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ABSTRACT

Symmetry learning has proven to be an effective approach for extracting the hid-
den structure of data, with the concept of equivariance relation playing the cen-
tral role. However, most of the current studies are built on architectural theory
and corresponding assumptions on the form of data. We propose Neural Fourier
Transform (NFT), a general framework of learning the latent linear action of the
group without assuming explicit knowledge of how the group acts on data. We
present the theoretical foundations of NFT and show that the existence of a linear
equivariant feature, which has been assumed ubiquitously in equivariance learn-
ing, is equivalent to the existence of a group invariant kernel on the dataspace. We
also provide experimental results to demonstrate the application of NFT in typical
scenarios with varying levels of knowledge about the acting group.

1 INTRODUCTION

Various types of data admit symmetric structure explicitly or implicitly, and such symmetry is often
formalized with action of a group. As a typical example, an RGB image can be regarded as a
function defined on the set of 2D coordinates R2 → R3, and this image admits the standard shift
and rotation on the coordinates. Data of 3D object/scene accepts SO(3) action (Chen et al., 2021;
Yu et al., 2020), and molecular data accepts permutations (Raghunathan and Priyakumar, 2021) as
well. To leverage the symmetrical structure for various tasks, equivariant features are used in many
applications in hope that such features extract essential information of data.

Fourier transform (FT) is one of the most classic tools in science that utilizes an equivariance relation
to investigate the symmetry in data. Originally, FT was developed to study the symmetry induced by
the shift action a ◦ f(·) := f(·−a) on a square-integrable function f ∈ L2(R). FT maps f invertibly
to another function Φ(f) = f̂ ∈ L2(R). It is well known that FT satisfies (a ◦ f̂)(ω) = e−iaω f̂(ω)
and hence the equivariant relation Φ(a ◦ f) = eiaωΦ(f). By this equivariant mapping, FT achieves
the decomposition of L2(R) into shift-equivariant subspaces (also called frequencies/irreducible
representations). This idea has been extended to the actions of general groups, and extensively
studied as harmonic analysis on groups (Rudin, 1991). In recent studies of deep learning, group
convolution (GC) is a popular approach to equivariance (Cohen and Welling, 2017; Finzi et al.,
2021; Cohen and Welling, 2014; 2016; Weiler and Cesa, 2019), and the theory of FT also provides
its mathematical foundation (Kondor and Trivedi, 2018; Cohen et al., 2018; 2019).

One practical limitation of FT and GC is that they can be applied only when we know how the group
acts on the data. Moreover, FT and GC also assume that the group acts linearly on the constituent
unit of input (e.g. pixel). In many cases, however, the group action on the dataset may not be linear
or explicit. For example, when the observation process involves an unknown nonlinear deformation
such as fisheye transformation, the effect of the action on the observation is also intractable and
nonlinear (Fig. 1, left). Another such instance may occur for the 2D pictures of a rotating 3D object
rendered with some camera pose (Fig. 1, right). In both examples, any two consecutive frames are
implicitly generated as (x, g ◦x), where g is a group action of shift/rotation. They are clearly not
linear transformations in the 2D pixel space. To learn the hidden equivariance relation describing the
symmetry of data in wider situations, we must extend the equivariance learning and Fourier analysis
to the cases in which the group action on each data may be nonlinear or implicit.
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Figure 1: Left: An image sequence produced by applying fisheye transformation after horizontal
shifting. Right: 2D renderings of a spinning chair.
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Figure 2: NFT framework. Each block corresponds to irreducible representation/frequency.

To formally establish a solution to this problem, we propose Neural Fourier Transform (NFT), a
nonlinear extension of FT, as a general framework for equivariant representation learning. We gen-
eralize the approach explored in (Miyato et al., 2022) and provide a novel theoretical foundation
for the nonlinear learning of equivariance. As an extension of FT, the goal of NFT is to express
the data space as the direct sum of linear equivariant spaces for nonlinear, analytically intractable
actions. Given a dataset consisting of short tuple/sequences (x1, x2, . . .) that are generated by an
unknown group action, NFT conducts Fourier analysis that is composed of (i) learning of an equiv-
ariant latent feature on which the group action is linear, and (ii) the study of decomposed latent
feature as a direct sum of action-equivariant subspaces, which correspond to frequencies. Unlike the
previous approaches to equivariance learning that rely on model architectures (Keller and Welling,
2021; Cohen and Welling, 2017), the learning (i) of NFT does not assume any analytically tractable
knowledge of the group action in the observation space, and simply uses an autoencoder-type model
to infer the actions from the data. In addition to the proposed framework of NFT, we detail our
theoretical and empirical contributions as follows.

1. We answer the essential theoretical questions of NFT (Sec 4). In particular,
• Existence. We elucidate when we can find linear equivariant latent features and hence when

we can conduct spectral analysis on a generic dataset.
• Uniqueness. We show that NFT associates a nonlinear group action with a set of irreducible

representations, assuring NFT’s ability to find the unique set of the equivariant subspaces.
• Finite-dimensional approximation. We show that the autoencoder-type loss chooses a set of

irreducible representations in approximating the group action in the observation space.
2. We experimentally show that:

• NFT conducts a data-dependent, nonlinear spectral analysis. It can compress the data under
nonlinear deformation and favorably extract the dominant modes of symmetry (Sec 5.1).

• By using knowledge about the group, NFT can make inferences even when the action is not
invertible in the observation space. For example, occlusion can be resolved (Sec 5.2).

• By introducing prior knowledge of the irreducible representations, we can improve the out-
of-domain (OOD) generalization ability of the features extracted by the encoder (Sec 5.2).

2 PRELIMINARIES

In this paper, G is a group, and e its unit element. We say G acts on a set X if there is a map
G × X → X , (g, x) 7→ g ◦x, such that e ◦x = x and (gh) ◦x = g ◦ (h ◦x) for any x ∈ X and
g, h ∈ G. When G acts on X and Y , a map Φ : X → Y is called equivariant if Φ(g ◦x) = g ◦Φ(x)
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for any g ∈ G, x ∈ X . A group representation is defined as a linear action of group G on some
vector space V , i.e., a group homomorphism ρ : G → GL(V ). See also Appendix A for notations.

Fourier transform as an equivariant map. We first explain the equivariance of the classic
Discrete Fourier Transform (DFT) to motivate the model and learning of NFT. As is well known,
DFT on the function space LT

2 := {f : ZT → C}, where ZT = {j/T ∈ [0, 1) | j = 0, . . . , T − 1}
(mod T ) is the T grid points on the unit interval. DFT and its inverse (IDFT) are given by

f̂k = 1√
T

∑T−1
j=0 e−2πi kj

T f(j/T ), f(j/T ) = 1√
T

∑T−1
k=0 e2πi

kj
T f̂k ∀k, j ∈ ZT . (1)

We can define the group of shifts G := ZT (mod T ) acting on f = (f(j/T ))T−1
j=0 by m ◦ f := (f((j−

m)/T ))T−1
j=0 . With the notation Φk(f) := f̂k, it is well known that Φk(m ◦ f) = e2πi

mk
T Φk(f) for

all m, k ∈ ZT , establishing DFT Φ as an equivariant map; namely
Φ(m ◦ f) = D(m)Φ(f) or m ◦ f = Φ−1 (D(m)Φ(f)) , (2)

where D(m) := Diag(e2πi
mk
T )T−1

k=0 is a diagonal matrix. By definition, D(m) satisfies D(m+m′) =
D(m)D(m′), meaning that G ∋ m 7→ D(m) ∈ GL(CT ) is a group representation. Thus, the DFT
map Φ is an equivariant linear encoding of LT

2 into the direct sum of eigen spaces (or the spaces that
are invariant with respect to the shift actions), and Φ−1 is the corresponding linear decoder.

In group representation theory, the diagonal element e2πi
mk
T of D(m) is known as an irreducible

representation, which is a general notion of frequency. We shall therefore use the word frequency
and the word irreducible representation interchangeably in this paper. A group representation
of many groups can be decomposed into a direct sum of irreducible representations, or the finest unit
of group invariant vector spaces. Generally, for a locally compact group G, the Fourier transform,
the inversion formula, and the frequencies are all analogously defined (Rudin, 1991). For the group
action (g ◦ f)(x) = f(g−1x), an equivariant formula analogous to eq.(2) also holds with D(g) being
a block diagonal matrix. Thus, the frequencies are not necessarily scalar-valued, but matrix-valued.

3 NEURAL FOURIER TRANSFORM

In NFT, we assume that a group G acts on a generic set X , and examples of (x, g ◦x) (x ∈ X , g ∈ G)
can be observed as data. However, we do not know how the action ◦ is given in X , and the action
can only be inferred from the data tuples. As in FT, the basic framework of NFT involves an encoder
and a decoder, which are to be learned from a dataset to best satisfy the relations analogous to eq.(2):

Φ(g ◦x) = M(g)Φ(x) and Ψ
(
Φ(x)

)
= x (∀x ∈ X ,∀g ∈ G), (3)

where M(g) is some linear map dependent on g, which might be either known or unknown. It turns
out that realizing eq.(3) is enough to guarantee that M(g) is a group representation:
Lemma 3.1. If span{Φ(X )} is equal to the entire latent space, then eq.(3) implies that M(g) is a
group representation, that is, M(e) = Id and M(gh) = M(g)M(h).

The proof is given in Appendix B. The encoder Φ and decoder Ψ may be chosen without any
restrictions on the architecture. In fact, we will experiment NFT with MLP/CNN/Transformer whose
architectures have no relation to the ground truth action.

Given a pair (Φ,Ψ) that satisfies eq.(3), we also seek an invertible linear map P to block-diagonalize
M(g) unless we know M(g) a priori in a block-diagonal form. This corresponds to irreducible
decomposition in representation theory. Assuming that the representation is completely reducible,
we can seek a common change of basis matrix P for which B(g) = PM(g)P−1 is block-diagonal
for every g so that each block corresponds to an irreducible component of M(g). See Sec A for the
details on irreducible decomposition. Putting all together, NFT establishes the relation

g ◦x = Ψ
(
P−1B(g)PΦ(x)

)
. (4)

We call the framework consisting of eqs.(3) and (4) Neural Fourier Transform (NFT), where z =
PΦ(x) is the Fourier image of x, and Ψ(P−1z) is the inverse Fourier image. See also Fig 2 for the
visualization of the NFT framework. The classic DFT described in Sec 2 is an instance of NFT; X is
RT , which is the function space on G = ZT with shift actions, and PΦ and ΨP−1 are respectively
DFT and IDFT (linear). (Miyato et al., 2022) emerges as an implementation of NFT when (Φ,Ψ) is
to be learned in a completely unsupervised manner with no prior knowledge of M(g) nor G itself.
As we show next, however, NFT can be conducted in other situations as well.
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3.1 THREE TYPICAL SCENARIOS OF NFT

There can be various setting of data and prior knowledge of G, and accordingly various methods
for obtaining a pair (Φ,Ψ) in eq.(3). However, we at least need a dataset consisting of tuples of
observations (e.g (x, g ◦x)) from which we need to infer the effect of group action. A common
strategy is to optimize E[∥g ◦X − Ψ(M(g)Φ(X))∥2] where M(g) is either estimated or provided,
depending on the level of prior knowledge on g or G.

