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Abstract

Recent multimodal retrieval methods have en-001
dowed text-based retrievers with multimodal002
capabilities by utilizing pre-training strategies003
for visual-text alignment. They often directly004
fuse the two modalities for cross-reference dur-005
ing the alignment to understand multimodal006
queries. However, existing methods often007
overlook crucial visual information due to a008
text-dominant issue, which overly depends on009
text-driven signals. In this paper, we intro-010
duce MIRe, a retrieval framework that achieves011
modality interaction without fusing textual fea-012
tures during the alignment. Our method al-013
lows the textual query to attend to visual em-014
beddings while not feeding text-driven signals015
back into the visual representations. Addition-016
ally, we construct a pre-training dataset for mul-017
timodal query retrieval by transforming con-018
cise question-answer pairs into extended pas-019
sages. Our experiments demonstrate that our020
pre-training strategy significantly enhances the021
understanding of multimodal queries, resulting022
in strong performance across four multimodal023
retrieval benchmarks under zero-shot settings.024

1 Introduction025

Information retrieval aims to fetch relevant in-026

formation from a large collection given a user027

query, underpinning numerous NLP tasks such028

as search engines, open-domain question answer-029

ing (Chen, 2017; Zhu et al., 2021), and fact-030

checking (Thorne et al., 2018). Beyond con-031

ventional methods based on lexical similarities032

(e.g., TF-IDF and BM25 (Robertson et al., 2009)),033

embedding-based retrieval methods (Lee et al.,034

2019; Karpukhin et al., 2020; Izacard et al., 2022;035

Chen et al., 2024) have achieved rich semantic036

matching by learning high-dimensional represen-037

tations of queries and passages via large-scale pre-038

training. However, they focus on textual queries,039

struggling to address multimodal queries that en-040

compass both textual and visual information.041

What kind of object is being 

advertised in the poster on the left?

𝐾1: Many more Guinness adverts and 

… with dozens of types of beer …

𝐾4: … Guinness's sales soared from 

350,000 barrels in 1868 to … Guinness 

became a public company, …

What kind of beverage is being 

advertised in the poster on the left?

𝐾1: Beverage Guinness is an irish dry 

stout that originated in the brewery …

𝐾2: Alcohol advertising is the promotion 

of alcoholic beverages by alcohol …

𝐾3: … Guinness's sales soared from 

350,000 barrels in 1868 to … Guinness 

became a public company, …

𝐾1: Samsung is one of the most widely 

available brand names in consumer …

𝐾4: The Toshiba satellite (dynabook 

satellite in Japan) is a line of consumer 

grade notebook computers …

Baseline: w/ direct intervention of textual features

Ours

Baseline / Ours

Baseline

… …

Reduce textual cue

Retrieval from 

knowledge base

Figure 1: Effect of the text-dominant issue in multi-
modal query retrieval.

In real-world scenarios, users often include vi- 042

sual references in their queries (e.g., complex ob- 043

jects or named entities depicted in an image), which 044

are difficult to represent by text alone fully (Liu 045

et al., 2023). Recent multimodal retrieval meth- 046

ods (Lin et al., 2023; Luo et al., 2023; Lin et al., 047

2024; Zhou et al., 2024a,b) have endowed text- 048

based retrievers with multimodal capabilities by 049

utilizing pre-training strategies for visual-text align- 050

ment. Most existing methods directly fuse the two 051

modalities for cross-reference during visual-text 052

alignment to enhance the understanding of multi- 053

modal queries. For instance, Luo et al. (2023) and 054

Zhou et al. (2024a) facilitate modality interaction 055

through early token fusion, where visual represen- 056

tations are prepended before passing through self- 057

attention layers in the query encoder. Similarly, Lin 058

et al. (2024) integrate modalities within the mul- 059

timodal query using a cross-attention mechanism, 060

where the textual query embeddings function as 061

keys and values. 062

However, these methods often overlook crucial 063

visual information due to a text-dominant issue in- 064

duced by excessive reliance on text-driven signals 065
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during the alignment stage. In this stage, the re-066

