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Abstract— Collaborative perception, fusing information from
multiple agents, can extend perception range so as to improve
perception performance. However, temporal asynchrony in real-
world environments, caused by communication delays, clock
misalignment, or sampling configuration differences, can lead
to information mismatches. If this is not well handled, then
the collaborative performance is patchy, and what’s worse
safety accidents may occur. To tackle this challenge, we pro-
pose CoDynTrust, an uncertainty-encoded asynchronous fusion
perception framework that is robust to the information mis-
matches caused by temporal asynchrony. CoDynTrust generates
dynamic feature trust modulus (DFTM) for each region of
interest by modeling aleatoric and epistemic uncertainty as well
as selectively suppressing or retaining single-vehicle features,
thereby mitigating information mismatches. We then design a
multi-scale fusion module to handle multi-scale feature maps
processed by DFTM. Compared to existing works that also
consider asynchronous collaborative perception, CoDynTrust
combats various low-quality information in temporally asyn-
chronous scenarios and allows uncertainty to be propagated to
downstream tasks such as planning and control. Experimental
results demonstrate that CoDynTrust significantly reduces per-
formance degradation caused by temporal asynchrony across
multiple datasets, achieving state-of-the-art detection perfor-
mance even with temporal asynchrony. The code is available at
https://github.com/CrazyShout/CoDynTrust.

I. INTRODUCTION

With the rapid development of autonomous driving, 3D
object detection, a core technology for environmental per-
ception, has gained widespread attention [1], [2], [3]. Its
goal is to accurately identify and locate objects using sensor
data from LiDAR and cameras. However, single-vehicle
sensors have limited coverage, especially in complex urban
environments with occlusion and reduced visibility [4], [5].
This makes comprehensive perception difficult. As an al-
ternative, collaborative perception arises, which can signif-
icantly improve perception range and accuracy by sharing
and processing data among multiple agents via vehicle-to-
everything (V2X) technology [6], [7], [8].

Although collaborative perception mitigates the limitations
of single-vehicle perception, it still faces practical issues such
as positioning errors [9], bandwidth limitations [10], and
latency [11]. Among them, temporal asynchrony is one of
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Fig. 1. Based on DFTM, CoDynTrust can mitigate error propagation ampli-
fied by temporal asynchrony, effectively suppressing low-quality information
and enhancing detection robustness.

the most difficult challenges since it can lead to mismatches
in sensor data, thus causing collisions and conflicts between
different vehicles. There exist several methods that use delay
compensation strategies to address temporal asynchrony [11],
[12], [13], [14], [15]. However, they are limited to processing
single-frame data and do not fully utilize historical informa-
tion. Moreover, their performance is limited in high-latency
or complex scenarios. In reality, asynchronous communica-
tion is inevitable due to unsynchronized sampling, different
processing speed, or network congestion. This poses threats
to the accuracy and real-time performance of perception.

To address the temporal asynchrony in collaborative per-
ception, we propose CoDynTrust, as illustrated in Fig. 1.
CoDynTrust evaluates the dynamic feature trust modulus
(DFTM) of each region of interest (ROI) so as to tackle error
propagation in the ROI generator. Furthermore, we adopt
a simple linear extrapolation method instead of a learned
motion prediction model so as to ensure reasonable vehicle
movement within common latency ranges (0s—0.5s). Then,
we design an adaptive fusion method to enhance system
performance. Finally, we conduct extensive experiments on
real and simulated datasets for LiDAR-based 3D object
detection tasks, including DAIR-V2X [16], V2XSet [13], and
OPV2V [17]. Experimental results show that: i) DFTM effec-
tively addresses detection quality inconsistencies caused by
noise, model flaws, and asynchronous delays. ii) CoDynTrust
consistently outperforms previous state-of-the-art methods in
delay scenarios. In summary, the main contributions of this
paper are as follows:

o We propose CoDynTrust, a novel LiDAR-based 3D de-
tection framework for robust asynchronous multi-agent
perception, addressing detection errors from noise,
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model defects, and worsened by delays.

