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Abstract

This paper studies model-based bandit and reinforcement learning (RL) with non-
linear function approximations. We propose to study convergence to approximate
local maxima because we show that global convergence is statistically intractable
even for one-layer neural net bandit with a deterministic reward. For both non-
linear bandit and RL, the paper presents a model-based algorithm, Virtual Ascent
with Online Model Learner (ViOlin), which provably converges to a local max-
imum with sample complexity that only depends on the sequential Rademacher
complexity of the model class. Our results imply novel sample complexity bounds
on several concrete settings such as linear bandit with finite or sparse model class,
and two-layer neural net bandit. A key algorithmic insight is that optimism may
lead to over-exploration even for two-layer neural net model class. On the other
hand, for convergence to local maxima, it suffices to maximize the virtual return if
the model can also reasonably predict the gradient and Hessian of the real return.

1 Introduction

Recent progresses demonstrate many successful applications of deep reinforcement learning (RL)
in robotics [49], games [7, 66], computational biology [56], etc. However, theoretical understanding
of deep RL algorithms is limited. Last few years witnessed a plethora of results on linear function
approximations in RL [80, 65, 40, 73, 71, 19, 3, 32], but the analysis techniques appear to strongly
rely on (approximate) linearity and hard to generalize to neural networks.

The goal of this paper is to theoretically analyze model-based nonlinear bandit and RL with neural
net approximation, which achieves amazing sample-efficiency in practice (see e.g., [37, 10, 30, 31,
12]). We focus on the setting where the state and action spaces are continuous.

Past theoretical work on model-based RL studies families of dynamics with restricted complexity
measures such as Eluder dimension [60], witness rank [68], the linear dimensionality [77], and
others [58, 42, 17]. Implications of these complexity measures have been studied, e.g., finite mixture
of dynamics [6] and linear models [64] have bounded Eluder dimensions. However, it turns out that
none of the complexity measures apply to the family of MDPs with even barely nonlinear dynamics,
e.g., MDPs with dynamics parameterized by all one-layer neural network with a single activation
unit (and with bounded weight norms). For example, in Theorem 5.2, we will prove that one-layer
neural nets do not have polynomially-bounded Eluder dimension.1 (See more evidence below.)

The limited progress on neural net approximation is to some extent not surprising. Given a determin-
istic dynamics with known neural net parameters, finding the best parameterized policy still involves
optimizing a complex non-concave function, which is in general computationally intractable. More

1This result is also proved by the concurrent Li et al. [50, Theorem 8] independently.
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fundamentally, we find that it is also statistically intractable for solving the one-hidden-layer neural
net bandit problem (which is a strict sub-case of deep RL). In other words, it requires exponential
(in the input dimension) samples to find the global maximum (see Theorems 5.1). This also shows
that conditions in past work that guarantee global convergence cannot apply to neural nets.

Given these strong impossibility results, we propose to reformulate the problem to finding an ap-
proximate local maximum policy with guarantees. This is in the same vein as the recent fruitful
paradigm in non-convex optimization where researchers disentangle the problem into showing that
all local minima are good and fast convergence to local minima (e.g., see [28, 26, 27, 29, 48]). In
RL, local maxima can often be global as well for many cases [4].2

Zero-order optimization or policy gradient algorithms can converge to local maxima and become
natural potential competitors. They are widely believed to be less sample-efficient than the model-
based approach because the latter can leverage the extrapolation power of the parameterized models.
Theoretically, our formulation aims to characterize this phenomenon with results showing that the
model-based approach’s sample complexity mostly depends (polynomially) on the complexity of
the model class, whereas policy gradient algorithms’ sample complexity polynomially depend on
the dimensionality of policy parameters (in RL) or actions (in bandit). Our technical goal is to
answer the following question:

Can we design algorithms that converge to approximate local maxima with sample complexities
that depend only and polynomially on the complexity measure of the dynamics/reward class?

We note that this question is open even if the dynamics hypothesis class is finite, and the complexity
measure is the logarithm of its size. The question is also open even for nonlinear bandit problems
(where dynamics class is replaced by reward function class), with which we start our research.
We consider first nonlinear bandit with deterministic reward where the reward function is given by
η(θ, a) for action a ∈ A under instance θ ∈ Θ. We use sequential Rademacher complexity [62, 63]
to capture the complexity of the reward function η. Our main result for nonlinear bandit is stated as
follows.

Theorem 1.1 (Informal version of Theorem 3.1). Suppose the sequential Rademacher complexity
of a loss function class (defined later) induced by the reward function class {η(θ, ·) : θ ∈ Θ} is
bounded by

√
R(Θ)Tpolylog(T ). Then, there exists an algorithm (ViOlin, Alg. 1) that finds an

ε-approximate local maximum with Õ(R(Θ)ε−8) samples.

In contrast to zero-order optimization, which does not use the parameterization of η and has a sample
complexity depending on the action dimension, our bound only depends on the complexity of the
reward function class. This suggests that our algorithm exploits the extrapolation power of the
reward function class. To the best of our knowledge, this is the first action-dimension-free result
for both linear and nonlinear bandit problems. More concretely, we instantiate our theorem to the
following settings and get new results that leverage the model complexity (more in Section 3.1).