Unsupervised NFT (U-NFT): Neither G nor g is known. In U-NFT, the dataset consists of tuples
of observations {x(i) := (x

(i)
0 , . . . , x

(i)
T )}Ni=1, where each x

(i)
t is implicitly generated as x(i) =

gti ◦x
(i)
0 for some unobserved gi sampled from G that is unknown. Such a dataset may be obtained

by collecting short consecutive frames of movies/time-series, for example. (Miyato et al., 2022) is
a method for U-NFT. MSP uses a dataset consisting of consecutive triplets (T = 2), such as any
consecutive triplet of images in Fig 1. Given such a dataset, MSP trains (Φ,Ψ) by minimizing

E[∥x2 −Ψ(M∗(Φ(x1))∥2], where M∗ = argminM∥Φ(x1)−MΦ(x0)∥2 (5)

is computed for each triplet x (Fig 20, Appendix). By considering Φ with matrix output of dimen-
sion Ra×m, M∗ ∈ Ra×a can be analytically solved as Φ(x1)Φ(x0)

† where A† is the Moore Penrose
inverse of A (Inner optimization part). Thus, (Φ,Ψ) is trained in an end-to-end manner by minimiz-
ing E[∥x2 − Ψ(Φ(x1)Φ(x0)

†(Φ(x1))∥2]. For the U-NFT experiments, we used MSP as a method
of choice. After training (Φ,Ψ), we may obtain M∗ for each x(i) (say M∗

i ), and use (Maehara and
Murota, 2011) for example to search for P that simultaneously diagonalizes all M∗

i s.

G-supervised NFT (G-NFT): G is known but not g. G-NFT has the same dataset assumption as U-
NFT, but the user is allowed to know the group G from which each gi is sampled. In this case, we can
assume that the matrix M(g) in the latent space would be a direct sum of irreducible representations
of G. For example, we may assume some parametric form of irreducible representations M(θ) =
⊕kMk(θ) and estimate θ(i) for every tuple of data x(i). However, estimating θ(i) for each i may not
scale for a large dataset. Alternatively, we may just use the dimensional information of the matrix
decomposition and estimate each block in the same manner as U-NFT. For instance, in the context
of Fig 1, the user may know that the transformation between consecutive frames is “some” periodic
action (cyclic shift), for which it is guaranteed that the matrix representation is a direct sum of 2× 2
matrices. When T = 2, we can minimize the same prediction loss as in eq.(5) except that we put
M∗ =

⊕a/2
k M∗

k ∈ Ra×a where M∗
k = argminM ∥Φk(x1) − MΦk(x0)∥2 ∈ R2×2 and Φks are

the matrices constituting Φ by vertical concatenation Φ = [Φ1; Φ2; ...].

g-supervised NFT (g-NFT): g is known. In g-NFT, the user can observe a set of (x, g ◦x) for
known g so that the data technically consists of ((x, g ◦x), g). In the context of Fig 1, the g-NFT
setting not only allows the user to know that g is periodic, but also the velocity of the shift (e.g., the
size of the pixel-level shift before applying the fisheye transform). Thus, by deciding the irreducible
representations to use in our approximation of the action, we can predetermine the explicit form of
M(g). For g-NFT, we may train (Φ,Ψ) by minimizing

E[∥g ◦x−Ψ(M(g)Φ(x))∥2] + E[∥Φ(g ◦x)−M(g)Φ(x)∥2].

The matrix M(g) can be derived from the knowledge of representation theory. For example, if ZN

is the group, M(g) corresponding to the frequencies {f1, ..fn} would be the direct sum of the 2D
rotation matrices by angle 2πfkg/N (see also Fig. 21 in Appendix).

3.2 PROPERTIES OF NFT

By realizing eq.(3) approximately, NFT learns spectral information from the data and actions
(Lemma 3.1). Here, we emphasize three practically important properties of NFT. First, by virtue
of the nonlinear encoder and decoder, NFT achieves nonlinear spectral analysis for arbitrary data
types. Second, NFT performs data-dependent spectral analysis; it provides decomposed represen-
tations only through the frequencies necessary to describe the symmetry in the data. These two
properties contrast with the standard FT, where the pre-fixed frequencies are used for expanding
functions. Third, the NFT framework has the flexibility to include spectral knowledge about the
group in the latent space, as in G-NFT and g-NFT. This further enables us to extract effective fea-
tures for various tasks. These points will be verified through theory and experiments in the sequel.
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4 THEORY

Existence and uniqueness: Because the goal of NFT is to express the data space in the form of latent
linear equivariant subspaces, it is a fundamental question to answer whether this goal is achievable
theoretically. Additionally, it is important to ask if the linear action can be expressed by a unique
set of irreducible representations. The following Thm 4.1 answers these questions in the affirmative
using the notion of group invariant kernel. Let group G act on the space X . A positive definite
kernel k : X × X → R is called G-invariant if k(g ◦x, g ◦x′) = k(x, x′) for any x, x′ ∈ X and
g ∈ G.

Theorem 4.1. (Existence, uniqueness, and invariant kernel) Let G be a compact group acting on
X . There exists a vector space V and a non-trivial equivariant map Φ : X → V if and only if there
exists a non-trivial G-invariant kernel on X . Moreover, the set of G-invariant kernels and the set of
equivariant maps to a vector space are in one-to-one correspondence up to a G-isomorphism.

We provide the proof in Appendix C. The implication of Thm 4.1 is twofold. First, Thm 4.1 guar-
antees the existence of an equivariant map Φ by the existence of an invariant kernel. In the proof, Φ
emerges as an embedding into the associated reproducing kernel Hilbert space (RKHS). Thus, un-
der mild conditions, there is a latent space that is capable of linearly representing a sufficiently rich
group action, since one can easily construct a G-invariant kernel with infinite-dimensional RKHS
which is dense in L2 space(Thm C.1.1).

Second, Thm 4.1 implies the identifiability. When there are two invertible equivariant maps Φ and
Φ̃, Thm 4.1 guarantees that there is a pair of corresponding kernels, and we can induce from them a
G-isomorphism (Sec A) between the corresponding RKHSs. In other words, Φ and Φ̃ are connected
via G-isomorphism, corresponding to the same set of irreducible representations. This way, we may
associate any linearlizable group action to a unique set of irreducible representations. Similarly,
any two solutions for the g-NFT with the similar M(g)s would also differ only by G-isomorphism.

Finite dimensional Approximation: When the output dimension of Φ is small, the space may
not fit all members of irreducible representations corresponding to the target group action and it
may not be possible to invertibly encode the action and observations as done in the standard FT. In
such a case, the expression x1 → Ψ(M(g)Φ(x1)) in NFT would only provide an approximation of
the transition x1 → x2. However, what type of approximation would it be in U-NFT and G-NFT?
Below we will present the claim guaranteeing that NFT conducts a data-dependent filter that selec-
tively extracts the dominant spectral information in the dataset describing the action. We present an
informal statement here (see Sec C.3.2 for the formal version).

Theorem 4.2. (Nonlinear Fourier Filter) Suppose that there exists an invariant kernel k for the
group action on X whose RKHS is large enough to invertibly encode X . Suppose further that
(Φ∗,Ψ∗) is the minimizer of

Eg∈G[∥g ◦X −ΨΦ(g ◦X)∥2]
among the set of all equivariant autoencoders of a fixed latent dimension for which the actions are
linear in the latent space. Then the frequencies to appear in the latent space of Φ∗ are determined
by the signal strength of each irreducible component in the RKHS of k.

This result claims that, in the application of NFT with small latent dimension, U-NFT and G-NFT
automatically select the set of irreducible representations that are dominant in describing the action
in the observation space, functioning as a data-dependent nonlinear filter on the dataset. Please also
see Sec C for the theory of NFT. As we will validate experimentally in Sec 5.1, NFT does choose
the major frequencies discretely even in the presence of noise frequencies.

5 EXPERIMENTS

5.1 NFT VS DFT

To verify that NFT performs nonlinear spectral analysis, we conduct experiments on 1D time series
with time-warped shifts. We first prepared a fixed or random set of frequencies F and constructed

ZN ∋ t 7→ ℓ(t) =
∑K

k=1ck cos(2πfk(t/N)3) := r((t/N)3), F = {f1, f2, ...., fK},
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which is the time-warped version of the series r(·) =
∑

k=1:K ck cos(2πfk ·/N). The shift m ∈ ZN

acts on the latent space as ℓ(·) by (m ◦ ℓ)(t) = r((t/N)3 − m/N). We used N = 128. Note that
the frequency spectrum obtained by the classical DFT does not reflect the true symmetry structure
defined with F (Fig 3). Codes are in supplementary material, details are in Appendix D.

Figure 3: DFT result

Spectral analysis of time-warped signals. In this experiment,
we verify that NFT recovers the fixed frequencies F from the
time-warped signals. We generated 30000 sets of {c1, ...cK} with
K = 7, yielding 30000 instances of ℓ as dataset X ⊂ R128. The
cks were sampled from the uniform distribution, and c5, c6 scaled
by the factor of 0.1 to produce two noise frequencies. See Fig 4
for visualization. To train NFT, we prepared a set of sequences of
length-3 (s = (ℓ0, ℓ1, ℓ2) with ℓk = r((t/N)3 − kvℓ/N) ∈ R128)
shifting with random velocity vℓ. We then conducted U-NFT as in
Sec 3.1 with latent dimension R10×16 so that for each sequence s,
the matrix M∗ ∈ R10×10 provides ℓt ≈ Ψ(M t

∗Φ(ℓ0)). With this setting, Φ can express at most
10/2 = 5 frequencies.

To check whether the frequencies F obtained by NFT are correct, we use the result from the repre-
sentation theory stating that, if ρf : ZN → Rdf×df is the irreducible representation corresponding
to the frequency f , the character inner product (Fulton and Harris, 1991) satisfies

⟨ρf |ρf ′⟩ = 1
N

∑
g∈ZN

trace(ρf (g))trace(ρf ′(g)) = δff ′ (δff ′ is Kronecker’s delta).

We can thus validate the frequencies captured in the simultaneously block-diagonalized M∗s by
taking the character inner product of each identified block Bi with the known frequencies. The
center plot in Fig 5 is the graph of E[⟨ρf |Bi⟩] plotted agasint f . We see that the spike only occurs at
the major frequencies in F (i.e. {8, 15, 22, 40, 45}), indicating that our NFT successfully captures
the major symmetry modes hidden in the dataset without any supervision. When we repeated this
experiment with 100 instances of randomly sampled F of the same size, NFT was able to recover
the major members of F with (FN,FP ) = (0.035, 0.022) by thresholding E[⟨ρf |M∗⟩] at 0.5. This
score did not change much even when we reduced the number of samples to 5000 (0.04, 0.028). This
experimental result also validates that the disentangled features reported in (Miyato et al., 2022) are
in fact the set of major frequencies in the sense of classical DFT. We can also confirm that underlying
symmetry can be recovered even when the deformation is applied to 2D images (Fig 6).