We introduce DFTM, an uncertainty-based method es-
timating each agent’s ROI trustworthiness. Combined
with adaptive fusion, DFTM adjusts feature fusion and
can be propagated to downstream tasks (e.g., planning,
control) to enhance system robustness.

We validate CoDynTrust via extensive experiments.
Results show that CoDynTrust significantly mitigates
the performance degradation caused by temporal asyn-
chrony and improves robustness in delay scenarios.

II. RELATED WORKS
A. Collaborative Perception

Collaborative perception addresses the challenges of lim-
ited perception range and occlusion in single-vehicle au-
tonomous driving by enabling information exchange be-
tween agents. High-quality datasets like DAIR-V2X [16],
V2XSet [13], OPV2V [17], and V2X-Sim [18] have be
given, and notable methods are proposed, such as DiscoNet
[19] using a teacher-student distillation framework to extract
more information during training, V2X-ViT [13] the first
heterogeneous Transformer for V2X perception, CoAlign [9]
which enhances consistency between agents using pose graph
modeling, and CoBEVFlow [15] which mitigates delays
through motion prediction.

B. Temporal Asynchrony Issue in Collaborative Perception

Temporal asynchrony is unavoidable in real-world envi-
ronments, exacerbating errors caused by noise and model
deficiencies. Existing solutions like V2VNet [12] employ
CNNs for delay compensation, while V2X-ViT [13] miti-
gates spatio-temporal distortions via position encoding. How-
ever, these methods insufficiently leverage historical data.
Though SyncNet [11] applies Conv-LSTM [20] for delay
handling, its RNN-based feature generation struggles with
noise and irregular delays. FFNet [14] processes irregular
multi-frame data but introduces generation noise and in-
frastructure dependencies. CoBEVFlow [15] demands high-
quality ROI generation, and its three-stage training risks error
propagation from delays. To overcome these limitations, we
propose an optimized asynchronous collaborative perception
framework.

C. Uncertainty Quantification

Uncertainty quantification critically evaluates prediction
reliability through two categories: aleatoric (data noise ir-
reducible with data volume) and epistemic (reducible model
limitations). Aleatoric uncertainty is captured through direct
modeling (DM) [21] with variance prediction outputs; epis-
temic uncertainty estimated via Monte Carlo dropout [22]
approximating Bayesian inference or deep ensembles [23]. In
autonomous driving, this enhances safety in perception [24],
[25] and decision-making. Current collaborative perception
research predominantly applies uncertainty to downstream
tasks like planning and control [26], [27], neglecting specific
challenge resolution. In CoDynTrust, we quantify both un-
certainties using DM and MC dropout to guide asynchronous
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collaborative perception, filtering out noise and low-quality
data, and propagating uncertainty to tasks such as planning
and control.

III. PROBLEM FORMULATION

Consider a scenario with /N agents, where each agent
can exchange information with others and store two frames

of historical data from others. For the n-th agent, let Xf{”’

and Yf:” respectively represent the perception observation
and supervision at time t!,. Here, ¢!, is the timestamp of
agent n at the ¢-th moment. Pf,i’;n denotes the collaborative
message sent from agent m to agent n at t/ . Temporal
asynchrony includes: i) timestamp misalignment between
agents, tJ # t!, and ii) irregular time intervals between
two frames of received messages from other agents, i.e.,
i —ti—1. Therefore, the task of asynchronous collaborative
perception can be formulated as:

(D

)

In this formula, g(-,-) represents the perception evaluation

N N ti ti
arg max E g (Yn",Yn") ,
0P

ti—1

tJ t9-
P’m%n

m
m—n;

subject to Y:f‘ = Oy <Xf§"‘, {

metric, and Y:{“ denotes the n-th agent’s detection result
at time t¢. The collaborative perception network ® is pa-
rameterized by #. When timestamps are synchronized and
frame intervals are uniform (i.e., ¢, = ¢! and t!, — ti=! is
constant), the problem simplifies to the ideal delay-free case
of uniform. If ¢/, # t! but intervals remain uniform, the
setup resembles SyncNet’s scenario.