1. Linear bandit with finite parameter space Θ. Because η is concave in action a, our result leads
to a sample complexity O(poly(log|Θ|, 1/ε)) for finding an ε-approximate optimal action. In
this case both zero-order optimization and the SquareCB algorithm in Foster, Rakhlin [24] have
sample complexity/regret that depend on the dimension of action space dA.

2. Linear bandit with s-sparse or structured instance parameters. Our algorithm ViOlin achieves
an O(poly(s, 1/ε)) sample complexity when the instance/model parameter is s-sparse and the
reward is deterministic. The sample complexity of zero-order optimization depends polynomi-
ally on dA. Carpentier, Munos [9] achieve a stronger Õ(s

√
T ) regret bound for s-sparse linear

bandits with actions set A = Sd−1. In contrast, our ViOlin algorithm applies more generally
to any structured instance parameter set. Other related results either leverage the rather strong
anti-concentration assumption on the action set [72], or have implicit dimension dependency
[33, Remark 4.3].

3. Two-layer neural nets bandit. Our algorithm finds an ε-approximate local maximum
Õ(poly(1/ε)). Zero-order optimization can also find a local maximum but with Ω(dA) samples.

2The all-local-maxima-are-global condition only needs to hold to the ground-truth total expected reward
function. This potentially can allow disentangled assumptions on the ground-truth instance and the hypothesis
class.
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Optimistic algorithms in this case have an exponential sample complexity (see Theorem 5.3).
Moreover, when the second layer of the ground-truth network contains all negative weights and
the activation is convex and monotone, all local maxima are global because the reward is concave
in the input (action) [5].

The results for bandit can be extended to model-based RL with deterministic nonlinear dynamics
and deterministic reward.

Theorem 1.2 (Informal version of Theorem 4.4). Consider RL problems with deterministic dy-
namics class and stochastic policy class that satisfy some Lipschitz properties. Suppose the
sequential Rademacher complexity of the `2 losses for learning the dynamics is bounded by√
R(Θ)Tpolylog(T ). Then, ViOlin for RL (Alg. 2) finds an ε-approximate local maximum policy

with Õ(R(Θ)ε−8) samples.

To the best of our knowledge, this is the first model-based RL algorithms with provable finite sample
complexity guarantees (for local convergence) for general nonlinear dynamics. The work of [55]
is the closest prior work which also shows local convergence, but its conditions likely cannot be
satisfied by any parameterized models (including linear models). We also present a concrete example
of RL problems with nonlinear models satisfying our Lipschitz assumptions in Example 4.3 of
Section 4, which may also serve as a testbed for future model-based deep RL analysis. Other prior
works on model-based RL do not apply to one-hidden-layer neural nets because they conclude global
convergence which is not possible for one-hidden-layer neural nets in the worst case.

Technical novelty: exploring by model-based curvature estimate. The main challenge is that
the optimism-in-face-of-uncertainty exploration principle seems to be too aggressive—for a non-
linear model class, even if the ground-truth model is linear, optimistic exploration leads to expo-
nentially large model cumulative prediction errors and exponential sample complexity (see Theo-
rem 5.3). We use an online learning oracle to learn the dynamics, which can dramatically reduce
the model prediction errors by hedging the risks. However, now, choosing actions or policies by
maximizing virtual return may lack exploration. The main novelty of our algorithm is that we aug-
ment the online learning loss with gradient and Hessian estimation errors. The key insight is that,
in order to ensure sufficient exploration for converging to local maxima, it suffices for the model to
predict the virtual return, its gradient and Hessian reasonably accurately. We refer to the approach
as “model-based curvature estimate”. Our algorithm alternates between maximizing virtual return
(over action or policy) and learning the model parameters by an online learner.

Because the algorithm leverages model extrapolation, the sample complexity of model-based cur-
vature prediction depends on the model complexity instead of action dimension in the zero-
optimization approach. Foster, Rakhlin [24] also propose algorithms that do not rely on UCB—
their exploration strategy either relies on the finite discrete action space, or leverages the linear
structure in the action space and has action-dimension dependency. In contrast, our algorithms’
exploration relies more on the learning of the model. Consequently, our sample complexity can be
action-dimension-free.

2 Problem Setup and Preliminaries

In this section, we first introduce our problem setup for nonlinear bandit and reinforcement learning,
and then the preliminary for online learning and sequential Rademacher complexity.

2.1 Nonlinear Bandit Problem with Deterministic Reward

We consider deterministic nonlinear bandits with continuous actions. Let θ ∈ Θ be the parameter
that specifies the bandit instance, a ∈ RdA the action, and η(θ, a) ∈ [0, 1] the reward function. Let θ?
denote the unknown ground-truth parameter. Throughout the paper, we work under the realizability
assumption that θ? ∈ Θ. A bandit algorithm aims to maximize η(θ?, a). Let a? = argmaxa η(θ?, a)
be the optimal action (breaking tie arbitrarily). Let ‖H‖sp be the spectral norm of a matrix H . We
assume that the reward function, its gradient and Hessian matrix are Lipschitz, which are standard
in the optimization literature (e.g., Johnson, Zhang [41], Ge et al. [26]).
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Assumption 2.1. We assume that for all θ ∈ Θ, supa ‖∇aη(θ, a)‖2 ≤ ζg and
supa

∥∥∇2
aη(θ, a)

∥∥
sp
≤ ζh. For every θ ∈ Θ and a1, a2 ∈ RdA ,

∥∥∇2
aη(θ, a1)−∇2

aη(θ, a2)
∥∥

sp
≤

ζ3rd ‖a1 − a2‖2.