triever over-relies on textual similarities, thereby067

hindering proper visual alignment. Consequently,068

the retriever assigns high scores to irrelevant pas-069

sages when textual cues are ambiguous. Fig. 1070

shows the effect of the text-dominant issue. The071

baseline, which is trained with a direct fusion of072

textual features, fails to retrieve the desired pas-073

sages due to its excessive reliance on text when074

the textual query becomes partially ambiguous075

(e.g., replacing a specific term like ‘beverage’076

with a more generic word like ‘object’). This077

text-dominant issue is further amplified through078

pre-training datasets constructed such that pseudo-079

queries are extracted from passages (Luo et al.,080

2023). Datasets obtained via this approach contain081

text-based queries that alone are sufficient to match082

relevant passages. This hinders visual-text align-083

ment by relying on the high contextual similarity084

between textual queries and passages, even in the085

absence of visual information. This issue highlights086

the need for a retrieval framework that leverages087

multimodal queries by mapping both visual and088

textual cues into a linguistic space, capturing com-089

plementary interactions between these modalities090

without over-relying on textual features alone.091

In this paper, we introduce MIRe, a retrieval092

framework that achieves modality interaction with-093

out fusing textual features during the alignment094

stage. Instead of directly merging both modali-095

ties, MIRe allows the textual query to attend to096

patch-level visual embeddings without feeding text-097

driven signals back into the visual representations.098

We then fuse the two modalities during the rel-099

evance scoring stage based on a late-interaction100

mechanism (Khattab and Zaharia, 2020). This de-101

sign alleviates the dependency on text-driven sig-102

nals in the context of knowledge retrieval using a103

multimodal query. Furthermore, we construct a104

pre-training dataset by transforming multimodal105

query-response pairs into extensive passages via106

our response-to-passage conversion process that107

utilizes solely a text retrieval model. The con-108

structed dataset requires the integration of both109

modalities to match a desired passage during train-110

ing, enabling the model to link image understand-111

ing with complex textual queries. Our experiments112

demonstrate that our pre-training strategy signifi-113

cantly enhances multimodal query understanding114

for knowledge retrieval, resulting in strong per-115

formance across four multimodal retrieval bench-116

marks under zero-shot settings.117

2 Related Work 118

Traditional methods such as TF-IDF and 119

BM25 (Robertson et al., 2009) rely on keyword 120

matching to retrieve relevant content but often 121

fail to capture the deeper semantics underlying 122

queries and documents. Beyond the surface-level 123

lexical similarities, dense retrieval methods (Lee 124

et al., 2019; Karpukhin et al., 2020; Izacard et al., 125

2022; Chen et al., 2024; Ni et al., 2022) leverage 126

high-dimensional embedding models for richer 127

semantic matching. 128

The transition from traditional text queries to 129

multimodal queries has marked a significant evo- 130

lution in information retrieval (Luo et al., 2021a). 131

Early methods focused on converting images into 132

textual representations, such as captions (Qu et al., 133

2021; Gao et al., 2022) and object tags (Gui et al., 134

2022; Yang et al., 2022). EnFoRe (Wu and Mooney, 135

2022) and DEDR (Salemi et al., 2023) improve 136

image-query representations derived from a mul- 137

timodal encoder with generated entities and cap- 138

tions, respectively. Whereas these approaches uti- 139

lize DPR (Karpukhin et al., 2020) based on a single 140

embedding for retrieval, FLMR (Lin et al., 2023) 141

refines multimodal queries by incorporating RoIs 142

and generated captions with the late-interaction 143

mechanism. ReViz (Luo et al., 2023) represents 144

an end-to-end multimodal retrieval system that re- 145

moves the dependency on intermediate modules 146

by pre-training on the VL-ICT, which automati- 147

cally constructs a pre-training dataset by applying 148

the Inverse Cloze Task (ICT) (Lee et al., 2019) 149

to a multimodal knowledge base. UniIR (Wei 150

et al., 2024) proposes an instruction-guided mul- 151

timodal retriever along with its benchmark. They 152

design two variants of the model architecture for 153

modality interaction: score-level fusion and feature- 154

level fusion based on CLIP and BLIP (Li et al., 155

2022). VISTA (Zhou et al., 2024a) introduces an 156

in-depth fusion strategy by prepending visual to- 157

kens to the input of a text retrieval model to enhance 158

multimodal understanding. PreFLMR (Lin et al., 159

2024) extends FLMR to investigate the scalability 160

of multimodal retrievers under the late-interaction 161

mechanism. In contrast to previous methods that 162

rely heavily on text information within multimodal 163

queries, we address the text-dominant issue in mul- 164

timodal query representations caused by the direct 165

intervention of textual features. We also adopt the 166

late-interaction mechanism to fuse modalities dur- 167

ing the scoring stage. 168
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3 Method169

