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Abstract

Current Large Language Models (LLMs) often undergo supervised fine-tuning
(SFT) to acquire tool use capabilities. However, SFT struggles to generalize to
unfamiliar or complex tool use scenarios. Recent advancements in reinforcement
learning (RL), particularly with R1-like models, have demonstrated promising
reasoning and generalization abilities. Yet, reward design for tool use presents
unique challenges: multiple tools may be invoked with diverse parameters, and
coarse-grained reward signals, such as answer matching, fail to offer the finegrained
feedback required for effective learning. In this work, we present the first com-
prehensive study on reward design for tool selection and application tasks within
the RL paradigm. We systematically explore a wide range of reward strategies,
analyzing their types, scales, granularity, and temporal dynamics. Building on
these insights, we propose a principled reward design tailored for tool use tasks
and apply it to train LLMs using RL methods. Empirical evaluations across di-
verse benchmarks demonstrate that our approach yields robust, scalable, and stable
training, achieving a 17% improvement over base models and a 15% gain over
SFT models. These results highlight the critical role of thoughtful reward design in
enhancing the tool use capabilities and generalization performance of LLMs. All
the codes are released to facilitate future research[l]

1 Introduction

Recent advances in Large Language Models (LLMs) have showcased remarkable capabilities in
complex reasoning tasks [20]. Among the techniques that have significantly contributed to this
progress, Reinforcement Learning (RL) has emerged as a powerful paradigm, enabling LLMs to
develop emergent capabilities such as self-reflection, self-correction, and long-horizon planning [[13|
48]). These capabilities have been instrumental in the success of models like ol and R1, particularly
in mathematical and logical reasoning domains 36} [15, 123} 18]].

Beyond traditional reasoning tasks, an increasingly important area is Tool-Integrated Reasoning
(TIR). TIR involves LLMs interacting with external tools, such as search engines [17} 162], calcula-
tors [4,137]], or code interpreters [12, [24]], in a multi-step, feedback-driven loop to arrive at solutions.
TIR is particularly important as it addresses core limitations of LLMs, such as outdated knowledge
and calculation inaccuracy. By integrating external tools that offer real-time access and specialized
capabilities, TIR enables models to tackle complex tasks in a more grounded and goal-directed way.

Unlike textual reasoning, which primarily involves deduction and inference from static text, TIR
additionally demands the model’s ability to select appropriate tools, interpret intermediate outputs,
and adaptively refine its trajectory on the fly. These dynamic and interactive reasoning skills position
TIR at the core of the emerging paradigm of LLMs-as-agents. As such, TIR enables a wide range
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of applications, including scientific discovery [41} [16], research automation [2}51]], embodied task
completion 60, [14]], and everyday decision-making [|54,|59].

Training LLMs for TIR tasks has predominantly relied on Supervised Fine-Tuning (SFT), wherein
existing approaches typically generate these integrated reasoning steps offline, followed by subsequent
SFT on these trajectories [3} 158, 8, [1]. While SFT is effective to some extent, it struggles with
generalization, exploration, and adaptability [9} [13], failing to capture the strategic flexibility needed
for optimal tool use. This motivates a fundamental research question: Can RL better equip LLMs
with agentic tool-using capabilities, and if so, what is the optimal RL design for TIR?

Recent efforts such as Search-R1 [17] and TORL [_23]] have begun to explore this direction. However,
their focus is narrow: either constrained to search tools in question answering settings or code tools
in math problem-solving. In contrast, our work aims to study RL-based training for general-purpose
tool selection and application, across diverse and complex tool sets with different task types.

For an RL algorithm to be effective, a well-designed reward is essential. Unlike math tasks with a
single correct answer, Tool-Integrated Reasoning (TIR) tasks introduce multiple layers of complexity:
they often involve multi-step interactions where each turn may require invoking multiple tools, each
with carefully specified parameters. Designing effective reward signals to guide learning through this
complexity remains an open and underexplored challenge. In this paper, we address reward design
for TIR by proposing a framework applicable across RL algorithms. We validate it on Group Relative
Policy Optimization (GRPO) [44] and Proximal Policy Optimization (PPO) [43]], highlighting its
effectiveness in improving tool use under GRPO.

We begin by formalizing the TIR task, and outlining general principles for effective reward design.
Building on this foundation, we show how RL algorithm can be leveraged to train LLMs for
robust and context-aware tool selection and application. Empirical results demonstrate that our
approach outperforms base models by 17% and SFT models by 15% across multiple tool use and QA
benchmarks. Moreover, the trained model exhibits strong generalization to unseen scenarios and task
objectives, along with emergent behaviors such as proactiveness and metacognitive reasoning.

To identify optimal reward strategies, we systematically explore a broad spectrum of reward configu-
rations across four key dimensions: (1) reward type (what aspect to reward), (2) reward scale (how
much to reward), (3) reward granularity (how detailed the reward signal is), and (4) reward dynamics
(how rewards evolve over time). Through extensive experiments, we identify reward designs that best
align with agentic tool use and uncover insights into what makes a reward “useful” for tool invoking
LLMs. We summarize the core insights we derive as follows:

» Longer reasoning trace is not inherently better and length rewards can degrade performance.

* Dynamic reward scale helps models transition smoothly from simple to complex behaviors.

* Finegrained reward decomposition leads to more stable and effective learning.

We summarize the overall contributions of our paper as follows:

* We present the first systematic study on RL-based training for general-purpose tool selection and
application in LLMs.

* We propose a principled reward design framework for TIR and validate its effectiveness across RL
algorithms, with particular strength demonstrated on GRPO.

* We conduct extensive experiments analyzing the effects of various reward strategies and distill
actionable insights for future research on LLM-agent training.

2 Method

SFT often suffers from overfitting to certain patterns and constrains the model’s ability to learn
optimal strategies for tool use. To address this, we introduce a RL approach for enhancing TIR in
LLMs. In this section, we begin by defining the TIR task (Section [2.1)), followed by our customized
rollout strategy (Section[2.2) and reward design (Section [2.3)). These components are then integrated
into the RL framework [44] to guide model training on general TIR tasks (Section[2.4).

2.1 Task Definition

Tool-Integrated Reasoning is the process of incorporating external tools into the reasoning trajectory
of an LLM to solve a user task. A typical TIR trajectory involves multiple tool invocations over several



1. Format (Rformar)

) Append <obs> <obs> ORD > SFO: 213, Get Observation
Name: Get_Price, available ORD - LAX: $234 </obs>

<response>

{ N

' |

I |

H Score: 1 H

Parameters: Tools . Rollout E <think>...... '
Append <think> <tool_call> | I

{loc_1: str, loc_2: str} | <think>..... {Name: Get_Price, Parameters: ® ! Rollowt7 <toolcall>{...}</toolcall> 1
XN X e - i rorer H

<user> Is flying from Dialogue History <tool_call> {loc_1: ORD, loc_2: SFO}}  precution ' <thinic> . seore:0 €@ !
2 ORD to LAX cheaper (Trajectory) % il!o:l{calli {Name: Get_Price, Parameters: | Rollout2 <T€SP - </response> |
. E X = | I

than flying to SFO?  Query Polncyn K {loc_1: ORD, loc_2: LAX}} ! Ground <thini !
I |

Truth  <tool ... } </tool_call>

RL Signal for Policy Learning

X Tool Name Parameter Name ~ Parameter Content Parameter Name Match Parameter Contem Match

Tool Name Match Tool 1 Tool 2 Tool 1 Tool 2

] Ground, Predict ernd Prednrl Growld Predrrl loc_1: ORD, loc_2: SFO loc_1: ORD, loc_2: LAX.
E {Name: Get_Price, Parameters: {loc_1: ORD, loc_2: SFO}} Tth @ Tt o 0 g
Y i Darar otorce floe 2. T AW === loc_I Missing.
Rollont 1 {Name: Get_Price, Parameters: {loc_2: LAX}} 1/2 "/,, 2/2+I/Z 1.5(/2) x lllL 2: SFO o 2+1=3¢4) loc_2: LAX °
< N S Ground Predi roun Prv:dl oo Predi loc_1: ORD, loc_2: SFO loc_1: ORD, loc.
{Name: Get_Flight, Parameters: {from: ORD, to: SFO}} Tt e | i “ O
. 5 X N o Score: Tool Name Get @9y seore:  10°-1: orp
{Name: Get_Price, Parameters: {loc_1: ORD, loc_2: LAX}} ' T _Flight Wrong! IM 2(/41 loc_2: LAX ° i

Rollout 2 I 13-03301) n/1+2/1 1. 04/1;

Ground ool 1: {Name: G:
Truth  Tool 2: {Nami

Price, Parameters: {loc_I: ORD, loc_2: SFO}} e Tool 1: Get_Price Tool 2: Get_Price  Param 1: loc_1,loc_2 Param 2: loc_1,loc 2 Param 1 Content: loc_I: ORD, loc_2: SFO
e, Parameters: {loc_I: ORD, loc_2: LAX}} - - o “7"" Param2 Content: loc_I: ORD, loc_2: LAX
2. Correctness (R;orrect)

Figure 1: Illustration of TIR rollout and calculation of format and correctness reward.

reasoning steps, with the final outcome determined by the cumulative success of these intermediate
decisions. Formally, given a tool set T = {¢1,t2,...,t,} containing n available tools, and a user
query @, the reasoning trajectory up to step k is denoted as:

Sk = (1"1,7—1701) ’ (T277-2502) ey (rkaﬁyok)7

where r; denotes the model’s natural language reasoning at step 4, 7; C T denotes the set of tool
calls invoked at step ¢, and o; denotes the observation received after executing tools in 7;, possibly
including both environment and user feedback.