As a motivation to consider deterministic rewards, we prove in Theorem B.1 for a special case that
no algorithm can find a local maximum in less than

√
dA steps. The result implies that an action-

dimension-free sample complexity bound is impossible with standard sub-Gaussian noise.3

Approximate local maxima. In this paper, we aim to find a local maximum of the real reward
function η(θ?, ·). A point x is an (εg, εh)-approximate local maximum of a twice-differentiable
function f(x) if ‖∇f(x)‖2 ≤ εg , and λmax(∇2f(x)) ≤ εh. As argued in Sec. 1 and proved
in Sec. 5, because reaching a global maximum is computational and statistically intractable for
nonlinear problems, we only aim to reach a local maximum.

Sample complexity and local regret for converging to local maxima. Let at be the action that
the algorithm takes at time step t. The sample complexity for converging to approximate local
maxima is defined to be the minimal number of steps T such that there exists t ∈ [T ] where at is an
(εg, εh) approximate local maximum with probability at least 1−δ. We also define the “local regret”
by comparing with an approximate local maximum. We defer the discussion to Appendix C.5.

2.2 Reinforcement Learning

A finite horizon Markov decision process (MDP) with deterministic dynamics is defined by a tuple
〈T, r,H, µ1〉. Let S and A be the state and action spaces. The dynamics T : S × A → S gives
next state, r : S × A → [0, 1] is the reward function. H and µ1 denote the horizon and distribution
of initial state respectively. Without loss of generality, we assume that the state space is disjoint for
different time steps. That is, there exists disjoint sets S1, · · · ,SH such that S = ∪Hh=1Sh, and for
any sh ∈ S, ah ∈ a, T (sh, ah) ∈ Sh+1.

We consider parameterized policy and dynamics. Let Π = {πψ : ψ ∈ Ψ} be the policy class and
{Tθ : θ ∈ Θ} the dynamics class. The value function is V πT (sh) , E[

∑H
h′=h r(sh′ , ah′)], where

ah ∼ π(· | sh), sh+1 = T (sh, ah). Sharing the notation with the bandit setting, let η(θ, ψ) =
Es1∼µ1

V
πψ
Tθ

(s1) be the expected return of policy πψ under dynamics Tθ. Let ρπT be the distribution
of state action pairs when running policy π in dynamics T . For simplicity, we do not distinguish
ψ, θ from πψ , Tθ when the context is clear. For example, we write V ψθ = V

πψ
Tθ
.

2.3 Preliminary on Online Learning with Stochastic Input Components

Consider a prediction problem where we aim to learn a function that maps from X to Y parame-
terized by parameters in Θ. Let `((x, y); θ) be a loss function that maps (X × Y) × Θ → R+.
An online learner R aims to solve the prediction tasks under the presence of an adversarial nature
iteratively. At time step t, the following happens.

1. The learner computes a distribution pt = R({(xi, yi)}t−1
i=1) over the parameter space Θ.

2. The adversary selects a point x̄t ∈ X̄ (which may depend on pt) and generates a sample ξt from
some fixed distribution q. Let xt , (x̄t, ξt), and the adversary picks a label yt ∈ Y .

3. The data point (xt, yt) is revealed to the online learner.

The online learner aims to minimize the expected regret in T rounds of interactions, defined as

REGOL
T , E

ξt∼q,θt∼pt
∀1≤t≤T

[∑T
t=1 `((xt, yt); θt)− infθ∈Θ

∑T
t=1 `((xt, yt); θ)

]
. (1)

The difference of the formulation from the most standard online learning setup is that the ξt part of
the input is randomized instead of adversarially chosen (and the learner knows the distribution of ξt
before making the prediction pt). It was introduced by Rakhlin et al. [61], who considered a more
generalized setting where the distribution q in round t can depend on {x1, · · · , xt−1}.

3We rely on deterministic reward to estimate the gradient by finite difference. This method can be extended
to stochastic rewards with multiple-point feedback [54].
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We adopt the notation from Rakhlin et al. [61, 62] to define the (distribution-dependent) sequential
Rademacher complexity of the loss function class L = {(x, y) 7→ `((x, y); θ) : θ ∈ Θ}. For
any set Z , a Z-valued tree with length T is a set of functions {zi : {±1}i−1 → Z}Ti=1. For a
sequence of Rademacher random variables ε = (ε1, · · · , εT ) and for every 1 ≤ t ≤ T, we denote
zt(ε) , zt(ε1, · · · , εt−1). For any X̄ -valued tree x and anyY-valued tree y, we define the sequential
Rademacher complexity as

RT (L;x,y) , Eξ1,···,ξtEε
[
sup
`∈L

∑T
t=1 εt`((x(ε), ξt),y(ε))

]
. (2)

We also define RT (L) = supx,yRT (L;x,y), where the supremum is taken over all X̄ -valued and
Y-valued trees. Rakhlin et al. [61] proved the existence of an algorithm whose online learning regret
satisfies REGOL

T ≤ 2RT (L).