Figure 4: Left:the sequence of length=128 signals constructed by applying the shift operation with
constant speed. Right: the sequence of the same function with time deformation.

Data compression with NFT. In signal processing, FT is also used as a tool to compress data based
on the shift-equivariance structure of signals. We generated 5000 instances of the time-warped
signals with F ⊂ {0 : 16}, and applied U-, G-, and g-NFT to compress the dataset using encoder
output of dimension R32×1. We also added an independent Gaussian noise at each time point in
the training signals. As for G-NFT, we used the direct sum of 16 commutative 2 × 2 matrices of
form ((a,−b), (b, a)) to parameterize M 1. For g-NFT, we used the 2 × 2 block diagonal matrix
M(θ) =

⊕15
ℓ=0

(
cos lθ − sin lθ
sin lθ cos lθ

)
with known θ.

We evaluated the reconstruction losses of these NFT variants on the test signals and compared them
against DFT over frequencies of range {0 : 16} (Fig 12, Appendix). The mean squared errors
together with standard deviations in parentheses are shown in Table 1, which clearly demonstrates
that NFT learns the nonlinearity of observation and compresses the data appropriately according to
the hidden frequencies. It is also reasonable that g-NFT, which uses the identity of group element g

1When the scalar field is R, 2 × 2 would be the smallest irreducible representation instead of 1 × 1 in
complex numbers.
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Figure 5: Left: Long horizon future prediction of the sequence of time-warped sigmals. Center:
E[⟨ρf |B⟩] plotted against f ∈ [0, 64] for each block B in the block diagonalized M∗s learned
from the dataset with 5 major frequencies ({8, 15, 22, 40, 45}) and 2 noise frequencies with small
coefficients ({18, 43}) when M∗s can express at most 5 frequencies. Note that E[⟨ρf |M∗⟩] is linear
with respect to M∗ (Appendix A.3). Right: Average absolute value of block-diagonalized M∗s.

Figure 6: Horizontal shift of unseen objects in fisheye-view predicted from the left-most frame by U-
NFT trained on CIFAR100 (Krizhevsky et al., 2009) sequences with T = 4. (top:pred, bottom:gt).
U-NFT learns the deformed shifts that are not expressible as linear functions on input coordinates.

acting on each signal, achieves more accurate compression than G-NFT. DFT fails to compress the
data effectively, which is obvious from Fig 3.

5.2 APPLICATION TO IMAGES

We verify the representation ability of NFT by applying it to challenging tasks which involve out-
of-domain (OOD) generalization and recovery of occlusion. Codes are in supplementary material.

Rotated MNIST. We applied g-NFT to MNIST (LeCun et al., 1998) dataset with SO(2) rotation
action and used it as a tool in unsupervised representation learning for OOD generalization. To this
end, we trained (Φ,Ψ) on the in-domain dataset(rotated MNIST), and applied logistic regression on
the output of Φ for the downstream task of classification on the rotated MNIST (in-domain) as well
as on rotated Fashion-MNIST (Xiao et al., 2017) and rotated Kuzushiji-MNIST (Clanuwat et al.,
2018) (two out-domains). Following the standard procedure as in (Chen et al., 2020), we trained
the regression classifier for the downstream task with fixed Φ. We used data consisting of triplets
(gθ ◦x, gθ′ ◦x, θ′−θ) with x being a digit image and θ, θ′ ∼ Uniform(0, 2π) being random rotation
angles. We used the same transition matrix M(θ) used in the data compression experiment (Sec
5.1) with the max frequency lmax = 2 plus one-dimensional trivial representation. Details are in
Appendix D. Because the representation learned with NFT is decomposed into frequencies, we can
make a feature by taking the absolute value of each frequency component; that is, by interpreting
the latent variable R(2lmax+1)×dm as lmax + 1 frequencies of dm multiplicity each (trivial represen-
tation is 1-dim), we may take the norm of each frequency component to produce (lmax + 1)× dm-
dimensional feature. This is analogous to taking the absolute value of each coefficient in DFT. We
designate this approach as norm in Fig 7.

As we can see in the right panel of Fig 7, both g-NFT and g-NFT-norm perform competitively
compared to conventional methods. In particular, g-NFT norm consistently eclipses all competitors
on OOD. In the left panel, although a larger lmax generally benefits the OOD performance, too large
a value of lmax seems to result in overfit, just like in the analysis of FT. We also compared NFT
against SteerableCNN (Cohen and Welling, 2017), which assumes that acting G is a rotation group.
We gave SteerableCNN a competitive advantage by training the model with classification labels
on rotMNIST, and fine-tuned the final logit layer on all three datasets, consisting of the in-domain
dataset (rotMNIST) and two OOD datasets (rotFMNIST, rotKuzushiji-MNIST). SteerableCNN with
supervision outperforms all our baselines in the in-domain dataset, but not on the OOD datasets. We
believe that this is because, as pointed out in (Cohen et al., 2018), SteerableCNN functions as a
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g-NFT G-NFT DFT (Nf = 16)
Noiseless 3.59 (±1.29) ×10−5 1.98 (±1.89) ×10−2 8.10
σ = 0.01 2.62 (±0.26) ×10−4 2.42 (±1.19) ×10−2 –
σ = 0.05 1.42 (±0.14) ×10−3 5.82 (±1.15) ×10−2 –
σ = 0.1 2.53 (±0.09) ×10−3 1.16 (±0.22) ×10−1 –

Table 1: Reconstruction error of data compression for time-warped 1d signals
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Figure 7: OOD generalization ability of NFT trained on rotMNIST. Top Left: Prediction by g-
NFT with various maximum frequencies lmax. Bottom Left: Prediction errors of g-NFT. Right:
Classification accuracy of linear probe, compared against autoencoder (AE), SimCLR (Chen et al.,
2020), the invariant autoencoder (IAE) (Winter et al., 2022) and supervised model including Cn

steerable CNN (Cohen and Welling, 2017) and SO(2) steerable CNN (Weiler et al., 2018). Each
line is the mean of the accuracy over 10 seeds, with the shaded area being the standard deviation.

composition of filters that preferentially choose the frequencies that are relevant to the task used
in the training, so that the model learns G-linear maps that are overfitted to classify the rotMNIST
dataset. Also see Appendix E for rotMNIST with more challenging condition involving occlusion.

Learning 3D Structure from 2D Rendering. We also applied g-NFT to the novel view synthesis
from a single 2D rendering of a 3D object. This is a challenging task because it cannot be formulated
as pixel-based transformation — in all renderings, the rear side of the object is always occluded. We
used three datasets: ModelNet10-SO3 (Liao et al., 2019) in 64× 64 resolution, BRDFs (Greff et al.,
2022) (224 × 224), and ABO-Material (Collins et al., 2022) (224 × 224). Each dataset contains
multiple 2D images rendered from different camera positions. We trained the autoencoder with the
same procedure as for MNIST, except that we used Wigner D matrix representations of SO(3) with
lmax = 82. We used Vision Transformer (Dosovitskiy et al., 2021) to model Φ and Ψ.

The prediction results (Fig 8) demonstrate that g-NFT accurately predicts the 2D rendering of 3D
rotation. We also studied each frequency component by masking out all other frequencies before
decoding the latent. Please also see the rendered movie in the Supplementary material. Note that 0-
th frequency (F0) captures the features invariant to rotation, such as color. F1 (second row) captures
the orientation information, and higher frequencies extract symmetries of the object shapes. For
example, F3 depicts triangle-like shapes having rotational symmetry of degree 3, similar to the
spherical harmonics decomposition done in 3D space (Fig 18). See Appendix D for details.

6 RELATED WORKS AND DISCUSSIONS

As a tool in equivariant deep learning, group convolution (GC) has been extensively studied (Cohen
and Welling, 2017; Cohen et al., 2019; Krizhevsky et al., 2012). NFT differs from GC as well as FT
in that it does not assume g to act linearly on the input. In the words of (Kondor and Trivedi, 2018),
FT and GC assume that each instance x ∈ X is a function defined on homogeneous space, or the
copy of the acting group modulo the stabilizers. These methods must install the explicit knowledge
of the group structure into the model architecture (Finzi et al., 2021). (Kondor, 2008; Reisert and

2We used SO(2) representation for BRDFs however, since its camera positions have a fixed elevation.
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input input input

prediction
freq=0

1
2

3
4

all
GT

Figure 8: Novel view synthesis from a single image of a test object that is unseen during training
(from left to right: ModelNet, BRDFs, ABO). From bottom to top, we show ground truth, g-NFT
prediction, and the decoder output with k-th frequency only. As for ABO, the same backgrounds
were repeatedly used for both training and test datasets.

Burkhardt, 2007) have used group invariant kernel, but limited their scope to situations similar to
FT. When the action is linear, our philosophy of G-NFT also shares much in common with (Cohen
and Welling, 2014).

As other efforts to find the symmetry under nonlinear actions, (Dupont et al., 2020) took the ap-
proach of mapping the input to the latent space of volumetric form and applying the linear rotation
operation on the voxels, yielding an instance of g-NFT. (Shakerinava et al., 2022) uses different
types of invariants (polynomial) that are specific to group/family of groups, instead of linearlized
group actions in the form of representations. (Falorsi et al., 2018) maps the observations to the ma-
trix group of SO(3) itself. (Park et al., 2022) first maps the input to an intermediate latent space with
a blackbox function and then applies the convolution of known symmetry for contrastive learning.
Finally, Koopman operator (Brunton et al., 2022) is closely related to the philosophy of NFT in that
it linearizes a single nonlinear dynamic, but NFT differs in that it seeks the latent linear transitions
with structures (e.g frequencies) that are specific to group.

Most relevant to this work, (Miyato et al., 2022) presents an implementation of U-NFT and uses it
to disentangle the modes of actions. However, they do not present other versions of NFT (g-NFT,
G-NFT) and, most importantly, neither provide the theoretical foundations that guarantee the identi-
fiability nor establish the "learning of linearlized equivariance" as an extension of Fourier Transform.
By formally connecting the Fourier analysis with their results, the current work has shown that the
contextual disentanglement that was often analyzed in the framework of probabilistic generative
model (Zhang et al., 2020; Kim and Mnih, 2018) or the direct product of groups (Higgins et al.,
2018; Yang et al., 2021) may be described in terms of Fourier frequency as well. To our knowledge,
we are the first of a kind in providing a formal theory for seeking the linear representations on the
dataset with group symmetries defined with nonlinear actions.

