
Decentralized Multi-Armed Bandit Can Outperform
Classic Upper Confidence Bound

Abstract

This paper studies a decentralized multi-armed bandit problem in a multi-agent1

network. The problem is simultaneously solved by N agents assuming they face2

a common set of M arms and share the same mean of each arm’s reward. Each3

agent can receive information only from its neighbors, where the neighbor relations4

among the agents are described by a directed graph whose vertices represent5

agents and whose directed edges depict neighbor relations. A fully decentralized6

multi-armed bandit algorithm is proposed for each agent, which twists the classic7

consensus algorithm and upper confidence bound (UCB) algorithm. It is shown8

that the algorithm guarantees each agent to achieve a better logarithmic asymptotic9

regret than the classic UCB provided the neighbor graph is strongly connected.10

The regret can be further improved if the neighbor graph is undirected.11

1 Introduction12

Multi-armed bandit (MAB) is a basic but fundamental reinforcement learning problem which has13

a wide range of applications in natural and engineered systems including clinical trials, adaptive14

routing, cognitive radio networks, and online recommendation systems [1]. The problem has various15

formulations. In a classical and conventional MAB problem setting, a single decision maker (or16

player) makes a sequential decision to select one arm at each discrete time from a given finite set of17

arms (or choices) and then receives a reward corresponding to the chosen arm, generated according to18

a random variable with an unknown distribution. In general, different arms have different distributions19

and reward means. The target of the decision maker is to minimize its cumulative expected regret,20

i.e., the difference between the decision maker’s accumulated (expected) reward and the maximum21

which could have been obtained had the reward information been known. For this conventional MAB22

problem, both lower and upper bounds on the asymptotic regret were derived in the seminal work [2],23

and classic UCB algorithms were proposed in [3] which achieve an O(log T ) regret. Since multi-24

armed bandits have been studied for decades, it is impossible to survey the entire bandit literature25

here. For an introductory survey, see a recent book [4].26

Over the past decade, our social networks, communication infrastructure, data centers, and societal27

systems have become increasingly massive and complex, which can all be modeled as networked28

multi-agent systems. In such a large-scale multi-agent network, e.g. a sensor network and a multi-29

robot system, the need for decentralized information processing and decision making arises naturally30

since the sensors or robots in the network are equipped with on-board processors and are physically31

separated from each other. Concurrently, the emerging big data era brings restrictions on information32

flow to human-involved networks, primarily due to privacy concerns, and thus precludes conventional33

centralized and parallel information processing and decision making algorithms, which typically34

rely on a center collecting all information or taking the lead. Therefore, there is ample motivation to35

develop multi-agent, decentralized, multi-armed bandit algorithms.36

Over the past year, there has been increasing interest to extend conventional single-player bandit37

settings to multi-player frameworks. Notable examples include [5–17], to name a few. Among38

all the existing multi-agent settings, we are motivated by a cooperative setting which makes use39

of a consensus process [18, 19] among all agents. Such a setting was first proposed in [16] with40

homogeneous reward distributions, i.e., all agents share the same distribution of each arm’s reward.41

The problem has recently attracted increasing attention and quite a few different consensus-based42
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decentralized algorithms have been proposed and developed [16, 17, 20–23]. Note that in such a43

homogeneous reward distribution setting, each agent in a network actually can independently learn an44

optimal arm using any conventional single-agent UCB algorithm, ignoring any information received45

from other agents. Notwithstanding, all the existing algorithms for the decentralized multi-armed46

bandit problem with homogeneous reward distributions require that each agent be aware of certain47

network-wise global information, such as spectral properties of the underlying graph or total number48

of agents in the network. Such a requirement leads to a counterintuitive observation: compared49

with the conventional single agent case, each agent in a multi-agent network can collect more arm-50

related information while its bandit learning becomes more restrictive or less independent. Motivated51

by this issue, this paper aims to develop a fully decentralized multi-armed bandit algorithm for52

a general directed graph, which does not require any global information, and further shows that53

the decentralized algorithm can ensure each agent in the network learns faster in contrast to the54

conventional single-agent case.55

Related Work Multi-agent MAB problems have been studied in various settings [5–17]. For exam-56

