb from P to re-
place the worst hypothesis hw from P t. Then replace
P with P t.

9: Evaluate: For each hk in P , compute f(hk) by Eq.
(3).

10: end for
11: Find the best hypothesis hb from P .
12: Filter out labels from D according to hb to obtain D̂.
13: Return D̂.

solution to the worker filtering problem. According to this
optimal solution, we filter out all labels of low-quality work-
ers from D to obtain D̂, which can be fed into existing
label integration methods for better performance. The whole
learning process of LCWF is described in Algorithm 1.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTS SETUP

In this section, we evaluate the effectiveness of LCWF on
improving the integration accuracy of existing label inte-
gration methods. We use the integration accuracy as the
evaluation metric. Here, the integration accuracy is the pro-
portion of integrated labels that are consistent with true
labels. In our experiments, we use six state-of-the-art la-
bel integration methods: MV [Sheng et al., 2008], GTIC
[Zhang et al., 2016], DEWSMV [Tao et al., 2021], MNLDP
[Jiang et al., 2022], LAWMV [Chen et al., 2022c] and AALI
[Zhang et al., 2023b]. We implement these label integration
methods on the crowd environment and its knowledge anal-
ysis (CEKA) [Zhang et al., 2015] platform and keep the
parameters of them consistent with the original papers. We
also implement LCWF on the CEKA platform and set the
four parameters K,T, s,m to 80, 50, 0.5, 0.05, respectively.
We repeat each experiment in this section 10 times indepen-
dently, and report the averages as the final results.



Table 4: Integration accuracy (%) comparisons on the uniform distribution.

