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ABSTRACT

In this paper, we address the challenge of certifying the performance of a machine
learning model on an unseen target network. We consider a source network “A”
of K clients, each with private data from unique and heterogeneous distributions,
assumed to be independent samples from a broader meta-distribution µ. Our goal
is to provide certified guarantees for the model’s performance on a different, un-
seen target network “B,” governed by another meta-distribution µ′, assuming the
deviation between µ and µ′ is bounded by either the Wasserstein distance or an
f -divergence. We derive theoretical guarantees for the model’s empirical average
loss and provide uniform bounds on the risk CDF, where the latter correspond to
novel and adversarially robust versions of the Glivenko-Cantelli theorem and the
Dvoretzky-Kiefer-Wolfowitz (DKW) inequality. Our bounds are computable in
polynomial time with a polynomial number of queries to the K clients, preserv-
ing client privacy by querying only the model’s (potentially adversarial) loss on
private data. We also establish non-asymptotic generalization bounds that consis-
tently converge to zero as both K and the minimum client sample size grow. Ex-
tensive empirical evaluations validate the robustness and practicality of our bounds
across real-world tasks.

1 INTRODUCTION

The distributed nature of modern learning environments, where training data and computational re-
sources are scattered across clients in a network, has introduced challenges for the machine learning
community. Federated learning (FL) addresses some of these challenges by enabling clients to col-
laboratively train a decentralized model through communication with a central server (McMahan
et al., 2017; Liu et al., 2024). One major challenge is the heterogeneity of data distributions among
clients. This non-IID nature of clients’ data not only impacts the design of training algorithms but
also complicates evaluation, particularly when models are applied to unseen clients from the same
or different networks (Ye et al., 2023; Zawad et al., 2021).

In a standard FL setting, a fixed set of clients with a common learning objective trains a model
that performs well on their data distributions. For example, in a mobile network, the goal is to
generalize well to test data from observed clients. Most evaluations focus on average performance
across the training clients. However, models are often applied to clients not involved in training
(Reisizadeh et al., 2020). These unseen clients might have privacy concerns that prevent sharing
any information, or they may be new clients who joined the network post-training (Ma et al., 2024).
Furthermore, FL models trained on one network might later be tested on another network with
different distributions. For example, a model trained on one city’s clients may be applied to clients
from another city. Therefore, it’s crucial to evaluate models on unseen clients and networks beyond
the original training clients.

In this work, we focus on evaluating FL models on unseen clients and networks. We assume access
to clients whose data distributions are i.i.d. samples from a meta-distribution µ, representing the
client population (e.g., a mobile network in a specific region). Here, a meta-distribution models
higher-level dynamics in the society that clients belong to, such as culture, lingual preferences, etc.
Our goal is to provide performance guarantees for unseen clients whose data either follows µ or a
different distribution within a bounded distance from µ. The latter corresponds to a different society
with slightly different styles, habits or preferences (see Figure 4 in Appendix E for a graphical
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illustration). To address this challenge, we extend non-asymptotic average loss and CDF estimation
guarantees to performance scores collected from observed clients. Specifically, we leverage the
Dvoretzky–Kiefer–Wolfowitz (DKW) theorem to provide probably approximately correct (PAC)
guarantees for unseen clients following µ (Dvoretzky et al., 1956). These guarantees offer lower
and upper bounds on unseen clients’ performance scores with adjustable confidence.

However, in real-world applications, test clients may come from different populations unseen dur-
ing training. To account for this, we extend the DKW theorem to cover meta-distributions within
a bounded divergence from the source. This extension includes an upper bound on the CDF for
meta-distributions within a bounded f -divergence. We also give performance guarantees via tightly
bounding the meta-distributionally shifted average loss when both f -divergence or Wasserstein
shifts are considered. The f -divergence approach captures potential reweightings of client types
in the target network while Wasserstein distances model more complex distributional shifts (e.g.,
new clients from previously unseen regions) (Wang et al., 2022; Kuhn et al., 2019). To our knowl-
edge, this is the first extension of the DKW and subsequently Glivenko-Cantelli theorems to such a
robust setting.

Our bounds are asymptotically minimax optimal, meaning they cannot be improved, at least asymp-
totically. They are also consistent, converging to zero as the number of observed clients and data
points per client increases. We further show that handling Wasserstein-type shifts can be achieved
by querying clients for adversarial loss instead of ordinary loss, without requiring access to user data
or centralizing data at the server. Additionally, we demonstrate that the number of client queries can
be bounded by a polynomial function of the problem parameters. Lastly, we validate the practicality
and computational efficiency of our bounds through experiments on real-world datasets.

2 RELATED WORK

Evaluation and Generalization of models learned by FL algorithms on unseen clients. The
challenge of generalizing FL models to unseen clients and distributions has been studied in sev-
eral related works. Li et al. (2020) introduce a method to address the heterogeneity of client data,
focusing on improving the generalization of FL models. Similarly, Ma et al. (2024) propose a
topology-aware federated learning approach that leverages client relationships to enhance model ro-
bustness against out-of-federation data. Also, Zeng et al. (2023) explore adaptive federated learning
techniques to dynamically adjust model parameters based on client data distributions.

Distribution shifts and adversarial robustness in FL. The robustness of FL models against distri-
bution shifts and adversarial attacks has been the focus of several related references. Reisizadeh
et al. (2020) propose a robust federated learning framework to handle affine distribution shifts
across clients’ data. Their proposed framework incorporates a Wasserstein-distance-based distri-
bution shift model to account for device-dependent data perturbations. Also, Zhang et al. (2023)
conduct comprehensive evaluations on the adversarial robustness of FL models, proposing the de-
cision boundary-based FL Training algorithm to enhance the the trained model’s robustness. Zhou
et al. (2022) gain insight from the bias-variance decomposition to improve adversarial robustness in
FL. Also, Ben Mansour et al. (2022) propose a robust aggregation method to reduce the effect of
adversarial clients.

Performance guarantees in Heterogeneous FL. The heterogeneous nature of FL, where clients
have different data distributions has been a topic of great interest in the literature. Fallah et al. (2020)
introduce a personalized federated learning framework based on model-agnostic meta-learning,
which provides performance guarantees by optimizing for data distribution heterogeneity. Luo et al.
(2021) propose a classifier calibration method that adjusts for bias in heterogeneous data, offering
improved performance guarantees in non-IID settings. Tan et al. (2022) develop FedProto, a frame-
work that leverages prototype learning to improve convergence and robustness under non-convex
objectives.. Moreover, Wu et al. (2024) propose FedLoRA, which adapts low-rank parameter shar-
ing techniques to mitigate the effects of heterogeneity in personalized federated learning. Also,
Cheng et al. (2024) and Jia et al. (2024) introduce group-based customization and local parame-
ter sharing strategies, respectively, to provide fairness and efficiency guarantees for heterogeneous
client types and multiple tasks in FL.
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3 NOTATIONS AND PRELIMINARIES

For K ∈ N, [K] denotes the set {1, 2, . . . ,K}. Consider two measurable spaces X and Y , referred
to as the feature and label spaces, respectively, where we typically have X ⊆ Rd and Y typically
{1, . . . , c}. The joint feature-label space is Z ≜ X ×Y , andM(Z) denotes the set of all probability
measures on Z . We usually abbreviateM(Z) withM, for simplicity. Therefore, each distribution
P ∈M(Z) represents a joint measure over a feature vector X ∈ X and its label y ∈ Y .

A meta-distribution µ ∼ M(M(Z)) is a distribution over distributions, where samples from µ
represent different domains (or distributions) over X × Y . We usually abbreviateM(M(Z)) with
M2 for simplicity. For any measures P,Q ∈ M, let D(P,Q) denote a distance or divergence
between them. In Section 5,D is an f -divergence for a properly defined function f(·), and in Section
6, it is a Wasserstein metric. The ε-distributional ambiguity ball Bε(P ) is the set of distributions
within ε distance from P according to D:

Bε(P ) ≜ {Q ∈M | D(P,Q) ≤ ε} . (1)
Let h : X → Y represent a given hypothesis (e.g., a classifier) and assume a fixed loss function
ℓ : Y × Y → R≥0. The expected Risk of h with respect to P ∈ M is defined as R(h, P ) ≜
EP {ℓ (y, h(X))}. The adversarial risk for h w.r.t. a measure P and a radius ε is formulated as
supQ∈Bε(P ) EQ [ℓ(y, h(X))] , which represents the worst expected loss within the ε-neighborhood
of P according to D.

Meta-distributional ambiguity balls Gε(µ) are the set of meta-distributions within an ε distance from
a base meta-distribution µ, where the distance D̃ can be an f -divergence or a Wasserstein metric.
The transportation cost of the Wasserstein metric in the meta-distributional space, can itself be an
ordinary Wasserstein metric between distributions inM. The meta-distributionally robust loss of a
classifier h with respect to µ is defined as:

sup
µ′∈Gε(µ)

EP∼µ′ [EP [ℓ(y, h(X))]] .

In Section 5, we focus on f -divergence balls, while Wasserstein balls are covered in Section 6.