ple, [5, 6, 9, 24] preclude communications among agents but allow them to receive “collision” signals57

when more than one agent selects the same arm, which has applications in wireless communication58

and cognitive radio. A distributed setting with a central controller is studied in [13, 25] in a federated59

learning context. Other federated bandit settings are considered in [12, 23, 26] with additional focus60

on theoretical privacy preservation.61

Consensus-based decentralized MAB algorithms are developed in [16, 17, 20–23] for homogeneous62

reward distributions in a cooperative multi-agent setting. Very recently, cooperative multi-agent63

bandits have been extended to heterogeneous reward settings, that is, different agents may have64

different reward distributions and means for each arm. A heterogeneous decentralized problem is65

solved in [23] using the idea of gossiping to improve communication efficiency and privacy. All these66

consensus- or gossip-based MAB algorithms require global information. An exception is [27] which67

considers a heterogeneous setting but focuses on a complete graph, which implicitly allows each68

agent to collect all other agents’ information.69

Technical Challenges The design of a suitable upper confidence bound function is a critical step in70

crafting a multi-armed bandit algorithm for the conventional single-agent case, which determines71

the decision of which arm to choose at each time and thus plays an important role in quantifying the72

cumulative regret. Such a relationship between upper confidence bound and regret becomes much73

more complicated in the decentralized setting because with the agents’ information propagating over74

the network, each individual agent’s regret is coupled with all the other agents’ upper confidence75

bound functions. This is likely the reason why all the existing algorithms for a similar decentralized76

multi-armed bandit problem under consideration require that each agent be aware of certain network-77

wise information, such as spectral properties of the underlying graph or total number of agents in the78

network [16, 17, 20–22]. Thus, the key technical challenge here is how to design a fully local upper79

confidence bound function for each agent, which does not require any global information. To achieve80

this, we aim to bound the variance proxy of each agent’s local estimate of each arm’s sample mean81

by a function of the agent’s local sample counter, in contrast to a function of all N agents’ sample82

counters used in the existing literature. To this end, another salient challenge arises, due to information83

latency. Although each agent can directly or indirectly receive processed information from all other84

agents in a connected network, it takes extra time from the agents other than its neighbors. Thus, the85

information each agent receives does not reveal the “current” states of all other agents. Meanwhile,86

each agent may have different exploration trajectories of the arms. Information coupling and latency87

may further increase this exploration “imbalance” among the network, leading to poor learning88

performance of those agents with relatively insufficient exploration. This is a typical bottleneck of89

multi-armed bandit learning processes. To tackle this, we design a local decision making criterion90

which provably bounds the difference between each agent’s local sample number and the maximal91

number of samples over the network. The criterion enables the explorations of each arm among all92

the agents approximately “on the same page” and thus gets around the “imbalance” bottleneck.93

Contributions We propose a fully decentralized multi-armed bandit algorithm for directed, strongly94

connected graphs, without requiring any global information. The algorithm is shown to guarantee95

that each agent achieves a better logarithmic asymptotic regret than the classic single-agent UCB196

algorithm. It appears that our work provides the first fully decentralized multi-armed bandit algorithm97

for directed graphs, with a provable regret guarantee for strongly connected graphs. Extensive98

simulations show that the algorithm also works for more general weakly connected graphs. For99
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the special case when the underlying graph is undirected, our algorithm can be modified to have a100

further improved regret which reflects the effect of each agent’s degree centrality in the graph. In this101

case, the algorithm enables faster learning for any agent in the network contrasted with the UCB1102

algorithm, as long as the agent has at least one neighbor.103

2 Problem Formulation104

As mentioned in the introduction, we are interested in a decentralized multi-armed bandit problem105

formulated as follows. Consider a multi-agent network consisting of N agents (or players). For106

presentation purposes, we label the agents from 1 through N . It is worth emphasizing that the agents107

are not aware of such a global labeling, but each agent can differentiate between its neighbors. The108

neighbor relations among the N agents are described by a directed graph G = (V, E) with N vertices,109

where the vertex set V = [N ] , {1, 2, . . . , N} represents the N agents and the set of directed edges110