In this section, we first define the problem of knowl-170

edge retrieval with multimodal queries. Next, we171

describe the architecture of our retrieval model and172

our data construction method.173

3.1 Problem Definition174

Given a multimodal query Q = (I, T ), the primary175

objective of our retriever R is to retrieve a set of176

relevant passages K = {D1, D2, . . . , Dn} from177

a knowledge base U , where I and T denote an178

image and a textual query, respectively. Each Di179

corresponds to a passage of text. To achieve this180

goal, R should encode the multi-modal query Q,181

integrating both the image and text modalities.182

3.2 Background: Late Interaction in Retrieval183

Late interaction (Khattab and Zaharia, 2020) is a184

retrieval strategy that preserves token-level embed-185

dings for both queries and passages, enabling more186

fine-grained matching compared to single-vector187

retrieval. This mechanism defers the aggregation of188

embeddings to the scoring phase, retaining token-189

level signals. The retrieval model generates a set of190

low-dimensional embeddings E = {e1, ..., el} for191

tokens in both the query and the passage. Then, the192

final relevance score between query embeddings193

EQ and document embeddings ED is computed194

via the following MaxSim operation:195

rQ,D =

lQ∑
i=1

lD
max
j=1

(
EQ · ET

D

)
, (1)196

where lQ and lD denote the number of tokens in197

the query and the document, respectively. Each198

query token is matched with its most relevant doc-199

ument token. In our MIRe framework, we extend200

this mechanism to handle retrieval with multimodal201

queries. Our rationale for this adoption is to mit-202

igate the overemphasis on textual features during203

alignment by maintaining distinct representations204

for each modality.205

3.3 Model Architecture206

We detail our model architecture, focusing on how207

it integrates visual and textual features for multi-208

modal query retrieval.209

Textual Embeddings. We employ a pre-trained210

text retriever RT to encode the input textual query211

T and passage D, utilizing multi-vector repre-212

sentations under the late-interaction mechanism.213

Vision Encoder 

ℛ𝑉

Text Retriever 

ℛ𝑇

MLP 
& 

Split

MLP & Split

𝑉𝑚

𝐸𝑡

Query-guided 

Attentive Pooling

𝐸𝑡

𝐸𝑚

𝐸𝑔

;
;

𝐸𝑄

Text Retriever 

ℛ𝑇

𝐸𝐷

MaxSim 𝐸𝑄, 𝐸𝐷

T

I
D

𝑟𝑄,𝐷

Figure 2: Overview of the MIRe architecture. This
figure illustrates the interaction between the text encoder
RT and the vision encoder RV .

The text encoder generates token-level embeddings 214

Et ∈ Rlt×dt , where lt denotes the number of to- 215

kens in T and dt represents the embedding dimen- 216

sion. 217

Visual Embeddings. We use ViT (Dosovitskiy 218

et al., 2021) to encode image I . We adopt two 219

kinds of visual embeddings: (1) global embeddings 220

Vg derived from the CLS token, representing the 221

overall content of the image, and (2) token-level 222

embeddings Vm extracted from the penultimate 223

layer of ViT, representing individual patches of 224

the image. The global embedding Vg ∈ Rdv is 225

directly projected into the latent space of the text 226

retriever RT via a two-layer perception, producing 227

embedding with dimension of Rlg ·dt , where lg is 228

the pre-defined number of tokens. Subsequently, 229

the projected Vg is reshaped into token-level em- 230

beddings Eg ∈ Rlg×dt . 231

Query-guided Attentive Pooling. Our architec- 232

ture aims to achieve modality interaction without 233

directly incorporating textual features in the pre- 234

training stage for multimodal alignment. To this 235

end, we introduce a query-guided attentive pooling 236

module. This module retrieves visual information 237

required by the textual query T from Vm ∈ Rlv×dv 238

and then aggregates the visual information based 239

on its relevance to tokens within the textual query, 240

where lv denotes the number of image patches. 241

Employing Et as query vectors, attention scores 242

A ∈ Rh×lt×lv are calculated as follows: 243

A = Softmax
(
Et · K⊤

m√
dt

)
, (2) 244

where Km ∈ Rh×lv×dt denotes key vectors of Vm 245

projected by a linear layer and split into h tokens 246

for each embedding within Vm. Then, the attended 247

visual output Em ∈ Rh×dt is calculated with value 248
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Top-𝐾 retrieved passages

What type of aircraft is 

shown in the image?

Response

The image shows a large 

passenger jet belonging to 

China airlines.

Question

Image

China Airlines (CAL; ) is the state-owned flag carrier 

of the Republic of China (Taiwan), and one of its two 

major airlines along with EVA Air. It is headquartered 

in Taoyuan International Airport and operates over 

1,400 flights weekly (including 91 pure cargo flights) 

to 102 cities across Asia, Europe, North America, and 

Oceania. Carrying over 19 million passengers and 

5700 tons of cargo in 2017, the carrier was the 33rd 

largest airline in the world in terms of revenue 

passenger kilometers (RPK) and 10th largest in terms 

of freight revenue ton kilometers (FRTK)…

China Airlines Flight 676 (CAL676, CI676) was a 

scheduled international passenger flight. On Monday, 

16 February 1998, the Airbus A300 jet airliner 

operating the flight crashed into a road and residential 

area in Tayuan, Taoyuan County (now Taoyuan City), 

near Chiang Kai-shek International Airport (present-

day Taoyuan International Airport), Taiwan.The A300, 

registered as B-1814, was en route from Ngurah Rai 

Airport in Bali, Indonesia to Taipei, Taiwan…

The Commercial Aircraft Corporation of China, Ltd. 