At each step k + 1, the model must generate the next reasoning step 71, select a set of tools
Tr+1 € T, and formulate a grounded tool call (i.e., a parameterized invocation of each tool) to make
progress toward solving Q. The model’s policy is defined as 7 : s — (rg41, Tr+1), Where the
model’s objective at each step is to select a tool set 71 that maximizes the reward:
Tip1 = arg max R(sk, Tkt1, 0k41),
Te+1CT

where R(-) represents the reward function that evaluates progress made by invoking the tools in T 1.
While the immediate reward at each step is maximized, the model’s policy is implicitly optimized to
maximize the cumulative reward over the entire trajectory, formulated as:

max Er E R(sk, Tet1,0641) | ,
T
k=1

This formulation is valid because our training data includes ground truth tool calls at each step,
allowing step-wise reward signals to guide multi-step success. Unlike QA tasks that focus solely on
the final answer, tool selection and application tasks provide dense intermediate feedback. Moreover,
we later demonstrate that our method enables the model to generalize to settings where tool calls are
free-form and only the final outcome matters. Therefore, our task setting encourages the model to
optimize tool use at each step while aligning with the overall task goal.

2.2 TIR Rollout

To enable the model to autonomously generate reasoning traces and tool calls, we instruct the LLM
to use special tokens <think>, <tool_call>, and <response> to indicate their thoughts, tool calls and
responses in output. The full prompt content is shown in Figure 8]

As illustrated in Figure [T} when the model output includes <tool_call>, we automatically parse
the tool calls into individual invocations using the model-predicted parameters. The outputs from
executions are then inserted into the <obs> field and appended to the dialogue history, serving as
the model’s interaction trajectory. Similarly, if the output contains <response>, the corresponding
response is parsed and appended to the dialogue history. Please refer to Figure [§]and Figure [9]in the
Appendix for instruction details.

It is important to note that <tool_call> and <response> are not mutually exclusive; they may co-occur
within a single output. The user’s initial query () is placed in the Initial User Input placeholder, and
any subsequent user inputs are also appended to the dialogue history when present.



2.3 Reward Design

Rule-based reward mechanisms have demonstrated strong empirical performance and are commonly
employed. In our training, we similarly adopt a reward formulation that combines structural and
correctness-based components [[17, 23 52]. Specifically, the format reward assesses whether the
model output adheres to the expected structure including thoughts, tool calls, and responses, while the
correctness reward evaluates the accuracy of tool invocations. Formally, the overall reward R, () is
decomposed into two components: Reormar + Feorrect> €ach described in detail below:

Format Reward. The format reward R¢omar checks whether the model output contains all required
special tokens in the correct order as specified by the ground truth:

Riormac = 1 if all required fields appear and are in the correct order else 0

Correctness Reward. The correctness reward Reorect €valuates predicted tool calls P =
{P, ..., P, } against ground-truth calls G = {G4, ..., G, }. It includes three components:

e Tool Name Matching:
|N a NN, p|
Tname = 17— € 0,1
|N a UN p| [ ]
where N and Np are sets of tool names extracted from the ground-truth and predicted tool calls.

* Parameter Name Matching:

_ |keys(Pa) Nkeys(Pp)|
T'param Z |keys(PG) U keys(Pp)\ € [0, |GH

Gjeq

where keys(P¢) and keys(Pp) are parameter names of ground-truth and predicted tool calls.
e Parameter Content Matching:

Tvalue = Z Z 1[PG[1€] = PP[kH S [07 Z |keyS(G])H
G;eG ke€keys(G ;) GG

where Pg[k] and Pp k] represent parameter contents of ground-truth and predicted tool calls.

The total match score for each match is derived as Tmach = Tname + Tparam + Tvalue € [0, Sinax), where
Smax = 1+ |G| + ZG,EG lkeys(G;)| denotes the maximum possible score. The total score is

computed by finding the optimal matching between P and GG to maximize the total match score:

T'match
Reorreet = 2Rmax - = - Runax € [*Rmax, Rmax]
Smax

where R,y denotes the maximum possible score after normalization, for which we empirically set
to 3 in all experiments. More analysis and ablations of reward scale is presented in Section 4]

The final reward value Ry, is finally derived as the sum of Riormar and Reorrect- Unlike prior works
that often rely on binary or overly simplified reward signals, our design captures the nuanced structure
of tool calls by evaluating multiple interdependent components including tool names, parameter
schemas, and parameter values. This finegrained formulation better reflects the complexity of real-
world tool use, where correctness cannot be reduced to a single binary criterion. We further validate
the impact of this design through comprehensive analysis in Section 4}

Overall, our reward design ensures a balanced and interpretable evaluation signal by explicitly
separating structural compliance from semantic correctness. By aligning rewards with both format
adherence and finegrained tool call accuracy, the model is guided to produce outputs that are not only
syntactically valid but also semantically faithful, which is crucial for final task success.

2.4 RL Training

To tune the model with structured rewards, we apply both PPO and GRPO algorithms and employ
the latter one as our main experiment setting. The details about GRPO algorithm tailored with TIR
tasks is presented in Appendix [C]

Unlike the original GRPO formulations, we omit the KL penalty term against a reference model.
This design choice encourages the model to more freely adapt its behavior to our custom response
format and structured reward signals. In practice, we observe that this leads to faster convergence and
comparable performance, while also simplifying the training pipeline.
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3 Experiments
3.1 Training Dataset

To support robust tool learning, we construct a mixed dataset spanning diverse tool use scenarios:

* ToolACE [27]: A general tool use dataset where the model learns when to invoke tools versus
respond directly, improving decision-making in multi-step interactions.

* Hammer (Masked) [25]: A subset of Hammer with randomized tool and parameter names, forcing
the model to rely on descriptions rather than memorized labels, thus enhancing generalization and
reducing overfitting to certain tools.

e xLAM [61]: A compositional dataset requiring one or multiple tool calls per turn, encouraging the
model to reason about tool dependencies and plan diverse tool calling action actively.

Empirically, we sample 2K examples from ToolACE and 1K each from Hammer and xLAM, creating
a balanced dataset spanning diverse levels of complexity and tool use. Multi-step trajectories are
decomposed into single-step instances, with prior dialogue history injected into the user prompt
to preserve context. This encourages strategic exploration and teaches the model to apply tools
appropriately within each step.

3.2 [Experiment Settings

Training. We conduct all RL experiments using the veRL framework [46]. For each training
step, we sample a batch of 512, and generate 4 responses per query, training for 15 epochs in
total (see Appendix [E] for full configuration). To encourage policy exploration, we remove KL
regularization and apply temperature 1.0. We initialize our models with the Qwen-2.5-Instruct [49]
and Llama-3.2-Instruct [[11]] series, which are further tuned under our customized reward design.

Evaluation. We evaluate our approach on the Berkeley Function Call Leaderboard (BFCL) [30],
a comprehensive benchmark that spans a diverse set of challenges, including single-step reasoning,
multi-step tool use, real-time execution, irrelevant tool rejection, simultaneous multi-tool selection,
and multi-tool applicatiorﬂ In addition, we present results on API-Bank [21]], a three-level evaluation
framework comprising 73 diverse and complex API tools. It assesses an LLM’s ability to select and
apply tools through natural multi-turn dialogues, across three levels of difficulty. We also evaluate on
a representative QA benchmark Bamboogle [31]], which comprises a variety of question-answering
tasks where performance is measured based on the final answer accuracy rather than the correctness
of tool use. These broad coverage makes our evaluation setting effective for evaluating real-world
LLM tool use proficiency. All results are reported in terms of accuracy.

Baselines. We set GRPO cold start as our main setting and compare it against several baselines: (1)
Raw Instruct Model: the original model without any additional fine-tuning or RL. (2) SFT on RL
Data: the instruct model fine-tuned using the full 4K / selected 400 data points from the RL training
set, providing a comparison point to assess whether RL training outperforms SFT. (3) RL on SFT
Model: GRPO is applied to model that has undergone SFT on the selected 400 data points. This
allows us to evaluate the impact of initializing RL with a format-aware model, in contrast to starting
from the raw instruct model in a cold start manner. (4) PPO: We treat the PPO setting as a baseline to
evaluate whether our reward design is effective beyond GRPO. We incorporate both the cold start and
SFT initialization setting with the same hyper-parameters as GRPO to ensure fairness. Please refer to
Appendix [E] for more details and justifications.

3.3 Results

Main Results. We report BFCL and API-Bank results in Table[T]and Table[2] Our primary setting
trained from scratch on the Qwen2.5-Instruct series generally outperforms other baselines, achieving
about 10% absolute gains over SFT trained on the same data volume. In contrast, LLaMA-3.2-Instruct
shows less improvement, possibly due to the model’s lower adaptability to GRPO-style generalization.
Nevertheless, it remains competitive and outperforms most baselines on API-Bank.

2https ://gorilla.cs.berkeley.edu/blogs/13_bfcl_v3_multi_turn.html
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Table 1: BFCL V3 Benchmark Results, with GRPO cold start as our primary setting.