4 PROBLEM DEFINITION

This section describes our data generation process and specifies the privacy-preserving query policy
that governs communication between clients and the server. After that, we formally define our
problem.
Data Generation and Privacy Constraints: Consider K ∈ N clients connected to a central
server. Each client k ∈ [K] is associated with a unique and private data distribution model Pk ∈M,
referred to as the kth domain. Let P1, P2, . . . , PK be i.i.d. realizations of an unknown meta-
distribution µ over Z . However, client k does not have direct knowledge of their corresponding
domain Pk. Instead, they have access to a dataset Dk of size nk ∈ N, which contains i.i.d. samples
from Pk, i.e.,

Dk ≜
{(

X
(k)
i , y

(k)
i

)}nk

i=1

i.i.d.∼ P⊗nk

k . (2)

Let P̂k denote the empirical version of Pk based on the samples in Dk. It should be noted that i)
server knows the value of nk, ii) no one knows about Pk, and iii) P̂k is known, but only to client k.
Server-Client Query Policy: This procedure serves as the foundation for communication between
the server and clients throughout the paper. The server can query each of the K clients as follows:
it sends a model h and a robustness radius ρ ≥ 0 to client k ∈ [K]. In response, the client returns
the “Query Value”, the adversarial risk of h around P̂k:

Q̂Vk(h, ρ) ≜ sup
Q∈Bρ(P̂k)

EQ[ℓ(y, h(X))]. (3)

The type of distributional ball Bρ(·) can be defined using any application-specific divergence or
metric overM. In this work, we only use the adversarial regime (i.e., ρ > 0) in Section 6 which
focuses on Wasserstein meta-distributional shifts. When the robustness radius is omitted, it means
it is zero, i.e., Q̂Vk(h) = Q̂Vk(h, 0). Each client k ∈ [K] has a maximum number of queries it will
accept from the server, referred to as the query budget.
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4.1 OUR PROBLEM SETUP

In a large network with K clients and a central server, assume an unknown meta-distribution µ ∈
M2. The server sends a model h to clients and requests various robust or non-robust risk values for
different robustness radii. The goal is to compute a meta-distributionally robust upper bound for the
average or CDF of the risk of h. Specifically, in the case of bounding the average risk the objective
is to compute an empirical value Ê(ε) such that with high probability we have:

sup
µ′∈Gε(µ)

EP∼µ′ [EP [ℓ(y, h(X))]] ≤ Ê(ε) + ζ,

where Ê(ε) can be efficiently computed by the server. The generalization gap ζ is expected to vanish
as both K and mink nk increase asymptotically. The shape of the meta-distributional ambiguity
ball Gε(µ) can be tailored to the application; here, we consider f -divergence and Wasserstein balls.
Algorithmically, Ê(ε) is determined using the server-client query policy. The server controls the
number of queries and the value of ρ for each, ensuring that computational costs grow at most
polynomially with problem parameters.

5 f -DIVERGENCE META-DISTRIBUTIONAL SHIFTS

In this section, we provide high-probability guarantees for the meta-distributionally robust perfor-
mance of h, focusing on both the average loss and the CDF of the risk, under f -divergence-based
meta-distributional shifts. f -divergence, for different choices of the convex function f(·) is a pow-
erful tool for modeling variations between two probability measures that share the same support.

Definition of f -divergence can be found in Definition A.1 (see Appendix A). We also assume another
useful property between source and target meta-distributions denoted by Density Ratio Boundedness
property (see Assumption A.2 in Appendix A). This boundedness for the density ratios of the meta-
distributions µ and µ′ is required for a number of theoretical guarantees and practical algorithms, as
it limits how much µ′ can deviate from µ, preventing extreme values that could destabilize learning
models or theoretical analyses. At this point, we can define an f -Divergence ball inM2 as follows:

Definition 5.1 (Meta-Distributional f -Divergence Ball). For a meta-distribution µ ∈ M2, a func-
tion f as defined in Definition A.1, ε ≥ 0 and Λ ≥ 1, the f -divergence ball Gf−div

ε,λ (µ) is defined
as:

Gf−div
ε,Λ (µ) ≜ {µ′ | Df (µ

′∥µ) ≤ ε, µ′ and µ have Λ bounded density ratio} . (4)

It essentially describes a neighborhood around µ where the divergence does not exceed ε, providing
a controlled way to manage deviations in distributional shifts.

5.1 THEORETICAL GUARANTEES ON ROBUSTNESS OF EMPIRICAL AVERAGE RISK

The preceding definitions and assumptions collectively provide a structured way to handle distri-
butional shifts using f -divergence. At this point, we can state our main result in the form of the
following theorem:

Theorem 5.2 (Bounding Empirical Risk with f -Divergence Robustness). Assume a fixed and un-
known meta-distributions µ ∈ M2, let ε, δ > 0 and Λ ≥ 1, and consider f to be as in Definition
A.1. Let h : X → Y be an arbitrary model and ℓ : Y2 → R be any 1-bounded loss function.
Assume P1, . . . , PK represent K i.i.d. and unknown sample distributions from µ. Accordingly, let
{(X(k)

i , y
(k)
i )}nk

i=1 for k ∈ [K] represent a known (but private) empirical dataset of size nk ≥ 1

containing i.i.d. samples from Pk. Define B̂∗ as:

B̂∗(ε) ≜ sup
Λ−1≤α1,...,αK≤Λ

1

K

∑
k∈[K]

αkQ̂Vk (h) (5)

subject to

∣∣∣∣∣∣ 1K
∑

k∈[K]

αk − 1

∣∣∣∣∣∣ ≤ c1
√

log
(
1
δ

)
K

,
1

K

∑
k∈[K]

f(αk) ≤ ε+
c2√
K
,

4
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where constants c1, c2 ≥ 0 only depend on Λ and f(·). Then, for any δ > 0, the following bound
holds with probability at least 1− δ:

sup
µ′∈Gf−div

ε,Λ (µ)

EP∼µ′ [EP [ℓ (y, h (X))]] ≤ B̂∗(ε) +

√
log
(
K+3
δ

)
2

ΛK−1/2 +
1

K

∑
k∈[K]

n
−1/2
k

 .
Proof is given in Appendix B. This theorem provides a robust bound on the expected loss under
meta-distributional shifts using B̂∗(ε), which determines an upper bound on the average adversarial
loss. With high probability (at least 1− δ), the expected loss under any shifted meta-distribution µ′

can be bounded by B̂∗(ε) plus a term that decreases with increasing K and mink∈[K] nk, reflecting
the amount of data/clients. The main advantage of our result is that our generalization gap does not
have a non-vanishing ε-dependent term, unlike many existing bounds. Mathematically speaking, we
proved the following for any µ, µ′ which are ε-proximal in the f -divergence sense:

Eµ′ [EP (ℓ (y, h (X)))]− B̂∗ (ε)
w.h.p.

≤ Õ

(
K−1/2 +

[
min
k∈[K]

nk

]−1/2
)
, (6)

where Õ hides logarithmic dependencies. Additionally, any inherent “wellness” or “robustness” of
the target model h is directly reflected through a low value for B̂∗(ε). In other words, if h results in
a low error/loss across the sampled distributions P1, . . . , PK ∼ µ (or their empirical counterparts),
B̂∗(ε) remains small as well, regardless of the value of ε. To the best of our knowledge, conventional
bounds do not exhibit this adaptivity. Another notable fact is that B̂∗(ε) is asymptotically minimax
optimal, since when K,mink nk → ∞ it almost surely becomes the true (statistical) adversarial
loss of h due to the strong law of large numbers.
Remark 5.3 (Computational Complexity). The server-side program in equation 5 to determine the
value of B̂∗ (ε) is convex. Given certain smoothness properties of the function f(·), a standard
convex optimization algorithm approximates B̂∗ (ε) within an arbitrary error margin ∆ > 0, with
polynomial time complexity relative toK and ∆−1. Also, the total query budget is only one ordinary
(non-robust) query per client.

5.2 UNIFORM ROBUSTNESS OF THE EMPIRICAL RISK DISTRIBUTION

For the case of f -divergence robustness, we show that it is also possible to derive an
asymptotically consistent and uniform bound for the risk distribution (CDF) which estimates
µ′ (EP [ℓ (y, h (X))] ≥ λ), for all λ ∈ R, simultaneously. Here, µ′ represents the unknown tar-
get meta-distribution, which is assumed to be within an ε-proximity of the source meta-distribution
µ. Recall that µ is also unknown, and our access to it is through K i.i.d. empirical and private
realizations P̂1, . . . , P̂K with sizes n1 through nk. To achieve this, we first derive a robust version
of the uniform convergence bound on empirical CDFs, known as the Dvoretzky-Kiefer-Wolfowitz
(DKW) inequality:

Lemma 5.4 (Robust Version of DKW Inequality). Let µ and µ′ be two probability measures on R
where µ′ is absolutely continuous w.r.t. µ. AssumeX1, . . . , Xn for n ∈ N to be i.i.d. samples drawn
from µ. Suppose we have Df (µ

′∥µ) ≤ ε for some ε ≥ 0 and a proper convex function f(·). For
δ > 0, let us define the set An (ε, δ) as

An (ε, δ) ≜

α ∈ Rn
+

∣∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

αi − 1

∣∣∣∣∣ ≤ c1
√

log
(
1
δ

)
n

,
1

n

n∑
i=1

f (αi) ≤ ε+ c2

√
log
(
1
δ

)
n

 ,

where constants c1 and c2 depend only on f(·). Then, there exists α ∈ An (ε, δ) such that the
following uniform bound holds with probability at least 1− δ:

sup
λ∈R

∣∣∣∣∣µ′ (X ≤ λ)− 1

n

n∑
i=1

αi1 (Xi ≤ λ)

∣∣∣∣∣ ≤ O
√ log

(
n
δ

)
n

 . (7)
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Proof is given in Appendix B. A direct corollary of Lemma 5.4 is the robust (again with respect
to f -divergence adversaries) of the well-known Glivenko-Cantelli theorem, which can be found
in Appendix A. Building on the results from Lemma 5.4 and following a similar approach as in
Theorem 5.2, we propose the following theorem which introduces our uniformly convergent and
consistent estimator for the risk CDF:
Theorem 5.5 (Empirical Risk Distribution with f -Divergence Robustness). Assume the setting de-
scribed in Theorem 5.2. For any λ ∈ R let us define:

Ĵ∗ (ε, λ) ≜ sup
Λ−1≤α1,...,αK≤Λ

1

K

∑
k∈[K]

αk1

Q̂Vk (h) ≥ λ−

√
log
(
K+2
δ

)
2nk

 (8)

subject to

∣∣∣∣∣∣ 1K
∑

k∈[K]

αk − 1

∣∣∣∣∣∣ ≤ c1
√

log
(
K+2
δ

)
K

,
1

K

∑
k∈[K]

f (αk) ≤ ε+ c2

√
log
(
K+2
δ

)
K

,

where c1, c2 are constants that only depend on f(·) and Λ. Then, with probability at least 1− δ, the
following bound holds uniformly over all λ ∈ R:

sup
µ′∈Gf−div

ε,Λ (µ)

µ′
(
EP [ℓ (y, h (X))] ≥ λ

)
≤ Ĵ∗ (ε, λ) +O

Λ

√
log
(
K+2
δ

)
K

 . (9)

The proof is given in Appendix B. The bound in equation 9 exhibits the following properties: i) It
is forward-shifted with respect to the true CDF, meaning it exhibits a delayed reaction to increasing
λ compared to the true CDF. The maximum delay is on the order of O(

√
logK/mink nk). ii) The

value of the CDF estimator also deviates from the true estimator by the amount O(Λ
√
logK/K).