IV. ASYNCHRONY-ROBUST COLLABORATIVE
PERCEPTION

A. Overall Architecture

Temporal asynchrony means that agents perceive the same
object at different times. Existing methods mitigate them by:
i) using a pre-trained ROI generator after feature extraction,
ii) feeding multi-frame ROIs into a motion prediction module
to generate birds’ eye view (BEV) flow map, and iii) warping
asynchronous feature with the BEV flow map before fusion.
However, such strategy has two issues: i) over-reliance on
the ROI generator, leading to variable ROI quality due to
noise and model limitations; and ii) errors accumulate in
both ROI and BEV flow generation, worsened by irregular
delays. CoDynTrust addresses these issues by: i) parallel
uncertainty quantification for each ROI, and ii) using linear
extrapolation for motion prediction and averaging uncertainty
across frames to generate DFTM. By doing so, we can filter
noise and retain high-quality features. Furthermore, an adap-
tive fusion further enhances feature integration. Formally,
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generation. Message fusion generate Dynamic Feature Trust Modulus and scatters it back to the sparse feature map, while the BEV map is generated and
used for motion compensation. Finally, multi-scale Hybrid Fusion is applied to fuse feature maps from all agents.

CoDynTrust can be expressed as:

Fl = fune(X0), (2a)

:ELa TtLL 5 Fﬁl - froi,gen(Ffl:L )7 (Zb)
{Mm7 Dm}At = fﬂow,gen(t:w Rm7 Um)» (20)
Ffﬁ - fwarp dtfm(~$r7lna {Mm;D }At)v (Zd)

ﬂfz* = fagg(Fn AF Y mens), (20)

n = fdec( )7 (Zf)

Here, Ftil € REXWXD ig n-th agent's BEV feature at

timestamp ti ns where H and W are its size and D is the
channels. Rn is the set of ROIs, L{tz
uncertainty, and Fn is the sparse version of Fir containing
. {M,,,, D,,,}2* refers to the BEV flow

n € REXWX2 reflecting grid cells movement

is the correspondmg

features within R
t) —t!

map M,
from tJ, to t¢,. Dt’”_ﬁ” S R"Xl represents the trust modulus
of each ROI, where o is the number of matched ROI pairs.

Flr is the re-aligned feature after motion compensation and

DFTM application. I:I;:l is the aggregated feature from all

agents, where A, denotes the collaborative neighbors of

agent n. Yf}” is the system’s output.
The whole procedure of our approach is given in Fig. 2.
Specifically, Step 2a extracts BEV features from observation

data. Step 2b generates ROIs and evaluates uncertalnty, and

then agents exchange messages including Z/ln", ', and Fn".
Step 2c generates BEV flow map. Step 2d applies the BEV
flow map to warp asynchronous features and apply DFTM
so as to obtain re-aligned feature map. Step 2e aggregates
features from all agents. Step 2f outputs the final perception
result. Note that, steps 2a and 2b run without communication,
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while communication begins in Steps 2¢-2f. Next, we explain
the main steps and contents of CoDynTrust.

B. ROI Generation with Uncertainty Quantification
Uncertainty Quantiﬁcation. For agent m at timestamp ¢/,

with BEV feature F,;;*, CoDynTrust quantifies aleatoric and
epistemic uncertalnty. Each type of uncertainty corresponds
to classification and regression uncertainty. Let Ppy(+) and
Puep(+) represent the processes of DM and MC Dropout,
respectively. The quantification is:

{uglléea Z?g}m - PDM(Fm ) (38.)
gfgsm :;f i — PMCD(Xﬁ;Ln 3 esinglea T) (Sb)

Since we evaluates ROI uncertainty, the regression
aleatoric uncertainty is evaluated by modeling the bounding
box center (z,y) as Gaussian random variable. Considering
the periodicity of yaw angle «, it is modeled o with von
Mises distribution. The regression head predicts the mean,
and an additional head predicts the log variance (for x and
y) and the inverse concentration parameter (for o) to capture
uncertainty.

