
Multimodal base distributions for
continuous-time normalising flows

Shane Josias∗and Willie Brink
Department of Mathematical Sciences

Stellenbosch University
{josias,wbrink}@sun.ac.za

Abstract

We investigate the utility of a multimodal base distribution in continuous-time
normalising flows. Multimodality is incorporated through a Gaussian mixture
model (GMM) centred at the empirical means of a target distribution’s modes. In-
and out-of-distribution likelihoods are reported for flows trained with a unimodal
and multimodal base distribution. Our results show that the GMM base distribu-
tion leads to performance that is comparable to a standard (unimodal) Gaussian
distribution for in-distribution likelihoods, but provides the ability to sample from
a specific mode in the target distribution, yields generated samples of improved
quality, and gives more reliable out-of-distribution likelihoods for low-dimensional
input spaces. We conclude that a GMM base distribution is an attractive alter-
native to the standard base, whose inclusion incurs little to no cost and whose
parameterisation may assist with more reliable out-of-distribution likelihoods.

1 Introduction

Normalising flows are a flexible class of generative models that provide exact likelihoods. A discrete-
step normalising flow specifies a target distribution px(x) in terms of an easy-to-sample-from base
distribution pu(u), and an invertible transformation u = T (x) where u ∼ pu(u), by employing the
change of variables formula. T (x) is defined as a composite function, usually chosen to be a neural
network whose architecture is restricted for a tractable log-determinant in the change of variables
formula. The continuous-time variant (hereafter referred to as a continuous flow) expresses u = T (x)
as the solution to an initial value problem (IVP):

dz(t)

dt
= fθ(zt, t), t ∈ [t0, t1], z0 = z(t0) = x, z1 = z(t1) = u, (1)

and uses a continuous analog of the change of variables formula to determine log px(z0) (Chen et al.,
2018). The function fθ(zt, t) defines a time-dependent vector field describing the transformation
dynamics, with learned parameters θ. This formulation circumvents restrictions on the transformation
T (x) for a tractable log-determinant, at the time-cost of numerically solving the IVP in equation 1.
For a chosen base distribution and transformation function, the flow is trained by maximum likelihood.
It is sufficient for the base distribution pu(z1) to be defined as a standard unimodal Gaussian (Papa-
makarios et al., 2021; Kobyzev et al., 2020; Dinh et al., 2015, 2017; Kingma and Dhariwal, 2018;
Chen et al., 2018; Grathwohl et al., 2019; Finlay et al., 2020; Voleti et al., 2021), however, when
trained with the maximum likelihood objective, these models can provide unreliable likelihoods for
out-of-distribution data (Nalisnick et al., 2019; Voleti et al., 2021). For instance, a model trained on
FashionMNIST may provide high likelihoods for MNIST samples. Moreover, there is no inherent
mechanism to model multimodality when pu(z1) is chosen to be the standard Gaussian.
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Papamakarios et al. (2017); Kirichenko et al. (2020) and Stimper et al. (2022) incorporate multi-
modality for discrete-step normalising flows by using a Gaussian mixture model (GMM) as base
distribution. Improvements are shown for density estimation and semi-supervised image classification.
Bearing in mind the cost of numerically solving the IVP in equation 1, we evaluate the prospects
of using a GMM base distribution for supervised density estimation in continuous flows. Our work
complements existing approaches by reporting both in- and out-of-distribution likelihoods, with a
view towards understanding the out-of-distribution failure modes of continuous flows. We further
quantitatively show improvements in sample quality. Collectively, our findings warrant further
exploration of the benefits and limitations of using multimodal base distributions in continuous flows.

2 Background and methods

Given a class-labelled training set D = {(xi, yi)}Ni=1 with xi ∈ Rd, and letting z0 = xi, we
construct a continuous flow that computes the likelihood px(z0) from

log px(z0) = log pu(z1) +

∫ t1

t0

Tr
(
∂fθ
∂zt

)
dt. (2)

Following Grathwohl et al. (2019), the transformed sample u = z1 and log px(z0) are solved
simultaneously.

GMM base distribution. To incorporate multimodality, we consider the GMM base distribution
with a component for each of the K classes in the data:

pu(z1) =
1

K

K∑
k=1

N (µk, I), (3)

with µk set to the empirical mean of each class represented in the training set. During training, we
evaluate the log-likelihood for each sample xi by the base component corresponding to class yi. At
test time, the likelihood of a sample is evaluated and weighed across all components as in equation 3.
Double precision and the log-sum-exp trick are used to avoid underflow.