3 Model-based Algorithms for Nonlinear Bandit

We first study model-based algorithms for nonlinear continuous bandits problem, which is a simpli-
fication of model-based reinforcement learning. We use the notations and setup in Section 2.1.

Abstraction of analysis for model-based algorithms. Typically, a model-based algorithm ex-
plicitly maintains an estimated model θ̂t, and sometimes maintains a distribution, posterior, or confi-
dence region of θ̂t. We will call η(θ?, a) the real reward of action a, and η(θ̂t, a) the virtual reward.
Most analysis for model-based algorithms (including UCB and ours) can be abstracted as showing
the following two properties:

(i) the virtual reward η(θ̂t, at) is sufficiently high.
(ii) the virtual reward η(θ̂t, at) is close to the real reward η(θ?, at) in the long run.

One can expect that a proper combination of property (i) and (ii) leads to showing the real reward
η(θ?, at) is high in the long run. Before describing our algorithms, we start by inspecting and
summarizing the pros and cons of UCB from this viewpoint.

Pros and cons of UCB. The UCB algorithm chooses an action at and an estimated model θ̂t that
maximize the virtual reward η(θ̂t, at) among those models agreeing with the observed data. The
pro is that it satisfies property (i) by definition—η(θ̂t, at) is higher than the optimal real reward
η(θ?, a?). The downside is that ensuring (ii) is challenging and often requires strong complexity
measure bound such as Eluder dimension (which is not polynomial for even barely nonlinear models,
as shown in Theorem 5.2). The difficulty largely stems from our very limited control of θ̂t except its
consistency with the observed data. To bound the difference between the real and virtual rewards,
we essentially require that any model that agrees with the past history should extrapolate to any
future data accurately (as quantitatively formulated in Eluder dimension). Moreover, the difficulty
of satisfying property (ii) is fundamentally caused by the over-exploration of UCB—As shown in
the Theorem 5.3, UCB suffers from bad sample complexity with barely nonlinear family of models.

Our key idea: natural exploration via model-based curvature estimate. We deviate from
UCB by readjusting the priority of the two desiderata. We prioritize ensuring property (ii) on large
model class. We leverage a strong online learning algorithm to predict θ̂t with the objective that
η(θ̂t, at) matches η(θ?, at) . As a result, the difference between the virtual and real reward depends
on the online learnability or the sequential Rademacher complexity of the model class. Sequen-
tial Rademacher complexity turns out to be a fundamentally more relaxed complexity measure than
Eluder dimension—e.g., two-layer neural networks’ sequential Rademacher complexity is polyno-
mial in parameter norm and dimension, but the Eluder dimension is at least exponential in dimension
(even with a constant parameter norm). However, an immediate consequence of using online-learned
θ̂t is that we lose optimism/exploration that ensured property (i).4

4More concretely, the algorithm can get stuck when (1) at is optimal for θ̂t, (2) θ̂t fits actions at (and
history) accurately, but (3) θ̂t does not fit a? (because online learner never sees a?). The passivity of online
learning formulation causes this issue—the online learner is only required to predict well for the point that it
saw and will see, but not for those points that it never observes.
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Algorithm 1 ViOlin: Virtual Ascent with Online Model Learner (for Bandit)

1: Set parameter κ1 = 2ζg and κ2 = 640
√

2ζh. LetH0 = ∅; choose a0 ∈ A arbitrarily.
2: for t = 1, 2, · · · do
3: Run online learner R on Ht−1 with loss function ` (defined in equation (5)) and obtain
pt = R(Ht−1).

4: Let at ← argmaxa Eθt∼pt [η(θt, a)].
5: Sample ut, vt ∼ N (0, IdA×dA) independently.
6: Let ξt = (ut, vt), x̄t = (at, at−1), and xt = (x̄t, ξt)
7: Compute yt = [η(θ?, at), η(θ?, at−1), 〈∇aη(θ?, at−1), ut〉, 〈∇2

aη(θ?, at−1)ut, vt〉] ∈ R4

by applying a finite number of actions in the real environments using equation (3) and (4).
8: UpdateHt = Ht−1 ∪ {(xt, yt)}

Our approach realizes property (i) in a sense that the virtual reward will improve iteratively if the
real reward is not yet near a local maximum. This is much weaker than what UCB offers (i.e., that
the virtual reward is higher than the optimal real reward), but suffices to show the convergence to a
local maximum of the real reward function. We achieve this by demanding the estimated model θ̂t
not only to predict the real reward accurately, but also to predict the gradient∇aη(θ?, a) and Hessian
∇2
aη(θ?, a) accurately. In other words, we augment the loss function for the online learner so that

the estimated model satisfies η(θ̂t, at) ≈ η(θ?, at), ∇aη(θ̂t, at) ≈ ∇aη(θ?, at), and ∇2
aη(θ̂t, at) ≈

∇2
aη(θ?, at) in the long run. This implies that when at is not at a local maximum of the real reward

function η(θ?, ·), then it’s not at a maximum of the virtual reward η(θ̂t, ·), and hence the virtual
reward will improve in the next round if we take the greedy action that maximizes it.