Model Overall Acc Non-Live AST Acc  Non-Live Exec Acc  Live Acc Multi Turn Acc ~ Relevance Detection  Irrelevance Detection
Qwen2.5-1.5B-Instruct (Raw) 19.41% 16.00% 13.18% 35.58% 0.00% 44.44% 82.49%
Qwen2 5B-Instruct (SFT400) 40.21% 65.12% 61.11% 56.69% 1.00% 94.44% 60.14%
Qwen2 S5B-Instruct (SFT4k) 40.67% 59.94% 59.84% 59.31% 1.00% 88.89% 71.34%
Qwen2.5-1.5B-Instruct (SFT400+PPO) 42.95% 77.65% 69.75% 55.73% 1.88% 100.00% 48.40%
Qwen2.5-1.5B-Instruct (SFT400+GRPO) 40.93% 70.54% 60.79% 56.33% 1.00% 94.44% 58.63%
Qwen2.5-1.5B-Instruct (PPO Cold Start) 38.32% 79.40% 70.11% 45.24% 0.87% 100.00% 18.09%
Qwen?2.5-1.5B-Instruct (Ours, GRPO Cold Start) 46.20% 77.96% 76.98% 60.73% 2.25% 100.00% 56.44%
Qwen2.5-3B-Instruct (Raw) 33.04% 42.52% 40.80% 53.96% 1.00% 64.71% 56.01%
3B-Instruct (SFT400) 34.08% 69.29% 61.50% 41.40% 0.00% 94.44% 8.11%
41.97% 62.85% 54.73% 59.17% 0.75% 77.78% 75.12%
45.80% 78.29% 71.09% 58.76% 5.12% 94.12% 54.70%
46.42% 76.21% 68.93% 64.15% 1.75% 88.89% 71.76%
51.15% 82.42% 78.52% 67.78% 4.88% 94.12% 73.87%
3B-Instruct (Ours, GRPO Cold Start) 52.98% 81.58% 79.43% 73.78% 3.75% 88.24% 84.85%
Qwen2.5-7B-Instruct (Raw) 41.97% 66.02% 70.11% 53.51% 4.25% 76.47% 62.66%
Qwen2.5-7B-Instruct (SFT400) 34.08% 69.29% 66.68% 41.4% 0.00% 94.44% 8.11%
Qwen2.5-7B-Instruct (SFT4k) 36.53% 45.15% 53.5% 57.13% 0.75% 72.22% 72.32%
Qwen2.5-7B-Instruct (SFT400+PPO) 42.02% 83.90% 72.62% 51.84% 0.25% 100.00% 29.66%
Qwen2.5-7B-Instruct (SFT400+GRPO) 39.25% 80.69% 74.34% 46.51% 0.25% 100.00% 14.19%
Qwen2.5-7B-Instruct (PPO Cold Start) 46.68% 79.33% 78.16% 63.17% 0.38% 88.89% 52.92%
Qwen2.5-7B-Instruct (Ours, GRPO Cold Start) 58.38% 86.17% 78.25% 74.9% 18.12% 83.33% 76.68%
Llama-3.2-3B-Instruct (Raw) 22.09% 17.44% 14.57% 43.85% 0.00% 77.78% 66.07%
Llama-3.2-3B-Instruct (SFT400) 41.22% 64.27% 62.18% 58.37% 0.75% 66.67% 71.12%
Llama-3.2-3B-Instruct (SFT4k) 44.16% 65.42% 67.02% 63.04% 1.38% 71.78% 78.25%
Llama-3.2-3B-Instruct (SFT400+PPO) 41.62% 68.10% 69.88% 52.98% 3.00% 94.12% 56.29%
Llama-3.2-3B-Instruct (SFT400+GRPO) 42.54% 65.15% 68.98% 59.40% 0.88% 72.22% 65.80%
Llam: B-Instruct (PPO Cold Start) 42.98% 84.00% 72.00% 52.80% 2.88% 100.00% 31.94%
Llama-3.2-3B-Instruct (Ours, GRPO Cold Start) 44.10% 74.38% 75.18% 56.86% 1.37% 94.44% 62.23%
Table 2: API-Bank Test Results. Table 3: Bamboogle Test Results
Model Overall Acc  Level I Level2 Level 3 Model Accuracy  Avg Num Tool Call
Qwen2.5-1.5B-Instruct (Raw) 30.65% 28.32% 35.82% 35.11% Qwen2.5-1.5B-Instruct (Raw) 20.8% 0.61
Qwen2.5-1.5B-Instruct (SFT400) 53.60% 57.14%  50.75% 44.27% Qwen2.5-1.5B-Instruct (SFT400) 24.8% 0.78
Qwen2.5-1.5B-Instruct (SFT4k) 47.07% 52.88% 52.24% 26.72% Qwen2.5-1.5B-Instruct (SFT4k) 23.2% 1.25
Qwen2.5-1.5B-Instruct (SFT400+PPO) 57.12% 60.90% 50.75% 48.85% Qwen2.5-1.5B-Instruct (SFT400+PPO) 36.8% 1.06
Qwen2.5-1.5B-Instruct (SFT400+GRPO) 61.31% 64.16% 58.21%  54.20% Qwen2.5-1.5B-Instruct (SFT400+GRPO) % 0.96
Qwen2.5-1.5B-Instruct (PPO Cold Start) 40.54% 44.61% 31.34% 32.82% Qwen2.5-1.5B-Instruct (PPO Cold Start) 23 2.38
Qwen2.5-1.5B-Instruct (Ours, GRPO Cold Start) 63.15% 70.68% 61.19%  41.22% Qwen2.5-1.5B-Instruct (Ours, GRPO Cold Start) 44.0% .19
Qwen2.5-3B-Instruct (Raw) 51.59% 59.65% 32.84% 36.64% Qwen2.5-3B-Instruct (Raw) 52.0% 1.77
Qwen2.5-3B-Instruct (SFT400) 52.76% 59.65% 50.75%  32.82% Qwen2.5-3B-Instruct (SFT400) 54.4% 0.86
Qwen2.5-3B-Instruct (SFT4k) 50.92% 55.64% 43.28%  40.46% Qwen2.5-3B-Instruct (SFT4k) 49.6% 0.92
Qwen2.5-3B-Instruct (SFT400+PPO) 65.16% 67.92% 55.22% 61.83% Qwen2.5-3B-Instruct (SFT400+PPO) 43.2% 1.04
Qwen2.5-3B-Instruct (SFT400+GRPO) 62.48% 68.67% 58.21%  45.80% Qwen2.5-3B-Instruct (SFT400+GRPO) 56.8% 0.99
Qwen2.5-3B-Instruct (PPO Cold Start) 57.62% 64.66% 59.70% 35.11% Qwen2.5-3B-Instruct (PPO Cold Start) 40.0% 1.14
Qwen2.5-3B-Instruct (Ours, GRPO Cold Start) 67.00% 73.43% 67.16% 47.33% Qwen2.5-3B-Instruct (Ours, GRPO Cold Start) 60.0% 1.32
Qwen2.5-7B-Instruct (Raw) 62.48% 70.68% 49.25% 44.27% Qwen2.5-7B-Instruct (Raw) 69.6% 1.42
Qwen2.5-7B-Instruct (SFT400) 50.59% 55.89% 50.75% 34.35% Qwen2.5-7B-Instruct (SFT400) 28.8% 3.71
Qwen2.5-7B-Instruct (SFT4k) 47.07% S51.13%  3433% 41.22% Qwen2.5-7B-Instruct (SFT4k) 30.4% 1.06
Qwen2.5-7B-Instruct (SFT400+PPO) 63.15% 7243% 58.21% 37.40% Qwen2.5-7B-Instruct (SFT400+PPO) 45.6% 3.54
Qwen2.5-7B-Instruct (SFT400+GRPO) 54.10% 61.40% 5224% 32.82% Qwen2.5-7B-Instruct (SFT400+GRPO) 29.6% 3.70
Qwen2.5-7B-Instruct (PPO Cold Start) 61.64% 68.67% 44.78% 48.85% Qwen2.5-7B-Instruct (PPO Cold Start) 48.0% 1.25
Qwen2.5-7B-Instruct (Ours, GRPO Cold Start) 64.66 % 73.93% 61.19% 38.17% Qwen2.5-7B-Instruct (Ours, GRPO Cold Start) 72.0% 1.63
Llama-3.2-3B-Instruct (Raw) 40.54% 44.86% 29.85% 32.82% Llama-3.2-3B-Instruct (Raw) 34.4% 1.25
Llama-3.2-3B-Instruct (SFT400) 52.76% 60.65% 35.82% 37.40% Llama- 44.0% 0.98
Llama-3.2-3B-Instruct (SFT4k) 43.89% 53.88% 29.85% 20.61% Llama- 48.8% 0.98
Llama-3.2-3B-Instruct (SFT400+PPO) 57.79% 63.16% 47.76% 46.56% Llama- 39.2% 1.33
Llama-3.2-3B-Instruct (SFT400+GRPO) 56.78% 63.60% 41.79% 43.51% Llama- 45.6% 1.00
Llama-3.2-3B-Instruct (PPO Cold Start) 55.78% 60.65% 41.79% 48.09% Llama- 29.6% 1.42
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Figure 2: Reward trends across training for Qwen2.5-3B-Instruct. (a)-(b): Different model initialization strategies
(Cold Start vs. SFT Initialization). (c)-(d): Different RL strategies (GRPO vs. PPO).

SFT Initialization Impacts. Interestingly, GRPO also improves models initialized with limited
SFT, often outperforming full-scale SFT trained on 10 times more data. However, this setup still
underperforms compared to GRPO cold start. We hypothesize that SFT initialization leads to
memorization and overfitting, which reduces the impact of GRPO’s effectiveness in generalization.
As shown in Figure 2] SFT-initialized models achieve higher training rewards due to distributional
alignment between SFT and RL data, but empirically generalize worse on the two benchmarks. This
further highlights that higher training rewards do not necessarily translate to better generalization.

Reward Design on PPO. We also evaluate PPO under both cold start and SFT-initialized settings
to examine the effect of our reward design. The results show that while PPO with a cold start can



Table 4: Cases of Qwen2.5-3B-Instruct (GRPO Cold Start) generalize to irrelevant tool detection.

User: I would like to buy a movie ticket in San Jose at 11 o’clock in the night. User: What s the slope of the line which is perpendicular to the line with the

Tools Available: equation y = 3x +2?

1. Movies_1_BuyMovieTickets(movie_name, number_of_tickets, ...) Tools Available:

— Buy tickets for a movie at a specific time and location. 1. find_critical_points(function, variable, range=[0.0, 3.4])

2. Movies_1_FindMovies(location, ...) — Find critical points of a function with respect to a variable, optionally

— Search movies by location, genre, or format. within a range.