Gaussian base distribution. As a baseline, we consider the base distribution pu(z1) ∼ N (µ, I).
In our experiments, µ is set to the empirical mean of the training data, for direct comparison with
the GMM case. This deviates slightly from existing literature where the base distribution is usually
defined to be the zero-mean isotropic Gaussian. Different parameterisations (uni- or multimodal)
may impact performance, but further investigation into this is left for future work.

These two base distributions will first be evaluated in a 2-dimensional setting, and then on image
datasets of increasing complexity.
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Figure 1: The 2D cascading
moons dataset.

Cascading moons dataset. Figure 1 shows a 2D cascading moons
dataset with 6 classes. We construct two training sets, D{0,1} and
D{4,5}, where the subscripts represent the set of in-distribution
modes the model is trained on. In both cases, the remaining classes
serve as out-of-distribution data for testing. The dynamics function
fθ(zt, t) is implemented as a planar normalising flow (Rezende and
Mohamed, 2015) where a hypernetwork (Ha et al., 2017) is used for
time-dependency in the planar flow’s parameters.

Image datasets. We consider three image datasets: (1) InstanceMNIST, where the training set
contains single samples from class 0 and from class 1, copied with uniform noise of up to 20% of
the maximum pixel value; (2) SubsetMNIST, where the training set has 1280 different samples from
each of the classes 0 and 1; and (3) FashionMNIST, where the training set consists of 1280 samples
from each of the 10 classes. For computational convenience, all images are resized from 28 × 28
to 16× 16. The-out-of-distribution data for models trained on InstanceMNIST and SubsetMNIST
consists of samples from classes 2 to 9, constructed in the same way as each respective training
set, and an additional set of linear interpolations of samples from the two training classes. The

2



MNIST test set serves as out-of-distribution data for models trained on FashionMNIST, to test
whether continuous flows with a multimodal base distribution still erroneously identifies MNIST as
in-distribution data (Nalisnick et al., 2019; Voleti et al., 2021). The dynamics function fθ(zt, t) is
implemented as a fully convolutional neural network with time concatenated to the input of each layer,
similar to Grathwohl et al. (2019). The Jacobian trace in equation 2 is calculated using the Hutchinson
trace approximation (Grathwohl et al., 2019; Finlay et al., 2020), and weight normalisation is included
when training on FashionMNIST.

We report on bits per dimension (bits/dim) scores for the in- and out-of-distribution data. A higher
bits/dim score implies lower average likelihood. The Fréchet inception distance (FID) (Heusel et al.,
2017) is also reported as a quantitative measure of generated sample quality.

3 Results

Figure 2 shows comparable performance in modelling in-distribution likelihoods between the standard
Gaussian and GMM base distributions, for the cascading moons dataset, indicating that there is no
degradation in in-distribution likelihood performance in this low-dimensional setting. The results
also indicate that the GMM base improves over the standard base by correctly assigning higher
bits/dim to out-of-distribution data. Moreover, the bits/dim scores are correlated with how far the test
distribution modes are from the training distribution. It may be worth analysing the learned dynamics
for the GMM base to determine what characteristics of its parameterisation allows for these improved
out-of-distribution scores.
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Figure 2: Bits/dim scores per class in the cascading moons dataset. Blue indicates training set
modes (in-distribution) and orange indicates out-of-distribution modes. Black vertical lines represent
standard deviations over a few runs.

Nalisnick et al. (2019) suggest that flows fail at modelling out-of-distribution likelihood when the test
distribution is contained within the training distribution, i.e. when the two sets have similar means
but the test set has smaller variance. We also observe this behaviour in the low-dimensional setting,
when training on modes 4 and 5 with a standard base. The GMM base, however, performs desirably.
The hypothesis that data from all modes collapse to the unimodal base distribution in the solution to
the IVP in equation 1 serves as motivation for using a multimodal base distribution.