Consequently, as K and (mink nk)/ logK tend to infinity, the bound becomes asymptotically tight.
iii) The bound holds uniformly over all λ ∈ R, similar to the original DKW inequality and its
corresponding corollary, the Glivenko-Cantelli theorem.

It should be noted that although a separate maximization problem needs to be solved for each value
of λ, these problems are all convex and can therefore be solved efficiently. Additionally, according
to Lemma 5.4, there exists a single α ∈ AK(ε, δ) such that the bound holds for all λ. However,
since this vector α is not known, we must take the supremum over AK for each λ, separately.

6 WASSERSTEIN META-DISTRIBUTIONAL SHIFTS

This section addresses the case of Wasserstein meta-distributional shifts from µ to µ′. Such shifts
present significant challenges to our robust model evaluation framework, as the model h may en-
counter entirely unseen regions of the distributional support in the target domain. In practical terms,
this implies that users may exhibit data distributions that are entirely novel or even drastically dif-
ferent from those encountered during the training phase on the source network. We only provide
theoretical guarantees for the average risk, but not for the entire risk distribution. Addressing the
full risk distribution requires a more advanced methodology, which we defer to future work.

Let us begin by introducing new definitions related to both standard and meta-distributional Wasser-
stein metrics, and then present our main result, an analog of Theorem 5.2 for Wasserstein-type
shifts. Wasserstein metric w.r.t. a proper transportation cost c : Z2 → R is defined in Definition
6.1 (see Appendix A). In a similar fashion, one can define the Wasserstein distance between any two
meta-distributions µ, µ′ ∈ M2 (Z) with respect to any valid transportation cost over the space of
measuresM (Z), such as the ordinary Wasserstein distance. Mathematically speaking:
Definition 6.1 (Wasserstein metric overM2). For any two meta-distributions µ, µ′ ∈M2 (Z), and
a lower semi-continuous transportation cost c : Z × Z → R≥0, let us define

∥µ− µ′∥Wc
≜ inf

ν∈C(µ,µ′)
E(P,Q)∼ν {Wc (P,Q)} (10)

as the Wasserstein distance between µ and µ′ w.r.t. transportation costWc. Here, C (µ, µ′) is the set
of all couplings between µ and µ′.

6
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Accordingly, for ε ≥ 0 and P ∈ M, we define the Wasserstein ball of radius ε around P ∈ M
as Bwass

ε (P ) ≜ {Q| Wc (P,Q) ≤ ε}, where the transportation cost c is hidden from formulation
for the sake of simplicity. Similarly, one can define the Wasserstein ball around meta-distribution
µ ∈ M2 (Z) with radius ε as the set of meta-distributions with a (meta-distributional) Wasserstein
distance of at most ε from µ as follows:

Gε (µ) ≜
{
µ′| ∥µ− µ′∥Wc

≤ ε
}
. (11)

We now present our main result of this section: a quasi-convex (and thus polynomial-time) opti-
mization problem that provides empirical meta-distributionally robust evaluation guarantees against
Wasserstein shifts, with a asymptotically vanishing generalization gap.
Theorem 6.2 (Empirical Risk of h with Wasserstein Robustness). Assume an unknown meta-
distributions µ ∈ M2, let h : X → Y be an arbitrarily hypothesis and let ℓ be a 1-bounded
loss function. Assume P1, . . . , PK represent K i.i.d. and unknown sample distributions from µ.
Accordingly, let {(X(k)

i , y
(k)
i )}nk

i=1 for k ∈ [K] represent a known (but private) empirical dataset of
size nk consisting of i.i.d. samples from Pk. Let c be a bounded and proper (according to Definition
6.1) transportation cost on Z × Z . For any given ε, δ > 0, consider the following program:

Û∗ (ε) ≜ sup
ρ1,...,ρK≥ ε/K

1

K

∑
k∈[K]

Q̂Vk (h, ρk)

subject to
1

K

∑
k∈[K]

ρk ≤ ε
(
1 +

1

K

)
+ c1

√
log
(
K+2
δ

)
K

. (12)

Then, the following bound holds with probability at least 1 − δ for the meta-distributionally robust
loss of h around meta-distribution µ:

sup
µ′∈Gε(µ)

EP∼µ′ (EP [ℓ (y, h (X))]) ≤ Û∗ (ε) +

√
log
(
K+2
δ

)
2K

+
c2
K

∑
k∈[K]

√√√√ log
(

(K+2)nk

εδ

)
nk

,

where c1 is a universal constant and c2 only depends on transportation cost c.

The proof is provided in Appendix C. Similar to Theorem 5.2, Theorem 6.2 offers a robust bound on
the expected loss under Wasserstein meta-distributional shifts using Û∗(ε). Once again, the gener-
alization gap decreases asymptotically as both K and

(
mink∈[K] nk

)
/ logK increase. Specifically,

we have:

sup
µ′∈Gε(µ)

Eµ′ [EP (ℓ (y, h (X)))]− Û∗(ε)
w.h.p.
≤ O

√ logK

K
+ max

k∈[K]

√
log(Knk)

nk

 . (13)

It should be noted that the inherent robustness of h against Wasserstein distributional shifts, if it
exists, is reflected in Û∗(ε), thereby reducing the bound. Also, once again Û∗(ε) is asymptotically
minimax optimal since when both network size and client sample size go to infinity, it converges
to the true (statistical) robust risk due to the strong law of large numbers. This means our bounds
are tight. In the following, we also discuss the computational complexity and privacy aspects of our
scheme in Remarks 6.3 and 6.4, respectively.
Remark 6.3 (Computational Complexity). Server-side: The program in equation 12 is quasi-
convex. Without any additional requirements or assumptions, a standard quasi-convex optimization
algorithm, such as the bisection method described in Algorithm 1 (Appendix D) can approximate
Û∗ (ε) within an arbitrary error margin ∆ > 0, with polynomial time complexity relative to K and
log 1

∆ . The total query budget per client is also polynomial with respect to both K and log 1
∆ . Proof

of Remark 6.3 together with Algorithm 1 can be found in Appendix D. Client-side: Assume the
transportation cost c in Theorem 6.2 is convex with respect to its second argument1 and is differ-
entiable. Also, assume the robustness radius ρ is not chosen to be excessively large. Under these
conditions, the client-side optimization problem to determine the query value Q̂Vk(h, ρ) in equa-
tion 12, for any given h and ρ, is convex (Sinha et al., 2018). A standard stochastic gradient descent

1This assumption is generally not restrictive, as any norm exhibits this property
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algorithm can approximate Q̂Vk(h, ρ) within an arbitrary error margin ∆ > 0, with polynomial time
complexity relative to K, ∆−1 and ε−1.

The proof of latter statements relies on the concavity of the objective function in the adversarial loss
value Q̂Vk(h, ρ) when ρ is not excessively large. Notably, this property holds regardless of whether
h is convex or not. In Section 2 of (Sinha et al., 2018), a detailed analysis of the convergence rate
for such problems is provided, assuming that the transportation cost c(·, ·) is strongly convex with
respect to one of its arguments. Such transportation costs are widely used in real-world applications
and cover a broad range of options, including almost all norms.
Remark 6.4 (Certificate of Privacy). The program in equation 12 relies solely on the Wasserstein
adversarial loss values from each client k, derived using the query value Q̂Vk(h, ρ) for polynomially
many values of ρ. No other information or direct access to private client data is required. To the best
of our knowledge, there are no known privacy attacks capable of effectively recovering private data
from this procedure.

7 EXPERIMENTAL RESULTS

In this section, we present a series of experiments on real-world datasets to demonstrate both: (i)
the validity and tightness of our bounds, and (ii) that our bounds are not only theoretically sound but
also computable in practice.

7.1 CLIENT GENERATION AND RISK CDF CERTIFICATES FOR UNSEEN CLIENTS

In the first part of our experiments, we outline our client generation model and present a number of
risk CDF guarantees. We simulated a federated learning scenario with n = 500 nodes, where each
node contains 1000 local samples. The experiments were conducted using four different datasets:
CIFAR-10 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), EMNIST (Cohen et al., 2017),
and ImageNet (Russakovsky et al., 2015). To create each user’s data within the network, we applied
three types of affine distribution shifts across users:

Feature Distribution Shift: Each sample X
(k)
i in the dataset is manipulated via a transformation

chosen randomly for each node. Specifically, each user is assigned a unique matrix Λ(k) and shift
vector δ(k), and the data is modified as follows:

X̃
(k)
i = (I + Λ(k))X

(k)
i + δ(k). (14)

In our experiments, Λ(k) and δ(k) are respectively random matrices and vectors with i.i.d. zero-
mean Gaussian entries. The standard deviation varies based on the dataset: 0.05 for CIFAR-10 and
SVHN, 0.1 for EMNIST, and 0.01 for ImageNet.

Label Distribution Shift: Here, we assume that each meta-distribution is characterized by a specific
α coefficient. To generate each user’s data under this shift, the number of samples per class is
determined by a Dirichlet distribution with parameter α. In our experiments, we use α = 0.4.

Feature & Label Distribution Shift: As the name suggests, this shift combines both the feature
and label distribution shifts described above to create a new distribution for each user.