<think> The user wants to buy a movie ticket in San Jose at 11 PM. The available <think> The problem is asking for the slope of a line that is perpendicular

tool, Movies_1_BuyMovieTickets, allows us to purchase movie tickets with the to the line with the equation y = 3x + 2. The slope of the given line is 3. The slope
required details such as movie name, number of tickets, show date, location, show time, of a line that is perpendicular to another line is the negative reciprocal of the

and show type. We need to find the movie name and the show date. However, the user original line’s slope. So, the slope of the line perpendicular to y = 3x + 2 would be -1/3.
did not specify the movie name or the show date. We can infer the show date from the The given tool find_critical_points is not relevant to finding the slope of a line and
current date, but we need to know the movie name to proceed with purchase. </think> cannot be used to solve this problem. </think>

<response> To assist in purchasing a movie ticket, I need the name of the movie and <response> The slope of the line that is perpendicular to the line with the

the specific date of the show. Could you please provide this information? </response> equation y = 3x + 2 is -1/3. </response>

outperform SFT in some cases, it tends to be less stable across different model settings. In contrast,
GRPO consistently achieves higher rewards even from a cold start, suggesting that our reward design
works best under the GRPO framework, which contributes to our main experiment setting. As shown
in Figure [2] GRPO not only achieves higher correctness rewards but also gains format rewards
more rapidly during training. Interestingly, PPO benefits from SFT initialization, generally yielding
better results than a cold start, whereas GRPO performs better when trained from scratch. These
findings highlight that PPO’s gain from our reward design is limited compared to the more robust and
consistent improvements observed with GRPO.

Generalization Studies. We evalu- .
ate the generalization ability of our
trained model in two challenging
settings: unfamiliar scenarios and
novel task goals (both from BFCL
benchmark subset). Specifically, we o exoee
test the model’s performance in tool - = Sul
use Wlthln unseen programming lan_ } Programming Language Irrelevance Detection
guages and its ability to detect irrele- (a) Unfamiliar Scenario (b) Unfamiliar Goal

Va.nF to‘?ls’ neither Qf which We.re €Xx- Figure 3: Qwen2.5-3B-Instruct’s performance across unfamiliar
PhCItly included during R]‘_‘ raining or - yr50ramming languages and novel relevance detection task goals.
in the dataset. As shown in Figure[3]

Qwen2.5-3B-Instruct, when trained from scratch with our GRPO-based reward design, consistently
achieves highest performance. Additionally, Table[d]illustrates two qualitative cases where the model
proactively avoids inappropriate tool use: in one, by clarifying an ambiguous intent, and in the other,
by answering directly without invoking tools. These behaviors demonstrate emergent proactivity and
metacognition, leading to greater efficiency, reduced hallucinations, and signs of agentic intelligence.

Accuracy

s s o

2 s 8
Accuracy

2 5 8 s

°

°

0,
JavaScript Irrelevance-Normal Irelevance-Live

Free-form Inference Effectiveness. Table 5: Performance comparison of our results on Bamboogle vs.

While our model is trained with a fo- - gearch-R1 under GRPO and PPO training.
cus on tool call format and correct-

. 12 M 1 RP PP h-R1 (GRP h-R1 (PP
ness, we further evaluate its ability to ode Ours (GRPO) Ours (PPO) Search-R1 (GRPO) _Search-R1 (PPO)

. Qwen2.5-3B 60.00 40.00 23.20 26.40
handle free-form tool use in a QA set-  wen25-78 72.00 48.00 40.00 36.80

ting. Unlike the structured tool selec-
tion and application tasks, QA setting: (1) imposes no constraints on tool call parameters, and (2)
evaluates only the final answer, making it a “goal-oriented” rather than a “process-oriented” task.

Specifically, we use Bamboogle, a multi-hop QA dataset, to assess this capability. The model is
equipped with a web search tool, and we report both the answer accuracy and the number of tool
calls for all baselines and our approach. As shown in Table [3] our reward design achieves the highest
performance, despite this setting not being explicitly seen during training. Notably, our GRPO cold
start model surpasses others in accuracy without relying on excessive number of tool calls. This
suggests that the model can flexibly invoke tools when needed, effectively leverage feedback, wisely
and efficiently navigating toward the correct answer. In addition, to validate the effectiveness of our
method, we compared our training result with Search-R1 [17] in Table E} The results demonstrate
that our approach achieves significantly better performance than Search-R1, which further confirmis
our RL training approach’s effectiveness.



3.4 Ablation Studies

To validate our experimental design, we conduct ablation studies on three key factors: the scale of RL
training data, the relative weighting of correctness rewards, and the effect of including or removing
the KL divergence term.

AblaFl(.)n on Data Scale. To investigate the. effect  ,01e 6: Ablation on training data scale using
of training scale, we conducted ablation experiments Qwen2.5-3B-Instruct on BECL.
by varying the number of RL training examples from

4K to 10K while keeping the distribution, epochs, _Training Setting Performance

and GRPO cold-start setting fixed. As shown in Ta- gfi%i“algg( ﬁde?ta( distibution) §§'3§
caling ata (same distribution 5.

ble[6] the performance of Qwen2.5-3B-Instruct on  §caling 10K RL data (same distribution) 5331

BFCL remains nearly unchanged, with gains within
0.5 despite more than doubling the training data. We further observed that the reward convergence
curves exhibit nearly identical speeds and final values across all settings. These results suggest that
under our reward design, generalization in tool learning is more influenced by reward shaping than the
sheer scale of training data. This highlights both the data efficiency of our approach and its practical
advantage: strong generalization with limited data, minimizing training cost while maintaining
performance. Accordingly, we adopt the 4K dataset as our main RL setting.

Ablathn on Rf:ward Scale. To justify our choice Table 7: Ablation on correctness reward scale us-
of relative scaling between format and correctness ing Qwen2.5-3B-Instruct on BFCL.

rewards, we further conduct ablation experiments
on BFCL using Qwen2.5-3B-Instruct trained with ~_ Correctness Reward Scale 1 2 3
GRPO. Following Logic-RL [52], we fixed the maxi- _BFCL Performance 4062 5107 5298
mum format reward at 1.0 and varied the scale of the

correctness reward. As shown in Table[7] setting correctness equal to format (scale = 1) leads to slower
convergence and substantially lower performance. Increasing the scale improves performance, with
the best result obtained at scale = 3. This indicates that emphasizing correctness more strongly than
format is essential for effective RL training in tool use, consistent with prior work where correctness
is given higher weight than intermediate format signals. Accordingly, we adopt a correctness reward
scale of 3 in our main experiments.

Ablation on KL Divergence. We removed the KL
penalty across all RL settings, including PPO, to en-
courage more flexible exploration and better adap-
tation to our custom tool-use format. As shown Model wio KL w/ KL

in Table [8] the impact on BECL is minimal, with 8322%2%%:&32 gé:gg 23??
Qwen?2.5-3B showing nearly identical performance

and Qwen2.5-7B slightly improving without KL. Beyond performance, we observed faster conver-
gence, with training reaching stable rewards about five steps earlier, as well as improved efficiency,
with total training time reduced by approximately 1.5 times while lowering GPU cost. These findings
support our design choice of removing KL in the trainings of the main experiments.

Table 8: Effect of KL penalty on BFCL perfor-
mance, which shows minimal impact.

4 Analysis

In this section, we perform ablation studies to identify the most effective reward design for tool
use, examining reward type, scale, granularity, and temporal dynamics. The original (ablated)
setting refers to GRPO cold start. All experiments use BFCL benchmark, and we only report overall
accuracy for simplicity. Full results could be found in Table [T4} Table[T3] and Table

4.1 Effect of Length Reward

To encourage more elaborate reasoning, we introduce a length-based reward, motivated by prior
findings that longer thinking traces can support deeper reasoning [15]. We investigate whether simply
promoting longer outputs leads to better task performance in tool use scenarios.

We consider both static and dynamic length rewards, defined as:

L in . L in|
Riengh = min < think , 1) , Rdynamic = min (* 1)

target Ltarge[(]- + p) ’



(a) BFCL Results (Length) (b) Response Length (c) Length Reward
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Figure 4: (a) Overall accuracy across models and length reward settings. (b) Response length and (c) correspond-
ing reward trends over training steps under the dynamic length reward setting.
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Figure 5: (a) Overall accuracy across models and reward scale settings. (b) Format reward and (c) correctness
reward trends across Qwen2.5-3B-Instruct training under different scale dynamics.

where Liink is the length of the <think> segment, Liee; is an empirically chosen target length, and
p € [0, 1] denotes normalized training progress. The static reward encourages reasoning up to a fixed
target length, while the dynamic reward gradually raises this target as the training progresses.

As shown in Figure [ both strategies successfully extend reasoning traces. However, the BFCL
performance reveal that longer thinking does not consistently improve task success and often degrades
performance. This suggests that while extended reasoning appears beneficial, it can introduce
unnecessary complexity, leading to overthinking and reduced effectiveness in tool use.

4.2 Effect of Reward Scale

We investigate how scaling reward components influences learning, particularly the balance between
correctness and format rewards. Prior work [52} [17] emphasizes correctness over format to avoid
reward hacking, where models exploit superficial patterns without acquiring real task competence.

We test an Equal Max variant that equalizes the maximum scales of correctness and format rewards.
As shown in Figure[3] this leads to a slight accuracy drop across models, confirming that correctness
reward should remain dominant to guide learning toward core reasoning abilities in tool use tasks.

Motivated by the intuition that different learning stages benefit from different focuses, we explore
two dynamic scaling strategies: Two-Stage approach divides training into two phases: early steps
prioritize format learning by downscaling correctness rewards, while later steps reverse this emphasis
to focus on correctness; Dynamic approach continuously interpolates reward scales throughout
training, smoothly shifting focus from format fidelity to correctness as training progresses.

Formal scaling functions are detailed in Appendix [H] Figure [5|shows that abrupt shifts in reward
emphasis (Two-Stage) degrade performance, while gradual adjustments (Dynamic) improve it. This
suggests that smoother transitions help models better navigate from simpler objectives to
mastering complex reasoning and tool use.