MV GTIC DEWSMV MNLDP LAWMV AALI
Dataset before after before after before after before after before after before after
anneal 88.57 92.22 • 55.79 74.25 • 88.36 92.05 • 91.92 94.52 • 82.24 87.37 • 90.04 93.64 •
audiology 78.81 84.51 • 76.64 79.73 78.98 84.56 • 76.73 83.45 • 78.14 84.87 • 80.84 83.27 •
autos 92.78 93.66 87.12 85.76 92.05 93.80 89.37 89.61 92.49 94.20 • 92.63 93.51
balance-scale 82.66 88.96 • 82.72 89.26 • 82.59 88.78 • 88.37 92.93 90.51 91.26 83.42 90.48
biodeg 77.39 80.78 • 77.39 82.32 • 77.21 81.08 • 83.08 86.53 • 89.54 90.65 • 81.35 84.85 •
breast-cancer 72.24 73.78 • 72.24 76.19 • 72.06 74.06 72.41 73.29 • 73.01 73.01 73.71 77.24 •
breast-w 76.92 79.11 76.92 80.80 • 76.77 79.37 89.81 91.97 95.65 95.74 78.11 86.71 •
car 80.08 87.82 • 77.32 88.33 • 80.02 87.64 • 82.69 88.44 • 78.39 86.20 • 81.35 88.52 •
credit-a 72.49 74.41 72.49 74.10 72.23 74.59 75.42 76.03 81.29 81.23 75.52 78.01
credit-g 75.28 79.77 • 75.28 82.23 • 75.22 79.92 • 73.46 76.95 • 76.99 78.62 • 76.28 82.75 •
heart-c 74.06 74.59 41.22 42.97 • 73.86 75.08 76.77 77.82 79.37 79.57 74.16 75.54
heart-h 77.28 81.63 • 46.16 49.25 • 76.94 80.95 • 80.27 83.64 • 85.07 86.46 • 77.35 81.29 •
heart-statlog 80.74 84.81 80.74 85.63 • 80.41 84.44 82.11 84.11 84.19 84.89 • 84.30 89.11
hepatitis 68.32 72.00 68.32 65.81 68.32 73.16 75.29 78.13 76.52 76.97 58.84 69.87
horse-colic 69.35 71.74 69.35 71.03 68.97 71.52 72.17 74.86 81.74 82.69 68.13 70.71
hypothyroid 85.32 90.78 • 67.29 81.18 • 85.19 90.73 • 94.11 96.13 • 92.29 92.29 • 85.54 90.63 •
ionosphere 71.48 72.91 • 71.48 71.68 71.51 72.88 78.38 76.72 ◦ 72.17 70.97 70.83 71.51
diabetes 81.98 86.25 81.98 87.64 81.61 85.72 81.32 85.18 81.61 82.76 83.41 88.91
iris 81.80 84.80 81.33 83.87 81.93 84.07 95.93 97.47 97.93 98.8 89.07 90.40
kr-vs-kp 65.89 65.98 65.89 66.17 65.68 65.82 75.09 73.74 ◦ 77.13 75.94 ◦ 69.95 69.52
labor 67.02 70.70 • 67.02 68.07 67.02 70.88 • 80.18 78.42 ◦ 79.47 78.95 ◦ 74.74 74.21 ◦
letter 97.34 96.23 97.56 96.99 97.34 96.78 98.54 99.67 98.45 99.89 98.56 99.45
lymph 76.22 85.54 • 75.81 86.42 • 75.74 85.27 • 81.15 89.80 • 84.86 90.27 • 77.30 87.23 •
mushroom 75.30 77.92 • 76.20 78.40 • 75.80 78.30 • 91.19 91.88 • 91.80 92.30 • 70.20 74.10 •
segment 94.62 92.23 ◦ 94.58 92.18 ◦ 94.55 92.14 ◦ 98.71 98.48 ◦ 96.23 97.35 96.01 94.96 ◦
sick 70.49 73.04 • 70.49 71.51 • 70.16 72.73 • 81.96 83.99 • 91.77 91.77 71.87 75.17 •
sonar 68.08 71.49 • 68.08 71.35 • 68.22 71.01 • 76.88 81.59 • 76.88 78.75 • 68.94 73.08 •
spambase 72.44 75.35 • 72.44 75.66 • 72.11 75.20 • 77.66 79.74 • 80.02 80.74 • 75.46 79.12 •
tic-tac-toe 73.36 76.97 • 73.36 77.84 • 73.15 76.52 • 71.24 72.21 77.97 78.95 74.81 78.90 •
vehicle 92.15 92.96 92.14 92.73 92.13 92.98 92.55 92.71 90.30 93.10 93.43 94.16
vote 77.70 82.55 • 77.70 83.17 • 77.56 82.39 • 87.31 91.10 • 91.52 92.85 78.00 83.98 •
vowel 97.36 95.36 ◦ 97.49 95.34 ◦ 97.35 95.31 ◦ 99.94 99.79 97.93 97.08 ◦ 98.52 96.63 ◦
waveform 90.04 93.02 • 90.03 92.99 89.79 93.05 • 94.6 95.72 97.82 98.25 92.31 95.23
zoo 86.83 87.43 • 89.90 88.81 87.13 87.03 93.56 95.15 93.56 96.24 89.80 92.48
Average 79.12 82.10 75.60 79.11 79.06 82.05 84.12 86.23 85.73 87.09 80.43 83.98
W/T/L - 20/12/2 - 18/14/2 - 17/15/2 - 14/16/4 - 13/18/3 - 16/15/3

4.2 EXPERIMENTS ON SIMULATED DATA

We conduct our experiments on the whole 34 simulated
crowdsourced datasets published on the CEKA platform1.
Since some datasets have missing values and the competitor
MNLDP [Jiang et al., 2022] used in our experiments cannot
handle missing values, we use the mean of numeric features
or the mode of nominal features from the available data to
replace all missing feature values. After that, we simulate
crowd workers to provide labels for instances. We first hide
the true labels of all instances and then set the probability p
for each worker to provide labels consistent with the hidden
true labels. In our simulated experiments, we set the number
of workers to 9, and randomly generate each worker’s label
quality from a uniform distribution in the interval [0.3, 0.9].