7 LIMITATIONS AND FUTURE WORK

As stated in Sec 3.1, NFT requires a dataset consisting of (short) tuples because it needs to observe
the transition in order to learn the equivariance hidden in nonlinear actions; this might be a practical
limitation. Also, although NFT can identify the major frequencies of data-specific symmetry, it
does not identifiably preserve the norms in the latent space and hence the size of the coefficient
in each frequency, because the scale of Φ is undecided. Finally, while NFT is a framework for
which we have provided theoretical guarantees of existence and identifiability in general cases, the
work remains to establish an algorithm that is guaranteed to find the solution to eq.(3). As stated in
(Miyato et al., 2022), the proof has not been completed to assure that the AE loss of Sec 3.1 can find
the optimal solution, and resolving this problem is a future work of great practical importance.
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A ELEMENTS OF GROUP, ACTION, AND GROUP REPRESENTATION

In this first section of the Appendix, we provide a set of preliminary definitions and terminologies
used throughout the main paper and the Appendix section (Sec C) dedicated to the proofs of our
main results. For a general reference on the topics discussed here, see (Fulton and Harris, 1991), for
example.

A.1 GROUP AND GROUP REPRESENTATION

A group is a set G with a binary operation G×G ∋ (g, h) 7→ gh ∈ G such that (i) the operation is
associative (gh)r = g(hr), (ii) there is a unit element e ∈ G so that eg = ge = g for any g ∈ G,
and (iii) for any g ∈ G there is an inverse g−1 so that gg−1 = g−1g = e.

Let G and H be groups. A map φ : G → H is called homomorphism if φ(st) = φ(s)φ(t) for any
s, t ∈ G. If a homomorphism φ : G → H is a bijection, it is called isomorphism.

Let V be a vector space. The set of invertible linear transforms of V , denoted by GL(V ), is a group
where the multiplication is defined by composition. When V = Rn, GL(Rn) is identified with the
set of invertible n× n matrices as a multiplicative group.

For group G with unit element e and set X , a (left) action L of G on X is a map L : G× X → X ,
denoted by Lg(x) := L(g, x), such that Le(x) = x and Lgh = Lg(Lh(x)). If there is no confusion,
Lg(x) is often written by g ◦x.

For group G and vector space V , a group representation (ρ, V ) is a group homomorphism ρ : G →
GL(V ), that is, ρ(e) = IdV and ρ(gh) = ρ(g)ρ(h). A group representation is a special type of
action; it consists of linear maps on a vector space. Of particular importance, we say (ρ, V ) is
unitarizable if there exists a change of basis on V that renders ρ(g) unitary for all g ∈ G. It is
known that any representation of a compact group is unitarizable (Folland, 1994). Through group
representations, we can analyze various properties of groups, and there is an extensive mathematical
theory on group representations. See (Fulton and Harris, 1991), for example.

Let (ρ, V ) and (τ,W ) be group representations of G. A linear map f : V → W is called G-linear
map (or G-map) if f(ρ(g)v) = τ(g)f(v) for any v ∈ V and g ∈ G, that is, if the diagram in Fig 9
commutes.

V

f

��

ρ(g) // V

f

��
W

τ(g) // W

Figure 9: G-linear map

A G-map is a homomorphism of the representations of G. If there is a bijective G-map between two
representations of G, they are called G-isomorphic, or isomorphic for short.

Related to this paper, an important device in representation theory is irreducible decomposition. A
group representation (ρ, V ) is reducible if there is a non-trivial, proper subspace W of V such that
W is invariant to G, that is, ρ(g)W ⊂ W holds for any g ∈ G. If ρ is not reducible, it is called
irreducible.

There is a famous, important lemma about a G-linear map between two irreducible representations.

Theorem A.1 (Schur’s lemma). Let (V, ρ) and (W, τ) be two irreducible representations of a group
G. If f : V → W is G-linear, then f is either an isomorphism or the zero map.
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Figure 10: Simultraneous block diagonalization. Existence of such P is guaranteed if the represen-
tation is completely reducible. Note that the matrix P for the change of basis is common for all
g ∈ G.

A.2 IRREDUCIBLE DECOMPOSITION

A representation (ρ, V ) is called decomposable if it is isomorphic to a direct sum of two non-trivial
representations (ρU , U) and (ρW ,W ), that is

ρ ∼= ρU ⊕ ρW , (6)

If a representation is not decomposable, we say that it is indecomposable.

It is obvious that if a group representation is decomposable, it is reducible. In other words, an
irreducible representation is indecomposable. An indecomposable representation may not be ir-
reducible in general. It is known (Maschke’s theorem) that for a finite group, this is true; for a
non-trivial subrepresentation (τ, U) of (ρ, V ) we can always find a complementary subspace W
such that V = U ⊕W and W is G-invariant.

It is desirable if we can express a representation ρ as a direct sum of irreducible representations.
We say that (ρ, V ) is completely reducible if there is a finite number of irreducible representations
{(ρi, Vi)}mi=1 of G such that

ρ ∼= ρ1 ⊕ · · · ⊕ ρm. (7)

A completely reducible representation is also called semi-simple. If the irreducible components are
identified with a subrepresentation of the original (ρ, V ), the component ρi can be uniquely obtained
by a restriction of ρ to the subspace Vi. The irreducible decomposition is thus often expressed by a
decomposition of V , such as

V = V1 ⊕ · · · ⊕ Vm (8)

In the irreducible decomposition, there may be some isomorphic components among Vi. By sum-
marizing the isomorphic classes, we can have the isotypic decomposition

V ∼= Wn1
1 ⊕ · · · ⊕Wnk

k , (9)

where W1, . . . ,Wk are mutually non-isomorphic irreducible representations of G, and nj is the mul-
tiplicity of the irreducible representation Wj . The isotypic decomposition is unique if an irreducible
decomposition exists.

A group representation may not be completely reducible in general. However, some classes are
known to be completely reducible. For example,

• a representation of a finite group
• a finite-dimensional representation of a compact Lie group
• a finite-dimensional representation of a locally compact Abelian group

are completely reducible (Fulton and Harris, 1991).

If a representation (ρ, V ) is completely reducible, we can find a basis of V such that the represen-
tation can be expressed with the basis in the form of block diagonal components, where each block
corresponds to an irreducible component. Note that the basis does not depend on group element g,
and thus we can realize simultaneous block diagonalization (see Fig 10).

When complex vector spaces are considered, any irreducible representation of a locally compact
Abelian group is one-dimensional. This is the basis of Fourier analysis. For the additive group
[0, 1), they are the Fourier basis functions e2πkix (x ∈ [0, 1), k = 0, 1, . . .). See (Rudin, 1991), for
example, for Fourier analysis on locally compact Abelian groups.
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A.3 CHARACTERS

In this section, we introduce the idea of characters which is used in Sec 5.1. For a representation
(ρ, V ), the character χρ : G → C of ρ is defined as its trace

χρ(g) = trace(ρ(g))

This function has extremely useful properties in harmonic analysis, and we list two of them that we
exploit in this paper.

Property 1 (Invariance to change of basis) By its definition, character is invariant to change of
basis. That is, if (ρ, V ) and (ρ̃,W ) are two representations that are isomorphic so that there exists a
linear invertible map P : V → W , then

χρ̃(g) = trace(ρ̃(g)) (10)

= trace(P−1ρ(g)P ) (11)
= trace(ρ(g)) = χρ(g). (12)

Indeed, if V = W , P is just the change of basis.

Property 2 (Character orthogonality) Suppose that G is a compact group. Then group invariant
measure on G is a measure satisfying that

µ(A) = µ(gA) := µ({g ◦ a; a ∈ A}).
If dµ is a group invariant measure with

∫
G
dµ(g) = 1, then for all irreducible representations ρ and

ρ̃,

⟨ρ|ρ̃⟩ =
∫
G

χρ(g)χρ̃(g)dµ(g) =

{
1 if ρ and ρ̃ are isomorpohic
0 otherwise.

(13)

Thus, if M is a representation that is isomorphic to the direct sum of {ρk}, then by the linear
property of the trace, ⟨ρ|M⟩ is the number of components of the direct sum that are isomorphic to
ρ, and this is called multiplicity of ρ in M . For more detailed theory of characters, see (Fulton and
Harris, 1991).

B PROOF OF LEMMA 3.1

The following is a rephrase of Lemma 3.1.
Lemma B.1. Suppose that

Φ(g ◦x) = M(g)Φ(x) (14)
holds for any x ∈ X and g ∈ G. If span{Φ(X )} equals the entire latent space, then M(g) is a
group representation, i.e., M(e) = Id and M(gh) = M(g)M(h).

Proof. Take g = e in eq.(14). Then, Φ(x) = Φ(e ◦x) = M(e)Φ(x) for any x. It follows from the
assumption of {Φ(X )} that M(e) = Id holds. Next, by replacing x with h ◦x (h ∈ G) in eq.(14),
we have

Φ(g ◦ (h ◦x)) = M(g)Φ(h ◦x).

This implies
M(gh)Φ(x) = M(g)M(h)Φ(x),

from which we have M(gh) = M(g)M(h).

C PROOFS OF THEOREMS IN SEC 4

This section gives the proofs of the theorems in Sec 4. Throughout this section, we use X to denote
a data space, and assume that a group G acts on X .

In this paper, we discuss an extension of Fourier transform to any data. Unlike the standard Fourier
transform, it does not assume each data instance to be a function on some homogeneous space. To

15



Published as a conference paper at ICLR 2024

this end, we embed each point x ∈ X to a function space on X , on which a linear action or group
representation is easily defined. Recall that we can define a regular representation on a function
space H on X by

Lg : f(·) 7→ f(g−1·) (g ∈ G).

It is easy to see that g 7→ Lg is a group representation of G on the vector space H. In order to
discuss the existence of Φ into a latent space with linear action, we want to introduce an embedding
Φ : X → H and make use of this regular representation. The reproducing kernel Hilbert space is
a natural device to discuss such an embedding, because, as is well known to the machine learning
community, we can easily introduce the so-called feature map for such a Φ, which is a mapping
from space X to the reproducing kernel Hilbert space.

C.1 EXISTENCE

In this subsection, we will prove the existence part of Thm 4.1; that is, whenever there is a feature
space with G-invariant inner product structure, we can find a linear representation space for the data
space, which means that we can find an encoding space where the group action is linear.

RKHS with G-invariant kernel:
Proposition C.1. Suppose that K is a positive definite kernel on a topological space on X and
G acts continuously on X . Define Kg(x, y) := K(g−1x, g−1y) for g ∈ G. Then H(Kg) :=
{f(g−1·); f ∈ H(K)} is the RKHS corresponding to Kg for any g, and H(K) → H(Kg) defined
by ρ(g) : f(·) 7→ f(g−1·) is an isomorphism of Hilbert spaces.