4.3 Effect of Reward Granularity

We finally analyze how the granularity of correctness rewards affects learning. Unlike tasks with
definitive answers (e.g., math reasoning), tool use involves multiple facets, making reward assignment
more complex. Our original finegrained design decomposes correctness into matching tool names,
parameter names, and parameter values, providing a detailed, process-oriented learning signal.



(a) BFCL Results (Granularity) (b) Correctness Reward Trend

Model Overall Acc 25

Qwen2.5-1.5B-Instruct (Original) 46.20% -‘E 20

Qwen2.5-1.5B-Instruct (Finegrained) 40.71% 5 15

Qwen2.5-1.5B-Instruct (Intermediate) 37.65% < 1o

Qwen2.5-1.5B-Instruct (Coarse) 36.72% ﬁ

Qwen2.5-3B-Instruct (Original) 52.98% g

Qwen2.5-3B-Instruct (Finegrained) 52.06% g oo

Qwen2.5-3B-Instruct (Intermediate) 51.36% 8 05

Qwen2.5-3B-Instruct (Coarse) 51.40% S 1o

Llama-3.2-3B-Instruct (Original) 44.10% § s Original Intermediate
Llama-3.2-3B-Instruct (Finegrained) 39.82% Finegrained  —— Coarse
Llama-3.2-3B-Instruct (Intermediate) 38.62% 0 20 40 60 80
Llama-3.2-3B-Instruct (Coarse) 35.95% Step

Figure 6: (a) Overall accuracy across models and reward granularity settings. (b) Correctness reward trends
across Qwen2.5-3B-Instruct training under different reward granularities.

To assess the impact of granularity, we compare three reward aggregation levels. Relative to the
original (most finegrained decomposition) setting: Finegrained applies strict match constraints to
both tool and parameter names without awarding partial credit; Intermediate merges parameter name
and value correctness, rewarding only when the entire parameter dictionary matches exactly; Coarse
treats the entire tool call—including tool name, parameter names, and values—as a single unit,
granting reward only for a perfect match. Detailed reward formulations are provided in Appendix [}

As shown in Figure [6] coarser reward formulations result in lower reward attainment and slower
learning progress due to sparse and less informative feedback. This highlights that effective policy
optimization benefits not just from stronger rewards but from strategically structured signals
that guide the model through complex reasoning processes.

5 Conclusion and Future Work

In this paper, we present a reward design tailored for RL training on tool use tasks. Empirically, our
model trained from scratch using GRPO consistently outperforms both SFT-based and SFT-initialized
RL baselines across a variety of held-out tool use benchmarks. Furthermore, we demonstrate that
our model generalizes well to QA settings, exhibiting robust multi-turn interactions, emergent
proactiveness, and metacognitive behaviors, all of which are key traits for efficient and adaptable tool
use, lying at the core of foundational agent capabilities.

Our in-depth analysis of reward types, scaling strategies, granularity, and temporal dynamics offers
valuable insights into how reward shaping influences both learning efficiency and behavioral outcomes.
Building on this foundation, future research could explore: (1) the impact of model scaling in
relation to our reward design, (2) the adaptation of our reward framework to embodied agents
requiring tool use, and (3) the effectiveness of multi-modal integrated tool use within our proposed
ToolRL framework. We hope our findings provide a clear roadmap for advancing the application of
reinforcement learning in tool-use scenarios. Ultimately, we envision that reward is all tool learning
needs, positioning reinforcement learning as a powerful pathway toward developing agents capable
of generalizable and creative behaviors.

Limitations and Broader Impact

While our study highlights the effectiveness of finegrained reward design in enabling tool learning,
several limitations remain. First, our experiments primarily focus on policy-gradient methods such
as GRPO and PPO, which are naturally compatible with structured, trajectory-level rewards; the
generality of our approach to other RL paradigms (e.g., preference-based methods like DPO or
SimPO) has not been fully explored. Second, our evaluation is constrained to a limited range of
model sizes (up to 7B), leaving open questions about scalability to both smaller lightweight models
and much larger foundation models. Third, although our framework demonstrates promising gains in
structured reasoning and grounded tool use, it also raises broader social considerations. More capable
agents may enhance reliability, interpretability, and user alignment, but the same techniques could
be misused if deployed without oversight, particularly in sensitive domains requiring trustworthy
decision-making. We view these risks as an important area for ongoing discussion and emphasize the
need for responsible application. Overall, our contribution should be seen as an early but timely step
toward reward-driven agent training: by dissecting how specific reward components shape learning
and generalization, we aim to provide both a practical methodology and conceptual insights that can
guide future work in building safe, adaptive, and grounded LLM-based agents.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main technical contribution on reward design is presented in Section
2.3, and our claims are further supported by the primary experiments reported in Section 3
(Tables 1, 2, and 3).

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In Section 5, we discuss the limitations of our current work, which also outline
potential directions for future research building on our study.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not provide theoretical proofs, but demonstrates empirically
effective models enabled by our proposed reward design for tool use.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We discuss the experiment settings in Section 3.2, with full details in Appendix
E.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will publicly release all the code through Github. In the paper we have
already indicated the instructions we employ during RL training in Appendix D.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided the detailed experiment settings in Section 3.2 and Appendix
E. The detailed hyperparameters settings are also provided in Table 5 and 6.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental figures include error bars to represent variability during
training. Most of the results presented in the main tables show that our proposed settings
outperform the baselines, and statistical tests confirm the significance of these results,
supporting our claims.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide our training GPU device and training steps in Appendix E.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have made sure to preserve the paper’s anonymity and its conformation
with NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the paper’s broader impact to the RL and agent community
at the end of Section 1 and 5, following our work’s contributions.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The RL training on tool use capability does not impose such risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited the source of existing datasets and benchmark, RL
training framework and RL algorithms across Section 1 to 3.

Guidelines:
» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our work does not release any new dataset. The trained model through ToolRL
framework will be released and its training details can be found in Section 3.1, 3.2 and
Appendix E.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not include human subjects or crowdsourcing throughout the research.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not include human subjects or crowdsourcing throughout the research.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core contribution of ToolRL reward design and analysis does not involve
LLM as a core component.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix
A Motivation Details

Training a model’s tool selection and application abilities using SFT often suffers from limited
generalization. As shown on the left side of Figure[7] a model trained with SFT on deep-thinking
trajectories tends to over-interpret tool usage, failing to reject inappropriate tools. Instead of engaging
in genuine deep reasoning, it merely imitates superficial cues such as “but wait.” This highlights
the importance of using reinforcement learning (RL) to guide the model toward more principled
decision-making and deeper reasoning capabilities.

[ Task Goal: Irrelevant Tool Detection (LLM should reject in appropriate tools) ] “““

2 [ What’s the distance between San Francisco and Los Angeles in kilometers? ]

[ {Name: get_date, Parameters: {location_I: str, location_2: str, unit: str}} ]X

SFT Model [ RLModel

Figure 7: SFT on distilled deep-thinking trajectories leads to overthinking and poor generalization (left). In
contrast, RL with our proposed reward design achieves consistently higher performance, with reward curves
demonstrating rapid improvement during training (right).

B Related Work

Tool-Integrated Reasoning of LLMs. Tool-integrated reasoning (TIR) has emerged as a promising
approach to enhance the capabilities of LLMs. Early studies introduced the concept of equipping
LLMs with external tools to overcome their inherent limitations [42} 138 53]], such as program ex-
ecutors [6] and search engines [50]. To systematically assess these enhanced capabilities, several
benchmarks have been proposed to evaluate tool use performance across various dimensions, includ-
ing API selection, argument generation, and generalization [39} 29| [33]]. Building on this foundation,
subsequent research has focused on constructing high-quality tool use datasets [27, 35], enabling
models to autonomously create and invoke tools [32| [34]], and applying these techniques to problems
spanning different modalities [45] and specialized domains [26]. More recently, reinforcement
learning (RL) has been explored as an effective framework to further improve TIR, demonstrating
success in tasks such as information retrieval [[17] and math computation [23]]. These advances
collectively highlight the growing potential of tool-augmented LLLMs for general-purpose reasoning
in open-domain settings.

Exploration of RL in LLMs. Previous work has primarily relied on supervised fine-tuning (SFT)
with carefully curated datasets to enhance LLM performance in tool use [42| [39]. Recently, reinforce-
ment learning (RL) has gained traction as a more scalable and generalizable training paradigm. The
development of RL methods for LLMs has evolved from reinforcement learning from human feed-
back (RLHF) [19] and proximal policy optimization (PPO) [43]] to more advanced techniques such
as direct preference optimization (DPO) [40]], SimPO [28]], and group relative policy optimization
(GRPO) [44]]. Extensions like dynamic sampling policy optimization (DAPO) [55] and the more
recent value-based augmented proximal policy optimization (VAPO) [57] further improve training
stability and efficiency.

Among these, GRPO [44] is specifically designed for LLMs, replacing the traditional critic with a
group-based evaluation strategy. It has shown strong performance in enhancing reasoning abilities
across a range of tasks, including mathematical problem solving [44, 52|, search engine interac-
tion [[17, 47]], and code generation [23]. Beyond task variety, recent studies have analyzed the
influence of dataset scale [22] and GRPO’s effectiveness in smaller model settings [10]. GRPO’s
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flexible reward function enables adaptation to diverse objectives, such as assigning weights to sub-
tasks [56] or constraining tool use frequency [23]]. In this work, we extend GRPO to enhance general
tool use capabilities, improving LLMs’ ability to select and interact with external tools across a wide
range of scenarios.

C Algorithm Details

We employ GRPO as our standard RL training setting, a variant of PPO that introduces advantage
normalization within grouped samples. This normalization helps stabilize training by reducing
variance across samples that share a common input context. We continue to use the symbols defined
in Section 2] and further let 7y represent the current policy.