Figure 1 illustrates our performance certificates (i.e., bounds on the risk CDF) for unseen clients
when there are no shifts. We selected 100 nodes from the population and considered 400 other
nodes as unseen clients. We then plotted the CDFs based on 100 samples and confirmed that our
bounds hold for the real population as well. Due to the standard DKW inequality, the empirical CDF
is a good estimate for the test-time non-robust risk CDF.

7.2 CERTIFICATES FOR f -DIVERGENCE META-DISTRIBUTIONAL SHIFTS

In this section, we examined scenarios where users belong to two distinct meta-distributions: the
source and the target. A DNN-based model is initially trained on a network of clients sampled
from the source. The resulting risk values are then fed into the optimization problems introduced
in Section 5 to obtain robust CDF bounds, considering both the Chi-Square and KL divergence as
potential choices for f . Finally, we empirically estimate the risk CDF for users from the target

8
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Figure 1: Non-robust Risk CDF bounds for unseen clients. Here, “Meta” refers to the main popula-
tion with 500 nodes. DKW-robust bounds are depicted only for tightness comparison.

meta-distribution and validate our bounds. Specifically, we tested our certificates in two distinct
settings using the CIFAR-10 dataset (see Figure 2). We generated various image categories with
differing resolutions or color schemes, and then sampled from these categories to create different
distributions:

Resolutions: Images were cropped and resized to create eight different resolutions. The Dirichlet α
coefficients for the first (source) meta-distribution range from 0.4 to 0.7 for the four lower resolutions
and from 0.7 to 1 for the four higher resolutions. For the second (target) meta-distribution, the
ranges are reversed: 0.7 to 1 for the lower resolutions and 0.4 to 0.7 for the higher resolutions. The
number of samples per resolution for each user is determined using a Dirichlet distribution, with α
coefficients randomly selected from the specified range for the meta-distribution. As a result, users
sampled from source will have more high-resolution images, while users from the target will have
more low-resolution samples.

Colors: The color intensity of the images varies from 0.00 (gray-scale) to 1.00 (fully colored). For
the source meta-distribution, the α coefficients range from 0 to 0.5 for images with color intensity
below 0.5, and from 0.5 to 1 for images above 0.5. As with the resolution setting, the ranges are
reversed for the target, and the number of samples per color intensity for each user is calculated
similarly. Therefore, users sampled from source will have more colorful images, while those from
the target will have more gray-scale images.

Figure 3 (left) verifies our CDF certificates based on both chi-square and KL-divergence (dotted
curves) for the target meta distribution (orange curve). As can be seen, bounds have tightly captured
the behavior of risk CDF in the target network. More detailed experiments are shown in Figure 5 in
Appendix E.

7.3 CERTIFICATES FOR WASSERSTEIN-BASED META-DISTRIBUTIONAL SHIFTS

In this experiment, as previously mentioned, we used affine distribution shifts to create new domains.
Figure 3 (right) summarizes our numerical results in this scenario. To generate different networks
within the meta-distribution, we applied the affine distribution shifts described in Section 7.1. Once
again, the results validate our certificates, this time for Wasserstein-type shifts. The blue curve,
representing the real population, consistently falls within or beneath the blue shaded area. Regarding
tightness, it is important to note that the bounds presented here remain tight, particularly under
adversarial attacks as defined by a distributional adversary in (Sinha et al., 2018). More detailed
experiments with various levels of tightness are shown in Figure 6 in Appendix E.

9
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Figure 2: Meta-distributional shifts based on resolutions (left) and colors (right). (a) Sample images
from each resolution/color. (b) Average number of samples per resolution/color within each network
selected from the meta distributions. (c) Histogram of model accuracy densities for the two meta
distributions.

Figure 3: (Left) f-divergence certificates for two meta-distributions based on resolutions and col-
ors. (Right) Wasserstein-based certificates for unseen clients. “Meta” and “Wass” refer to the main
population with 500 nodes. Dotted curves are based on 100 networks within the population.

Although our theoretical findings in Section 6 focus solely on the average risk and not the risk CDF,
we extended the same framework to the CDF in this experiment to explore whether the theory might
also apply. The results were positive, suggesting potential for extending our theoretical findings in
this area.

8 CONCLUSIONS

In this work, we proposed new performance bounds, computable in polynomial time with polyno-
mial query complexity, to establish guarantees for any model h on an unseen network B, based on
observations and queries from network A. The key assumption is that the meta-distributions of both
networks’ user data are ε-close, for some known or assumed ε > 0. We considered two measures of
”closeness”: f -divergence shifts and Wasserstein shifts, which capture different practical scenarios,
making our approach widely applicable.

Our bounds are supported by rigorous proofs, with vanishing generalization gaps, ensuring con-
sistency as the network size K and sample per client nk/ logK increase asymptotically. We also
introduced a robust version of the GC theorem and DKW bound for f -divergence shifts, which is
novel. Numerical experiments demonstrate the bounds’ practical tightness and computability, as the
proposed optimization problems are convex or quasi-convex, solvable in polynomial time. Future
work could explore uniform convergence bounds for risk CDF under Wasserstein shifts, or consider
other shift types beyond f -divergence and Wasserstein.
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A AUXILIARY DEFINITIONS AND COROLLARIES

Definition A.1 (f -Divergence Between Meta-Distributions). Consider two meta-distributions
µ, µ′ ∈ M2 where µ′ is absolutely continuous with respect to µ. Let f : [0,∞) → [−∞,∞]
be a convex function such that f(x) is finite for all x > 0, f(1) = 0, and f(0) = limt→0+ f(t)
(which could be infinite). The f -divergence between µ and µ′ is defined as:

Df (µ
′∥µ) =

∫
P∈M

f

(
dµ′(P )

dµ(P )

)
dµ(P ). (15)
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Assumption A.2 (Density Ratio Boundedness). Assume two meta-distributions µ, µ′ ∈ M2 where
both µ′ and µ are absolutely continuous with respect to each other. For Λ ≥ 1, we say µ and µ′

have a Λ-bounded density ratio if the following condition holds for all P ∈M:

Λ−1 ≤ inf
P

dµ′(P )

dµ(P )
≤ sup

P

dµ′(P )

dµ(P )
≤ Λ. (16)

Definition A.3 (Wasserstein metric onM (Z)). For any two measures P,Q ∈ M (Z) and a lower
semi-continuous function c : Z × Z → R≥0, we define the Wasserstein distance between P and Q
as

Wc (P,Q) ≜ inf
ν∈C(P,Q)

E(Z,Z′)∼ν {c (Z,Z ′)} , (17)

where C (P,Q) denotes the set of all couplings between P and Q, i.e., all probability measures in
M (Z × Z) that have fixed P and Q as their respective marginals.

The function c is called the transportation cost and in practice, for example in a classification task
withZ = X×Y , can be chosen as c (Z,Z ′) ≜ ∥X −X ′∥qp+λ1 (y ̸= y′) , for any p, q ≥ 1, λ ≥ 0.
However, c is user-defined and can be chosen differently.
Corollary A.4 (Robust Version of Glivenko-Cantelli Theorem). Let µ and µ′ be two probability
measures on R and let S ≜ {Xi}∞i=1 be an i.i.d. sequence drawn from µ. Assume µ and µ′ are
absolutely continuous with respect to each other. Additionally, suppose Df (µ

′∥µ) ≤ ε for some
ε ≥ 0 and a proper convex function f(·). Then, there exists a non-negative sequence {α1}∞i=1 that
can depend on S , has the following properties:

lim
n→∞

1

n

n∑
i=1

αi = 1 and lim
n→∞

1

n

n∑
i=1

f (αi) ≤ ε, (18)

and also satisfies the following condition:

lim
n→∞

sup
λ∈R

∣∣∣∣∣µ′ (X ≤ λ)− 1

n

n∑
i=1

αi1 (Xi ≤ λ)

∣∣∣∣∣ a.s.= 0. (19)

Corollary A.4 follows directly from Lemma 5.4.

B PROOFS OF THE STATEMENTS IN SECTION 5

Proof of Theorem 5.2. For each k ∈ [K], let us define the event ξ(k)1 as follows:

ξ
(k)
1 ≡ EPk

[ℓ (y, h (X))] ≤ 1

nk

∑
i∈[nk]

ℓ
(
y
(k)
i , h

(
X

(k)
i

))
+

√
log
(
K+3
δ

)
2nk

, (20)

where, since ℓ(·) is assumed to be a 1-bounded loss function and the samples are drawn indepen-
dently, McDiarmid’s inequality tells us that P

(
ξ
(k)
1

)
≥ 1− δ

K+3 (McDiarmid et al., 1989). We now
state and prove two essential lemmas which will be used in the subsequent arguments.

Lemma B.1. Consider two meta-distributions µ, µ′ ∈ M2 which are absolutely continuous with
respect to each other and have a Λ-bounded density ratio for some Λ ≥ 1. For K ∈ N, assume
P1, . . . , PK ∈M to be i.i.d. sample distributions sampled from µ. Then, for all ϵ > 0, the following
concentration bound holds:

P

∣∣∣∣∣∣ 1K
∑

k∈[K]

dµ′(Pk)

dµ(Pk)
− 1

∣∣∣∣∣∣ ≥ ϵ
 ≤ exp

(
−2Kϵ2

Λ2 (1− Λ−2)
2

)
. (21)

Proof of Lemma B.1. Due to the assumed mutual absolute continuity, µ and µ′ share the same sup-
port. Therefore, for P ∼ µ, we can define the scalar random variable

ζ = ζ(P ) ≜
dµ′(P )

dµ(P )
. (22)
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This variable is bounded by Λ−1
a.s.
≤ ζ

a.s.
≤ Λ. Regarding the expected value of ζ, we have:

E [ζ] = EP∼µ

[
dµ′(P )

dµ(P )

]
=

∫
M

dµ′(P )

dµ(P )
dµ(P ) = 1. (23)

Let ζk = ζ(Pk). Since ζ(P1), . . . , ζ(PK) represent i.i.d. instances of ζ, McDiarmid’s inequality
states that:

P

∣∣∣∣∣∣ 1K
∑

k∈[K]

ζk − E [ζ]

∣∣∣∣∣∣ ≥ ϵ
 ≤ exp

(
− 2Kϵ2

(Λ− Λ−1)
2

)
, (24)

which completes the proof.