(COMAC, ) is a Chinese state-owned aerospace 

manufacturer established on 11 May 2008 in 

Shanghai. The headquarters are in Pudong, 

Shanghai. The company has a registered capital of 

RMB 19 billion ( as of May 2008). The corporation 

is a designer and constructor of large passenger 

aircraft with capacities of over 150 passengers…Wikipedia

Visual dialog datasets

Split turns & Filter out 
“yes/no” answers

Add information for 

simple answers

What brand of wine 

is this?
Chateau garraud

The Commercial Aircraft Corporation of China, Ltd. (COMAC, ) is a Chinese state-

owned aerospace manufacturer established on 11 May 2008 in Shanghai. The 

headquarters are in Pudong, Shanghai. The company has a registered capital of RMB 

19 billion ( as of May 2008). The image shows a large passenger jet belonging to 

China airlines. China Airlines Flight 676 (CAL676, CI676) was a scheduled 

international passenger flight. On Monday, 16 February 1998, the Airbus A300 jet 

airliner operating the flight crashed into a road and residential area in Tayuan, 

Taoyuan County (now Taoyuan City), near Chiang Kai-shek International Airport 

(present-day Taoyuan International Airport), Taiwan.The A300, registered as B-1814, 

was en route from Ngurah Rai Airport in Bali, Indonesia to Taipei, Taiwan…

Synthesized passage

+

Response-to-Passage conversion

Chateau garraud (brand, wine)

Figure 3: Our data construction process. Starting with visual dialogue datasets, our process involves two steps to
convert the dialogue tasks to knowledge retrieval tasks. After preprocessing, we transform responses into a passage
format by unifying the response and relevant passages retrieved from Wikipedia.

vectors Vm ∈ Rh×lv×dt of Vm as follows:249

Em = Linear

(
1

lt

lt∑
i

(A · Vm)