Estimating projections of gradients and Hessians. To guide the online learner to predict
∇aη(θ?, at) correctly, we need a supervision for it. However, we only observe the reward η(θ?, at).
Leveraging the deterministic reward property, we use rewards at a and a + α1u to estimate the
projection of the gradient at a random direction u:

〈∇aη(θ?, a), u〉 = lim
α1→0

(η(θ?, a+ α1u)− η(θ?, a)) /α1 (3)

It turns out that the number of random projections 〈∇aη(θ?, a), u〉 needed for ensuring a large virtual
gradient does not depend on the dimension, because we only use these projections to estimate the
norm of the gradient but not necessarily the exact direction of the gradient (which may require
d samples.) Similarly, we can also estimate the projection of Hessian to two random directions
u, v ∈ dA by:〈
∇2
aη(θ?, a)v, u

〉
= lim
α2→0

(〈∇aη(θ?, a+ α2v), u〉 − 〈∇aη(θ?, a), u〉) /α2 (4)

= lim
α2→0

lim
α1→0

((η(θ?, a+ α1u+ α2v)− η(θ?, a+ α2v))− (η(θ?, a+ α1u)− η(θ?, a))) /(α1α2)

Algorithmically, we can choose infinitesimal α1 and α2. Note that α1 should be at least an order
smaller than α2 because the limitations are taken sequentially.

We create the following prediction task for an online learner: let θ be the parameter, x = (a, a′, u, v)
be the input, ŷ = [η(θ, a), η(θ, a′), 〈∇aη(θ, a′), u〉, 〈∇2

aη(θ, a′)u, v〉] ∈ R4 be the output, and
y = [η(θ?, a), η(θ?, a′), 〈∇aη(θ?, a′), u〉, 〈∇2

aη(θ?, a′)u, v〉] ∈ R4 be the supervision, and the loss
function be

`(((a, a′, u, v), y); θ) ,([ŷ]1 − [y]1)
2

+ ([ŷ]2 − [y]2)
2

+ min
(
κ2

1, ([ŷ]3 − [y]3)
2
)

+ min
(
κ2

2, ([ŷ]4 − [y]4)
2
)

(5)

Here we used [y]i to denote the i-th coordinate of y ∈ R4 to avoid confusing with yt (the supervision
at time t.) Our algorithm is formally stated in Alg. 1 with its sample complexity bound below.

Theorem 3.1. Suppose the sequential Rademacher complexity of the loss function (defined in
Eq. (5)) is bounded by

√
R(Θ)Tpolylog(T ). The sample complexity of Alg. 1 (for finding an

(ε, 6
√
ζ3rdε)-approximate local maximum) is bounded by Õ(C4

1R(Θ) max
(
ζ4
hε
−8, ζ2

3rdε
−6
)
).
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We present a proof sketch in Appendix C.1 . Proof of Theorem 3.1 is deferred to Appendix C.4.
We can also boost the success probability by running Alg. 1 multiple times. In addition, we can
prove that our algorithm enjoys a sublinear local regret. The theorem statement and proof is shown
in Appendix C.5 and Appendix C.6 respectively.

3.1 Instantiations of Theorem 3.1

In the sequel we sketch some instantiations of our main theorem, whose proofs are deferred to
Appendix C.7.

Linear bandit with finite model class. Consider a linear bandit problem with action setA = {a ∈
Rd : ‖a‖2≤ 1} and finite model class Θ ⊂ {θ ∈ Rd : ‖θ‖2= 1}. Let η(θ, a) = 〈θ, a〉 be the reward.
We deal with the constrained action set by using a surrogate loss η̃(θ, a) , 〈θ, a〉− 1

2‖a‖
2
2 and apply

Theorem C.3 with reward η̃. We claim that the sample complexity (of finding an ε-suboptimal action
for η(θ?, a)) is bounded by Õ(log|Θ|ε−8).5 Note that the bound is independent of the dimension
d. By contrast, the SquareCB algorithm [24] depends polynomially on d (see Theorem 7 of [24]).
Zero-order optimization approach [20] in this case also gives a poly(d) regret bound.

Linear bandit with sparse or structured model vectors. We consider the deterministic linear
bandit setting where the model class Θ = {θ ∈ Rd : ‖θ‖0≤ s, ‖θ‖2= 1} consists of all s-sparse
vectors on the unit sphere. Similarly to finite hypothesis case, we claim that the sample complexity
of Alg. 1 is Õ(log|Θ|ε−8polylog(d)). The sample complexity of our algorithm only depends on the
sparsity level s (up to logarithmic factors), whereas the Eluder dimension of sparse linear hypothesis
is still Ω(d) (see Lemma C.4). Lattimore, Szepesvári [46] show a Ω(d) sample complexity lower
bound for the sparse linear bandit problem with stochastic reward. But here we only consider a
deterministic reward and continuous action.