Lemma B.2. For Λ ≥ 1, assume two meta-distributions µ, µ′ ∈M2 are absolutely continuous with
respect to each other and have a Λ-bounded density ratio. Let f be a convex function that satisfies
the conditions described in Definition A.1. For K ∈ N, assume P1, . . . , PK ∈M to be i.i.d. sample
distributions sampled from µ. Then, the following concentration bound holds:

P

∣∣∣∣∣∣Df (µ
′∥µ)− 1

K

∑
k∈[K]

f

(
dµ′ (Pk)

dµ (Pk)

)∣∣∣∣∣∣ ≥ ϵ
 ≤ exp

(
−2Kϵ2

BW2 (f (·) ,Λ)

)
, (25)

where BW (f (·) ,Λ) is defined as:

BW (f (·) ,Λ) ≜ sup
Λ−1≤u,v≤Λ

f(u)− f(v). (26)

Proof of Lemma B.2. The proof follows similarly to that of Lemma B.1. For P ∼ µ, let us define
the random variable

ζ(P ) = f

(
dµ′ (P )

dµ (P )

)
. (27)

Then, having defined ζk = ζ (Pk), we know that ζ1, . . . , ζK represent i.i.d. instances of ζ. More-
over, the expected value of ζ is the f -divergence between µ′ and µ:

E [ζ] = EP∼µ

[
f

(
dµ′(P )

dµ(P )

)]
= Df (µ

′∥µ) . (28)

Finally, since µ′ and µ have the Λ-bounded density ratio property, the following bounds hold almost
surely:

ζ
a.s.
≤ sup

Λ−1≤u≤Λ

f(u) , ζ
a.s.
≥ inf

Λ−1≤v≤Λ
f(v), (29)

which means the range of ζ is almost surely equal to BW (f (·) ,Λ). Hence, again using McDi-
armid’s inequality, we get the bound:

P

∣∣∣∣∣∣ 1K
∑

k∈[K]

ζk − E [ζ]

∣∣∣∣∣∣ ≥ ϵ
 ≤ exp

(
−2Kϵ2

BW2 (f (·) ,Λ)

)
, (30)

and this completes the proof.

With the lemmas established, let us define additional events ξ2 and ξ3 based on the concentration
bounds:

ξ2 ≡
1

K

∑
k∈[K]

dµ′(Pk)

dµ(Pk)
⋚ 1± C1K

−1/2, (31)

ξ3 ≡
1

K

∑
k∈[K]

f

(
dµ′(Pk)

dµ(Pk)

)
⋚ Df (µ

′∥µ)± C2K
−1/2, (32)
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where C1, C2 are constants which only depend on Λ and f(·), according to Lemmas B.1 and B.2.
Based on the above arguments and the results of the mentioned lemmas, we have P (ξ2) ,P (ξ2) ≥
1 − δ

K+3 . Using the central idea for importance sampling (Glynn & Iglehart, 1989), the following
equations hold for all µ, µ′, ℓ and h:

EP∼µ

[(
dµ′(P )

dµ(P )

)
EP [ℓ (y, h (X))]

]
=

∫
P∈M

(
dµ′(P )

dµ(P )

)
EP [ℓ (y, h (X))] dµ(P )

= EP∼µ′ [EP [ℓ (y, h (X))]] . (33)

At this point, and similar to the idea of Lemma B.1, we define ξ4 as the event of the empirical loss
over meta-distribution µ′ concentrates (with high probability) around its expected value, i.e.,

ξ4 ≡

EP∼µ

[(
dµ′(P )

dµ(P )

)
EP [ℓ (y, h (X))]

]
≤ 1

K

∑
k∈[K]

dµ′(Pk)

dµ(Pk)
EPk

[ℓ (y, h (X))] + Λ

√
log
(
K+3
δ

)
2K

.

(34)

Again, since

0
a.s.
≤ dµ′(Pk)

dµ(Pk)
EPk

[ℓ (y, h (X))]
a.s.
≤ Λ,

McDiarmid’s inequality states that the probability bound P (ξ4) ≥ 1 − δ
K+3 holds. Our final def-

inition in this proof is a random set of meta-distributions G ⊆ M2 which represents an empirical
candidate for the neighbors of µ. Mathematically speaking, let us define:

G ≜

ν ∈M2

∣∣∣∣ 1

K

∑
k∈[K]

dν(Pk)

dµ(Pk)
⋚ 1± C1K

−1/2 ,
1

K

∑
k∈[K]

f

(
dν (Pk)

dµ (Pk)

)
≤ ε+ C2K

−1/2

 ,

(35)

which depends on ε and has a random (empirical) nature since it also depends on sample distribu-
tions P1, . . . , PK . Based on prior discussions and lemmas, we have µ′ a.s.

∈ G as long as the events
ξ2 and ξ3 hold, simultaneously. By further assuming that events ξ4 and ξ(k)1 s for all k ∈ [K] also
hold, we can finally write the following chain of inequalities:

EP∼µ′ [EP [ℓ (y, h (X))]]

≤ 1

K

∑
k∈[K]

dµ′(Pk)

dµ(Pk)
EPk

[ℓ (y, h (X))] + Λ

√
log
(
K+3
δ

)
2K

≤ 1

K

∑
k∈[K]

dµ′(Pk)

dµ(Pk)
ÊPk

[ℓ (y, h (X))] + Λ

√
log
(
K+3
δ

)
2K

+
1

K

∑
k∈[K]

√
log
(
K+3
δ

)
2nk

a.s.
≤ 1

K
sup
ν∈G

∑
k∈[K]

dν(Pk)

dµ(Pk)
ÊPk

[ℓ (y, h (X))] +

√
log

(
K + 3

δ

)√ Λ2

2K
+

1

K

∑
k∈[K]

√
1

2nk

 .
(36)

It should be noted that the condition ν ∈ G can be interpreted as introducing

αk ≜
dν(Pk)

dµ(Pk)
, ∀k ∈ [K],

and force α1 . . . , αK to satisfy the constraints in the definition of B̂∗(ε). Hence, this gives us the
high probability bound claimed inside the statement of theorem. The only remaining part of the
proof is to show events ξ(k)1 , ξ2, ξ3 and ξ4 for all k ∈ [K] hold, simultaneously, with a probability at
least 1− δ.
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For any event ξ, let ξc denote its complement. Then, we already have

P
(
ξ
(k)c
1

)
,P (ξc2) , . . . ,P (ξc4) ≤

δ

K + 3
, ∀k ∈ [K].

In this regard, one can simply use the union bound and obtain the following chain of inequalities:

P

 ⋃
k∈[K]

ξ
(k)c
1 ∪ ξ2 ∪ ξ3 ∪ ξ4

 ≤ ∑
k∈[K]

P
(
ξ
(k)c
1

)
+

4∑
i=2

P (ξci ) =
Kδ

K + 3
+ 3

δ

K + 3
= δ. (37)

This means the bound in the statement of theorem holds with a probability at least 1 − δ, and thus
completes the proof.

Proof of Lemma 5.4. The proof for most of its initial parts follows the same path as in the proof of
Theorem 5.2. In particular, we use Lemmas B.1 and B.2 from the proof of Theorem 5.2 to show that
the following events occur separately with probability at least 1− δ

3 , for any δ > 0:∣∣∣∣∣∣ 1n
∑
i∈[n]

dµ′(Xi)

dµ(Xi)
− 1

∣∣∣∣∣∣ ≤ c1
√

log 1
δ

n
, (38)

∣∣∣∣∣∣Df (µ
′∥µ)− 1

n

∑
i∈[n]

f

(
dµ′(Xi)

dµ(Xi)

)∣∣∣∣∣∣ ≤ c2
√

log 1
δ

n
, (39)

where c1, c2 > 0 are constants depending on f(·). These probabilities are with respect to the ran-
domness in drawing i.i.d. samples X1, . . . , Xn ∼ µ. This is equivalent to the following statement:

P

[(
dµ′(Xi)

dµ(Xi)

)
i∈[n]

∈ An

]
≥ 1− 2δ

3
. (40)

Next, define F̂n(λ) for λ ∈ R as

F̂n(λ) ≜
1

n

n∑
i=1

ω(Xi)1(Xi ≤ λ), (41)

where the weight function ω(X) ∈
[
Λ−1,Λ

]
is the unknown (bounded) density ratio between µ′

and µ, i.e.,

ω(X) ≜
dµ′(X)

dµ(X)
. (42)

Since ω(·) is non-negative, F̂n(λ) is non-decreasing in λ, starting at 0 when λ = −∞ and not
exceeding Λ as λ→∞.

Consider the probability measure µ′. For m ≥ 2, define λ∗0, λ
∗
1, . . . , λ

∗
m such that (i) λ∗0 = −∞

and λ∗m = ∞, and (ii) µ′(X ≤ λ∗i ) = i/m for i ∈ [m − 1]. These λ∗i , i ∈ [m] ∪ {0} represent
the m-quantiles of µ′. For any λ ∈ R, let i = i(λ) ∈ [m] be such that λ ∈ [λ∗i−1, λ

∗
i ). Then, the

following chain of inequalities holds almost surely for all λ ∈ R:

F̂n(λ)− µ′(X ≤ λ) ≤ F̂n(λ
∗
i )− µ′(X ≤ λ∗i−1) ≤ F̂n(λ

∗
i )− µ′(X ≤ λ∗i ) +

1

m
,

F̂n(λ)− µ′(X ≤ λ) ≥ F̂n(λ
∗
i−1)− µ′(X ≤ λ∗i ) ≥ F̂n(λ

∗
i−1)− µ′(X ≤ λ∗i−1)−

1

m
. (43)

Thus, the following bound holds for all λ ∈ R:∥∥∥F̂n − µ′(X ≤ ·)
∥∥∥
∞

= sup
λ∈R

∣∣∣F̂n(λ)− µ′(X ≤ λ)
∣∣∣ ≤ max

i∈{0,1,...,m}

∣∣∣F̂n(λ
∗
i )− µ′(X ≤ λ∗i )

∣∣∣+ 1

m
.