(or arcs) E depicts the neighbor relations where agent j is a neighbor of agent i whenever (j, i)111

is a directed edge in G. Each agent can receive information only from its neighbors (i.e., lies in112

its neighbors’ broadcast ranges). Thus, the directions of directed edges represent the directions of113

information flow. For convenience, we assume each agent is a neighbor of itself, or equivalently, each114

vertex of G has a self-arc. Clearly, a directed graph G may allow uni-directional communication115

among the agents. In the case when (i, j) is an edge in G as long as (j, i) is an edge in the graph, G116

becomes an undirected graph which only allows bi-directional communication.117

All N agents face a common set of M arms (or decisions) which is denoted by [M ] , {1, 2, . . . ,M}.118

At each discrete time t ∈ {0, 1, 2, . . . , T}, each agent i makes a decision on which arm to select from119

the M choices, and the selected arm is denoted by ai(t). If agent i selects an arm k, it will receive a120

random reward Xi,k(t). For each i ∈ [N ] and k ∈ [M ], {Xi,k(t)}Tt=1 is an unknown i.i.d. random121

process. For each arm k ∈ [M ], all Xi,k(t), i ∈ [N ], share the same expectation µk. It is worth122

emphasizing that this setting allows different agents to have different reward probability distributions123

for each arm, so long as their means are the same. Without loss of generality, we assume that all124

Xi,k(t) have bounded support [0, 1] and that µ1 ≥ µ2 ≥ · · · ≥ µM , which implies that arm 1 has the125

largest reward mean and thus is always an optimal choice.126

The goal of the decentralized multi-armed bandit problem just described is to devise a decentralized127

algorithm for each agent in the network which will enable agent i to minimize its expected cumulative128

regret, defined as129

Ri(T ) = Tµ1 −
T∑
t=1

E
[
Xai(t)

]
,

at an order at least as good as Ri(T ) = o(T ), i.e., Ri(T )/T → 0 as T →∞, for all i ∈ [N ].130

It is worth re-emphasizing that all the existing algorithms [16, 17, 20–22] for the above decentralized131

MAB problem require each agent to make use of certain network-wise global information such as the132

spectral properties of the neighbor graph or total number of agents in the network. In the next section,133

we propose a fully decentralized multi-armed bandit algorithm which does not require any global134

information.135

3 Algorithm136

We begin with some important variables to help present our algorithm.137

Local sample counter: Let ni,k(t) be the number of times agent i pulls arm k by time t.138

Local sample mean: Let 1(·) be the indicator function that returns 1 if the statement is true and 0139

otherwise. Define140

x̄i,k(t) =
1

ni,k(t)

t∑
τ=0

1(ai(τ) = k)Xi,k(τ), (1)

which represents the average reward that agent i receives from arm k until time t. This is analogous141

to how a single agent estimates the reward mean in UCB1 [3].142

Two local estimates: Each agent can have more sample information and a more accurate reward143

mean estimate for each arm by exploiting information received from its neighbors, since all the agents144
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are simultaneously exploring the arms. To this end, each agent i uses two variables, mi,k(t) and145

zi,k(t), to locally estimate two pieces of global information, the maximal number of samples of arm146

k pulled among all the N agents till time t, maxj∈[N ] nj,k(t), and the sample mean of arm k among147

all the N agents, respectively. At each time t, each agent i updates its zi,k(t) and mi,k(t) as follows:148

mi,k(t+ 1) = max {ni,k(t+ 1), mj,k(t), j ∈ Ni} , (2)

zi,k(t+ 1) =
∑
j∈Ni

wijzj,k(t) + x̄i,k(t+ 1)− x̄i,k(t), (3)

where Ni denotes the set of neighbors of agent i including itself, and wij , j ∈ Ni, are “consensus”149

weights to be designed using local information only. It is worth emphasizing that both mi,k(t) and150

zi,k(t) are updated in a distributed manner as only information from agent i’s neighbors are needed.151

The updates (2) and (3) are intended to reach an “approximate” agreement on the two estimates152

among the N agents. The update (2) makes use of the idea of max-consensus [28]. The update (3)153

consists of two components,
∑
j∈Ni wijzj,k(t), a linear consensus term, and x̄i,k(t+ 1)− x̄i,k(t),154

which can be regarded as a local “gradient” term. Intuitively, zi,k(t) is a better estimate of the reward155

mean compared with the local sample mean x̄i,k(t), as zi,k(t) exploits more sample information.156