Both variants of the base distributions lead to similar performance on the InstanceMNIST data, as
seen in Figure 3. Again, there is no performance degradation for in-distribution likelihoods from the
GMM base. In these experiments, interpolated samples between the training modes are identified as
in-distribution. We expect as much from the standard base distribution, given that it is centred at the
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Figure 3: Bits/dim scores for in- and out-of-distribution sets, for the InstanceMNIST (left) and
SubsetMNIST (right) experiments. Models are trained on samples from classes 0 and 1, and tested
on interpolated samples as well as samples from classes 2 to 9. Lighter and darker shades correspond
to the standard and GMM bases, respectively.
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interpolated modes (similar to the cascading moons experiment). But the same behaviour occurs for
the GMM base distribution. It is possible that the dynamics function moves data from the interpolated
mode to regions of high probability for either of the modes, suggesting that parameterisation of the
base distribution modes might be an important consideration. Both models correctly identify data
from classes 2 to 9 as out-of-distribution. The InstanceMNIST set contains data in a relatively small
hypercube centred at a single sample from class 0 and a single sample from class 1, leading to models
that fit the training set very well.

Results in Figure 3 for SubsetMNIST again show that continuous flows trained with a GMM base can
model in-distribution data adequately. More interestingly, it appears that both models (standard base
and GMM base) assign similar likelihoods to out-of-distribution data as they do for in-distribution
data from class 0, suggesting that harder-to-model in-distribution classes may affect mean bits/dim
scores typically reported in the literature. When considering the mean bits/dim (dotted) line, it is
not clear whether the data from class 0 should be regarded as out-of-distribution, or whether the
out-of-distribution data from classes 2 to 9 should be regarded as in-distribution.

Table 1: Mean bits/dim for models
trained on FashionMNIST.

Standard GMM

FashionMNIST 3.87 3.86
MNIST 3.21 3.22

Models trained on FashionMNIST are tested on Fashion-
MNIST test samples (in-distribution) and MNIST test sam-
ples (out-of-distribution). In-distribution likelihoods are
similar for models trained with the standard and GMM
bases, as indicated by the bits/dim scores in Table 1 (stan-
dard deviations over a few runs are in the order of 10−2).
Both models assign higher likelihoods to out-of-distribution
data, similar to results from the literature (Nalisnick et al.,
2019; Voleti et al., 2021). A multimodal base distribution
does not seem to assist with out-of-distribution detection,
and more investigation is needed. Training on feature representations may circumvent the out-of-
distribution failure (Kirichenko et al., 2020). It could be that linear separability is important for flows
to enable out-of-distribution detection. Perhaps there may be an appropriate parameterisation of the
GMM so that flow trajectories behave well for in-distribution data, while pushing out-of-distribution
data to regions of low probability.

Table 2: FID for generated images from
models trained on the indicated sets.

Standard GMM

InstanceMNIST 097.59 084.68
SubsetMNIST 144.26 137.20

FashionMNIST 080.73 077.25

Table 2 provides quantitative evidence that a GMM base dis-
tribution can lead to better generated samples, as measured
by FID. This echoes what has been shown qualitatively for
discrete-step normalising flows (Dinh et al., 2017; Stimper
et al., 2022). We acknowledge that sample quality and like-
lihood performance are largely independent (Theis et al.,
2016), and so this result demonstrates the benefit of using
a multimodal base distribution only for applications where
sample quality is important.

Importantly, in the case of class-labelled training data, we
observe that using a GMM base distribution does not in-
crease the time-cost of solving the IVP in equation 1. Comparable likelihoods for in- and out-of-
distribution data, a comparable time-cost and improved sample quality provide support for the use of
a multimodal base distribution in continuous-time normalising flows.

4 Conclusion and future work

We investigated the utility of a GMM base distribution for continuous flows, where the data trans-
formation is defined as the solution to an initial value problem. We showed that continuous flows
trained with a GMM base distribution can generate better quality samples at no additional cost to the
training or inference process. Comparable in-distribution likelihoods, and reliable out-of-distribution
likelihoods for low-dimensional input spaces, further motivate for a multimodal base distribution as a
simple alternative to the standard Gaussian.

Further analysis is warranted into the relationship between the parameterisation of the base distribution
and the learned dynamics for reliable out-of-distribution likelihoods. Indeed, labelled data simplifies
the parameterisation of the GMM, but it is still an open question as to whether unlabelled data can be
handled in a sensible way. Learning the parameters of the GMM is another avenue to investigate.
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