(44)
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On the other hand, for any fixed λ ∈ R, we have the following relation for the expectation of F̂n(λ):

Eµ[F̂n(λ)] = Eµ

[
1

n

n∑
i=1

ω(Xi)1(Xi ≤ λ)

]

=
1

n

n∑
i=1

Eµ [ω(Xi)1(Xi ≤ λ)]

=
1

n

n∑
i=1

∫
R

dµ′(X)

dµ(X)
1(X ≤ λ)dµ(X)

= µ′(X ≤ λ). (45)

Given that the weight functions ω(Xi) for i ∈ [n] are bounded in the interval
[
Λ−1,Λ

]
, and 1(·) ∈

{0, 1}, McDiarmid’s inequality states that for any ε > 0,

P
(∣∣∣F̂n(λ

∗
i )− µ′(X ≤ λ∗i )

∣∣∣ > ε
)
≤ 2e−2nε2/Λ2

. (46)

Therefore, using the union bound over all i = 0, 1, . . . ,m, we obtain:

P
(

max
i∈{0,1,...,m}

∣∣∣F̂n(λ
∗
i )− µ′(X ≤ λ∗i )

∣∣∣ > ε

)
≤ 2(m+ 1)e−2nε2/Λ2

. (47)

Equivalently, for any δ > 0, the following bound holds with probability at least 1− δ/3:

max
i∈{0,1,...,m}

∣∣∣F̂n(λ
∗
i )− µ′(X ≤ λ∗i )

∣∣∣ ≤ Λ

√√√√ log
(

6(m+1)
δ

)
2n

. (48)

Using the preceding inequalities, in particular relations in equation 40, equation 44 and equation 48,
we can say there exists α ∈ An such that the following bounds for F̂n hold with probability at least
1− δ: ∥∥∥F̂n − µ′(X ≤ ·)

∥∥∥
∞
≤ max

i∈{0,1,...,m}

∣∣∣F̂n(λ
∗
i )− µ′(X ≤ λ∗i )

∣∣∣+ 1

m

≤ inf
m∈N≥2

Λ

√√√√ log
(

6(m+1)
δ

)
2n

+
1

m


≤ O

Λ

√
log
(
n
δ

)
n

 . (49)

Thus, the proof is complete.

Proof of Theorem 5.5. Similar to the proof of Theorem 5.2, we begin by noting that, due to McDi-
armid’s inequality, for any δ > 0, with probability at least 1− Kδ

K+2 , the following set of inequalities
holds simultaneously for all k ∈ [K]:

Q̂V (h) ≤ QV (h) +

√
log
(
K+2
δ

)
2nk

. (50)

Next, it can be readily verified that:

1 (QV (h) ≥ λ) ≤ 1

Q̂V (h) ≥ λ−

√
log
(
K+2
δ

)
2nk

 , ∀k ∈ [K]. (51)

Additionally, note that:
EP∼µ′ [1 (QV (h) ≥ λ)] = µ′ (QV (h) ≥ λ) . (52)

The remainder of the proof simply involves applying the result of Lemma 5.4 with a maximum error
probability of 2δ

K+2 . This concludes the proof.
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C PROOFS OF THE STATEMENTS IN SECTION 6

Proof of Theorem 6.2. Proof consists of two parts:

• Proving the statement of theorem for the statistical case, where mink∈[K] nk → ∞ and
thus we have Q̂Vk(h, ρ) = QVk(h, ρ) for all h ∈ H, ρ ≥ 0 and k ∈ [K].

• Replacing the statistically exact adversarial loss QVk(h, ρ) which is based on the unknown
distribution sample Pk with its empirically calculated counterpart Q̂Vk(h, ρ) which is com-
puted based on the known (yet private) distribution P̂k for all k ∈ [K]. This part of the
proof requires establishing a uniform convergence bound over all values of ρ ≥ 0.

Part I The core mathematical tool used throughout the proof is the following duality result from
(Sinha et al., 2018) (originally derived in (Blanchet & Murthy, 2019)) which works for general
Wasserstein-constrained optimization problems:

Lemma C.1 (Proposition 1 of (Sinha et al., 2018)). Let P be a probability measure defined over
a measurable space Ω, ℓ(·) : Ω → R be any loss function, c denote a proper and lower semi-
continuous transportation cost on Ω×Ω, and assume ε ≥ 0. Then, the following equality holds for
the Wasserstein-constrained DRO around P :

sup
Q∈Bwass

ε (P )

EQ [ℓ (Z)] = inf
γ≥0

{
γε+ EP

[
sup
Z′∈Ω

ℓ (Z ′)− γc (Z ′,Z)

]}
. (53)

Proof can be found inside the reference. Also, (Blanchet & Murthy, 2019) and (Zhang et al., 2024)
along with several other papers have theoretically analyzed alternative proofs. Based on the duality
formulation in Lemma C.1, and considering the fact that meta-distribution µ is also a “distribution”
over the measurable spaceM, one can rewrite the original Wasserstein-constrained MDRO in the
statement of the theorem in its dual form:

sup
µ′∈Gε(µ)

EP∼µ′ [EP [ℓ (y, h (X))]] = inf
γ≥0

{
γε+ EP∼µ

[
sup
Q

EQ [ℓ (y, h (X))]− γWc (P,Q)

]}
= inf

γ≥0

{
Eµ

[
sup
Q

EQ [ℓ (y, h (X))]− γ (Wc (P,Q)− ε)
]}

.

(54)

The main advantage achieved by this reformulation is the substitution of µ′ with the fixed meta-
distribution µ inside the expectation operators. Therefore, the optimization no longer has to be
carried out in theM2 space. For the sake of simplicity in the proof, assume supreme value in equa-
tion 54 is attainable. This assumption is not necessary, and can be relaxed by using a more detailed
mathematical analysis which is replacing the optimal distribution Q∗ with a Cauchy series of dis-
tributions and proceed with similar arguments. However, we have decided to avoid this scenario in
order to simplify the proof. In this regard, let us define:

Q∗ (P, γ; ε) ≜ argmax
Q

EQ [ℓ (y, h (X))]− γ (Wc (P,Q)− ε) , ∀P ∈ supp (µ) . (55)

Then, the following relation holds:

sup
µ′∈Gε(µ)

EP∼µ′ [EP [ℓ (y, h (X))]] = inf
γ≥0

{
Eµ

[
EQ∗(P,γ) [ℓ (y, h (X))]− γ (Wc (P,Q

∗ (P, γ))− ε)
]}

= inf
γ≥0

{
EP∼µ

[
EQ∗(P,γ) [ℓ (y, h (X))]

]
−

γEP∼µ [Wc (P,Q
∗ (P, γ))− ε]} . (56)

which, can be simply rewritten as:

sup
µ′∈Gε(µ)

EP∼µ′ [EP [ℓ (y, h (X))]] = inf
γ≥0

Eµ

[
EQ∗(P,γ) [ℓ (y, h (X))]

]
subject to EP∼µ [Wc (P,Q

∗ (P, γ))] ≤ ε. (57)
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Using a similar argument as before, let us assume the infγ≥0 in equation 57 is also attainable and
denote the optimal value by γ∗ = γ∗ (µ, ε). Once again, this assumption is not necessary and can be
relaxed at the expense of introducing more mathematical details and making the proof less readable.
In this regard, we have:

sup
µ′∈Gε(µ)

EP∼µ′ [EP [ℓ (y, h (X))]] = Eµ

[
EQ∗(P,γ∗) [ℓ (y, h (X))]

]
, (58)

where it has been already guaranteed that the optimal parameter γ∗ ≥ 0 and optimal distribution
Q∗ (P, γ∗), the following constraint holds:

EP∼µ [Wc (P,Q
∗ (P, γ∗))] ≤ ε. (59)

For any P ∈ supp (µ) ⊆M, let us define the following optimal robustness radius function

ρ∗ (P ; ε, µ) ≜Wc (P,Q
∗ (P, γ∗)) . (60)

Therefore, the original MDRO objective in the statement of the theorem can be readily upper-
bounded using the following distributionally robust formulation:

sup
µ′∈Gε(µ)

EP∼µ′ [EP [ℓ (y, h (X))]] = EP∼µ

[
EQ∗(P,γ∗) [ℓ (y, h (X))]

]
≤ EP∼µ

[
sup

Q∈Bwass
ρ∗(P )

(P )

EQ [ℓ (y, h (X))]

]
. (61)

Using the upper-bound in equation 61 and the inequality condition on optimal Wasserstein radius
functions ρ∗(P ) described in equation 59, we can proceed to the empirical stage of the proof. At
this stage, the true expectation operators should be replaced by their empirical counterparts which
are based on i.i.d. realizations of meta-distribution µ, i.e., unknown distributions P1, . . . , PK and
their known yet private empirical realizations, i.e., P̂i for i ∈ [K].

For P ∼ µ, let us define the following new and real-valued random variables ψ(P ) and ζ(P ) as
follows:

ψ(P ) ≜ sup
Q∈Bwass

ρ∗(P )
(P )

EQ [ℓ (y, h (X))] ,

ζ(P ) ≜ ρ∗ (P ; ε, µ) . (62)
It should be noted that ψ(P ) is readily known to be (almost surely) bounded by 1, since ℓ(·) is
assumed to be 1-bounded. Additionally, the boundedness for ζ(P ) directly results from the assump-
tion that c is a bounded transportation cost.

Lemma C.2. There exists R < +∞ such that We have ρ∗(P ;µ, ε)
a.s.
< R for P ∼ µ.

Proof. The proof is straightforward and directly results from the definition of Wasserstein distance:

ζ(P ) ≜ ρ∗(P ; ε, µ) =Wc (P,Q
∗ (P, γ∗))

= inf
ν∈C(P,Q∗)

Eν [c (Z,Z
′)]

a.s.
≤ sup

Z,Z′∈Z
c (Z,Z ′) < +∞, (63)

which concludes the proof.