Proof. It is clear that Kg(x, y) is positive definite and that ρ(g) is an invertible linear map. Let H0

be the dense linear subspace spanned by {Kg(·, x)}x in H(Kg). In the way of Moore’s theorem, we
equip H0 with the inner product via ⟨kg(x, ·), kg(y, ·)⟩Kg

= kg(x, y). First, note that Kg satisfies
the reproducing property for any function f ∈ H0. In fact, for f =

∑
n anKg(·, xn), we see

⟨f,Kg(·, x)⟩Kg =
∑
n

anKg(xn, x) = f(x).

Also, H(Kg) is the closure of the span of {kg(x, ·)} with respect to the norm defined by this inner
product. It is then sufficient to show that ρ(g) maps the linear span of {K(·, x)}x to H0 isometrically.
Consider fN (·) =

∑N
n=1 ank(xn, ·) ∈ H and note that

ρ(g)(fN ) = fN (g−1·) =
N∑

n=1

ank(xn, g
−1·) (15)

=

N∑
n

ankg(gxn, ·) ∈ H0. (16)

From this relation, we see

∥ρ(g)(fN )∥2Kg
=

∑
anamkg(gxn, gxm)

=
∑

anamk(xn, xm)

= ∥fN∥2K . (17)

This completes the proof.

Now, this result yields the following important construction of a representation space when K is
G-invariant.
Corollary C.2. Suppose that K is a positive definite kernel on X that is G-invariant in the sense
that K(g−1x, g−1y) = K(x, y) for any x, y ∈ X and g ∈ G. Then the reproducing kernel Hilbert
space H(K) is closed under the linear representation of G defined by

ρ(g) : f(·) → f(g−1·),

and ρ is unitary.
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Proof. If Kg = K, then H(Kg) = H(K) for any g, and thus ρ(g) acts on H(K) linearly. Also,
it follows from eq.(17) in the proof of Proposition C.1 that ∥h∥2K = ∥h(g−1·)∥2K for h ∈ H(K).
Therefore ρ(g) is unitary.

The following is just a restatement of the corollary C.2.
Corollary C.3. Let X be a set for which G-invariant positive definite kernel K exists. Then there
exists a latent vector space V that is a representation space of G, i.e., there is an equivariant map
Φ : X → V such that the action of G on V is linear. .

Proof. Simply define the map Φ : x → kx(·) = K(x, ·). Note that ρ(g) defines an appropriate group
representation on the span of {kx(·) = K(x, ·)} because kg ◦ x(·) = K(g ◦x, ·) = K(x, g−1·) =
ρ(g)kx(·) by the invariance property, and the result follows with V = H(K).

Thus, this result shows that an equivariant feature can be derived from any invariant kernel.

C.1.1 THE RICHNESS OF THE SPACE GENERATED BY GROUP INVARIANT KERNEL

Given a positive definite kernel K(x, y), the integral with the Haar measure easily defines a G-
invariant kernel. An important requirement for the G-invariant kernel is that it can introduce a
sufficiently rich reproducing kernel Hilbert space (RKHS) as a latent vector space so that any irre-
ducible representation is included. The following theorem shows that if the RKHS of the kernel K
is dense in L2(P ), then so is the RKHS of the derived G-invariant kernel.
Theorem C.4. Let G be a locally compact group acting continuously on a space X , and K be
a continuous positive definite kernel on X such that the corresponding reproducing kernel Hilbert
space HK is dense in L2(P ) with a probability measure P on X . Then, assuming that, for any
x, y ∈ X , the integral with right Haar measure µ is bounded

∫
G
|K(g ◦x, g ◦ y)|dµ(g) < C for a

constant C, the positive definite kernel defined by

KG(x, y) :=

∫
G

K(g ◦x, g ◦ y)dµ(g) (18)

is G-invariant such that the corresponding reproducing kernel Hilbert space is dense in L2(P ).

Proof. The invariance is easily confirmed since, for any a ∈ G,

KG(a ◦x, a ◦ y) =
∫
G

K(ga ◦x, ga ◦ y)dµ(g) =
∫
G

K(g ◦x, g ◦ y)dµ(g)

holds by the right invariance property of µ.

For the denseness in L2(P ), suppose that h ∈ L2(P ) is orthogonal to HKG
in L2(P ). It suffices to

show that h = 0.

It follows from the orthogonality that∫
X

∫
X

∫
G

K(g ◦x, g ◦ y)dµG(g)h(x)h(y)dP (x)dP (y) = 0. (19)

Let ϕ(x) := K(·, x) ∈ HK . From
∫
X
∫
X
∫
G
|K(g ◦x, g ◦ y)h(x)h(y)|dP (x)dP (y)dµ(g) ≤

C∥h∥2L2(P ), Fubini’s theorem tells that the left-hand side of eq.(19) equals to∫
G

∫
X

∫
X
K(g ◦x, g ◦ y)h(x)h(y)dP (x)dP (y)dµ(g)

=

∫
G

∫
X

∫
X

〈
ϕ(g ◦x)h(x), ϕ(g ◦ y)h(y)

〉
HK

dP (x)dP (y)dµ(g)

=

∫
G

∥∥Mh(g)
∥∥2
HK

dµ(g), (20)

where Mh(g) is defined by

Mh(g) :=

∫
X
ϕ(g ◦x)h(x)dP (x).
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Note that Mh : G → HK is well-defined and continuous by the Bochner integral, since∫
X
∥ϕ(g ◦x)h(x)∥HK

dP (x)

≤
(∫

X
∥ϕ(g ◦x)∥2HK

dP (x)

)1/2 (∫
X
|h(x)|2dP (x)

)1/2

=

(∫
K(g · x, g · x)dP (x)

)1/2

∥h∥L2(P )

is finite and continuous with respect to g.

It follows from eq.(19) and eq.(20) that∫
G

∥∥Mh(g)
∥∥2
HK

dµ(g) = 0

holds, which implies Mh(g) = 0. In particular, plugging g = e, we have∫
X
ϕ(x)h(x)dP (x) = 0.

The denseness of HK in L2(P ) implies that the integral operator h 7→
∫
X K(x, y)h(y)dP (y) is

injective, and thus we have h = 0, which completes the proof.

C.2 UNIQUENESS

Now that we have shown that any given kernel can induce an equivariant map, we will show the
other way around and establish Theorem 4.1.

Theorem C.5. Up to G-isomoprhism, the family of G-Invariant kernel K(x, y) on X has one-to-
one correspondence with the family of equivariant feature Φ : X → V such that the action on V is
unitarizable and V = Cl Span{Φ(x) | x ∈ X}.

Proof. We have shown in Proposition C.3 that an invariant kernel induces a linear representation
space with unitary representation. Note that, in the construction of Φ in C.3 from the kernel, the Φ
trivially satisfies the relation ⟨Φ(x),Φ(y)⟩ = K(x, y). Next we show that this correspondence from
H(K) to Φ is in fact one to one by reversing this construction and show that a given unitarizable
equivariant map Φ can correspond to a unique class of representations that are all isomorphic to
H(K) (isomorphism class of H(K)). In particular, we start from a unitarizable equivariant map
Φ : X → V to construct K, and show that V is isomorphic to H(K) itself as a representation space.

Let Φ : X → V be an equivariant map into a linear representation space (M,V ) with V =
Cl Span{Φ(x) | x ∈ X}. We assume WLOG that M(g) is unitary for all g because the assumption
guarantees that M can be unitarized with a change of basis, which is a G-isomorphic map. Let K
be a kernel defined by K(x, y) = ⟨Φ(x),Φ(y)⟩. This kernel is invariant by construction. We will
show that V is G-isomorphic to H(K).

To show this, we consider the map from V to H(K) defined as

J : V → H(K) such that J(u) = [x 7→ ⟨Φ(x), u⟩], (21)

where J(u) is a member of H(K) by the definition of K. We claim that ⟨Φ(g−1 ◦x), u⟩ =
⟨Φ(x), g ◦u⟩ for all u. To see this, note that any u ∈ Cl Span{Φ(x) | x ∈ X} can be rewritten
as u =

∑
i aiΦ(xi) for some sequence of ai. Thus

⟨Φ(x), g ◦u⟩ = ⟨Φ(x),
∑
i

aiM(g)Φ(xi)⟩ = ⟨M∗(g)Φ(x),
∑
i

aiΦ(xi)⟩ = ⟨Φ(g−1 ◦x), u⟩

(22)
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where M∗(g) = M(g−1) is the conjugate transpose of M(g). Therefore it follows that
J(M(g)u) = {x → ⟨Φ(x),M(g)u⟩} (23)

= {x → ⟨Φ(g−1 ◦x), u⟩} (24)
= g ◦ J(u) (25)

where the action of g on H(K) is the very unitary representation with g ◦ f(x) = f(g−1x) that
we defined in Sec C.1. Because J is trivially linear, this shows that J is a G-linear map with
standard action on H(K). Also, if ⟨Φ(x), u⟩ = ⟨Φ(x), v⟩ for all x, then u = v necessarily if
V = Cl Span{Φ(x) | x ∈ X}. Thus, the map J is injective. The map J is trivially surjective as
well, because JΦ(x) = kx and H(K) = Cl Span{kx | x ∈ X}. In fact, this is map induces an
isometry as well, because

⟨JΦ(x), JΦ(y)⟩K = ⟨kx, ky⟩K := K(x, y) = ⟨Φ(x),Φ(y)⟩ (26)
and thus validating the reproducing property ⟨JΦ(x), Ju⟩K = ⟨Φ(x), u⟩ = Ju(x). Finally, this
isomorphism holds for any Φ satisfying K(x, y) = ⟨Φ(x),Φ(y)⟩. In summary, Any group invariant
K corresponds to a unique linear representation space H(K), and any family of unitarizable equiv-
ariant map Φs that are G-isomorphic to each other corresponds to a unique G-invariant kernel K
corresponding to H(K) with K(x, y) = ⟨Φ(x),Φ(y)⟩.

When the group of concern is compact, this result establishes the one-to-one correspondence with
any equivariant map because all the representations of a compact group are unitarizable (Folland,
1994).

This result also derives the following collorary claimed in Sec 4.
Corollary C.6. Suppose that Φi : X → Vi is an invertible equivariant map into a linear represen-
tation space (Mi, Vi) for i = 1, 2. Then V1 and V2 differ by G-isomorphic map.

Proof. By the previous claim, if Ki(x, y) := ⟨Φi(x),Φi(y)⟩ then it suffices to show that H(K1)
and H(K2) are G-isomorphic. By the invertivility of Φk and the previous result, L : K1(x, ·) →
K2(x, ·) is an invertible map on K1(X , ·). This trivially induces G-isomoprhism between H(K1)
and H(K2) because L(K1(g

−1 ◦x, ·)) = K2(g
−1 ◦x, ·) = g ◦K2(x, ·) and Ki(x, ·) generates

H(Ki).