Similarly, the classification aleatoric uncertainty is mod-
eled by treating the logit of the classification head as Gaus-
sian random variable. An additional head predicts the vari-
ance to quantify classification noise. Since it is challenging
to directly optimize the Gaussian parameters [28], we apply
the reparameterization trick [29]. Specifically, we express the
random variable as a differentiable function by introducing
standard normal noise, scaled and shifted for smooth gradient
propagation. This approach effectively learns classification
uncertainty while maintaining stability.

We use MC Dropout to quantify epistemic uncertainty.

J
In equation (3b), an is the raw observation of agent

Authorized licensed use limited to: Soochow University. Downloaded on October 18,2025 at 09:06:01 UTC from IEEE Xplore. Restrictions apply.



m at timestamp t{n, Osingle is the single-vehicle detection
model parameter, and 7' is the number of MC Dropout
inferences. Since dropout is used only in the decoder, during
inference, step 2b is executed 7' times. The mean of the
T results is taken as the final output, with classification
entropy and regression variance representing the epistemic
uncertainties. Finally, the raw uncertainty set for agent m

i . 7, _ cls ,7reg , cls ured
at t], is denoted as: (Uni")raw = {Ug, Ugre s Uepis em}m .
Due to the differences in evaluation methods and unitless
properties of uncertainty, the classification or regression
uncertainties cannot be directly compared. Therefore, we

perform a rescahng operation, denoted as Pregcale(+), with the
process: (L{m Vdense = Pregcale((um )raw)- Specifically, for
classification uncertainty, we use the classification deviation
ratio [24] to unify the scale:

cls _ oy .
ut ReLU(uf{fw My — Uu)
s
, 4
s + ReLU(—(sc — p1s — 05)) @

Here, u¢ls is one type of classification uncertainty, and s,

is the confidence score. i, 0y, is, and o, are the mean
and variance of raw classification uncertainty and confidence
scores for positive samples in the test set. Compared to
raw classification uncertainty, the classification deviation
ratio provides more information and amplifies the difference
between positive and negative samples. Finally, regression
uncertainty is scaled by multiplying the uncertainty of the
bounding box center (z,y) by the box’s diagonal and apply-
ing Z-Score normalization for a unified scale.

ROI Set Generation. The BEV feature from step 2a is

fed into the ROI generator to generate the ROI: Of,z{”’ =
o7 (th) € RXWX8 where ®T . () is the ROI

roi-gen roi_gen
generation network, and 7" is the number of MC Dropout in-
J
ferences. Each element (O Nhw = (¢, 2,y,2,dg, dy, d, @)
is the mean of the T detection results for class confidence,
position, size, and orientation of an ROI. Post-processing
then generates detection boxes, projected into BEV space
J
as the ROI set Rir, with each element (c, z,y,dy,dy, ).

Finally, the uncertainty set Z/{ 7+ corresponding to the ROI set
is indexed.

Sparse Feature Map Generation. A binary mask H €
RZXW is generated from the ROI set, where regions inside
are 1 and outside are 0. Applylng thlS mask to the feature

map from step 2a, we have m =F& " @ H, retalnlng only

ROI features. Agent m then packages U m, , and F,{{L,

and sends them to other agents.

C. Flow Generation with DFTM

After communication, collaborative nodes receive infor-
mation from others, often with irregular time delays. To
address this, we require: i) efficient and interpretable motion
prediction to avoid error amplification; and ii) dynamic
feature trust modulus to evaluate historical data to reduce
noise. Step 2c can achieve so. Specifically, a BEV flow
map is generated to record displacements and calibrate the
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received features. Unlike learning-based models that require
multiple frames, CoDynTrust only needs two. Each frame’s
ROIs are matched as detection proposals using an efficient
algorithm [15], followed by motion prediction generating the
BEV flow map.

CoDynTrust uses linear extrapolation for motion predic-
tion. For the r-th ROI of agent m at tlmestamp t., the
motlon attributes are extracted, {PT ,Pim } where
P " L= (xT"’,yr 7ozrm). The ROI Velocny is v, = (PTm -
pin )/(ti, — 1), and the motion displacement is Ad, =

x (th — ). Ad, is then used to create the BEV flow

P . . . .
map M, ", storing motion mappings in two axes for each
grid in BEV space within the ROI area, while other regions
retain an identity mapping.