Moreover, we can further extend the result to other linear bandit settings where θ has an additional
structure. Suppose Θ = {θ = φ(z) : z ∈ Rs} for some Lipschitz function φ. Then, a simlar
approach gives sample complexity bound that only depends on s but not d (up to logarithmic factors).
Our results can also be extended to non-linear bandits such as deterministic logistic bandits.

Two-layer neural nets. We consider the reward function given by two-layer neural networks with
width m. For matrices W1 ∈ Rm×d and W2 ∈ R1×m, let η((W1,W2), a) = W2σ(W1a)− 1

2 ‖a‖
2
2

for some nonlinear link function σ : R → [0, 1] with bounded derivatives up to the third order. Re-
call that the (1,∞)-norm ofW>1 is defined by maxi∈[m]

∑d
j=1 |[W1]i,j |. That is, the max 1-norm of

the rows of W1. Let the model hypothesis space be Θ = {(W1,W2) :
∥∥W>1 ∥∥1,∞ ≤ 1, ‖W2‖1 ≤ 1}

and θ , (W1,W2). We claim that Alg .1 finds an (ε, 6
√
ζ3rdε)-approximate local maximum in

Õ
(
ε−8polylog(d)

)
steps. To the best of our knowledge, this is the first result analyzing nonlin-

ear bandit with neural network parameterization. The result follows from analyzing the sequential
Rademacher complexity for η, 〈∇aη, u〉, and 〈u,∇2

aη · v〉, and finally the resulting loss function `.
See Theorem C.6 in Section C.7 for details. We remark here that zero-order optimization in this case
has a poly(d) sample complexity. In addition, if the second layer of the neural network W2 contains
all negative entries, and the activation function σ is monotone and convex, then η((W1,W2), a) is
concave in the action. (This is a special case of input convex neural networks [5].) In this case,
Alg. 1 finds an ε-suboptimal action (see Theorem C.6).

4 Model-based Reinforcement Learning

In this section, we extend the results in Section 3 to model-based reinforcement learning with deter-
ministic dynamics and reward function.

We can always view a model-based reinforcement learning problem with parameterized dynamics
and policy as a nonlinear bandit problem in the following way. The policy parameter ψ corresponds
to the action a in bandit, and the dynamics parameter θ corresponds to the model parameter θ in

5Recall that in bandit literature, action a is an ε-approximate optimal action if η(θ?, a) ≥ η(θ?, a?)− ε.
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bandit. The expected total return η(θ, ψ) = Es1∼µ1V
πψ
Tθ

(s1) is the analogue of reward function
in bandit. We intend to make the same regularity assumptions on η as in the bandit case (that is,
Assumption 2.1) with a being replaced by ψ. However, when the policy is deterministic, the reward
function η has Lipschitz constant with respect to ψ that is exponential in H (even if dynamics and
policy are both deterministic with good Lipschitzness). This prohibits efficient optimization over
policy parameters. Therefore we focus on stochastic policies in this section, for which we expect η
and its derivatives to be Lipschitz with respect to ψ.

Blindly treating RL as a bandit only utilizes the reward but not the state observations. In fact, one
major reason why model-based methods are more sample efficient is that it supervises the learning
of dynamics by state observations. To reason about the learning about local steps and the dynamics,
we make the following additional Lipschitzness of value functions w.r.t to the states and Lipschitz-
ness of policies w.r.t to its parameters, beyond those assumptions for the total reward η(θ, ψ) in
Assumption 2.1.

Assumption 4.1. We assume the following (analogous to Assumption 2.1) on the value function:
∀ψ ∈ Ψ, θ ∈ Θ, s, s′ ∈ S we have |V ψθ (s)− V ψθ (s′)| ≤ L0‖s−s′‖2; ‖∇ψV ψθ (s)−∇ψV ψθ (s′)‖2≤
L1‖s− s′‖2; ‖∇2

ψV
ψ
θ (s)−∇2

ψV
ψ
θ (s′)‖sp≤ L2‖s− s′‖2.

Assumption 4.2. We assume the following Lipschitzness assumptions on the stochastic poli-
cies parameterization πψ .6 ‖Ea∼πψ(·|s)[(∇ψ log πψ(a | s))(∇ψ log πψ(a | s))>]‖sp≤ χg;

‖Ea∼πψ(·|s)[(∇ψ log πψ(a | s))⊗4]‖sp≤ χf ; ‖Ea∼πψ(·|s)[(∇2
ψ log πψ(a | s))(∇2

ψ log πψ(a |
s))>]‖sp≤ χh.

Our results depends polynomially on the parameters L0, L1, L2, χg, χf and χh. To demonstrate that
the Assumption 4.1 and 4.2 contain interesting RL problems with nonlinear models and stochastic
policies, we give the following example where these parameters are all on the order of O(1).