Using a similar series of arguments to the ones explained in Lemmas B.1 and B.2 (proof of Theorem
5.2), together with the fact that ψ (Pk)s are all bounded by 1, one can directly apply the McDiarmid’s
inequality and show that the following bound holds with probability at least 1− δ

K+2 , for any δ > 0:

EP∼µ

[
sup

Q∈Bwass
ρ∗(P )

(P )

EQ [ℓ (y, h (X))]

]

≤ 1

K

∑
k∈[K]

sup
Q∈Bwass

ρ∗(Pk)
(Pk)

EQ [ℓ (y, h (X))] +

√
log
(
K+2
δ

)
2K

. (64)
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On the other hand, by using the boundedness property for ζ(P ) proved in Lemma C.2 and applying
McDiarmid’s inequality once again, the following bound holds with probability 1 − δ

K+2 (for any
δ > 0) for the empirical mean of ζ(P ) over true sample distributions P1, . . . , Pk:

1

K

∑
k∈[K]

ζ (Pk) ≤ EP∼µ [ζ(P )] + c1

√
log
(
K+2
δ

)
K

≤ ε+ c1

√
log
(
K+2
δ

)
K

, (65)

where c1 is a known universal constant depending only on the bound on transportation cost c. Here,
the last inequality is a direct consequence of the property shown in equation 59.

Let S ⊂ RK
≥0 be defined as the following subset:

S ≜

(ζ1, . . . , ζK) ∈ RK

∣∣∣∣ ζk ≥ 0, ∀k ∈ [K],
1

K

∑
k∈[K]

ζk ≤ ε+ c1

√
log
(
K+2
δ

)
K

 . (66)

So far, we have shown that

P
(
{ζ (Pk)}k∈[K] ∈ S

)
≥ 1− δ

K + 2
. (67)

In a similar procedure to the one used in the proof of Theorem 5.2, union bound ensures that the
bound in equation 64 and the mathematical statement of {ζ (Pk)}k∈[K] ∈ S simultaneously hold
with probability at least 1 − 2δ

K+2 . Then the following chain of bounds also hold with the same
probability w.r.t. drawing of P1, . . . , PK from µ:

sup
µ′∈Gε(µ)

EP∼µ′ [EP [ℓ (y, h (X))]] ≤ EP∼µ

[
sup

Q∈Bwass
ρ∗(P )

(P )

EQ [ℓ (y, h (X))]

]

≤ 1

K

∑
k∈[K]

sup
Q∈Bwass

ρ∗(Pk)
(Pk)

EQ [ℓ (y, h (X))] +

√
log
(
K+2
δ

)
2K

≤ sup
ρ∈S

1

K

∑
k∈[K]

sup
Q∈Bwass

ρk
(Pk)

EQ [ℓ (y, h (X))] +

√
log
(
K+2
δ

)
2K

= sup
ρ∈S

1

K

∑
k∈[K]

QVk (h, ρk) +

√
log
(
K+2
δ

)
2K

. (68)

For reasons that become clear in the final stages of the proof, we need to replace the set S with a
new one denoted by S ′ which should be defined as:

S ′ ≜

(ζ1, . . . , ζK) ∈ RK

∣∣∣∣ ζk ≥ ε

K
, ∀k ∈ [K],

1

K

∑
k∈[K]

ζk ≤ ε
(
1 +

1

K

)
+ c1

√
log
(
K+2
δ

)
2K

 .

(69)

Evidently, replacing S ′ with S in the maximization step of equation 68, i.e., supρ∈S′ , gives an upper
bound for the original formulation of supρ∈S , since each member of S ′ can be formed by taking a
member from S and add all radius values by a constant ε/K. Obviously, this procedure only makes
the adversarial loss value larger and hence all the bounds still apply.

Part II: So far, we have managed to (partially) prove the proposed bound in the statement of the
theorem in scenarios where mink nk → ∞ and thus we have P̂k

a.s.
= Pk for all k ∈ [K]. At this

stage of the proof we focus on replacing

QVk (h, ρ) = sup
Q∈Bwass

ρk
(Pk)

EQ [ℓ (y, h (X))] ,
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for any k ∈ [K] and arbitrary ρ ≥ 0, with its empirical version Q̂Vk (h, ρ). Let us reiterate that we
do not have any knowledge regarding Pk, and only client k has access to its empirical version P̂k

which is based on nk i.i.d. samples. Therefore, Q̂Vk (h, ρ) is computable via the querying policy
described in Section 4, while the true query value QV(h, ρ) is always unknown.

To this aim, similar to (Sinha et al., 2018) first let us define the following ϕγ (Z) function for γ ≥ 0
and Z ∈ Z:

ϕγ (Z) ≜ sup
Z′∈Z

ℓ (Z ′)− γc (Z ′,Z) , (70)

where c(·, ·) is the original transportation cost and ℓ (Z) abbreviates ℓ (y, h (X)) where we have
omitted h for simplicity in notation. First, it can readily verified that if ℓ is bounded between 0 and
1, so does ϕγ for any γ ≥ 0. Second, note that from Lemma C.1 we have the following duality
formulation for QVk and Q̂Vk for any ρk ≥ 0:

QVk (h, ρk) ≜ sup
Q∈Bwass

ρk
(Pk)

EQ [ℓ (y, h (X))] = inf
γ≥0
{γρk + EPk

[ϕγ (Z)]} ,

Q̂Vk (h, ρk) ≜ sup
Q∈Bwass

ρk
(P̂k)

EQ [ℓ (y, h (X))] = inf
γ≥0

γρk +
1

nk

∑
i∈[nk]

ϕγ

(
Z

(k)
i

) . (71)

In the following, first we show that ϕγ (Z), for any Z ∈ Z is a Lipschitz function with respect to γ
where the Lipschitz constant only depends on the way the transportation cost c is bounded, i.e., the
inherent boundedness of c or the compactness ofZ . Additionally, we show that the optimal γ ≥ 0 in
both minimization problems on the right-hand sides of equation 71 is bounded by a known constant.
The latter result is deduced from the fact that all robustness radii ρk, k ∈ [K] in the statement
of theorem has a known margin from zero. Finally, we show the above-mentioned properties can
guarantee that EP̂k

[ϕγ (Z)] uniformly converges to its true expected value EPk
[ϕγ (Z)] for all

relevant value of γ ≥ 0. Hence, the empirical and statistical query values are always within a
controlled and asymptotically small deviation from each other regardless of the robustness radius
value ρk.

In this regard, the following lemma shows that ϕγ (Z) for any Z ∈ Z is a Lipschitz function with
respect to γ ≥ 0:

Lemma C.3. There exists a constant R ≥ 0 which only depends on transportation cost c such that
function ϕγ (Z) is R-Lipschitz with respect to γ ≥ 0, for all Z ∈ Z .

Proof. For any two distinct values γ, γ′ ≥ 0, let Z∗
γ and Z∗

γ′ denote the optimal values for which
the sup in equation 70 is attained. Similar to several previous arguments, attainability of the sup
in this case is not necessary again, and thus this assumption is made for the sake of simplifying the
proof.

Then, for any Z ∈ Z we have:

ϕγ (Z) = sup
Z′∈Z

ℓ (Z ′)− γc (Z ′,Z) (72)

≥ ℓ
(
Z∗

γ′

)
− γc

(
Z∗

γ′ ,Z
)
,

ϕγ′ (Z) = ℓ
(
Z∗

γ′

)
− γ′c

(
Z∗

γ′ ,Z
)
,

which directly gives us the following bound:

ϕγ (Z)− ϕγ′ (Z) ≥ − (γ − γ′) c
(
Z∗

γ′ ,Z
)
. (73)

Through a set of similar arguments and replacing γ and γ′, the following complementary bound can
be achieved as well:

ϕγ (Z)− ϕγ′ (Z) ≤ − (γ − γ′) c
(
Z∗

γ ,Z
)
. (74)
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Therefore, the following inequality can be established according to the boundedness of c (or alter-
natively, compactness of Z):

|ϕγ (Z)− ϕγ′ (Z)| ≤ |γ − γ′| max
r∈{γ,γ′}

{c (Z∗
r ,Z)}

≤ |γ − γ′| sup
Z′∈Z

c (Z ′,Z)

≤ R |γ − γ′| , (75)

which proves the Lipschitz-ness of ϕγ with respect to γ.

The following lemma shows that optimal values of γ in the right-hand side minimization of equa-
tion 71 (or the infimum-achieving sequence in case the infimum is not attainable) is bounded by a
known constant:

Lemma C.4. In both minimization problems on the right-hand side of equation 71, the optimal γ
value denoted by γ∗ (if attained), or the tail of its sequence in case the inf is not attainable, satisfies
0 ≤ γ∗ ≤ 1

ρk
.

Proof. Proof directly results from the fact that ℓ(·) is bounded between 0 and 1. Therefore, looking
at the dual optimization problem in equation 71, increasing γ beyond 1/ρk results in γρk > 1 while
the second term (i.e., the adversarial loss) is always lower-bounded by zero which makes the whole
objective to become larger than 1. On the other hand, setting γ = 0 would (at worst) results in the
objective to be 1. Therefore, the optimizer infγ≥0 should not choose a γ value that is larger than
1/ρk.

At this point, we can state the main lemma in the second part of the proof, which theoretically shows
that empirical query values, i.e., Q̂Vk(h, ρ) for any fixed h ∈ H and uniformly all ρ ≥ 0 converge
to their true statistical expected values with a high probability.