Then, to dynamically generate the feature trust modulus,
CoDynTrust combines the conﬁdence and uncertalnty of all

ROIs from historical frames: D = Papem (Sm , ) X
dy, where @dftm (+) is the DFTM generation network, and

Sf,? and Z/lm are the averages of confidence and uncertainty,
respectively. Since the previous matching filters out extreme
outliers, a simple average works well. d; is the delay
decay factor, resisting noise under high delays. ®gz¢., (+)
uses residual blocks to produce the feature trust modulus
between 0 and 1. After compensating and re-estimating ROI
confidence and uncertainty, a raw modulus is obtained. It’s
then multiplied by dy = exp(—k x (t!, — #J,)), where
k = 0.02, to further adjust for low-reliability ROIs under
high delays. The final output is D’ 7' € Rox1,

Feature Warp Guided by DFTM. In step 2d, the BEV
flow map and DFTM are applied to the feature map. Each
sparse feature grid shifts based on the flow map, while
DFTM is scattered back into the feature map and scales each
ROI's feature. This step is denoted as Pger(-), and the

overall transformation is: F Aﬁ%[h w] = Pscatter(Dtht ) ©
Brie b+ My w, 0], w + Mg~y w, 1.

Through this transformation, the feature maps of non-ego
agents achieve asynchronous compensation.

D. Hybrid Fusion

In step 2e, i.e., hybrid fusion as shown in Fig. 3, fuses
features from other agents at multiple scales to adapt to ob-
jects of varying sizes. Since the features processed by DFTM
exhibit sparsity and scaling, traditional methods struggle with
effective fusion. Hybrid fusion concatenates features apply-
ing both MAXOUT [30] and AVGOUT operations to high-
light key features and retain multi-agent perspectives. The
results are concatenated and passed through convolutional
layers and a sigmoid function to generate spatial weights,
which are used to weight and sum the MAXOUT and
AVGOUT outputs, forming the fused feature map. Global
average pooling and a linear layer produce channel weights
that further refine the feature map. The final output ﬂf}
integrates spatial and channel information. Furthermore, for
smooth gradient propagation, we use Mish [31] activation
throughout.
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TABLE I
PERFORMANCE COMPARISON OF CODYNTRUST AND BASELINE METHODS AT EXPECTED DELAYS FROM OMS TO 500MS ON THREE DATASETS.

Dataset DAIR-V2X V2XSet OPV2V(Culver)
Expectation of interval (ms) 0 300 500 | 0 300 500 | 0 300 500
Model / Metric | AP@0.5 1
Single | 0.6349 | 0.6515 | 0.6427
Late Fusion 0.6043  0.5401 0.5045 | 0.7876  0.4671 0.4112 | 0.8049 0.6702 0.6088
V2VNet [12] 0.7395 0.6572 0.6298 | 0.8691 0.5766 0.4990 | 0.8133 0.7332  0.6909
V2X-ViT [13] 0.7820 0.7202 0.7012 | 0.8785 0.6549 0.5535 | 0.8435 0.7788  0.7397
Where2comm [10] 0.7921  0.7103 0.6861 | 0.8918 0.6767 0.6131 | 0.8695 0.8014 0.7677
Where2comm+SyncNet [11] | 0.7921  0.7324 0.7103 | 0.8918 0.8081 0.7773 | 0.8695 0.8106 0.7892
CoBEVFlow [15] 0.7751 0.7419 0.7316 | 0.8632 0.8542 0.8388 | 0.8370 0.8217 0.8186
Ours 0.7922 0.7481 0.7357 | 0.8780 0.8644 0.8475 | 0.8646 0.8566 0.8532
Model / Metric | AP@0.7 1
Single | 0.4962 | 0.5204 | 0.5213
Late Fusion 0.3746  0.3226  0.3027 | 0.6801 0.3239  0.3152 | 0.6809 0.5031 0.4719
V2VNet [12] 0.5835 04982 04945 | 0.7675 0.3981 0.3715 | 0.6398 0.4864 0.4578
V2X-ViT [13] 0.6590 0.6046 0.5973 | 0.7170 0.4618 0.4179 | 0.6834 0.5990 0.5689
Where2comm [10] 0.6920 0.6066 0.5952 | 0.7966 0.5026 0.4854 | 0.7858 0.6638  0.6393
Where2comm+SyncNet [11] | 0.6920 0.6246  0.6121 | 0.7966  0.6720 0.6511 | 0.7858  0.7057  0.6906
CoBEVFlow [15] 0.6627  0.6264 0.6207 | 0.8111 0.7638 0.7340 | 0.7832 0.7400 0.7315
Ours 0.7001 0.6431 0.6368 | 0.8356 0.7869 0.7582 | 0.8194 0.7952  0.7833
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Fig. 3. Overall Structure of Hybrid Fusion.