)
, (3)250

where Vm is produced via operations identical with251

Km. Unlike the standard cross-attention mecha-252

nism, we apply mean-pooling along the sequence253

dimension without a residual connection, yielding254

h visual embeddings. In this modality interaction255

process, we only leverage textual embeddings Et256

to calculate A as relevance scores for T without257

direct fusion.258

3.4 Dataset Construction259

We aim to train our model to comprehend im-260

ages based on textual queries, thereby enabling261

effective multimodal query understanding. To262

achieve this goal, we leverage existing multi-263

modal question-response datasets, such as visual264

instruction-following data and VQA data. These265

datasets consist of query-response pairs where each266

pair is associated with a single image. In each pair,267

the response provides a concise and image-specific268

answer that directly addresses the textual query.269

Thus, the response serves as a clear bridge between270

the visual content and the query, explicitly linking271

image understanding to the language of the query.272

However, despite the explicit information provided273

by these responses, the datasets are not directly274

suitable for training the retriever R because of the275

inherent difference between concise responses and276

more expansive passages. In practice, responses277

can be matched with queries without ambiguity,278

whereas real-world retrieval tasks demand the iden- 279

tification of relevant information embedded within 280

broader documents that often contain noisy content. 281

To bridge this gap, we transform query-response 282

pairs into a format suitable for multimodal retrieval 283

tasks via response-to-passage conversion, as illus- 284

trated in Fig. 3. 285

Response-to-Passage Conversion. Let a multi- 286

modal query-response pair S as follows: 287

S = {(I, T ), R}, (4) 288

where R represents the response. We first attain 289

multiple QA pairs for a single image from samples 290

with several turns in source datasets. We divide the 291

response R into two types: (1) detailed responses 292

and (2) simple responses with a single word or a 293

phrase. The simple responses often lack sufficient 294

context to facilitate effective knowledge retrieval. 295

Thus, we compensate simple responses with nouns 296

extracted from the textual query T . Note that we 297

filter out pairs of responses that do not contribute 298

to knowledge-based retrieval, such as simple affir- 299

mations and negations (e.g., “yes” or “no”). 300

The nature of the data S guarantees a high cor- 301

relation between (I, T ) and R since the responses 302

contain information conditioned on the given multi- 303

modal query while the textual queries have restric- 304

tive information. Thus, we utilize the response R to 305

transform the response into an informative passage. 306

From an arbitrary knowledge base U , we retrieve 307

relevant passages using the response R as the query. 308

Specifically, we obtain the top-k passages: 309

{D1, D2, . . . , Dk} = RetrieveRT
(R,U, k), (5) 310

4



where RetrieveRT
denotes the retrieval function311

that returns the top k relevant passages from the312

knowledge base U based on the query R using the313

text retriever RT . To maintain contextual relevance314

with the multimodal query (I, T ), we then augment315

the response R by combining it with the retrieved316

passages:317

R′ = [D1;R;D2; . . . ;Dk]. (6)318

This conversion strategy yields training data that319

more closely mimic the complexity and noise of320

real-world documents. Consequently, the retriever321

is exposed to more challenging and realistic sce-322

narios during training, enabling it to effectively323

integrate visual cues and ultimately achieve more324

robust retrieval performance.325

3.5 Training and Inference326

We deal with passages including the golden an-327

swers to a given question Q as relevant passages K.328

To train our model, we employ in-batch negative329

sampling, which treats all passages in a training330

batch except for a passage D belonging to K as331

negative passages K̄ for Q. We optimize our model332

by minimizing the following contrastive loss LCL333

over the dataset D:334

LCL = −
∑
D

log
exp(rQ,D/τ)

exp(rQ,D/τ) +
∑

D̄∈K̄ exp(rQ,D̄/τ)
,

(7)335

where τ is the temperature parameter that regulates336

the influence of penalties on negative samples. Dur-337

ing the alignment stage, all parameters of RT and338

RV are frozen, preserving the established text re-339

trieval performance. To focus on visual alignment,340

we exclude the textual embeddings Et from the341

final query embedding EQ, using only the visual342

features [Eg;Em] as EQ. We also integrate a subset343

of a multimodal knowledge base, WiT (Srinivasan344

et al., 2021), into our dataset to enrich the world345

knowledge learned during alignment. Note that this346

addition does not affect multimodal query under-347

standing because the dataset consists solely of pairs348

of an image and a passage (i.e., it does not include349

a textual query). For such data, we simply assign350

dummy prompts for multimodal queries (e.g., What351

is the core object or subject shown here?). We dis-352

cuss this integration in Sec. 5 in detail.353

After the alignment stage, we add textual embed-354

dings Et to EQ when training on downstream tasks355

and the inference stage. For efficient retrieval, all356

passages within knowledge base U are pre-indexed357

using PLAID (Santhanam et al., 2022a), identical 358

to ColBERTv2 (Santhanam et al., 2022b). 359

4 Experiments 360

4.1 Setup 361

Benchmarks. We employ four benchmarks for 362

knowledge retrieval with multimodal queries: two 363

variants of OK-VQA (Marino et al., 2019), Re- 364

MuQ (Luo et al., 2023), and E-VQA (Mensink 365

et al., 2023). For OK-VQA, we use two versions 366

based on different knowledge bases: OKVQA-GS, 367

a corpus collected using Google search API as 368

introduced in Luo et al. (2021a), and OKVQA- 369

WK11M, a corpus containing 11 million Wikipedia 370

passages compiled by Qu et al. (2020). 371

Metrics. We evaluate retrieval performance using 372

Mean Reciprocal Rank at 5 (MRR@5), Recall@k 373

(R@k), and Pseudo Recall@k (PR@k) across four 374

benchmarks. MRR@5 measures the ranking qual- 375

ity of the first relevant passage. For OKVQA-GS 376

and E-VQA, which do not provide explicit ground- 377

truth passages, we compute PR@5 by checking 378

whether retrieved documents contain the correct 379

answer. For OKVQA-WK11M and ReMuQ, we 380

evaluate R@k by verifying whether the target pas- 381

sages appear in the top-k results. 382

Implementation Details. Our pre-training dataset 383

is synthesized from three visual instruction 384

datasets (Zhang et al., 2023; Wang et al., 2023; 385

Liu et al., 2024) and two VQA datasets (Singh 386

et al., 2019; Biten et al., 2019), resulting in 1.35 387

million QA pairs, each paired with an image af- 388

ter preprocessing. We sampled to have no more 389

than 12 question-response pairs per image. For 390

the response-to-passage conversion, we utilize 6 391

million Wikipedia articles released by Chen et al. 392

(2023) as our data pool. We retrieve three candi- 393

date passages for each response using ColBERTv2, 394

trained with the MS MARCO Passage Ranking 395

task (Nguyen et al., 2016). Each passage is trun- 396

cated to three sentences, and the response is in- 397

serted between the first and second passages to 398

ensure contextual consistency. We also added 0.5 399

million pairs randomly sampled from WiT. 400

For our base model, we adopt CLIP ViT- 401

base (Radford et al., 2021) as a vision encoder 402

and ColBERTv2 as a text encoder based on BERT- 403

base (Devlin et al., 2019). The number of tokens 404

for visual embeddings Eg and Em are set to 16 and 405

12, respectively. The value for Em is determined 406

by the number of heads h in the interaction module. 407
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Model
OKVQA-GS OKVQA-WK11M ReMuQ E-VQA