1https://ceka.sourceforge.net

Table 4 shows the detailed integration accurcy comparison
results of six label integration methods on 34 simulated
crowdsourced datasets before and after worker filtering by
LCWF. We also conduct corrected paired two-tailed t-tests
[Nadeau and Bengio, 2003, Jiang et al., 2019b] at 95 percent
significance level to compare the integration accuracy before
and after worker filtering. The symbols • and ◦ in the ta-
ble denote statistically improvement or degradation over its
competitor, respectively. The average integration accuracy
and the Win/Tie/Lose (W/T/L) values are summarized at the
bottom of the table. We can see a significant improvement
in the integration accuracy of these six methods on most of
simulated datasets. Specifically, before worker filtering, the
average integration accuracies of MV, GTIC, DEWSMV,
MNLDP, LAWMV and AALI are 79.12%, 75.60%, 79.06%,
84.12%, 85.73% and 80.43%, respectively. After worker
filtering, the integration accuracies of them are improved



Table 5: Integration accuracy (%) comparisons on the Gaussian distribution.

MV GTIC DEWSMV MNLDP LAWMV AALI
Dataset before after before after before after before after before after before after
anneal 89.30 91.15 • 53.75 63.50 • 89.16 91.33 • 92.15 93.88 • 82.97 87.09 • 90.7 92.05 •
audiology 81.15 85.75 • 76.15 80.13 81.02 84.60 • 78.72 83.67 • 80.13 84.91 • 82.12 84.38
autos 92.05 92.49 85.56 86.98 91.8 92.00 88.63 88.54 91.61 93.56 91.37 93.07
balance-scale 83.6 87.89 • 83.73 88.13 • 83.39 87.81 • 88.75 92.43 • 90.34 90.67 84.75 90.88 •
biodeg 72.42 75.19 • 72.42 76.75 • 72.23 75.03 • 78.26 81.18 • 85.57 86.68 74.88 78.91 •
breast-cancer 68.88 74.16 • 67.48 74.62 • 68.74 74.06 • 70.59 74.51 • 75.03 76.64 72.73 77.24 •
breast-w 74.64 79.18 74.64 82.35 74.38 79.77 89.04 92.93 95.67 95.77 74.68 87.95
car 78.45 87.40 • 74.69 87.10 • 78.32 87.41 • 82.24 88.58 • 76.97 86.67 • 79.57 88.41 •
credit-a 70.83 75.10 • 70.83 74.30 • 70.59 75.09 • 75.28 77.32 • 82.17 82.64 • 72.43 77.03 •
credit-g 70.74 72.15 70.74 72.83 70.4 72.01 70.8 71.15 72.8 73.17 72.77 75.09 •
heart-c 70.1 75.05 • 36.67 39.57 • 70.00 75.25 • 73.86 78.61 • 81.49 83.66 • 70.13 76.20 •
heart-h 75.58 78.78 40.41 46.43 • 75.37 78.57 79.29 82.99 83.47 85.85 75.65 79.86 •
heart-statlog 73.44 76.74 • 73.44 77.04 • 73.37 76.89 • 76.15 78.63 79.85 80.37 77.67 81.33 •
hepatitis 72.39 75.23 71.16 73.74 72.65 74.71 78.58 78.9 83.03 79.81 68.9 71.29
horse-colic 71.33 73.56 71.33 72.66 71.09 73.29 75.24 75.49 84.59 80.87 68.59 70.6
hypothyroid 83.21 87.49 • 64.12 77.21 • 83.21 87.51 • 92.9 95.29 • 92.29 92.30 • 83.50 87.69 •
ionosphere 79.06 82.22 • 79.06 81.57 78.58 82.22 • 86.89 88.09 80.60 81.79 81.57 82.79
diabetes 67.62 70.7 67.62 72.34 67.55 70.22 71.00 72.72 73.2 74.18 70.39 74.73
iris 87.6 91.13 86.93 90.87 87.6 91.4 98.13 98.6 98.27 99.00 93.27 96.6
kr-vs-kp 76.37 78.59 76.37 78.8 76.11 78.33 85.21 84.85 ◦ 87.07 85.64 ◦ 80.07 81.79
labor 72.81 74.21 72.81 71.93 ◦ 72.63 73.51 78.95 82.81 • 83.16 86.32 • 76.49 77.19
letter 97.78 96.9 97.89 96.83 97.82 96.98 98.56 99.78 • 98.56 99.65 • 98.12 99.53 •
lymph 79.05 86.22 • 80.14 86.01 • 79.39 86.22 • 83.65 88.85 • 85.41 90.20 • 80.68 86.55 •
mushroom 75.79 77.98 • 75.79 78.07 • 75.49 77.88 • 91.28 91.71 • 92.4 92.73 • 69.5 73.90 •
segment 96.58 95.34 ◦ 96.52 95.41 ◦ 96.6 95.55 ◦ 99.05 98.92 ◦ 96.75 97.60 97.83 97.47 ◦
sick 77.57 80.16 • 77.57 80.33 • 77.31 79.92 89.37 90.79 • 93.85 93.85 • 79.12 81.03 •
sonar 70.38 74.57 • 70.38 74.18 • 70.19 74.76 • 77.74 81.59 • 77.69 81.20 • 73.08 75.82 •
spambase 70.23 73.74 • 70.23 74.81 • 69.94 73.61 • 76.98 80.80 • 82.06 82.76 71.91 78.28 •
tic-tac-toe 74.75 78.86 • 74.75 80.11 • 74.58 78.76 • 71.57 72.16 80.76 82.53 76.02 81.46
vehicle 89.54 90.92 89.63 90.78 89.14 90.78 91.97 91.77 88.58 91.65 90.93 91.87
vote 70.94 75.38 • 70.94 75.63 • 70.87 74.28 • 80.23 82.48 83.52 83.77 • 72.14 75.45
vowel 96.57 92.92 ◦ 96.68 93.02 ◦ 96.48 92.8 ◦ 99.92 99.54 ◦ 96.54 96.04 ◦ 97.96 94.34 ◦
waveform 86.06 90.35 • 86.01 90.38 85.83 90.29 • 93.08 94.69 96.96 97.35 90.03 92.82
zoo 86.93 87.72 • 88.42 89.7 87.13 88.42 92.28 94.16 93.66 95.25 90.79 92.18
Average 78.93 81.92 74.85 78.65 78.79 81.80 84.01 86.13 86.09 87.42 80.30 83.70
W/T/L - 20/12/2 - 17/15/2 - 18/14/2 - 16/15/3 - 13/19/2 - 17/14/3