Example 4.3. Let state space S be the unit ball in Rd and action space A be Rd. The (determin-
istic) dynamics T is given by T (s, a) = Nθ(s + a), where N is a nonlinear model parameterized
by θ, e.g., a neural network. We assume that θ belongs to a finite hypothesis class Θ that satisfies
‖Nθ(s+ a)‖2 ≤ 1 for all θ ∈ Θ, s ∈ S, a ∈ A. Assume that the reward function r(s, a) is Lr-
Lipschitz w.r.t `2-norm, that is, satisfying |r(s1, a1)− r(s2, a2)| ≤ Lr(‖s1 − s2‖2 + ‖a1 − a2‖2).
We consider a family of stochastic Gaussian policies with the mean being linear in the state:
πψ(s) = N (ψs, σ2I), parameterized by ψ ∈ Rd×d with ‖ψ‖op ≤ 1. We consider σ ∈ (0, 1)
as a small constant on the order of 1.

In this setting, Assumption 2.1, 4.1, and 4.2 hold with all parameters ζg, ζh, ζ3rd, L0, L1, L2, χg, χf
and χh bounded by poly(σ, 1/σ,H,Lr).

Bounding the Lipschitz parameters is highly nontrivial and deferred to Appendix E.

We show that the difference of gradient and Hessian of the total reward can be upper-bounded by
the difference of dynamics. Let τt = (s1, a1, · · · , sH , aH) be a trajectory sampled from policy
πψt under the real dynamics Tθ? . Similarly to [79], when the value function is Lipschitz, we upper
bound ∆t,1 = |η(θt, ψt) − η(θ?, ψt)| by the one-step model prediction errors. Similarly, we can
upper bound the gradient and Hessian errors by model prediction errors. As a result, the loss function
simply can be set to

`((τt, τ
′
t); θ) =

∑
(sh,ah)∈τt

‖Tθ(sh, ah)− Tθ?(sh, ah)‖22 +
∑

(s′h,a
′
h)∈τ ′t

‖Tθ(s′h, a′h)− Tθ?(s′h, a
′
h)‖22 (6)

for two trajectories τ, τ ′ sampled from policy πψt and πψt−1
respectively. Compared to Alg. 1,

the loss function is here simpler without relying on finite difference techniques to query gradients
projections. Our algorithm for RL is analogous to Alg. 1 by using the loss function in Eq. (6). Our
algorithm is presented in Alg. 2 in Appendix D. Main theorem for Alg. 2 is shown below.

Theorem 4.4. Let c1 = HL2
0(4H2χh + 4H4χf + 2H2χg + 1) + HL2

1(8H2χg + 2) + 4HL2
2

and C1 = 2 +
ζg
ζh

. Suppose the sequential Rademacher complexity of the loss function (defined

6Recall that the injective norm of a k-th order tensor A ∈ Rd⊗k
is defined as

∥∥A⊗k
∥∥
sp

=

supu∈Sd−1

〈
A, u⊗k

〉
.
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in Eq. (6)) is bounded by
√
R(Θ)Tpolylog(T ). The sample complexity of Alg. 2 (for finding an

(ε, 6
√
ζ3rdε)-approximate local maximum) is bounded by Õ(c21C

4
1R(Θ) max

(
ζ4
hε
−8, ζ2

3rdε
−6
)
).

Instantiation of Theorem 4.4 on Example 4.3. Applying Theorem 4.4 to the Example 4.3 with
σ = Θ(1) we get the sample complexity upper bound Õ

(
poly(σ, 1/σ,H,Lr) log|Θ|ε−8

)
.

Comparison with policy gradient. To the best of our knowledge, the best analysis for policy
gradient [74] shows convergence to a local maximum with a sample complexity that depends poly-
nomially on ‖∇ψ log πψ(a | s)‖2 [4]. For the instance in in Example 4.3, this translates to a sample
complexity guarantee on the order of

√
d/σ. In contrast, our sample complexity is independent

of the dimension d. Instead, our bound depends on the complexity of the model family Θ which
could be much smaller than the ambient dimension—this demonstrates that we leverage the model
extrapolation.

5 Lower Bounds

We prove several lower bounds to show (a) the hardness of finding global maxima, and (b) the
inefficiency of using optimism in nonlinear bandit.

Hardness of Global Optimality. In the following theorem, we show it statistically intractable to
find the global optimal policy when the function class is chosen to be the neural networks with ReLU
activation. That is, the reward function can be written in the form of η((w, b), a) = ReLU(〈w, a〉+
b). Note that the reward function can also be made smooth by replacing the activation by a smoothed
version. For example, η((w, b), a) = ReLU(〈w, a〉+ b)2.

Theorem 5.1. When the function class is chosen to be one-layer neural networks with ReLU acti-
vation, the minimax sample complexity is Ω(ε−(d−2)).

We can also prove that the eluder dimension of the constructed reward function class is exponential.

Theorem 5.2. The ε-eluder dimension of one-layer neural networks is at least Ω(ε−(d−1)).