V. EXPERIMENTAL RESULTS

We conducted experiments on three benchmark datasets.
All experiments focus on LiDAR 3D object detection.

A. Dataset

DAIR-V2X [16] is a real-world collaborative perception
dataset with two agents (a vehicle and an infrastructure)
per sample. Both capture image and point cloud data with
3D annotations. The LiDAR range is 201.6m x 80m with
a 10Hz sampling frequency. We applied additional anno-
tations [9] to cover objects outside the camera’s field of
view, achieving 360° detection coverage. V2XSet [13] is
a V2X simulation dataset generated using Carla [32] and
OpenCDA [33], containing 73 collaborative scenarios with
11,447 frames of point cloud data. Each scenario includes 2
to 4 vehicles and infrastructure agents. The LiDAR range is
281.6m x 80m, with standard splits for training, validation,
and testing. OPV2V [17] is a vehicle-to-vehicle collaborative
perception dataset simulated by OpenCDA and Carla. It
includes 70 scenarios and 11,464 frames with over 232,913
3D annotations. The Culver City Digital Twin test set,
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which reflects real-world conditions, is used to evaluate
generalization performance.

B. Impelment Details

CoDynTrust’s training has two stages: pre-training an ROI
generator and training the fusion detector with frozen ROI
generator parameters. Both use the same structure without
sharing parameters. We use PointPillar [1] as the encoder
with a grid size of (0.4m,0.4m). We apply Focal Loss [34]
for classification, weighted smooth L1 Loss for regression,
and negative log-likelihood loss for uncertainty modeling.
The AdamW [35] optimizer is used with learning rates of
0.001 for the ROI generator and 0.002 for the fusion detector.
All experiments run on an NVIDIA A100 GPU.

C. Quantitative Results

Benchmark Comparison. To evaluate CoDynTrust’s per-
formance under temporal asynchrony, we compared it with
multiple models, both with and without asynchronous robust-
ness designs. Referencing CoBEVFlow’s setup, we applied
binomially sampled frame intervals to create irregular time
gaps. Table I shows the AP results at IoU thresholds of 0.5
and 0.7 on the DAIR-V2X, V2XSet, and OPV2V datasets.
CoDynTrust consistently outperformed in nearly all scenar-
ios, showing strong robustness to temporal asynchrony.

Trade-off Between Detection Performance and Com-
munication Cost. CoDynTrust transmits uncertainty, ROIs
and sparse features, resulting in low communication costs
and being bandwidth-friendly. Fig. 4 shows the trade-off
between bandwidth and performance (AP@0.7) under ex-
pected 300ms temporal asynchrony for CoDynTrust and
other methods. Experiments on DAIR-V2X and V2XSet
show: i) CoDynTrust consistently outperforms others with
the same bandwidth. ii) On V2XSet, CoDynTrust reached
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its optimal performance with lower bandwidth requirements

than Where2Comm.
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Fig. 4. Trade-off between detection performance (AP@0.7) and commu-
nication bandwidth under expected 300ms delay on DAIR-V2X (left) and
V2XSet (right) datasets.