to 82.10%, 79.11%, 82.05%, 86.23%, 87.09% and 83.98%,
respectively.These results powerfully demonstrate the effec-
tiveness of LCWF on improving integration accuracy.

Besides, to verify the effectiveness of LCWF for different la-
beling quality distributions, we conduct another experiment,
in which we randomly generate the labeling quality from
a Gaussian distribution with N(0.6, 0.32). Table 5 shows
the detailed experimental results of this experiment. Be-
fore worker filtering, the average integration accuracies of
MV, GTIC, DEWSMV, MNLDP, LAWMV and AALI are
78.93%, 74.85%, 78.79%, 84.01%, 86.09% and 80.30%, re-
spectively. After worker filtering, the integration accuracies
of them are improved to 81.92%, 78.65%, 81.80%, 86.13%,
87.42% and 83.70%, respectively. Thus, we can draw to the
conclusion that whether the simulated labeling quality of

crowd worker belongs to a uniform or Gaussian distribu-
tion, LCWF can notably improve the integration accuracy
of existing label integration methods.

Finally, to more directly demonstrate the effectiveness of
LCWF, we also conduct the experiments on the crowd la-
bel quality before and after worker filtering using LCWF
both on the uniform and Gaussian distribution. Here, the
crowd label quality is the proportion of crowd labels that are
consistent with true labels in the dataset. Table 6 shows the
detailed results of these experiments. After worker filtering,
the average crowd label quality can be improved from 59.58
% to 66.16% on the uniform distribution and the average
crowd label quality can be improved from 59.47% to 66.02%
on the Gaussian distribution. All these experimental results
powerfully demonstrate the effectiveness of LCWF again.