Normalized Advantage Across Query Groups. For each query @), its responses derived from the
rollout form a group G consisting of multiple responses and their corresponding reward values:

Go ={A4,(s1,71), (52,72)5 -, (Sn,7Tn) }

where A denotes the ground-truth annotation for (), and each reward r; is computed as the sum of the
format and correctness rewards associated with response s;, i.e., 7; = Riormat (Si, A) + Reorrect (S, A).
For each group, we calculate the mean and standard deviation of the rewards:

Then, for each sample s; in the group, we define the normalized advantage:

ri —
AilslQ) =12

where 7 is a constant to avoid division by zero.

Policy Optimization Objective. The policy 7y is optimized using the standard clipped PPO
objective, adapted with our group-wise normalized advantages:

Jorro(0) = EQupEs;~ry [min (%Ai(si@)?
- To(s:|Q) o
chp(m, 1—e 14 e)AZ(SZ|Q))]

Overall, this objective guides the policy to generate structurally consistent and semantically accurate
tool calls, while group-wise normalization mitigates reward variance across queries, leading to more
stable and sample-efficient alignment with task-specific response requirements.

D Prompt Details

The system prompt we employ during the rollout is shown in Figure[§] The user prompt is used to
store the trajectory history, including intermediate thoughts, tool calls, environment observations, and
any additional user commands. The complete user instruction is presented in Figure[9]

E Experiment Details

Training Data Details. We empirically use 4K data points for training, as each dataset consists of
samples drawn from the same distribution. Adding more data of similar nature does not increase task
diversity. Moreover, we observe that increasing the dataset size beyond 4K does not yield noticeable
improvements in the training convergence or final performance, suggesting diminishing returns from
additional data under this setting.
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System Prompt for Training

You are a helpful dialogue assistant capable of leveraging tool calls to solve user tasks and provide structured chat responses.

Available Tools
In your response, you can use the following tools:
{{Tool List}}

Steps for Each Turn

1. Think: Recall relevant context and analyze the current user goal.

2. Decide on Tool Usage: If a tool is needed, specify the tool and its parameters.

3. Respond Appropriately: If a response is needed, generate one while maintaining consistency across user queries.

Output Format

<think> Your thoughts and reasoning </think>

<tool_call>

{“name”: “Tool name”, “parameters”: {*“Parameter name”: “Parameter content”, “... ..t “... ... ”1}

. » “« . e o« . < 2

{*“name”: “... ... , “parameters”: {

</tool_call>
<response> AI’s final response </response>

Important Notes

1. You must always include the <think> field to outline your reasoning. Provide at least one of <tool_call> or <response>. Decide
whether to use <tool_call> (possibly multiple times), <response>, or both.

2. You can invoke multiple tool calls simultaneously in the <tool_call> fields. Each tool call should be a JSON object with a “name’
field and a “parameters” field containing a dictionary of parameters. If no parameters are needed, leave the “parameters” field an
empty dictionary.

3. Refer to the previous dialogue records in the history, including the user’s queries, previous <tool_call>, <response>, and any tool
feedback noted as <obs> (if exists).

- J
Figure 8: The system prompt used for TIR’s rollout.

User Prompt for Training

Dialogue History
<user> {{ Initial User Input }} </user>

<think> Round 1 Model Thought </think>
{{ Round 1 model output <tool_call> or <response> }}
<obs> Round 1 Observation </obs>

Figure 9: The user prompt used for TIR’s rollout.

GRPO Setting Details. For all the tool calls in the dataset, we all use JSON format to represent
tool call as it’s easy to parse and is the most general and structure way of performing tool call. For
the GRPO training, we use 2 A100 (80G) GPUs per run with the hyper-parameters shown in Table [0

PPO Setting Details. We apply approximately the same parameter settings as GRPO for the PPO
training. Similarly, we use 2 A100 (80G) GPUs per run with the hyper-parameters shown in Table

Baselines. The 400 selected data points used for SFT share the same distribution as the 4k data
points used for RL training, but differ in content. For SFT, each data point includes a <think> field,
with thought content distilled from Deepseek-R1 trajectories. In contrast, GRPO does not require
ground truth thought, as only the tool calls are used to compute rewards in the GRPO setting.

We use 400 data points for SFT based on empirical observations that this amount is sufficient to help
the raw model learn to follow our tool call format. This provides a stronger initialization and reduces
the burden of learning the format from scratch during RL training. However, we also find that relying
solely on SFT can lead to overfitting, which may ultimately degrade performance.
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Table 9: Full configuration for GRPO training.

Category Hyperparameter
Data Configuration

Train Batch Size 512
Validation Batch Size 128
Max Prompt Length 2048
Max Response Length 1024
Optimization

Learning Rate le-6
PPO Mini Batch Size 128
KL Loss Used False
Rollout Configuration

Rollout Name vllm
GPU Memory Utilization 0.6
Number of Rollouts 4
Training & Logging

Save Frequency (Steps) 15
Test Frequency (Steps) 5
Total Epochs 15

Table 10: Full configuration for PPO training.

Category Hyperparameter
Data Configuration

Train Batch Size 512
Validation Batch Size 128
Max Prompt Length 1024
Max Response Length 512
Optimization

Actor Learning Rate le-6
Critic Learning Rate le-5
PPO Mini Batch Size 128
PPO Micro Batch Size 8
Rollout Configuration

Rollout Name viim
GPU Memory Utilization 0.3
Training & Logging

Save Frequency (Steps) 15
Test Frequency (Steps) 5
Total Epochs 15

Table 11: BFCL V3 Benchmark Results (Additional Results with 4K SFT Initialization)

Model Overall Acc  Non-Live AST Acc  Non-Live Exec Acc  Live Acc Multi Turn Acc  Relevance Detection  Irrelevance Detection
Qwen2.5-1.5B-Instruct (Raw) 19.41% 16.00% 13.18% 35.58% 0.00% 44.44% 82.49%
Qwen2.5-1.5B-Instruct (SFT400+PPO) 42.95% 77.65% 69.75% 55.73% 1.88% 100.00% 48.40%
Qwen?2.5-1.5B-Instruct (SFT400+GRPO) 40.93% 70.54% 60.79% 56.33% 1.00% 94.44% 58.63%
Qwen2.5-1.5B-Instruct (SFT4k+PPO) 40.24% 66.42% 62.02% 54.58% 2.50% 94.12% 55.09%
Qwen2.5-1.5B-Instruct (SFT4k+GRPO) 42.63% 66.60% 64.77% 60.15% 1.38% 88.89% 67.98%
Qwen2.5-3B-Instruct (Raw) 33.04% 42.52% 40.80% 53.96% 1.00% 64.71% 56.01%
Qwen2.5-3B-Instruct (SFT400+PPO) 45.80% 78.29% 71.09% 58.76% 5.12% 94.12% 54.70%
Qwen2.5-3B-Instruct (SFT400+GRPO) 46.42% 76.21% 68.93% 64.15% 1.75% 88.89% 71.76%
Qwen2.5-3B-Instruct (SFT4k+PPO) 48.22% 71.75% 73.18% 64.27% 5.25% 94.12% 66.41%
Qwen2.5-3B-Instruct (SFT4k+GRPO) 47.82% 75.12% 69.52% 68.19% 2.38% 77.78% 76.16%
Qwen2.5-7B-Instruct (Raw) 41.97% 66.02% 70.11% 53.51% 4.25% 76.47% 62.66%
Qwen2.5-7B-Instruct (SFT400+PPO) 42.02% 83.90% 72.62% 51.84% 0.25% 100% 29.66%
Qwen2.5-7B-Instruct (SFT400+GRPO) 39.25% 80.69% 74.34% 46.51% 0.25% 100% 14.19%
Qwen2.5-7B-Instruct (SFT4k+PPO) 33.80% 42.67% 49.50% 51.80% 2.38% 77.78% 55.79%
Qwen2.5-7B-Instruct (SFT4k+GRPO) 35.18% 43.58% 50.39% 55.49% 0.87% 77.78% 67.12%
Llama-3.2-3B-Instruct (Raw) 22.09% 17.44% 14.57% 43.85% 0.00% 77.78% 66.07%
Llama-3.2-3B-Instruct (SFT400+PPO) 41.62% 68.10% 69.88% 52.98% 3.00% 94.12% 56.29%
Llama-3.2-3B-Instruct (SFT400+GRPO) 42.54% 65.15% 68.98% 59.40% 0.88% 72.22% 65.80%
Llama-3.2-3B-Instruct (SFT4k+PPO) 45.41% 73.71% 68.46% 62.27% 2.50% 82.35% 68.75%
Llama-3.2-3B-Instruct (SFT4k+GRPO) 45.50% 70.69% 67.70% 64.73% 1.00% 77.78% 78.85%