C.3 FOURIER FILTER

In this paper, we are building a theoretical framework that utilizes an equivariant encoder Φ : X →
V into linear representation space V satisfying

Φ(g ◦X) = D(g)Φ(X) D : G → GL(V ), D(g)D(h) = D(gh)∀g, h ∈ G (27)
together with a decoder Ψ. In this section, we make a claim regarding what we call "Filtering
principle" that describes the information filtering that happens in the optimization of the following
loss:

L(Φ,Ψ|P,PG) = EX∼P,g∼PG
[∥g ◦X −ΨΦ(g ◦X)∥2] (28)

where Φ is to be chosen from the pool of equivariant encoder and Ψ is chosen from the set of all
measurable maps mapping V to X . We consider this loss when both P and PG are distributions
over X and G with full support.

C.3.1 LINEAR FOURIER FILTER

Let us begin from a restrictive case where X is itself a representation space (inner product vector
space) with unitary linear action of G granting the isotypic decomposition

X =
⊕
b

Vb (29)

where Vb is the direct sum of all irreducible representations of type b. Vb is called isotypic space of
type b (Clausen and Baum, 1993; Ceccherini-Silberstein et al., 2007).

In order to both reflect the actual implementation used in this paper as well as to ease the argument,
we consider the family of equivariant maps Φ : X → W that satisfy the following properties:
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Definition C.7. (Multiplicity-unlimited-Mapping)
Let X be a representation space of G and IX be the set of all irreducible types present in X . Suppose
we have a vector space W with a linear action of G and an equivariant map Φ : X → W . In this
case, we use IΦ to be the set of all irreducible types present in Φ(X ). We say that Φ is a multiplicity-
unlimited map if the multiplicity of any b ∈ IΦ is equal to that of b in X .

Thus, in terms of the characters, if G acts on Φ(X ) with the representation MΦ and G acts on X
with the representation M (that is, if Φ(g ◦x) = MΦ(g)Φ(x) and g ◦x = M(g)x $forallx ∈ X ) ,
then ⟨ρ|M⟩ = ⟨ρ|MΦ⟩ whenever ⟨ρ|M⟩ > 0.

Given an equivariant map Φ : X → W , where W is a vector space with linear action, let CΦ(X )
denote the set of all measurable map from W to X . We also use Pb to be the projection of X onto
Vb, and let Vb = PbX . Because each Vb is a space that is invariant to the action of G, Pb can be
shown to be a G-linear map (Clausen and Baum, 1993). With these definitions, we then make the
following claim:
Proposition C.8. Fix a representation space X , a distribution P on X , and PG on G. With the
assumptions set forth above, let M be the set of all multiplicity-unlimited linear equivariant map
from X to some vector space W with a linear action. For any given Φ ∈ M, define

L(Φ) := min
Ψ∈CΦ(X )

L(Φ,Ψ|P,PG),

where L(Φ,Ψ|P,PG) is given by eq.(28). Then

L(Φ) =
∑
b̸∈IΦ

EP [∥Vb∥2]Rb(IΦ) (30)

for some set-dependent functions Rb.

Proof. Let Pb be the projection of X onto Vb, so that

L(Φ,Ψ|P,PG) =
∑
b

E[∥g ◦Vb − PbΨΦ(g ◦X)∥2]

=
∑
b

Rb(Ψ,Φ|P,PG) (31)

where Vb = PbX and the integrating distributions (P,PG) in the suffix of E are omitted for brevity.
Now, it follows from the definition of conditional expectation that

min
Ψ

Rb(Ψ,Φ|P,PG) = E[g ◦Vb − E[g ◦Vb | Φ(g ◦X)]]

= E[g ◦Vb − E[g ◦Vb | {g ◦Vk; k ∈ IΦ}]] (32)

The second equality follows from Schur’s lemma (Thm A.1) assuring that Φ restricted to each Vk is
an isomorphism for each k ∈ IΦ. We see in this expression that if b ∈ IΦ, then minΨ Rb(Ψ,Φ) = 0
because E[g ◦Vb | {g ◦Vk; k ∈ IΦ}] = g ◦Vb whenever b ∈ IΦ. We therefore focus on b ̸∈ IΦ and
show that Rb with b ̸∈ IΦ scales with E[∥Vb∥2]. First, note that because the norm on X is based on
G-invariant inner product, E[∥g ◦Vb∥2] = E[∥Vb∥2]. Next note that, for any scalar a > 0, we have

E[g ◦ aVb | {g ◦Vk; k ∈ IΦ}] = aE[g ◦Vb | {g ◦Vk; k ∈ IΦ}]. (33)

Therefore

min
Ψ

EX∼P,g∼PG
[∥g ◦ aVb − PbΨΦ(g ◦X)∥2] = E[∥g ◦ aVb − E[g ◦ aVb | Φ(g ◦X)]∥2] (34)

= a2E∥g ◦Vb − E[∥g ◦Vb | Φ(g ◦X)∥2] (35)

= a2 min
Ψ

Rb(Φ,Ψ|P,PG) (36)

Thus there is a distribution Pb
1 of X with EPb

1
[∥Vb∥2] = 1 such that, by factoring out EP [∥Vb∥2] as

we did a in the expression above, we can obtain

min
Ψ

Rb(Φ,Ψ|P,PG) = EP [∥Vb∥2]
(
min
Ψ

Rb(Φ,Ψ|Pb
1 ,PG)

)
(37)
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indicating that minΨ Rb(Φ,Ψ|P,PG) scales with EP [∥Vb∥2] for every choice of IΦ. Finally,
see from eq.(32) that minΨ Rb(Φ,Ψ|P1,PG) depends only on IΦ , so define Rb(IΦ) :=
minΨ Rb(Φ,Ψ|P1,PG). Because Ψ can be chosen on each Vb separately for each b, we see that

L(Φ) =
∑
b ̸∈IΦ

EP [∥Vb∥2]Rb(IΦ). (38)

From this result we see that the optimal solution the optimal Φ∗,Ψ∗ in the linear case can be found
by minimizing

∑
b̸∈IΦ

EP [∥Vb∥2]Rb(IΦ) about IΦ with Φ ∈ F so that
∑

b∈IΦ
dim(Vb) ≤ dim(W )

and find the corresponding Ψ by setting Ψb(V ) = PbΨ(V ) = E [Vb|{Vk; k ∈ IΦ}] . This is indeed
an optimization problem about the discrete set IΦ. We also claim the following about the depen-
dency of the solution to this problem on the norms of Vb.

Corollary C.9. For J ⊂ IΦ, define ℓ(J) =
∑

b∈J EX∼PE[∥Vb∥2]. For any Φ1 and Φ2, we have
L(Φ1) > L(Φ2) if (1) IΦ1

⊂ IΦ2
or (2) ℓ(IΦc

1
) is sufficiently larger than ℓ(IΦc

2
).

Proof. If IΦ1
⊂ IΦ2

, then note that

L(Φ) = min
Ψ

L(Φ,Ψ|P,PG) = E[∥g ◦X −ΨΦ(g ◦X)∥2]

= E[∥g ◦X − E[g ◦X|Φ(g ◦X)∥2]
= E[g ◦V − E[g ◦V | {g ◦Vk; k ∈ IΦ}]],

(39)

Because σ({g ◦Vk; k ∈ IΦ2}) ⊃ σ({g ◦Vk; k ∈ IΦ1}) where σ is the sigma field, it trivially follows
that L(Φ1) > L(Φ2) by the definition of the conditional expectation.

Next, if IΦ1
̸⊂ IΦ2

, note that L(Φ) = minΨ∈CΦ(X ) L(Φ,Ψ|P,PG) satisfies

cu(IΦ)
∑
b̸∈IΦ

EP [∥Vb∥2] ≥ L(Φ) =
∑
b̸∈IΦ

EP [∥Vb∥2]Rb(IΦ) ≥ cl(IΦ)
∑
b ̸∈IΦ

EP [∥Vb∥2] (40)

for some cu and cl. Thus, if∑
b̸∈IΦ1

EP [∥Vb∥2] >
cu(IΦ2

)

cl(IΦ1
)

∑
b̸∈IΦ2

EP [∥Vb∥2] (41)

Then

L(Φ1) ≥ cl(IΦ1)
∑

b̸∈IΦ1

EP [∥Vb∥2] ≥ cu(IΦ2)
∑

b̸∈IΦ2

EP [∥Vb∥2] > L(Φ2) (42)

Then L(Φ1) > L(Φ2) is guaranteed. In other words, We have L(Φ1) > L(Φ2) when ℓ(IΦc
1
) is

sufficiently larger than ℓ(IΦc
2
).

C.3.2 NONLINEAR FOURIER FILTER

In this section, we extend the argument in the previous section to a more general situation in which
X is not necessarily a representation space itself. Before we proceed, a word of caution is in order
regarding the space on which the encoder Φ is to be searched in the optimization process.

As is the case in many applications, we set our goal to find Φ from a set of functions with certain
smoothness, and we use this smoothness property to relate the harmonic information captured in
the latent space. In analogy to this argument, we thus restrict the search space of our encoder Φ
to a space of functions with a certain level of smoothness in order to make the claims meaningful.
Therefore, in this section, we assume that there exists a G-invariant kernel K(·, ·), and that we are
searching the encoder from the space of equivariant functions from X to some vector space V over
R satisfying the following properties:
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X

Φ
""

F // H(K)

µΦ

��
V

Figure 11: The commuting relation established by Lemma C.11

Definition C.10. Let K be a G-invariant positive definite kernel on X , and H(K) be the RKHS
corresponding to K. A map Φ : X → V for some Hilbert space V is called a H(K)-continuous
equivariant map if the following two conditions are satisfied;

1. The action of g on Φ(x) is linear; that is, there exits a representation DΦ : G → GLR(V ) such
that DΦ(g)Φ(x) = Φ(g ◦x).

2. For all v ∈ V , the map x 7→ ⟨v, ϕ(x)⟩V belongs to H(K).

We first show that any H(K)-continuous equivariant map factors through the map from X to H(K)
(Fig 11).
Lemma C.11. Suppose that K is a G-invariant positive definite kernel on X and Φ is a H(K)-
continuous equivariant map from X to V . For the canonical embedding F : X → H(K), x 7→ kx,
there exists a linear equivariant map µΦ : H(K) → V such that Φ = µΦ ◦F , where H(K) admits
the linear regular action ρ(g) : f 7→ f(g−1·).

Proof. Because ⟨v,Φ(·)⟩V ∈ H(K) for any v by assumption, there is fΦ
v ∈ H(K) such that

⟨v,Φ(x)⟩ = ⟨fΦ
v , kx⟩H , where ⟨ , ⟩H is the inner product of H(K). This being said, if {ei} is the

orthonormal basis of V , we have

Φ(x) =
∑
i

ei⟨ei,Φ(x)⟩V

=
∑
i

ei⟨fΦ
i , kx⟩H

Motivated by this expression, let us define the linear map µΦ : H(K) → V by

µΦ : h 7→
∑
i

ei⟨fΦ
i , h⟩H . (43)

We claim that the diagram Fig 11 commutes and µΦ is equivariant.