Table 6: Crowd label quality (%) comparisons on the
uniform distribution and Gaussian distribution.

uniform Gaussian
Dataset before after before after
anneal 59.29 71.21 61.14 70.66
audiology 53.8 67.12 56.21 66.81
autos 60.39 72.32 59.29 72.7
balance-scale 61.03 69.57 62.00 68.8
biodeg 61.51 65.17 59.32 61.91
breast-cancer 59.11 62.00 58.17 61.94
breast-w 61.8 64.24 60.29 64.98
car 58.63 68.66 57.33 69.75
credit-a 60.54 63.09 58.65 63.03
credit-g 60.86 65.24 58.75 60.91
heart-c 60.68 62.42 58.22 62.13
heart-h 61.90 66.18 61.33 64.06
heart-statlog 62.65 68.11 59.99 63.5
hepatitis 57.38 61.13 60.43 63.79
horse-colic 58.22 60.06 58.73 61.71
hypothyroid 60.11 71.77 58.92 68.05
ionosphere 59.29 61.31 62.26 65.68
diabetes 64.08 68.56 57.63 60.42
iris 56.44 67.75 60.11 71.28
kr-vs-kp 56.66 57.24 61.21 64.32
labor 58.01 60.18 59.69 62.75
letter 58.67 71.56 58.89 70.56
lymph 58.43 68.11 60.44 67.49
mushroom 61.20 64.40 61.41 64.05
segment 57.82 73.16 60.54 73.4
sick 58.57 60.70 62.21 64.61
sonar 57.29 60.33 58.94 62.32
spambase 59.85 62.67 58.5 61.54
tic-tac-toe 59.49 62.81 60.34 64.43
vehicle 60.46 71.37 57.22 71.23
vote 62.36 65.34 58.54 62.94
vowel 60.41 73.82 58.33 71.55
waveform 62.26 72.77 58.55 70.43
zoo 56.62 68.9 58.17 70.77
Average 59.58 66.16 59.47 66.02

4.3 EXPERIMENTS ON REAL-WORLD DATA

To further valid the effectiveness of LCWF, we also conduct
our experiments on the real-world crowdsourced dataset
“Music_genre" [Rodrigues et al., 2013], which is collected
from Amazon Mechanical Turk (AMT) platform. The “Mu-
sic_genre" dataset is a classic multi-class crowdsourced
dataset that contains 700 instances, which are described by
124 features and 44 crowd workers are employed to label
these instances. Totally, the dataset gets 2946 crowd labels,
but nearly 43.93% of the crowd labels are noise, which is
relatively high. Thus, it is suitable for LCWF to purify noisy
labels, that’s why we select this dataset for experiments.

Figure 1 shows the integration accuracy comparison results
of six methods before and after worker filtering by LCWF.
We can see a significant improvement in the integration ac-
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Figure 1: Integration accuracy (%) comparisons before and
after worker filtering by LCWF.

curacy of these six methods. Specifically, before worker fil-
tering, the integration accuracies of MV, GTIC, DEWSMV,
MNLDP, LAWMV and AALI are 71.43%, 71.43%, 70.43%,
78.00%, 76.71% and 72.46 %, respectively. After worker
filtering, the integration accuracies of them are improved to
79.14%, 79.86%, 79.43%, 78.23%, 78.43% and 79.51%, re-
spectively. The comparison results on the real-world dataset
powerfully demonstrate the effectiveness of LCWF on im-
proving integration accuracy again.

4.4 PARAMETER SENSITIVITY ANALYSIS OF
LCWF

LCWF has four parameters: The fraction of the population
to be replaced by crossover s, the mutation rate m, the popu-
lation size K and the maximum of generations T . To analyse
the influence of different settings of these four parameters
on LCWF, we conduct following two series of experiments
on the dataset “Music_genre". In these experiments, we use
the crowd label quality as the evaluation metric.

1. In the first experiment, we fix the value of s and m at
0.5 and 0.05, respectively, which refer to the settings in
the paper [Jiang et al., 2005]. And then, we analyze the
influence of K and T on the performance of LCWF.

2. In the second experiment, we fix the value of K and
T at 80 and 50, respectively. And then, we analyze the
influence of s and m on the performance of LCWF.

In the first experiment, we first fix T at 50 and observe
the performance of LCWF as K increases from 10 to 100.
Figure 2 (a) shows the detailed comparison results. We can
see that when K increases from 10 to 80, the crowd label
quality improves. When K is larger than 80, the crowd label
quality varies slightly and tends to converge. This indicates
that, the performance of LCWF is not sensitive to K when
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Figure 2: Crowd label quality comparisons on different
settings of K and T when s and m are fixed at 0.5 and 0.05.