Two local design objects: Each agent i needs to specify two objects in its local implementation. The157

first object is the consensus weights wij , j ∈ Ni, which will be used in the update (3). Consensus158

algorithms have been studied for many years. We will appeal to two classic linear consensus processes:159

the flocking algorithm [29] and the Metropolis algorithm [30], tailored for consensus over directed160

graphs and average consensus over undirected graphs, respectively. The second object is the upper161

confidence bound function Ci,k(t) which will be used to quantify agent i’s belief on its estimate of162

arm k’s reward mean. Upper confidence bound functions are critical in single-agent UCB algorithm163

design. As we will see, coordination among the agents allows us to design upper confidence bound164

functions “better” than that in the classic UCB1 algorithm [3]. Detailed expressions of the consensus165

weights and upper confidence bound functions will be specified in the theorems.166

A detailed description of our decentralized UCB algorithm, named Dec_UCB, is presented as follows.167

3.1 Dec_UCB: Decentralized UCB168

Initialization: At time t = 0, each agent i samples each arm k exactly once, setting mi,k(0) =169

ni,k(0) = 1, zi,k(0) = x̄i,k(0) = Xi,k(0), and Ci,k(0) = 0.170

Iteration: Between clock times t and t + 1, t ∈ {0, 1, . . . , T}, each agent i performs the steps171

enumerated below in the order indicated.172

1. Decision Making: Each agent i picks exactly one arm according to the following rule:173

(a) If there is no arm k such that ni,k(t) ≤ mi,k(t)−M , agent i computes the index174

Qi,k(t) = zi,k(t) + Ci,k(t),

and then pulls the arm ai(t+ 1) that maximizes Qi,k(t), with ties broken arbitrarily,175

and receives reward Xi,ai(t+1)(t+ 1).176

(b) If there exists at least one arm k such that ni,k(t) ≤ mi,k(t)−M , then agent i randomly177

pulls one such arm.178

2. Transmission: Agent i broadcasts its mi,k(t) and zi,k(t); at the same time, agent i receives179

mj,k(t) and zj,k(t) from each of its neighbors j ∈ Ni.180

3. Updating: Each agent i updates the following variables for each arm k:181

ni,k(t+ 1) =

{
ni,k(t) + 1 if k = ai(t+ 1),

ni,k(t) if k 6= ai(t+ 1),

x̄i,k(t+ 1) =
1

ni,k(t+ 1)

t+1∑
τ=0

1(ai(τ) = k)Xi,k(τ),

mi,k(t+ 1) = max {ni,k(t+ 1), mj,k(t), j ∈ Ni} ,

zi,k(t+ 1) =
∑
j∈Ni

wijzj,k(t) + x̄i,k(t+ 1)− x̄i,k(t).
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For a concise presentation of the algorithm, we refer to the pseudocode in Appendix A.182

To better understand the algorithm just described, we provide the following remarks.183

Remark 1. In the special case when N = 1, i.e., the single-agent case, let agent i be the unique184

agent in the network. Clearly, there is no information transmission involved. Note that in this case,185

ni,k(t) always equals mi,k(t), which implies that the inequality ni,k(t) > mi,k(t)−M always holds.186

Thus, at each time, the agent pulls an arm that maximizes Qi,k(t). Also, the update of zi,k(t) can be187

simplified as zi,k(t + 1) − zi,k(t) = x̄i,k(t + 1) − x̄i,k(t). Since zi,k(0) = x̄i,k(0), it follows that188

the reward mean estimate zi,k(t) is always the same as the sample mean x̄i,k(t). Therefore, Dec_UCB189

is essentially the same as the classic single-agent UCB1 algorithm proposed in [3] when N = 1. �190

Since our decentralized UCB algorithm simplifies to the classic UCB1 [3] as explained in the191

above remark, we will focus on our algorithm performance comparison with respect to UCB1, both192

theoretically and experimentally. It is worth mentioning that [3] also proposes another single-agent193