First, it follows from eq.(43) that

µΦ(kx) =
∑
i

ei⟨fΦ
i , kx⟩H =

∑
i

ei⟨ei,Φ(x)⟩V = Φ(x), (44)

which means µΦ ◦F (x) = Φ(x). Recall that the linear action ρ is defined by ρ(g) : h(·) 7→ h(g−1·).
Then, we have ρ(g)kx = K(x, g−1 ◦ ·) = K(g ◦x, ·) = kg ◦ x, and thus, using eq.(44),

µΦ(ρ(g)kx) = µΦ(kg ◦ x)

= Φ(g ◦x)

= D(g)Φ(x).

Because the span of {kx | x ∈ X} is dense in H(K), the above equality means the equivariance of
µΦ.

Now, with Lemma C.11, we may extend the definition of multiplicity free map Φ that is H(K)-
continuous equivariant map.
Definition C.12. (Multiplicity-unlimited mapping, General) We say that a H(K)-continuous equiv-
ariant map Φ : X → V is multiplicity unlimited if µΦ constructed in the way of C.11 is a multiplicity
unlimited map. Let us denote by IΦ the set of all irreducible types present in V . Also, let us use Pb to
denote the projection of F (X ) onto the bth isotypic component Vb of F (X ), and let Vb = PbF (X).
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X �
� // H(K) ∼= FΦ ⊕ F c

ΦµΦ

// // FΦ
∼= V

With this definition in mind, we can extend the argument in Proposition C.11 to the nonlinear case
if the F part of the decomposition Φ = µΦ ◦F is a cF -BiLipschitz injective map.
Theorem C.13. Suppose that there exists a G-invariant kernel K on X for which the map F : x →
K(x, ·) is a cF -biLipschitz injective map, and define M(K) to be the set of all H(K)-continuous
equivariant, multiplicity unlimited maps Φ into a vector space V with a linear action. We use Fb

to denote the map of X into b-th isotypic component of H(K). For any given Φ ∈ M(K), define
L(Φ) = minΨ∈C(V) L(Φ,Ψ|P,PG) , where C(X ) is the set of all measurable maps from V to X .
Also, define ℓ(J) =

∑
b∈J EX∼PE[∥Vb∥2] with Vb being the bth isotypic component of F (X) and

assume that there is some δ such that E[∥Vb∥2] > δ. Then for any Φ1 and Φ2 with IΦ1 ̸= IΦ2 we
have L(Φ1) > L(Φ2) if (1) IΦ1 ⊂ IΦ2 or (2) ℓ(Ic

Φ1
) is sufficiently larger than ℓ(Ic

Φ2
).

Proof. Using the similar logic as in the linear case, we establish the claim by showing that L(Φ) :=
minΨ L(Φ,Ψ|P,PG) is bounded from above and below by∑

cu(I(Φ))E[∥Vb∥2] ≥ L(Φ) ≥
∑

cl(I(Φ))E[∥Vb∥2] (45)

for some cl and cu. Assume the same F used in Lemma C.11, and let Fb be the bth isotypic
component of F . To show the lower bound, by BiLipschitz property of F we have

min
Ψ

L(Φ,Ψ|P) ≥ cF min
Ψ

E[∥F (g ◦X)− F (ΨΦ(g ◦X)∥2] (46)

≥ cF min
Ψ

∑
b

E[∥Fb(g ◦X)− Fb(ΨΦ(g ◦X)∥2] (47)

≥ cF
∑
b

min
Ψ

E[∥Fb(g ◦X)− Fb(ΨΦ(g ◦X)∥2] (48)

≥ cF
∑
b ̸∈IΦ

E[∥g ◦Vb − E[g ◦Vb|Vb; b ∈ IΦ]∥2] (49)

where in the last inequality, we used the optimality of conditional expectation and the fact that in the
factorization Φ = µΦF , µΦ(X) has the same sigma algebra as {Vb; b ∈ IΦ} under the multiplicity
unlimited setting. Because the formula above is of the same form as eq.(39), we are done with the
lower bound here with the same logic as in the linear case. As for the Upper bound, again we have
from the BiLipschitz property that

L(Φ) = min
Ψ

L(Φ,Ψ|P) ≤ cF min
Ψ

E[∥F (g ◦X)− F (ΨΦ(g ◦X)∥2] (50)

= cF min
Ψ

∑
b

E[∥Fb(g ◦X)− Fb(ΨΦ(g ◦X))∥2] (51)

Now, noting that Φ = µΦF under multiplicity unlimited setting is injective on its image and writing
FΦ = PΦF to be the projection of F onto the representations corresponding to IΦ, Ψ can be chosen
to an invertible map that maps the image of Φ back to its preimage so that, by using the fact that µΦ

is invertible on IΦ component, we have FΦ(x) = FΦΨΦ(x) for x ∈ X .

To construct such Ψ, write Φ = µΦF , and for some x ∈ X , consider µ−1
Φ (Φ(x)), which is pos-

sibly a set. Here, we may take a specific section Aϕ(x) ∈ F (X ) of µΦ, and define Ψ so that
Ψ(Φ(x)) = F−1Aϕ(x) because F maps X to its image injectively. This way, FΨΦ(x) = Aϕ(x)
and FΦΨΦ(x) = PΦAϕ(x). Because the choice of the section for each x is arbitrary, let
us take the section such that the norm of its projection P c

ΦAϕ(x) := P c
ΦFΨΦ(x) is minimal

amongst all members of µ−1
Φ (Φ(x)), where P c

Φ is the projection to {Vb|IΦ}. This way, we have
∥FbΨΦ(x)∥ ≤ ∥Fb(x)∥ whenever b ̸∈ IΦ.

As for when b ∈ IΦ, note by the definition µΦAϕ(x) = Φ(x) = µΦF (x) = µΦFΦ(x) and by
Schur’s lemma, µΦAϕ(x) = µΦPΦAϕ(x), so µΦPΦAϕ(x) = µΦFΦ(x). Because µΦ is invertible
on FΦ(X ) by Schur’s lemma and multiplicity-free condition, this shows that FΦ(x) = PΦAϕ(x)
because PΦAϕ(x) ∈ FΦ(X ). Altogether we have FΦΨΦ(x) = FΦ(x) as desired.
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With such Ψ, we have FbΨ(Φ(x)) = Fb(x) whenever b ∈ IΦ as well. Thus, for such a chosen Ψ,
L(Φ) may be bounded from above by

cF
∑
b̸∈IΦ

E[∥g ◦Vb − Fb(ΨΦ(g ◦X))∥2] (52)

Now, note that∑
b̸∈IΦ

E[∥g ◦Vb − Fb(ΨΦ(g ◦X))∥2] ≤
∑
b ̸∈IΦ

E[∥g ◦Vb∥2] + E[∥Fb(ΨΦ(g ◦X))∥2] (53)

= 2
∑
b ̸∈IΦ

E[∥g ◦Vb∥2] (54)

= 2
∑
b ̸∈IΦ

E[∥Vb∥2] (55)

by the choice of the section we chose to construct Ψ. This would define the upper bound∑
b ̸∈IΦ

2cFE[∥Vb∥2] and the same logic as in the linear case follows from here.

This statement tells us that, if a certain set of isotypes captures significantly more dominant infor-
mation than others, then NFT will prefer the very set of isotypes over others. Indeed, if ℓ(Ic

Φ1
) is

sufficiently larger than ℓ(Ic
Φ2

), it will mean that the set of isotypes that Φ1 is excluding from H(K)
is so much larger in the dataset than those excluded by Φ2 that it is more preferable to choose Φ2

than Φ1. This way, the solution to the autoencoding problem is determined by the contribution of
each frequency space to the dataset.
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D DETAILS OF EXPERIMENTS

D.1 COMPRESSION OF DEFORMED DATA

In this section we provide the details of the signal compression experiment in Sec 5.1, along with
the additional visualization of the reconstructed results.

Dataset: The dataset was constructed as described in Sec 5.1, and the velocity of the shift was
chosen from the range [0, 64].

Models: For the encoder and decoder, MLP with two hidden layers is used. The intermediate di-
mensions and the activations of the network are as follows:
g-NFT (g known): Encoder 128-256-256-32, Decoder 32-256-256-128. activation=ReLU.
G-NFT (G known, but g unknown): Encoder 128-512-512-32, Decoder 32-512-512-128. activa-
tion=Tanh.

Visualization of the reconstructed signals:

(A) Blue: Reconstruction with NFT (g known). Red: noisy training data.

(B) Blue: Reconstruction with DFT. Red: Noiseless test data.

Figure 12: Reconsturction of NFT and DFT for nonlinearly transformed functions. Times in these
figures are scaled by 1/128.

As we can see in Fig 12, by the nonlinear transform t 7→ t3, the left area around the origin is
flattened, and the right area around t = 1 is compressed. As a result, the deformed signal has a
broader frequency distribution than the original latent signal (see Fig 3 also). The results in Fig 12
depict that the standard DFT, which is applied directly to the deformed signal, fits the left area with
undesirable higher frequencies, while fitting the right area with an over smoothed signal. The NFT
accurately reconstructs the signal in all the areas.

D.2 1D SIGNAL HARMONIC ANALYSIS SEC 5.1

In this section we provide more details of the 1d signal experiment, along with the more detailed
form of the objective we used to train the encoder and decoder. We also provide more visualizations
of the spectral analysis (Fig 14).

Dataset: The dataset was constructed as described in Sec 5.1, and the velocity of the shift was
chosen from the range [0, 64], which suffices for the computation of the character inner product for
real valued sequence of length 128.

Model: For both encoder and decoder, we used the same architecture as in D.1. However, the latent
space dimension was set to be 10×16, which is capable of expressing at most 10/2 = 5 frequencies.
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Figure 13: The plot of E[⟨M |ρf ⟩] (Left) and the plot of E[⟨Bi|ρf ⟩] for each block of the block-
diagonalized Ms(right) when the major frequencies are {8, 15, 22, 40, 45} and minor frequencies
with weak coefficients are {18, 13}. We can confirm in the plot that major spikes only occur at
major frequencies, and that each block corresponds to a single major frequency. Note that, when
there are noise frequencies, they are slightly picked up in the overall spectrum of M (Left). However,
as seen in Sec 5.1, each block in the block diagonalization of M contributes only slightly to the
noise frequencies, distributing the noise over the entire M instead of corrupting a specific dominant
frequency. With this character analysis, we can identify the major frequencies almost perfectly by
using an appropriate threshold (Fig 14).

Figure 14: (Left)Other visualizations of E[⟨M |ρf ⟩] plotted against f on the deformed signal datasets
generated with different sets of major/minor frequencies. On any one of these plots, we can iden-
tify the major frequencies by simply looking for the set of fs for which E[⟨M |ρf ⟩] is above some
threshold. (Right) ROC curve of the major-frequency identification with different thresholding val-
ues, computed over 100 datasets with randomly selected 5 major frequencies and 2 minor frequen-
cies. Note that, on this setting of frequency detection, there are always 5/64 frequencies that are
"positive". When normalized by (1-5/64), AUC was 0.97.
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Figure 15: Prediction of shift under fish-eye deformation. Each predicted sequence is placed above
the ground truth sequence. The predictions are computed as Ψ(MkΦ(x0)), where M is being
regressed from the encoding of the first two frames (x0, x1).