Table 12: API-Bank Test Results (Additional Results with

Table 13: Bamboogle Test Results (Additional Re-

4K SFT Initialization) sults with 4K SFT Initialization)
Model Overall Acc  Level 1 Level2 Level 3 Model Accuracy Avg Num Tool Call
Qwen2.5-1.5B-Instruct (Raw) 30.65% 28.32% 35.82% 35.11% Qwen2.5-1.5B-Instruct (Raw) 20.8% 0.61
Qwen2.5-1.5B-Instruct (SFT400+PPO) 57.12% 60.9%  50.75% 48.85% Qwen2.5-1.5B-Instruct (SFT400+PPO) 36.8% 1.06
Qwen2.5-1.5B-Instruct (SFT400+GRPO) 61.31% 64.16% 58.21% 54.20% Qwen?2. 5B-Instruct (SFT400+GRPO) 38.4% 0.96
Qwen2.5-1.5B-Instruct (SFT4k+PPO) 61.31% 64.91% 56.72% 52.67% Qwen?2. 5B-Instruct (SFT4k+PPO) 36.8% 1.06
Qwen2.5-1.5B-Instruct (SFT4k+GRPO) 59.46% 65.16% 53.73% 45.04% Qwen2.5-1.5B-Instruct (SFT4k+GRPO) 34.4% 1.02
Qwen2.5-3B-Instruct (Raw) 51.59% 59.65% 32.84% 36.64% Qwen2.5-3B-Instruct (Raw) 52.0% 1.77
Qwen2.5-3B-Instruct (SFT400+PPO) 65.16% 67.92% 55.22% 61.83% Qwen2.5-3B-Instruct (SFT400+PPO) 43.2% 1.04
Qwen2.5-3B-Instruct (SFT400+GRPO) 62.48% 68.67% 58.21% 45.80% Qwen2.5-3B-Instruct (SFT400+GRPO) 56.8% 0.99
Qwen2.5-3B-Instruct (SFT4k+PPO) 60.13% 64.41% 44.78% 54.96% Qwen2.5-3B-Instruct (SFT4k+PPO) 46.4% 1.01
Qwen2.5-3B-Instruct (SFT4k+GRPO) 60.80% 64.41% 56.72% 51.91% Qwen2.5-3B-Instruct (SFT4k+GRPO) 47.2% 0.98
Qwen2.5-7B-Instruct (Raw) 62.48% 70.68% 49.25% 44.27% Qwen2.5-7B-Instruct (Raw) 69.6% 1.42
Qwen2.5-7B-Instruct (SFT400+PPO) 63.15% 72.43% 5821% 37.4% Qwen2.5-7B-Instruct (SFT400+PPO) 45.6% 3.54
Qwen2.5-7B-Instruct (SFT400+GRPO) 54.10%  61.40% 52.24% 32.82% Qwen2.5-7B-Instruct (SFT400+GRPO) 29.6% 370
Qwen2.5-7B-Instruct (SFT4k+PPO) 59.30% 61.40% 40.30% 61.60% Qwen2.5-7B-Instruct (SFT4k+PPO) 40.0% 1.25
Qwen2.5-7B-Instruct (SFT4k+GRPO) 52.60%  5639% 3433% 50.38% Qwen2.5-7B-Instruct (SFT4k+GRPO) 32.0% 125
Llama-3.2-3B-Instruct (Raw) 4054%  44.86% 29.85% 32.82% Llama-3.2-3B-Instruct (Raw) 34.4% 125
Llama-3.2-3B-Instruct (SFT400+PPO) 57.79% 63.16% 47.76%  46.56% Llama-3.2-3B-Instruct (SFT400+PPO) 39.2% 1.33
Llama-3.2-3B-Instruct (SFT400+GRPO) ~ 56.78%  63.60% 41.79% 43.51% Llama-3.2-3B-Instruct (SFT400+GRPO)  45.6% 1,00
Llama-3.2-3B-Instruct (SFT4k+PPO) 54.10%  60.65% 40.30% 41.22% Llama-3 2-3B-Instruct (SFT4k+PPO) 49.6% 102
Llama-3.2-3B-Instruct (SFT4k+GRPO) 50.92% 59.15% 34.33% 34.35% Llama-3.2-3B-Instruct (SFT4k+GRPO) 42.4% 1.03

F Additional Result Details

We present additional results on three benchmarks, applying GRPO and PPO methods to models
initialized with SFT on 4K data points. This setting serves as a “theoretical” upper bound, since the
same 4K data is first used for SFT and subsequently reused for RL training.
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Table 14: BFCL V3 Benchmark Analysis Full Results (Length)

Model Overall Acc  Non-Live AST Acc  Non-Live Exec Acc  Live Acc  Multi Turn Acc  Relevance Detection  Irrelevance Detection

Qwen2.5-1.5B-Instruct (Original) 46.20% 77.96% 76.98% 60.73% 2.25% 100.00% 56.44%
5B-Instruct (w/ Length Reward) 33.23% 70.58% 71.36% 35.63% 0.50% 94.44% 4.52%
5B-Instruct (Dynamic) 28.51% 53.23% 48.23% 38.07% 0.00% 55.56% 25.08%

3B-Instruct (Original) 52.98% 81.58% 79.43% 73.78% 3.75% 88.24% 84.85%
Qwen2.5-3B-Instruct (w/ Length reward) 48.89% 77.83% 78.61% 63.56% 4.50% 88.24% 71.22%
Qwen2.5-3B-Instruct (Dynamic) 48.24% 77.60% 79.11% 63.22% 3.00% 88.89% 68.53%
Llama-3.2-3B-Instruct (Original) 44.10% 74.38% 75.18% 56.86% 1.37% 94.44% 62.23%
Llama-3.2-3B-Instruct (w/ Length reward) 44.98% 78.02% 77.54% 56.55% 1.25% 100.00% 63.76%
Llama-3.2-3B-Instruct (Dynamic) 43.15% 75.50% 71.64% 56.06% 1.00% 100.00% 57.82%

Table 15: BFCL V3 Benchmark Analysis Full Results (Scale)

Model Overall Acc  Non-Live AST Acc  Non-Live Exec Acc  Live Acc Multi Turn Acc ~ Relevance Detection  Irrelevance Detection
Qwen2.5-1.5B-Instruct (Original) 46.20% 77.96% 76.98% 60.73% 2.25% 100.00% 56.44%
Qwen2.5-1.5B-Instruct (Equal max) 39.47% 78.56% 75.50% 45.45% 2.50% 100.00% 16.44%
Qwen2.5-1.5B-Instruct (Two stage) 38.85% 77.96% 76.23% 44.51% 2.25% 100.00% 10.61%
Qwen2.5-1.5B-Instruct (Dynamic) 45.71% 78.31% 75.73% 58.91% 2.50% 100.00% 57.20%
Qwen2.5-3B-Instruct (Original) 52.98% 81.58% 79.43% 73.78% 3.75% 88.24% 84.85%
Qwen2.5-3B-Instruct (Equal max) 51.76% 81.50% 79.50% 69.79% 4.25% 88.89% 78.07%
Qwen2.5-3B-Instruct (Two stage) 50.66% 80.62% 78.82% 67.93% 3.50% 88.89% 76.42%
Qwen2.5-3B-Instruct (Dynamic) 53.81% 81.44% 80.75% 75.43% 3.62% 77.78% 88.82%
Llama-3.2-3B-Instruct (Original) 44.10% 74.38% 75.18% 56.86% 1.37% 94.44% 62.23%
Llama-3.2-3B-Instruct (Equal max) 42.47% 67.77% 75.05% 55.75% 1.00% 88.89% 59.56%
Llama-3.2-3B-Instruct (Two stage) 41.33% 65.54% 72.70% 55.22% 0.75% 88.89% 57.59%
Llama-3.2-3B-Instruct (Dynamic) 46.85% 83.00% 72.77% 61.00% 3.38% 88.89% 59.37%

Table 16: BFCL V3 Benchmark Analysis Full Results (Granularity)

Model Overall Acc  Non-Live AST Acc  Non-Live Exec Acc  Live Acc  Multi Turn Acc  Relevance Detection  Irrelevance Detection
Qwen?2.5-1.5B-Instruct (Original) 46.20% 77.96% 76.98% 60.73% 2.25% 100.00% 56.44%
Qwen2.5-1.5B-Instruct (Finegrained) 40.71% 78.00% 75.55% 48.91% 2.00% 100.00% 24.84%
Qwen2.5-1.5B-Instruct (Intermediate) 37.65% 77.94% 72.46% 43.00% 1.62% 100.00% 12.45%
Qwen2.5-1.5B-Instruct (Coarse) 36.72% 76.44% 70.86% 41.27% 2.12% 100.00% 12.24%
Qwen2.5-3B-Instruct (Original) 52.98% 81.58% 79.43% 73.78% 3.75% 88.24% 84.85%
Qwen2.5-3B-Instruct (Finegrained) 52.06% 81.65% 79.64% 69.21% 5.50% 83.33% 78.14%
Qwen2.5-3B-Instruct (Intermediate) 51.36% 81.15% 80.07% 68.64% 4.25% 88.89% 75.74%
Qwen2.5-3B-Instruct (Coarse) 51.40% 79.48% 78.54% 68.73% 5.62% 88.89% 77.80%
Llama-3.2-3B-Instruct (Original) 44.10% 74.38% 75.18% 56.86% 1.37% 94.44% 62.23%
Llama-3.2-3B-Instruct (Finegrained) 39.82% 64.71% 70.68% 52.20% 0.25% 100.00% 56.68%
Llama-3.2-3B-Instruct (Intermediate) 38.62% 59.83% 71.86% 50.56% 0.25% 94.44% 55.68%
Llama-3.2-3B-Instruct (Coarse) 35.95% 52.00% 61.43% 48.96% 1.12% 83.33% 61.92%

The results are shown in Table [TT] Table[T2] and Table [I3|for BFCL, API-Bank, and Bamboogle,
respectively. We compare RL training initialized with models fine-tuned on either 400 or 4K SFT
data points. Interestingly, our findings suggest that initializing from a model finetuned on 4K data
does not consistently outperform initialization from a model finetuned on only 400 data points. In the
BFCL benchmark, we even observe cases where performance drops below that of the raw instruct
model. This counterintuitive result may stem from overfitting during the SFT phase, which could
restrict the model’s exploration during RL and lead to poorer generalization on held-out tasks.

G Length Reward Analysis Details

We examine the role of a length-based reward. Prior work has demonstrated that the R1-like models
can promote deeper reasoning, often reflected in longer thinking traces. To encourage this behavior,
we introduce a reward term proportional to the length of the <think> field:

L .
Rlength = min < think 1>

?
Ltarget

where Ly denotes the length of the thinking segment in model’s output, and Lyee denotes the
target output length, which we empirically set to 512. We found that the raw model rarely generates
responses longer than half this length, making 512 a reasonable and effective target for encouraging
longer outputs. This length-based component is added to the overall reward, which now consists of
format, correctness, and reasoning length.

As shown in Figure 4] both response length and the length reward generally increase throughout
training, particularly for the Qwen model series. This indicates that the length reward effectively
encourages longer reasoning. However, the downstream BFCL results reveal that adding a length
reward does not consistently improve task performance, and in smaller-scale models, it can even
cause substantial degradation. These observations suggest that while extended reasoning may appear
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desirable, it is not always beneficial for tool use tasks. In fact, excessive length may introduce
unnecessary complexity, leading to overthinking and reduced effectiveness.