Lemma C.5 (Uniform Convergence of Empirical Queries). For k ∈ [K], assume the unknown

sample distribution Pk and let
{
Z

(k)
i =

(
X

(k)
i , y

(k)
i

)}
for i ∈ [nk] denote nk ∈ N i.i.d. feature-

label pairs drawn from Pk. The kth dataset is only known to client k. Then, for any fixed classifier
h and any δ > 0, the following bound holds with probability at least 1− δ/(K + 2):

sup
ρ≥ε/K

∣∣∣Q̂Vk (h, ρ)− QVk (h, ρ)
∣∣∣ ≤ O


√√√√ log

(
(K+2)nk

εδ

)
nk

 . (76)

Proof. Using the dual formulation of Lemma C.1, we can rewrite the main objective of the theorem
as follows:

sup
ρ≥ε/K

∣∣∣Q̂Vk (h, ρ)− QVk (h, ρ)
∣∣∣

= sup
ρk≥ε/K

{
inf
γ̂≥0

[
γ̂ρk + EP̂k

[ϕγ̂ (Z)]
]
− inf

γ≥0
[γρk + EPk

[ϕγ (Z)]]

}
. (77)

Again, for the sake of simplicity in the proof let us assume both optimal values γ∗ and γ̂∗ in the
minimization problems on the right-hand side of equation 77 are attainable. It should be noted that
this assumption is not necessary and can be relaxed by adding more mathematical work. Then, from
Lemma C.4 we already know

0 ≤ γ∗, γ̂∗ ≤ 1

ρk
≤ K

ε
.

Let us partition the feasible search set of γ, γ̂ ≥ 0, i.e., [0,K/ε] into L ≜ ⌈K
2R

ε∆ ⌉ equal intervals,
where ∆ > 0 is a small constant which should to be determined later in the proof. For each interval,
let us choose a representative (for example, the value at the beginning of the interval) denoted by
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γi with i = 1, . . . , L. Then, based on Lemma C.3, for any ρk ∈ [ε/K, 2Kε], any corresponding
γ ∈ [0, 1/ρk] and all Z ∈ Z we have

|ϕγ (Z)− ϕγi∗ (Z)| ≤ R |γ − γi∗ | ≤ R ·
K

ε
· ε∆
K2R

=
∆

K
, (78)

where i∗ = argmini∈[L] |γ − γi|. On the other hand, from the maximization problem that defines
Û∗(ε) in equation 12, we have that

ρk ≤ O

(
Kε+

√
K log

(
K + 2

δ

))
, ∀k ∈ [K], (79)

where we have omitted constants for the sake of readability. Therefore, the above discussions di-
rectly lead to the following bound in the statistical sense (i.e., with respect to Pk):∣∣∣∣ infγ≥0

[γρk + EPk
[ϕγ (Z)]]− min

i∈[L]
[γiρk + EPk

[ϕγi
(Z)]]

∣∣∣∣
≤ min

i∈[L]
|γ∗ − γi| (R+ sup ρk)

≤ K

ε
· ε∆
K2R

· O

(
R+Kε+

√
K log

(
(K + 2)

δ

))

≤ ∆ · O

 1

K
+
ε

R
+

1

R

√
log
(
K+2
δ

)
K

 . (80)

Through a similar procedure, the following bound also holds for the empirical case (i.e., P̂k), but
this time almost surely:∣∣∣∣ infγ̂≥0

[
γ̂ρk + EP̂k

[ϕγ̂ (Z)]
]
− min

i∈[L]

[
γiρk + EP̂k

[ϕγi (Z)]
]∣∣∣∣

a.s.
≤ ∆ · O

 1

K
+
ε

R
+

1

R

√
log
(
K+2
δ

)
K

 . (81)

Therefore, according to the fact that P̂k is an empirical estimate of Pk based on nk i.i.d. samples ,
we have:

sup
ρ≥ε/K

∣∣∣Q̂Vk (h, ρ)− QVk (h, ρ)
∣∣∣ a.s.≤ ∆ · O

 1

K
+
ε

R
+

1

R

√
log
(
K+2
δ

)
K

+

max
i∈[L]

∣∣∣EP̂k
[ϕγi

(Z)]− EPk
[ϕγi

(Z)]
∣∣∣ . (82)

Since ϕγi
for each i ∈ [L] is a non-negative and 1-bounded (adversarial) loss function, simply

applying McDiarmid’s inequality and the union bound over all L values of γis would give us the
following bound which holds with probability at least 1− δ/(K + 2) for any δ > 0:

max
i∈[L]

∣∣∣EP̂k
[ϕγi (Z)]− EPk

[ϕγi (Z)]
∣∣∣ ≤

√√√√ log
[
L(K+2)

δ

]
2nk

, (83)

which gives us the following bound for supρ≥ε/K

∣∣∣Q̂Vk (h, ρ)− QVk (h, ρ)
∣∣∣ with the same high

probability:

sup
ρ≥ε/K

∣∣∣Q̂Vk (h, ρ)− QVk (h, ρ)
∣∣∣ ≤ O

 inf
∆>0

∆ζ (K, ε, δ) +

√√√√ log
[
RK2(K+2)

εδ∆

]
nk


 , (84)
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where function ζ(·) is defined as

ζ(K, ε, δ) ≜
1

K
+
ε

R
+

1

R

√
log
(
K+2
δ

)
K

.

It should be noted that R is a constant that does not depend on other parameters. Also, we have
minimized over ∆ > 0 since the bound holds irrespective of ∆. Exact solution of the minimization
problem in equation 84 is not needed, since choosing ∆ = O

(
K−1n

−1/2
k

)
gives us the following

bound:

sup
ρ≥ε/K

∣∣∣Q̂Vk (h, ρ)− QVk (h, ρ)
∣∣∣ ≤ O


√√√√ log

(
(K+2)nk

εδ

)
nk

 , (85)

and completes the proof.

By using the uniform convergence result from Lemma C.5 and applying it to all K clients simul-
taneously, we see that (via a union bound argument) with probability at least 1 − Kδ/(K + 2)

the empirical and statistical queries Q̂Vk (h, ρk) and QVk (h, ρk) are asymptotically close for all
k ∈ [K], and uniformly for all robustness radii

ρk ∈

[
ε

K
,O

(
Kε+

√
log((K + 2)/δ)

K

)]
which are considered for the maximization problem of equation 12. Finally, using another union
bound argument to incorporate the bounds from equation 64 and equation 67 in addition to the
previous K events, we can say that with probability at least 1− δ the following bound holds:

sup
µ′∈Gε(µ)

EP∼µ′ [EP [ℓ (y, h (X))]] (86)

≤ sup
ρ∈S′

1

K

∑
k∈[K]

sup
Q∈Bwass

ρk
(Pk)

EQ [ℓ (y, h (X))] + c2

√√√√ log
(

(K+2)nk

εδ

)
nk

+

√
log
(
K+2
δ

)
2K

= sup
ρ∈S′

1

K

∑
k∈[K]

Q̂Vk (h, ρk) + c2

√√√√ log
(

(K+2)nk

εδ

)
nk

+

√
log
(
K+2
δ

)
2K

, (87)

where c2 is a constant that only depends on either the transportation cost c or the compactness of
sample space Z . This completes the proof.

D AUXILIARY PROOFS: REMARKS, LEMMAS, ETC.

Proof of Remark 6.3. The query functions Q̂Vk(h, ρ), for any fixed h ∈ H, are non-decreasing with
respect to ρ ≥ 0. Therefore, the following function:

ζ (ρ1, . . . , ρK) ≜
1

K

∑
k∈[K]

Q̂Vk (h, ρk) (88)

is a summation of K non-decreasing functions, where each function depends only on one of the
ρk values. This function, ζ(ρ1, . . . , ρK), is a quasi-concave function. Although quasi-concave
functions are not generally concave, they do possess concave superlevel sets. Specifically, for each
t ∈ R, the following sets are convex in RK :

St ≜

(ρ1, . . . , ρK) ∈ RK

∣∣∣∣ 1

K

∑
k∈[K]

Q̂Vk (h, ρk) ≥ t

 . (89)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Algorithm 1: Server-side Bisection Algorithm
Parameters: K, ε, δ
Input : h, ∆ > 0, poly

(
K, log 1

∆

)
query budget for Q̂Vk, ∀k ∈ [K]

Initialize:
a←− min ℓ(·) or 0
b←− max ℓ(·) or 1

while b− a > ∆ do
t←− (a+ b)/2

Solve convex feasibility problem :

Find ρ1, . . . ρK ≥ ε/K

subject to
1

K

∑
k∈[K]

ρk ≤ ε
(
1 +

1

K

)
+ c1

√
log ((K + 2)/δ)

K

1

K

∑
k∈[K]

Q̂Vk (h, ρk) ≥ t

if Is feasible then
a←− t

else
b←− t

Result: Upper-bound b

As a result, the original optimization problem in equation 12 can be decomposed into a sequence
of convex optimization problems. Each sub-problem is essentially a feasibility problem that checks
whether the set St is feasible for a given t ∈ R. Given that the original objective function is bounded
between 0 and 1, a binary search can be employed to iteratively approximate the maximum attainable
value of the objective within any desired error margin ∆ > 0. This process is detailed in Algorithm
1, which implements a bisection algorithm.

It is important to note that each feasibility check sub-problem in Algorithm 1 is a convex problem,
and therefore can be solved in polynomial time with polynomial evaluations of the constraint func-
tions, i.e., the Q̂Vk functions. Consequently, both the computational complexity and the required
query budget remain polynomial. In particular, for a given ∆ > 0, the maximum of the objective
in equation 88 can be approximated with an error of at most ∆, requiring at most log 1

∆ iterations
(feasibility checks) in Algorithm 1.
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E AUXILIARY ILLUSTRATIONS AND EXPERIMENTAL RESULTS

Figure 4: A graphical illustration of meta-distributional shifts between two different networks (or
societies) of clients/users. Heterogeneous user data distributions can be considered as i.i.d. samples
from a meta-distribution. In this example, clients from one meta-distribution primarily have vehicle
images, while those from another meta-distribution mostly have animal images.
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Figure 5: Extension of previous experiments to a broader range of adversarial budgets for f -
divergence attacks. DKW-based certificates for unseen clients in our four examined datasets. Meta
refers to the main population with 500 nodes.
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Figure 6: Wasserstein distance-based certificates for unseen clients in our four examined datasets.
Meta and Wass refer to the main population with 500 nodes. Dotted curves are based on 100 net-
works within the population.
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