D.3 PREDICTION OF THE SHIFT UNDER FISHEYE DEFORMATION IN SEC 5.1

We provide the details of the experiment on fisheye-deformed shift in Sec 5.1. We also provide more
visualizations of the predicted sequence (Fig 15).

Dataset: For the fisheye prediction, the sequence of images was constructed from Cifar100 by first
applying a sequence of horizontal shifts with random velocity in the range of 0 : 16 pixels, and by
applying the fisheye transformation (defisheye Contributors, 2019).

Model: For the encoder and decoder, ViT architecture was used with mlp-ratio=4, depth=8, number
of heads=6 and embed dimension = 256, and the model was trained over 200000 iterations with
Adam (lr=0.01). We decayed the learning rate linearly from 80000-th iteration. In the training of
encoder and decoder in U-NFT, the transition matrix M from the first to the second frame was
validated at the third and the fourth frame to compute the loss (Same as in eq.(5) with T = 2, but
used E[∥x2 −Ψ(M∗(x1))∥2 + ∥x3 −Ψ(M2

∗ (x1))∥2] to optimize (Φ,Ψ)).

D.4 DETAILS OF SO(2) EXPERIMENTS (SECTION 5.2)

In this section we provide the details of the rotated MNIST experiment in Section 5.2. In this set
of experiments, we used OOD task to compare the representation learned by the encoder Φ against
other representation learning method as well as supervised methods. As representation learning
methods, we trained an autoencoder (AE), SimCLR (Chen et al., 2020), the invariant autoencoder
(IAE) (Winter et al., 2022) and MSP (Miyato et al., 2022). We used two-layer CNN for both the
encoder (and decoder) of these models. To evaluate these methods, we first trained the encoder Φ on
the in-distribution training set, and then trained the linear classifier on the out of distribution dataset
by optimizing

CrossEntropy(Softmax(WTΦ(X)), Y )

with respect to W using the fixed Φ, where Y is the label of X . In Figure 7, we reported the size of
the out-of-distribution dataset used to train W as num-finetune-data.

For the supervised methods to compare against NFT, we used the two-layer CNN, Cn (cyclic group)
steerable CNN (Cohen and Welling, 2017), and SO(2) steerable CNN Weiler et al. (2018). For the
training of these models, we simply trained the cross entropy loss on the in-distribution training set,
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and fine-tuned the final softmax layer on the out-of-distribution dataset to evaluate the OOD perfor-
mance. In particular, we simultanesouly trained both W and the parameters of Net to minimize

CrossEntropy(Softmax(WT Net(X)), Y )

on the in-distribution set, and exclusively fine-tuned W on the out-of-distribution set.

For steerable networks, we implemented them based on escnn library (Cesa et al., 2022) We used
the same architecture described in
https://github.com/QUVA-Lab/escnn/blob/master/examples/model.ipynb
for Cn CNN and https://uvadlc-notebooks.readthedocs.io/en/latest/
tutorial_notebooks/DL2/Geometric_deep_learning/tutorial2_
steerable_cnns.html#SO(2)-equivariant-architecture for SO(2) CNN.

For g-NFT and MSP, we reshaped the dadm-dimensional output of the encoder into a da × dm
matrix so that it is compatible with the group representation matrix M ∈ Rda×da acting from left.
For g-NFT, because we know the irreducible representations of SO(2), we modeled the transition
matrix in the latent space as representation M(θ) with frequency up to lmax = 2. We thus used the
same parametrization as in the compression experiment of Sec 5.1 except that we used 1× 1
identity matrix for the frequency 0, producing (2lmax + 1)× (2lmax + 1) matrix. We then trained
(Φ,Ψ) with Φ having the latent dimension R(2lmax+1)×dm . We trained each model for 200 epochs,
which took less than 1 hour with a single V100 GPU. We used AdamW optimizer (Loshchilov and
Hutter, 2017) with β1 = 0.9 and β2 = 0.999.

The hyperparameter space and the selected hyperparameters for each method were as follows:

• autoencoder learning rate (LR): 1.7393071138601898e-06, weight decay (WD):
2.3350294269455936e-08

• supervised LR: 0.0028334155436987537, WD: 4.881328098770217e-07
• SimCLR (Chen et al., 2020) projection head dim: 176, temperature: 0.3296851654086481,

LR: 0.0005749009519935808, WD: 2.7857915542790035e-08
• IAE (Winter et al., 2022) LR: 0.0013771092749156428, WD: 1.2144233629665408e-06
• Steerable(C_N) angular resolution n: 28, LR: 0.002736272679599058, WD:

6.569644997770058e-06
• Steerable(SO2) maximum frequency: 4, LR: 0.003013815048663727, WD:

7.33786837736026e-06
• MSP (Miyato et al., 2022) da: 9, latent dimension dm: 252, LR: 1.2124794217519062e-05,

WD: 0.016388489985789633
• g-NFT maximum frequency lmax: 2, dm: 180, LR: 0.000543795556795646, WD:

0.0006491627240310113

The hyperparameters of each baseline, such as the learning rate and lmax, were selected by
Optuna (Akiba et al., 2019) based on the test prediction error on MNIST.

Although IAE is designed to be able to estimate each group action g, we supervised g in this
experiment to make a fair comparison to other g-supervised baselines. As the loss function for
g-NFT, we used the sum of the autoencoding loss defined in Theorem 4.2 together with the
alignment loss: ∥Φ(g ◦X)−M(g)Φ(X)∥2. This loss function promotes the equivariance of the
encoder Φ. See Fig 16 for more visualizations of the reconstruction with different values of lmax.

D.5 DETAILS OF 3D EXPERIMENTS (SECTION 5.2)

In this section we provide the details of the experiment on the rendering of 3D objects
(ModelNet10-SO3, Complex BRDFs, ABO-Material). All the experiments herein were conducted
with 4 V100 GPUs.

ModelNet10-SO3 The dataset in this experiment contains the object-centered images of 4,899
CAD models3. Each image was rendered with the uniformly random camera position g ∈ SO(3).

3https://github.com/leoshine/Spherical_Regression/tree/master/S3.3D_
Rotation
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The CAD models were separated into a training set (100 images for each CAD model) and a test
set (20 images for each). We downscaled the image resolution to 64× 64. We used the vision
Transformer (ViT) for the encoder and the decoder. The encoder consisted of 9 blocks of
512-dimensional embedding and 12 heads. The decoder consisted of 3 blocks of 256-dimensional
embedding and 6 heads. The patch size was 4× 4 and MLP-ratio was 4 for both networks. We set
dm = 64 and lmax = 8. The encoder output was converted to the da × dm matrix by
EncoderAdapter module defined by the following PyTorch pseudocode.

from t o r c h i m p o r t nn
from e i n o p s . l a y e r s . t o r c h i m p o r t R e a r r a n g e

c l a s s Encode rAdap te r ( nn . Module ) :
d e f _ _ i n i t _ _ ( s e l f , num_patches , embed_dim , d_a , d_m ) :

s e l f . n e t = nn . S e q u e n t i a l (
nn . L i n e a r ( embed_dim , embed_dim / / 4 ) ,
R e a r r a n g e ( ’ b n c −> b c n ’ ) ,
nn . L i n e a r ( num_patches , num_patches / / 4 ) ,
nn .GELU( ) ,
nn . LayerNorm ( [ embed_dim / / 4 , num_patches / / 4 ] ) ,
R e a r r a n g e ( ’ b c n −> b ( c n ) ’ ) ,
nn . L i n e a r ( embed_dim * num_patches / / 16 , d_a * d_m ) ,
R e a r r a n g e ( ’ b (m a ) −> b m a ’ , m=d_m ) ,

)

d e f f o r w a r d ( s e l f , e n c o d e r _ o u t p u t ) :
r e t u r n s e l f . n e t ( e n c o d e r _ o u t p u t )

We also used a similar network before the decoder to adjust the latent variable. We used AdamW
optimizer with batch size 48, learning rate 10−4, and weight decay 0.05. We didn’t use the
alignment loss described in Sec D.4. We trained the model for 200 epochs, which took 3 days.

Complex BRDFs : The dataset in this experiment contains the renderings of ShapeNet objects
from evenly placed 24 views4. The camera positions in this experiment are constrained on a circle
with a fixed radius so the group action of moving the camera position can be interpreted as the
action of SO(2) rather than SO(3). We used 80% of the objects for training and 20% for testing.
Following the terminology of the ViT family5, We used ViT-B/16 for the encoder and ViT-S/16 for
the decoder. The learning rate was 3e-4. We trained the model for 100 epochs, which took 1.5
days. Other settings were the same as the ones we used in the ModelNet experiment.

ABO-Material : The dataset in this experiment contains 2.1 million rendered images of 147,702
product items such as chairs and sofas6. The images were rendered from 91 fixed camera positions
along the upper icosphere. We reduced the original 512× 512 resolution to 224× 224. The dataset
was randomly partitioned into training (80%), validation (10%), and test (10%). The encoder and
decoder architectures were the same as for the BRDFs experiment. We trained the model for 400
epochs with batch size 36, which took 12 days.

E SUPPLEMENTARY EXPERIMENTS FOR ROTATED MNIST

To further investigate the capability of NFT, we also extended our experiments of D.4 to consider
the cases of image occlusion as well. Specifically, we zeroed out three quadrants of the input
images, so that only one quarter of the image is visible to the models at all time. This is a more
challenging task because the actions are not invertible at pixel level. We trained the encoder and
decoder in the NFT framework on this dataset, and conducted the same experiment as in D.4. As

4https://github.com/google-research/kubric/tree/main/challenges/
complex_brdf

5https://github.com/google-research/vision_transformer
6https://amazon-berkeley-objects.s3.amazonaws.com
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Figure 16: Reconstruction conducted with different values of lmax (1 ∼ 16). Higher frequencies
promote sharper reconstruction of the images.

illustrated in Fig 17, the NFT-trained feature consistently demonstrated competitive
performance (g-NFT, MSP).
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Figure 17: Linear probe results on Rotated MNIST with image occlusions.
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Figure 18: Spherical Decomposition of 3D point cloud representations of the same chair object in
the leftmost panel of Fig 8, conducted in the way of (Skibbe et al., 2009). Although our experiment
on the ModelNet dataset does not access the 3D voxel information nor include such structure in
the latent space, each frequency in Fig 8 has much resemblance to the result of the point-cloud
derived harmonic decomposition. See the movie folder in the Supplementary material for the movie
rendition of this visualization (modelnet_chair_spherical.gif).
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Figure 19: The result of the rotMNIST experiment (Fig.7) including the MSP and MSP-norm.
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Figure 20: The meta sequential prediction (MSP) method used for U-NFT.

Figure 21: The training algorithm for g-NFT.
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