Robustness to Pose Errors. To evaluate system robust-
ness, we test performance under temporal asynchrony and
pose errors. Pose errors are simulated during inference by
adding Gaussian noise to the 2D center and yaw angle,
with means of 0m/0° and standard deviations ranging from
0m —0.5m and 0° —0.5°. The expected frame interval is set
to 300ms for temporal asynchrony. Table II compares SOTA
models’ robustness on the DAIR-V2X dataset with pose
errors. CoDynTrust maintained top performance even with
both temporal asynchrony and pose errors, outperforming
CoBEVFlow by 2.86% in AP@0.7 at 0.4m/0.4° noise.

TABLE I
DETECTION PERFORMANCE ON THE DAIR-V2X DATASET WITH
GAUSSIAN-DISTRIBUTED POSE NOISE DURING TESTING.

CoBEVFlow CoDynTrust

No error

without DFTM

DFTM

u low-quality features with low

- m [
© Llow-Guality_ 7 _
features

Fig. 5. Visualization of CoBEVFlow and CoDynTrust detection results
on V2XSet, with an expectation of a 300ms time interval. CoDynTrust
shows better detection quality compared to CoBEVFlow. Red boxes indicate
detection results, while boxes represent ground truth.

E. Ablation Studies

We conducted ablation experiments on DAIR-V2X dataset
to evaluate the effectiveness of each component. Table III
shows the results, highlighting: i) Isolated uncertainty quan-
tification yields marginal gains; ii) Combining uncertainty
quantification with DFTM results in a significant perfor-
mance boost; iii) The Hybrid Fusion mechanism, specifically
designed for DFTM, further optimizes feature fusion and
provides an additional performance gain.

TABLE III
ABLATION STUDY RESULTS ON DAIR-V2X, DFTM: DYNAMIC
FEATURE TRUST MODULUS.

Modules ‘ AP@0.5 1 ‘ AP@0.7
DFTM  Hybrid Fusion | \

Uncertainty

Noise Level o¢/or(m/o) | 0.0/0.0 0.1/0.1 02/02 03/03 04/04

Model / Metric | AP@0.5 1
V2VNet 0.6572  0.6476  0.6336  0.6144  0.5974
V2X-ViT 0.7202  0.7098  0.6954 0.6733  0.6614
Where2comm 0.7103  0.7087  0.7003  0.6904  0.6793
Where2comm+SyncNet 0.7324  0.7321  0.7238  0.7100  0.6953
CoBEVFlow 0.7419  0.7397  0.7347  0.7237  0.7145
Ours 0.7481 0.7411  0.7378  0.7289  0.7164

Model / Metric | AP@0.7 1
V2VNet 0.4982  0.4879 04705 04624 04512
V2X-ViT 0.6046  0.5916 0.5758 0.5653  0.5611
Where2comm 0.6066  0.6020 0.5875 0.5771 0.5703
Where2comm+SyncNet 0.6246  0.6178  0.6032  0.5941 0.5877
CoBEVFlow 0.6264 0.6217 0.6112 0.6042  0.5954
Ours 0.6431 0.6366  0.6252  0.6209  0.6124

D. Qualitative Results

Fig. 5 shows the detection results of CoDynTrust and
CoBEVFlow on V2XSet dataset, with a expected time in-
terval of 300ms. Red boxes indicate detection results, while
green boxes represent the ground truth. We compare how
the two models handle features within the ROI. In com-
plex temporal asynchrony scenarios, CoBEVFlow struggles
to distinguish individual vehicle detections, leading to the
sharing of low-quality detection information harms overall
performance. In contrast, CoDynTrust retains reliable detec-
tions, suppressing noise and ensuring robustness.
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0.7419 0.6264
v 0.7420 0.6265
v v 0.7472 0.6334
v v v 0.7481 0.6431

VI. CONCLUSION

We proposed CoDynTrust to tackle temporal asynchrony
in collaborative perception. Using DFTM for ROI reliabil-
ity and linear extrapolation for motion prediction, CoDyn-
Trust enhances interpretability and feature fusion. Exper-
iments show it consistently outperforms existing methods
in asynchronous settings and demonstrates strong robust.
Additionally, DFTM can also be propagated to downstream
tasks, enhancing safety and reliability in autonomous driving.
Future work will focus on optimizing DFTM generation and
explore its further application in downstream modules.
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