UCB algorithm, named UCB2.194

Remark 2. A key aspect of the algorithm design, which is different from classic single-agent UCB195

algorithms and existing decentralized MAB algorithms [16, 17, 20, 21], is the inequality criterion196

in the Decision Making rule (a), ni,k(t) ≤ mi,k(t) −M . The intuition behind this is to restrict197

the difference between the local sample counter ni,k(t) and the local estimate mi,k(t). Since the198

differences are uniformly bounded above by M , the inequality to some extent enables all the agents199

to be “consistent” in exploring the arms, that is, no agent will be behind too much in exploring any200

arm. The motivation in doing so is that a typical bottleneck of multi-armed bandits lies in insufficient201

exploration of one or more arms. In our decentralized setting, if one agent does not sufficiently202

explore an arm, it will affect the accuracy of the reward mean estimate of all other agents as the graph203

is connected in some form. Keeping the explorations of each arm among all the agents approximately204

“on the same page” gets around the bottleneck. �205

3.2 Results206

To state our first result, we need the following concepts.207

Let zk(t) and x̄k(t) be the N -dimensional vectors whose ith entries equal zi,k(t) and x̄i,k(t), respec-208

tively. Then, the updates (3) for the N agents can be combined as209

zk(t+ 1) = Wzk(t) + x̄k(t+ 1)− x̄k(t), (4)

where W is the N ×N matrix whose ijth entry equals wij if j ∈ Ni and zero otherwise. In the case210

where each agent adopts the flocking algorithm [29], i.e., (5) in Theorem 1, W is a stochastic matrix211

whose diagonal entries are all positive. The flocking algorithm can be applied to both directed and212

undirected graphs. In the case where each agent adopts the Metropolis algorithm [30], i.e., (8) in213

Theorem 2, W is a symmetric doubly stochastic matrix whose diagonal entries are all positive. The214

Metropolis algorithm can only be applied to undirected graphs [30].215

3.2.1 Strongly Connected Graphs216

A directed graph is strongly connected if it has a directed path from any vertex to any other vertex.217

For a strongly connected graph G, the distance from vertex i to another vertex j is the length of the218

shortest directed path from i to j; the longest distance among all ordered pairs of distinct vertices i219

and j in G is called the diameter of G.220

Let ∆k = µ1 − µk for each k ∈ [M ], denoting the gap of reward means between arm 1 and arm k.221

Theorem 1. Suppose that G is strongly connected and all N agents adhere to Dec_UCB. Then, with222

Ci,k(t) =

√
4 log t

3ni,k(t)
and wij =

1

|Ni|
, j ∈ Ni, (5)

the regret of each agent i ∈ [N ] until time T satisfies223

Ri(T ) ≤
∑

k:∆k>0

(
max

{
16

3∆2
k

log T, 2(M2 + 2Md+ d), L

}
+

2π2

3
+M2 + (2M − 1)d

)
∆k,

where d is the diameter of G, and L is a constant defined in Remark 3.224
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Here |Ni| denotes the cardinality ofNi, or equivalently, the number of neighbors of agent i including225

itself. Thus, |Ni| is always positive.226

It is worth noting that the above regret bound intuitively decreases as the diameter of neighbor graph227

G decreases or the network connectivity increases (see Remark 3).228

To better understand the above theorem, let T be sufficiently large. Then, the regret bound in the229

theorem can be written as
∑

∆k>0( 16
3∆K

+o(1)) log T . Compared with the regret bound of the classic230

single-agent UCB1 given in [3], which is
∑

∆k>0( 8
∆k

+ o(1)) log T , we have the following result.231

Corollary 1. If the neighbor graph is strongly connected, Dec_UCB guarantees each agent to achieve232

a better logarithmic asymptotic regret than the classic UCB1.233

Remark 3. It can be seen that W is an irreducible and aperiodic stochastic matrix (which holds for234

both Theorem 1 and Theorem 2). Then, it is well known that there exists a rank-one stochastic matrix235

W∞ for which W t converges to W∞ exponentially fast as t→∞ [31]. To be more precise, letting236