MRR@5 PR@5 PR@10 MRR@5 R@5 R@10 MRR@5 R@5 R@10 MRR@5 PR@5 PR@10

CLIP (Radford et al., 2021) 19.08 34.54 50.48 16.45 29.81 43.0 0.34 0.78 1.36 - - -
FLMR (Lin et al., 2023) 38.15 57.25 69.42 32.56 50.61 62.58 66.67 72.10 74.95 29.97 42.0 50.75
ReViz (Luo et al., 2023) 45.77 64.05 75.39 44.03 62.43 73.44 23.61 39.43 46.77 - - -
VISTA (Zhou et al., 2024a) 55.33 72.83 81.61 - - - 78.32 84.21 87.03 33.9 47.73 56.72
PreFLMR† (Lin et al., 2024) 59.38 76.83 84.34 45.68 63.85 73.64 52.27 54.31 55.06 30.92 41.71 49.44

MIRe 63.03 80.48 88.15 51.15 70.71 81.25 83.06 86.84 88.56 41.88 54.24 61.01
w/ ViT-large 63.17 81.13 88.72 50.64 69.92 80.18 82.56 86.48 88.17 44.92 57.65 64.40

Table 1: Zero-shot performance of MIRe and comparison methods. Note that FLMR was only pre-trained on
the WiT dataset. PreFLMR† were trained using our dataset and experimental settings. Bold indicates the highest
performance, while underline signifies the second highest performance.

The dimension of the final embeddings dt is set408

to 128, consistent with the text encoder. Our base409

model has 211M parameters. Further implementa-410

tion details are provided in Appendix A.411

Comparison Methods. We benchmark our MIRe412

model against a diverse set of baseline models that413

employ pre-training stages for visual-text align-414

ment: CLIP (Radford et al., 2021), FLMR (Lin415

et al., 2023), ReViz (Luo et al., 2023), Pre-416

FLMR (Lin et al., 2024), and VISTA (Zhou et al.,417

2024a). Both FLMR and PreFLMR utilize the418

same vision and text encoders as our model, where419

FLMR was pre-trained with a subset of the WiT420

dataset. For direct comparison, PreFLMR was421

trained using the same pre-training procedure as422

our model, thereby highlighting the distinct advan-423

tages of our model architecture.424

4.2 Main Results425

Zero-shot Retrieval Performance. Tab. 1 shows426

that our method achieves superior zero-shot re-427

trieval performance across all four benchmarks,428

significantly outperforming the comparison mod-429

els. Despite employing a two-stage training strat-430

egy and directly optimizing the vision encoder431

for retrieval, VISTA still underperforms relative432

to our approach. Even though PreFLMR was433

trained under the same settings as our model, it434

exhibits a significant performance gap compared435

to our model. These results validate the effective-436

ness of our modality interaction approach. Our437

method also benefits from increased model capac-438

ity. The variant employing a larger vision encoder439

(ViT-large) shows similar performance to the stan-440

dard model, but it further outperforms the standard441

model in E-VQA.442

Fine-tuning on Downstream Tasks We further443

demonstrate the adaptability of our model and the444

effectiveness of our pre-training task by fine-tuning445

models on downstream tasks. Tab. 2 demonstrates446

Model
OKVQA-GS ReMuQ

PR@5 PR@10 R@5 R@10

FLMR (Lin et al., 2023) 70.63 81.23 62.76 74.67
VRR (Luo et al., 2021b) 71.5 81.5 - -
ReViz (Luo et al., 2023) 73.35 83.17 23.61 39.43
GeMKR (Long et al., 2024) 78.6 86.2 90.3 92.7
VISTA (Zhou et al., 2024a) 82.06 90.11 96.3 97.3

Ours w/o Pre-training 74.26 84.07 92.44 94.38
Ours 83.59 90.59 94.40 96.20

w/ ViT-large 84.66 91.30 94.38 96.18

Table 2: Fine-tuning performance on two tasks.