K is around or larger than 80. Then, we fix K at 80 and
observe the performance of LCWF when T increases from
10 to 100. Figure 2 (b) shows the detailed comparison results.
We can see that the performance of LCWF is not sensitive
to T when T is around or larger than 50.

In the second experiment, we first fix m at 0.05 and observe
the performance as s increases from 0.1 to 1. Figure 3 (a)
shows the detailed comparison results. We can see that the
performance of LCWF is not sensitive to s when s is around
or larger then 0.2. Then, we fix the parameter s at 0.5 and
observe the performance when m increases from 0.01 to
0.1. Figure 3 (b) shows the detailed comparison results. We
can see that the performance of LCWF is not sensitive to m
when m is around or larger than 0.03.

Based on above experimental results, we set K, T , s and m
to 80, 50, 0.5, 0.05, respectively, in our experiments. From
Figure 2 and Figure 3, we can see that around this parameter
settings, the performance of LCWF is not sensitive.
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(a) m is 0.05 and s varies from 0.1 to 0.9.
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Figure 3: Crowd label quality comparisons on different
settings of s and m when K and T are fixed at 80 and 50.

4.5 DISCUSSION

Based on above experiment results on the simulated and
real-world datasets, our proposed LCWF can perform well
on improving the integration accuracy of the existing label
methods. Although we have demonstrated the effectiveness
of LCWF, it is actually not solid for every scenarios. For
example, when most workers show low-quality, then most la-
bels annotated on the same instances may be incorrect. Thus,
high-quality workers can hardly reach consensus with other
low-quality workers. In this case, if a high-quality worker
is filtered out, the label consistency of the multiple noisy
labels may even improve. Based on the current fitness func-
tion, the hypotheses which filter out high-quality workers
can have a less fitness than the hypotheses which filter out
low-quality workers, which will lead to poor performance
on filtering out low-quality workers.

What’ more, there may exist collusion between workers, it
means that some workers provide totally consistent labels
on most or even all of instances they have annotated. If



the consistent labels of these collusive workers are correct,
then worker collusion can be beneficial for LCWF to filter
out low-quality workers. However, if the consistent labels
of these collusive workers are incorrect, then LCWF may
mistake these workers as high-quality workers due to the
high label consistency of their labels and filter out the ac-
tual high-quality workers instead. Thus, the performance of
LCWF is not stable when there is worker collusion.

Since these scenarios we discuss above are not common in
the crowdsourcing and most of the label integration methods
do not consider these special scenarios, we do not consider
them in the current version of LCWF too. In these scenarios,
the essential reason why LCWF cannot work well is that
the label consistency with other workers become unreliable
for the identification of low-quality workers. Therefore, to
adapt to these special scenarios, the effort can be made to
relax the dependence on the other workers, which is one of
the directions to further improve or extend LCWF.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we proposes a label consistency-based worker
filtering (LCWF) algorithm. Different from most existing
works focusing on designing more complex label integra-
tion methods, LCWF aim to purify noisy labels for existing
label integration methods, which provides a new perspective
for improving the integration performance. In LCWF, we
transform the worker filtering problem into a discrete opti-
mization problem and utilize label consistency to define the
fitness function. Then, a genetic algorithm is used to search
for the optimal solution. Experimental results on real-world
and simulated datasets show that LCWF can effectively pu-
rify noisy labels and improve the integration accuracy of
existing label integration methods.

In the current version of LCWF, we identify low-quality
workers and then filter out all labels from them. Actually, the
label quality of workers should be instance-dependent. Even
low-quality workers can also provide high-quality labels on
certain instances, so filtering out the low-quality workers
directly may cause the loss of correct labels. Therefore,
we believe that extending LCWF to be instance-dependent
worker filtering can further improve its performance. What’s
more, the current version of LCWF cannot deal with some
special scenarios, such as high proportion of low quality
workers and worker collusion, which is also an important
extension direction for us in the future.
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