ρ2 denote the second largest among the magnitudes of the N eigenvalues of W , then ρ2 ∈ [0, 1) and237

there exists a positive constant c such that238 ∣∣∣[W t
]
ij
− [W∞]ij

∣∣∣ ≤ cρt2 (6)

for all i, j ∈ [N ], where [·]ij denotes the ijth entry of a matrix. With the above c and ρ2, L is defined239

as the smallest value such that when t ≥ L, there holds240

72Ndcetρ
t

12Ndce−1

2 < 1, (7)
where d·e denotes the ceiling function.241

Since ρ2 is nonnegative, LHS of (7) is decreasing in terms of t when t is large enough and converges242

to 0 as t→∞, which implies that the inequality always holds after some finite time. Thus, L must243

be nonnegative and uniquely exist by its definition. Also, LHS is a power function of ρ2, thus it is244

increasing in terms of ρ2, i.e., the smaller ρ2 is, the smaller LHS would be, given a fixed t. In another245

aspect, the smaller ρ2 is, the faster the LHS converges to 0 as t→∞, which implies that L decreases246

as ρ2 decreases. Since ρ2 can be regarded as an index of connectivity of G with weight matrix247

W in that the smaller ρ2 is, the higher connectivity the network has, L decreases as the network248

connectivity increases. In the special case when ρ2 = 0, it is easy to verify that L = 0. �249

Proof Sketch of Theorem 1 The proof makes use of important properties of sub-Gaussian random250

variables (see Appendix B.1). Since any random variable with bounded support is sub-Gaussian, so is251

any Xi,k(t). With this in mind, we write each zi,k(t) as a linear combination of a set of sub-Gaussian252

random variablesXj,k(τ), j ∈ [N ], τ ∈ {0, 1, . . . , t}, which is also sub-Gaussian due to the additivity253

property of sub-Gaussian random variables. A particularly important property of a sub-Gaussian254

random variable X with mean µ and variance proxy σ2 is that P(|X − µ| ≥ a) ≤ 2e−
a2

2σ2 holds for255

any non-negative a. To make use of this property, our next step is to estimate the variance proxy of256

zi,k(t), denoted by σ2
i,k(t). To this end, we first show that σ2

i,k(t) is bounded above by a function of all257

N sample counters, nj,k(t), j ∈ [N ], that is, σ2
i,k(t) ≤ f(n1,k(t), n2,k(t), . . . , nN,k(t)). A critical258

technical challenge here is to bound the f function with a local function, i.e., a function depending only259

on agent i’s local sample counter ni,k(t). To tackle this, we invoke the key algorithm step in Dec_UCB,260

which is the inequality criterion in the Decision Making rule (a), designed to ensure all the agents261

will be “consistent” in exploring each arm (see Remark 2). Using this “consistency”, we are able262

to replace the f function with a local function g with which σ2
i,k(t) ≤ g(ni,k(t)). Substituting this263

function and the upper confidence bound Ci,k(t) into the inequality of sub-Gaussian random variables264

mentioned above, we can show that the reward mean µk is within the range of the confidence interval265

of agent i’s local estimate zi,k(t) with high probability, i.e., P(|zi,k(t)− µk| ≥ Ci,k(t)) = o(1/t),266

which is also the key idea of how we design Ci,k(t). What remains is to apply the analysis of267

UCB1 [3] to further transform the upper confidence bound to the regret bound. Specifically, we are268

then able to bound E(ni,k(t)) by a uniform constant for all non-optimal arms. This and the fact that269

Ri(T ) =
∑

∆k>0 E(ni,k(T ))∆k yield the upper bound of agent i’s regret. �270

3.2.2 Undirected Graphs271

Note that the regret bound in Theorem 1, derived for strongly connected graphs using the flocking272

algorithm weights, is independent of agent index i and thus each agent’s centrality. In the following273
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theorem, we will show that when the neighbor graph is undirected, we can have a better regret bound274

using the Metropolis algorithm weights, which shows how each agent’s regret bound depends on the275

number of its neighbors, i.e., the degree centrality.276

For an undirected, connected graph G, the distance between two different vertices is the length of277

the shortest path connecting them, and the diameter of G is the longest distance among all pairs of278

distinct vertices in G.279

Theorem 2. Suppose that G is undirected, connected, and all N agents adhere to Dec_UCB. Then,280

with281

Ci,k(t) =

√
3 log t

|Ni|ni,k(t)
and


wij = 1

max{|Ni|,|Nj |} , j ∈ Ni, j 6= i,

wii = 1−
∑
j∈Ni

1
max{|Ni|,|Nj |} ,

(8)