remarkable adaptability when fine-tuned on down- 447

stream tasks. On the OKVQA-GS dataset, our 448

model substantially outperforms all state-of-the- 449

art models. On the ReMuQ dataset, our model 450

still delivers strong performance, showing its com- 451

petitive results. It is important to note that our 452

method achieved higher performance on ReMuQ 453

than VISTA in the zero-shot setting, which sug- 454

gests that our pre-training and modality interaction 455

approach endow our model with strong generaliza- 456

tion capabilities. Notably, the variant without pre- 457

training clearly lags behind the pre-trained model, 458

highlighting the crucial role of our pre-training 459

task. Furthermore, employing a larger vision en- 460

coder (ViT-large) yields additional improvements 461

on OKVQA-GS, demonstrating the scalability of 462

our approach. Overall, these results confirm that 463

our model not only excels in zero-shot settings 464

but also adapts effectively to fine-tuning on down- 465

stream tasks. 466

4.3 Ablation Studies 467

Our ablation studies, summarized in Tab. 3, reveal 468

that each component in our framework plays a sig- 469

nificant role in achieving robust zero-shot retrieval 470

performance. We examine the contributions of our 471

design from three perspectives: the dataset, model 472

architecture during alignment, and the embeddings 473

used at inference. 474

6



Method OK-GS OK-WK ReMuQ E-VQA Avg.

Base 63.03 51.15 83.06 41.88 59.78

PT

w/o WiT 62.54 50.53 82.63 40.88 59.15
w/o R2P 60.43 42.93 81.87 38.13 55.84
w/ Single T 59.72 49.09 79.27 29.29 54.34

w/ Residual 61.65 47.95 80.47 43.06 58.28
w/o Em 60.19 47.23 81.70 39.01 57.03
w/ Et 51.38 42.13 71.69 32.80 49.50

IF

w/o Em 60.43 44.13 85.10 42.4 58.02
w/o Eg 58.4 44.61 85.91 40.24 57.29
w/o Eg&Em 52.46 36.0 71.69 42.48 50.66
w/o Et 36.99 36.68 2.73 11.39 21.95

Table 3: Ablation Studies. Retrieval performance
(MRR@5) in zero-shot settings across four datasets.
"PT" and "IF" indicate ablations performed at the pre-
training and inference stages, respectively.

Dataset. In the pre-training stage (PT), omitting475

external knowledge from the WiT dataset causes476

only a slight performance drop, underscoring its477

supportive role (see Sec. 5). In contrast, training478

the model on original responses without applying479

the response-to-passage conversion (R2P) results480

in a substantially larger decline. These observa-481

tions indicate that the R2P mechanism is essential482

for enhancing visual-text alignment and overall483

knowledge retrieval. We also investigate the ef-484

fect of multiple QA pairs per image. As shown in485

Tab. 3, although sampling a single QA pair per im-486

age keeps the total number of images, this variant487

(w/ Single T ) significantly degrades retrieval per-488

formance, suggesting the presence of hard-negative489

effects beyond simple visual-image alignment.490

Model. We further examine how directly fusing491

text features during the alignment process affects492

performance. When we add a residual connection493

to our model architecture before sequential-wise494

pooling (w/ Residual), we observe a performance495

drop, indicating a slight exacerbation of the text-496

dominant issue. Moreover, when text features are497

allowed an even more direct influence, by setting498

EQ = [Eg, Em, Et] during alignment, the perfor-499

mance degrades considerably.500

Embeddings EQ. At the inference stage (IF), our501

analysis shows that each embedding type plays a502

unique and complementary role. Removing either503

the modality-specific embedding (w/o Em) or the504

general embedding (w/o Eg) leads to a moderate de-505

cline in performance, suggesting that both capture506

distinct yet essential aspects of the data. However,507

removing these components simultaneously causes508

a sharper performance drop. Notably, omitting the509

text embedding (w/o Et) results in severe degra-510

(a) UMAP visualization

[CLS] [Q] Dog Puppy

Cat[CLS] [Q] Kitty

𝑻: [CLS] [Q] What is the dog or puppy’s species? [SEP]

𝑻: [CLS] [Q] What is the cat or kitty’s species? [SEP]

(b) Attention visualization for each token 

(averaged across heads)

Figure 4: Visualization of multimodal query process-
ing, illustrating the alignment between textual and vi-
sual modalities.

dation of retrieval accuracy, indicating that Et is 511

indispensable for maintaining semantic coherence. 512

This clear hierarchy in the impact of each embed- 513

ding underscores their distinct functions and the 514

need for their balanced integration. 515

5 Discussion 516

Effect of Query-guided Attentive Pooling To 517

demonstrate the effectiveness of MIRe in captur- 518

ing modality interactions, we visualize the embed- 519

dings and attention maps of multimodal queries 520

on a controlled dataset. We synthesized 224 im- 521

ages with the prompt ‘A dog and a cat in an image’ 522

using Diffusion-XL (Podell et al., 2024), and condi- 523

tioned the embeddings Em on three distinct textual 524

prompts: (1) What is the dog or puppy’s species?, 525

(2) What is the cat or kitty’s species?, and (3) 526

Where is the place in the image? In Fig. 4(a), the 527

UMAP clustering (McInnes et al., 2018) of Eg and 528

Em illustrates MIRe effectively separates visual 529

embeddings based on the query’s intent. Addition- 530

ally, Fig. 4(b) visualizes attention patterns of our 531
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Dataset OKVQA-GS ReMuQ E-VQA Infoseek

FLMR (Lin et al., 2023) 57.25 72.10 42.0 42.93

w/o WiT 81.11 87.45 51.95 37.15
Ours w/ WiT (0.5M) 80.48 86.84 54.24 42.61

w/ WiT (1.0M) 79.63 86.59 54.05 44.01

Table 4: Zero-shot retrieval performance (R@5) under
knowledge integration settings using WiT data.