This result is concurrently established by Li et al. [50, Theorem 8]. The proofs of both theorems
are deferred to Appendices B.1 and B.2, respectively. We also note that Theorem 5.1 does require
ReLU activation, because if the ReLU function is replaced by a strictly monotone link function
with bounded derivatives (up to third order), then this is the setting of deterministic generalized
linear bandit problem, which does allow a global regret that depends polynomially on dimension
[23, 14, 52]. In this case, our Theorem C.3 can also give polynomial global regret result: because
all local maxima of the reward function is global maximum [34, 43] and it also satisfies the strict-
saddle property [26], the local regret result translates to a global regret result. This shows that our
framework does separate the intractable cases from the tractable by the notions of local and global
regrets.

With two-layer neural networks, we can relax the use of ReLU activation—Theorem 5.2 holds with
two-layer neural networks and leaky-ReLU activations [75] because O(1) leaky-ReLU can imple-
ment a ReLU activation. We conjecture that with more layers, the impossibility result also holds for
a broader sets of activations.

Inefficiency caused by optimism in nonlinear models. The next theorem states that the UCB al-
gorithm that uses optimism-in-face-of-uncertainty principle can overly explore in the action space,
even if the ground-truth is simple. In fact the UCB algorithm will keep exploring for an exponen-
tial number of steps. So, UCB doesn’t even converge to local max, indicating more sophisticated
algorithms like ours are necessary. Proof of the theorem is deferred to Appendix B.3.

Theorem 5.3. Consider the case where the ground-truth reward function is linear: 〈θ?, a〉 and the
action set is a ∈ Sd−1. If the hypothesis is chosen to be two-layer neural network with width d, UCB
algorithm with tightest upper confidence bound suffers exponential sample complexity .
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6 Additional Related Work

There are several provable efficient algorithms without optimism for contextual bandits. Most of
the results achieve a action-dimension dependent regret bound for contextual bandits [21, 1, 76, 45].
Foster, Rakhlin [24] and Simchi-Levi, Xu [67] exploit the exploration probability inversely depends
on the empirical gap. The SquareCB algorithm [24] also extends to infinite actions with linear struc-
ture, but the regret depends on the action dimension. The exploration strategy in Foster, Rakhlin [24]
and Simchi-Levi, Xu [67] relies on the structure in the action space whereas ours exploits the ex-
trapolation in the model space. Recently, Foster et al. [25] prove an instance-dependent regret bound
for contextual bandit. Zhou et al. [81] also consider non-linear contextual bandits and propose the
NeuralUCB algorithm by leveraging the NTK approach. It converges to a globally optimal solution
with number of samples polynomial in the number of contexts and the number of actions. For non-
linear bandit problems with continuous actions, the sample complexity depends on the “effective
dimension” of some kernel matrix. Because no algorithm can find the global maximum for the hard
instances in Theorem 5.1 with polynomial samples, the effective dimension should be exponential
in dimension for the hard instances.

Deterministic nonlinear bandits can also be formulated as zero-order optimization without noise
(see Duchi et al. [20], Liu et al. [54] and references therein), where the reward is assumed to be any
1-Lipschitz function. In contrast, our algorithm exploits the knowledge of the reward function pa-
rameterization and achieves an action-dimension-free sample complexity. For stochastic nonlinear
bandit, Filippi et al. [23] consider generalized linear model. Valko et al. [70], Zhou et al. [81] focus
on rewards in a RKHS or NTK. Yang et al. [78] extends this approach to reinforcement learning.

Another line of research focuses on solving reinforcement learning by optimization on the policy
space. Agarwal et al. [4] prove that natural policy gradient can solve tabular MDPs efficiently.
Cai et al. [8] incorporate exploration bonus in proximal policy optimization algorithm and achieves
polynomial regret in linear MDP setting.

Beyond linear function approximations, there are also extensive studies on various settings that
allow efficient algorithms. For example, rich observation MDPs [44, 11, 18, 57], state aggregation
[16, 51], Bellman rank [38, 13] and others [17, 53, 59, 80, 42].

7 Conclusion

In this paper, we design new algorithms whose local regrets are bounded by the sequential
Rademacher complexity of particular loss functions. By rearranging the priorities of exploration
versus exploitation, our algorithms avoid over-aggressive explorations caused by the optimism in
the face of uncertainty principle, and hence apply to nonlinear models and dynamics.

We raise the following questions as future works:

1. Since we mainly focus on proving a regret bound that depends only on the complexity of
dynamics/reward class, our convergence rate in T is likely not minimax optimal. Can our
algorithms (or analysis) be modified to achieve minimax optimal regret for some of the
instantiations such as sparse linear bandit and linear bandit with finite model class?

2. In the bandit setting, we focus on deterministic reward because our ViOlin algorithm relies
on finite difference to estimate the gradient and Hessian of reward function. In fact, The-
orem B.1 shows that action-dimension-free regret bound for linear models is impossible
under standard Gaussian noise. Can we extend our algorithm to stochastic environments
with additional assumptions on noises?

3. In the reinforcement learning setting, we use policy gradient lemma to upper bound the
gradient/Hessian loss by the dynamics loss, which inevitable require the policies being
stochastic. Despite the success of stochastic policies in deep reinforcement learning, the
optimal policy may not be stochastic. Can we extend the ViOlin algorithm to reinforcement
learning problems with deterministic policy hypothesis?
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