the regret of each agent i ∈ [N ] until time T satisfies282

Ri(T ) ≤
∑

k:∆k>0

(
max

{
12

|Ni|∆2
k

log T, 2(M2 +2Md+d), L

}
+

2π2

3
+M2 +(2M −1)d

)
∆k,

where d is the diameter of G, and L is a constant defined in Remark 3.283

To better understand the above theorem, let T be sufficiently large. Then, the regret bound in the284

theorem can be written as
∑

∆k>0( 12
|Ni|∆k

+ o(1)) log T . Comparing this bound with the asymptotic285

regret bound in Theorem 1, that is
∑

∆k>0( 16
3∆K

+ o(1)) log T , it can be seen that the former is286

smaller than the latter if |Ni| ≥ 3, which leads to the following result.287

Corollary 2. Dec_UCB guarantees an agent to learn faster in an undirected, connected graph than288

when the graph is directed, strongly connected, as long as the agent has at least two neighbors289

excluding itself.290

Simulations for the case when an agent only has two neighbors excluding itself can be found in291

Section 4 and Appendix C.292

Next we compare
∑

∆k>0( 12
|Ni|∆k

+ o(1)) log T with the asymptotic regret bound of the classic293

UCB1 algorithm, that is
∑

∆k>0( 8
∆k

+ o(1)) log T . The former is smaller than the latter if |Ni| > 1.294

Since each agent always has itself as a neighbor by assumption, and each agent must have at least295

one neighbor excluding itself in a connected graphs, |Ni| > 1 always holds in a connected graph. We296

are led to the following result.297

Corollary 3. If the neighbor graph with N > 1 agents is undirected and connected, Dec_UCB298

guarantees each agent to achieve a better logarithmic asymptotic regret than the classic UCB1.299

Note that any undirected graph can always be divided into one or more connected components.300

Thus, each connected component can be analyzed separately and independently. Corollary 3 has the301

following immediate consequence.302

Corollary 4. If the neighbor graph is undirected, Dec_UCB guarantees an agent to achieve a better303

logarithmic asymptotic regret than the classic UCB1, as long as the agent has at least one neighbor304

excluding itself.305

3.2.3 Weakly Connected Graphs306

Corollary 4 shows that when the neighbor graph is undirected, Dec_UCB is still functional with307

provable performance even if the graph is disconnected. However, the case of directed graphs is much308

more complicated. A disconnected directed graph can also be divided into more than one “connected”309

component, yet each component is “weakly connected”, and not necessarily strongly connected. A310

directed graph is weakly connected if replacing all of its directed edges with undirected ones results311

in a connected graph. A strongly connected graph is weakly connected, but not vice versa. Thus, our312

results in Section 3.2.1 cannot be applied to weakly connected graphs, whose complete analysis has313

so far eluded us. Notwithstanding this, it is worth noting that simulations in Section 4 suggest that314

Dec_UCB works well for weakly connected graphs, and thus also for any directed graphs, as long as315

each agent has at least one neighbor excluding itself.316
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4 Simulations317

This section presents various simulations created with the aid of Python packages [32–35] which were318

used to experimentally verify the validity and performance of our proposed Dec_UCB algorithm. We319

focus on the heterogeneous reward distribution case here. Additional simulations and observations,320

including the homogeneous reward distribution case, are presented in Appendix C.321

Small-size Graphs Simulations were run on three types of graphs, namely strongly connected,322

undirected connected, and weakly connected graphs1, allowing for the reward distribution to vary323

between agents for a given arm. A given agent and arm pair can draw rewards from an arm-specific324

Beta distribution with mean µk and standard deviation 0.05, an arm-specific Bernoulli distribution325

with mean µk, or an arm-specific truncated normal distribution within [0, 1] with mean µk and326

standard deviation 0.05. The distribution used is randomly assigned to each agent/arm pair upon327

initialization. The reward means µk are the same for all agents on a given arm, with each µk randomly328

chosen from a uniform distribution on [0.05, 0.95]. Rewards are bounded by definition from the329

used distributions to be within [0, 1]. Each experiment is run for T = 1000 time steps with results330

for each graph obtained by averaging over 100 experiments. The results obtained from running331