Dynamic Length Reward. Since fixed-length rewards showed minimal impact and converged
quickly, we explored a dynamic length reward that adapts over training steps. Specifically, we define:

. Lihink
Rdynamic = min [ ————— 1
dynamic (Lta.rget : (1 +p)

where S denotes the training steps and p = % € [0,1] represents the normalized training progress.
This formulation gradually increases the target thinking length over time, aligning with model
maturity.

As shown in Figure ] this approach yields a steadier growth in thinking length, particularly for the
Llama model. However, the BFCL performance results reveal that even scheduled rewards fail to
improve performance. This further supports our hypothesis that extended reasoning may not benefit
this task and can even have adverse effects.

Takeaway 1: While length rewards encourage longer reasoning traces, they do not consis-
tently improve task performance and may even harm it in smaller models, highlighting that
I longer reasoning is not inherently better for tool use tasks.

H Reward Scale Analysis Details

We investigate the effect of reward scaling, specifically the relative weighting between correctness
and format rewards. Prior work in R1-style RL commonly assigns a higher weight to correctness
reward than to format reward, emphasizing the importance of learning correct answer over superficial
adherence to format. This strategy helps prevent reward hacking, where a model might exploit
formatting heuristics without learning task semantics.

To test the importance of this design choice, we conduct an ablation where we equalize the maximum
correctness and format rewards by setting the former’s range to [—1, 1], matching that of the format
reward. This adjustment only affects the final normalization step of the correctness reward:
Rmax
Smax

where all variables are defined as in Section[2.3]

Rcorrect =2

—1e[-1,1]

As shown in Figure[5] this equal-scaling variant, denoted as “Equal Max”, results in a slight drop
in overall accuracy across most models, with the exception of Qwen2.5-3B, which maintains per-
formance comparable to the original setting. These results underscore the importance of assigning
greater weight to correctness reward: doing so helps steer the model toward mastering the core
reasoning and tool use capabilities necessary for robust generalization.

Dynamic Reward Scaling. Building on the insight that correctness reward plays a more critical
role, we are further motivated by the intuition that different reward components may benefit from
being emphasized at different stages of training. This leads us to explore dynamically adjusting
reward scales in accordance with training progress. Specifically, we hypothesize that in early training,
the model should prioritize learning the correct output format, which entails an easier objective,
before gradually shifting focus to the more challenging goal of tool use correctness. To test this
hypothesis, we design two dynamic reward scaling strategies:

* Two stage (Coarse) Setting: We divide training into two phases. In the first s training steps,
we downscale the correctness reward to % of its original scale while keeping the format reward
at its original scale. After step s, we restore the correctness reward to its original scale and
simultaneously reduce the format reward to range [0, 0.5] (% of its original scale). Formally the

reward scales are:
Scaley, = {[ ’ 1] if Seurrent < 8
ormat ,

[0,0.5] otherwise
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Sealen . — 4 [F1 1] if Seurrene <5
o [—3,3] otherwise

where Scyene denotes the current training step. In our experiments, we empirically set the
switching point to s = 30 steps, as we observed that the format reward typically experiences a
significant increase within the first 30 steps. Therefore, it is more beneficial for later steps to shift
focus toward optimizing correctness.

* Dynamic (Finegrained) Setting: We apply continuous interpolation between the two reward
scales throughout training. Initially, both the format and correctness reward scales are set equally.
Over time, the format reward scale linearly decays to its original value, while the correctness
reward scale gradually increases to its original value, allowing the training to shift focus from
format adherence to task correctness accordingly. Formally, the dynamic scaling is defined as:

Scaleformat = [—2 + p, 2 — pl,

Scalecorrect = [_2 -p,2+ p]

where p € [0, 1] similarly represents the normalized training progress. This design ensures a
smooth shift of learning focus from format fidelity to correctness.

We present the reward dynamics of the original and two dynamic scaling strategies in Figure[5] The
Two-stage (Coarse) reward setting unexpectedly leads to a drop in performance, whereas the Dynamic
(Finegrained) scaling could improve model’s benchmarking performance. These findings suggest that
abrupt shifts in reward scale may negatively impact the training dynamics. In contrast, a smoother
and gradual transition from simpler objectives to more nuanced ones appears to better support the
model’s learning trajectory and generalization during GRPO training.

i} Takeaway 2: Gradually adjusting reward scales during training, rather than abrupt changes,
better supports model learning and generalization, highlighting the benefits of a smoother
I transition from simpler objectives to more complex ones.

I Reward Granularity Analysis Details

We finally perform a detailed analysis of the effect of reward granularity, focusing specifically on the
correctness reward. Tool calling, by nature, poses challenges for reward assignment, as it involves
multiple facets beyond a single definitive answer (e.g., in contrast to math reasoning tasks). Our
original reward design decomposes correctness into matching the tool name, parameter names, and
parameter values, offering a finegrained, “process-oriented” signal that reflects partial correctness in
tool usage.

To assess the impact of this granularity, we evaluate three alternative reward formulations with
progressively coarser levels of aggregation:

* Finegrained: We apply strict exact-match constraints to both tool name and parameter name
matching. Specifically, we define:
Tname = 1[NG = NP] S {0, 1}

Tparam = Z ]l[keys(PG) = keyS(PP)] € [07 ‘G”
Gjea

* Intermediate: We combine the parameter name and value rewards into a single term that enforces
an exact match on the entire parameter dictionary. Formally:
T'param + Tvale = Z ]l[PG = PP] € [07 |GH
Gjeq

* Coarse: At the coarsest level, we fully entangle tool name, parameter names, and parameter values,
treating the entire tool set as a unit. Reward is given only if the generated tool set exactly matches
the ground truth:

Tname + T'param + Tvale = H[G - P] € {0, 1}
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All other aspects of reward computation are kept identical to those described in Section[2.3] Starting
from our original design, which is the most finegrained, we progressively entangle reward components
to derive increasingly coarse-grained alternatives.

The reward dynamics across training steps, shown in Figure [6] demonstrate that as reward granularity
becomes coarser, it becomes harder for the model to achieve higher reward values during RL training.
This suggests that overly strict and entangled rewards may lead to sparse learning signals, potentially
hindering effective credit assignment.

Empirical BFCL test results further support this insight: our original, most finegrained reward strategy
performs well across models. In general, finer-grained reward decomposition leads to better training
outcomes and higher final task performance, indicating its advantage in promoting more stable and
effective policy learning.

Takeaway 3: Finegrained reward decomposition provides richer learning signals, high-
lighting its role in enabling more effective training compared to coarse reward formulations,
I which can impede progress and degrade final performance.

J Additional Clarifications and Discussions

J.1 Scope of Our Claim

Our title, “Reward is All Tool Learning Needs,” emphasizes the central role of reward design in
enabling tool learning within reinforcement learning, rather than claiming the complete absence
of supervised signals. We view RL reward itself as a form of supervision, providing structured
and interpretable guidance that is particularly well suited to tool-use scenarios. While small-scale
supervised examples (e.g., 400—4K) can be used for initial format learning, our main method settings
demonstrate that with the proposed format reward, models can acquire correct tool-calling behavior
purely through RL training and, in many cases, surpass SFT-only baselines.

Furthermore, our reward design is algorithm-agnostic in principle, though its effectiveness may vary
across different RL algorithms. In this paper, we adopt policy-gradient methods such as GRPO and
PPO, which naturally accommodate structured, multi-turn rewards and support trajectory-level credit
assignment. In contrast, preference-based approaches like DPO or SimPO are less compatible with
this setting, as they rely on pairwise comparisons that cannot easily capture finegrained signals such
as tool name or argument correctness. Our choices align with prior work (e.g., Search-R1 using
GRPO/PPO, ToRL using GRPO) [[17, 23], further supporting their methodological suitability.

Finally, while PPO achieves its strongest performance when combined with supervised initialization
(e.g., SFT+PPO), our PPO experiments also demonstrate that the proposed reward signals provide
meaningful improvements over SFT-only training. Taken together, these findings clarify the scope of
our claim: reward design constitutes the foundation of effective tool learning by guiding both format
and correctness, whereas supervised data can play a supportive but not fundamental role.

J.2  Choice of Customized Generation Template

In our experiments, we adopt a customized XML-tag-based generation template instead of relying on
the native tool-calling mechanisms of LLMs. Our preliminary comparisons on BFCL with Qwen?2.5-
3B-Instruct showed that performance under the native tool-call format and our XML-based template
was largely comparable. However, the XML design offers several important advantages that motivated
our choice. First, it enables structured reasoning through additional fields such as <think>, which
improves the model’s capacity for explicit intermediate reasoning steps and aligns naturally with
agentic paradigms such as ReAct [53], where reasoning and action are explicitly separated. Second,
it provides flexibility and extensibility: XML tags can be easily adapted to incorporate new fields,
supervision signals, or tool types, which is crucial for generalizing to diverse domains and future
research extensions. Third, this approach is consistent with recent works such as Search-R1 [17]],
ToRL [23]], and RM-R1 [7], all of which adopt customized generation formats rather than relying
solely on native tool-calls.
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While models like LLaMA-3.2-Instruct may exhibit strong zero-shot tool-use performance with native
templates due to pretraining exposure, we emphasize that our XML-based template is model-agnostic
and optimized for training-time flexibility rather than inference-time execution. Native tool-call
format, while convenient, are often rigid and less amenable to reinforcement learning setups that
require finegrained, dynamic reward shaping. Our framework prioritizes consistency across models
and adaptability to unseen tools and tasks, which we find more critical than exploiting architecture-
specific optimizations. In this sense, the XML-based template supports both structured reasoning
and broader applicability, making it a better fit for our focus on reward-driven optimization in tool
learning.
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