Dec_UCB alongside UCB1 on small 6-agent graphs are illustrated in Figures 1, 2, and 3 for the three332

graph types, respectively. These results empirically back the claims of Theorem 1, Theorem 2, and333

Corollaries 1–3 in the presence of heterogeneous arm reward distributions.334
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Figure 1: A plot of the regret of the strongly connected graph, averaged over 100 experiments.
Reward distributions vary between agents for a given arm.
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Figure 2: A plot of the regret of the undirected and connected graph, averaged over 100 experiments.
Reward distributions vary between agents for a given arm.

Large-scale Graphs Larger scale simulations were run for the three graph types with heterogeneous335

reward distributions, averaging results from 100 different randomly generated Erdős–Rényi 50-agent336

graphs for each graph type. Additionally, 10 arms with rewards following a randomly chosen Beta,337

Bernoulli, or truncated normal distribution were used, with means µk randomly chosen from a338

uniform distribution bounded within [0.05, 0.95]. A standard deviation of 0.05 was used for the Beta339

and truncated normal distributions. Rewards were bounded by the used distributions to be within340

[0, 1]. The algorithms were run for T = 1000 iterations for each different random graph, testing the341

1We focus on weakly connected graphs in which each agent has at least one neighbor excluding itself;
otherwise the agent cannot receive any external information and thus essentially lies in the single-agent case.

8



0 200 400 600 800 1000
Time

0

25

50

75

100

125

150

175

Ex
pe

ct
ed

 C
um

ul
at

iv
e 

Re
gr

et

Agent 0
Agent 1
Agent 2
Agent 3
Agent 4
Agent 5
UCB1

0

1

2

3

4

5

Figure 3: A plot of the regret of the weakly connected graph, averaged over 100 experiments. Reward
distributions vary between agents for a given arm.

worst performing agent of Dec_UCB against the best performing results from the UCB1 algorithm.342

Results are shown in Figure 4. In all cases, Dec_UCB achieves better performance than UCB1.
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(a) Results for the large strongly
connected generated graphs.
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(b) Results for the large undirected
connected generated graphs.

0 200 400 600 800 1000
Time

0

25

50

75

100

125

150

175

Ex
pe

ct
ed

 C
um

ul
at
iv
e 
Re

gr
et

Worst Decentralized Regret
Best UCB1 Regret

(c) Results for the large weakly con-
nected generated graphs.

Figure 4: Plots of the expected cumulative regret for both the worst performing agent of Dec_UCB and
best performance of UCB1. Results averaged over 100 different randomly generated Erdős–Rényi
weakly connected graphs of 50 agents each. The reward distribution for a given arm was randomly
chosen as a Beta, Bernoulli, or truncated normal distribution.

343

Observations There are several key observations to take from these simulations. The first of these is344

that Dec_UCB appears to perform better on the undirected graphs than it does on the strongly connected345

graphs. This validates the theoretical results presented in Theorem 2 and Corollary 2. Additionally,346

the performance of each agent in the strongly connected graphs appears to be independent of its347

number of neighbors, indicating that performance is reliant only on the diameter of the graph as348

demonstrated in Section 3.2.1. In contrast, as shown in Section 3.2.2, for undirected graphs, each349

agent’s regret also depends on its number of neighbors. In total, performance of Dec_UCB appears350

to be unaffected by the choice of using homogeneous arm rewards or heterogeneous arm rewards;351

expected cumulative regrets appear to be nearly equivalent for all graph types in either case.352

5 Conclusion353

In this paper, we have studied a decentralized multi-armed bandit problem over directed graphs354

and proposed a fully decentralized UCB algorithm, which provably achieves a better logarithmic355

asymptotic regret than the classic UCB1 algorithm provided the neighbor graph is strongly connected.356

We have further improved the algorithm’s performance for undirected graphs. Simulations have357

been provided to validate our theoretical results and test the performance on more general weakly358

connected graphs. Future directions are to study the limitations of the paper, including analysis for359

weakly connected graphs and time-varying graphs, experiments with real data sets, and development360

of a decentralized counterpart for the classic UCB2 algorithm [3].361
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