(a) Training loss curves (b) R@5 on OK-VQA

Figure 5: Training convergence and retrieval perfor-
mance. All models were trained for only one epoch
under the same settings.

(a) w/ 𝐸𝑡 during alignment (b) Ours

Figure 6: Comparison of Embedding Distribution.
(a) with Et during alignment, where query embeddings
(Q, orange) remain distinct from passage embeddings
(D, blue); (b) our method, where Q (green) is better
integrated into the textual space.

pooling module, revealing how the model attends532

to specific visual patches relevant to each query.533

These results demonstrate that MIRe enhances in-534

teractions between textual and visual modalities.535

Effect of Knowledge Integration. We further as-536

sess MIRe’s capacity for external knowledge inte-537

gration by incorporating the WiT dataset and an-538

alyzing its effect on retrieval performance, partic-539

ularly on the Infoseek dataset (Chen et al., 2023).540

As shown in Tab. 4, Ours w/o WiT falls short on541

Infoseek relative to FLMR while competitively per-542

forming on other benchmarks. Notably, FLMR543

was learned with a subset of WiT without modality544

interaction. When we integrate external knowl-545

edge using 0.5 million WiT data, our model’s per-546

formance on Infoseek is substantially improved547

to 42.61, bringing it on par with FLMR. More-548

over, further increasing the WiT data to 1.0 million549

boosts the R@5 on Infoseek to 44.01. These find-550

ings, however, reveal that the performance gains 551

observed on Infoseek are largely driven by its heavy 552

reliance on external knowledge, which raises con- 553

cerns about the generality of evaluation protocols 554

that depend on such background information. 555

Text-dominant Issue. In Fig. 5(a), both PreFLMR 556

and w/ Residual exhibit faster loss convergence 557

compared to our model, suggesting that directly 558

leveraging text features accelerates optimization. 559

However, as shown in Fig. 5(b), the accelerated 560

convergence does not translate to improved perfor- 561

mance, with PreFLMR and w/ Residual underper- 562

forming relative to our model. The text-dominant 563

issue is further exacerbated when using VL-ICT, 564

a dataset that constructs pseudo-queries from pas- 565

sages with an image, reinforcing the reliance on 566

textual features. Such behavior highlights the text- 567

dominant issue, where excessive dependence on 568

text features during alignment hinders the model’s 569

ability to fully leverage multimodal information. 570

Fig. 6 illustrates this effect by visualizing the align- 571

ment of multimodal query embeddings Q with pas- 572

sage embeddings D. In (a), when Et is explic- 573

itly used during alignment Q embeddings (orange) 574

remain largely separated from the passage space, 575

indicating poor alignment. In contrast, (b) demon- 576

strates that our method effectively incorporates Q 577

embeddings (green) into the linguistic space, im- 578

proving alignment. These results suggest that ex- 579

cessive reliance on text features inhibits the multi- 580

modal query embeddings from adapting properly 581

to the passage space, reinforcing the text-dominant 582

issue observed in retrieval performance. 583

6 Conclusion 584

We introduced MIRe, a novel retrieval framework 585

designed for multimodal query retrieval without 586

fusing textual features during the alignment stage. 587

Our query-guided attentive pooling module allows 588

textual embeddings to attend to visual patches 589

while preventing text-driven signals from domi- 590

nating the visual representations. We also con- 591

structed a pre-training dataset by converting con- 592

cise question-answer pairs into extended passages, 593

thereby exposing the model to more realistic re- 594

trieval tasks. Our extensive experiments demon- 595

strate that MIRe consistently outperforms existing 596

methods under both zero-shot and fine-tuned set- 597

tings. Ablation studies further validate that each 598

component of MIRe is crucial for achieving robust 599

multimodal query retrieval. 600
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7 Limitations601

Despite the promising results, our work has sev-602

eral limitations that point to potential directions for603

future research. First, while our approach demon-604

strates strong performance across general-domain605

benchmarks, it remains untested in specialized do-606

mains (e.g., medical or legal documents), where607

multimodal content may exhibit more complex and608

domain-specific features. Second, we have not609

explored synergy with retrieval-augmented genera-610

tive (RAG) frameworks, which typically prepend611

retrieved passages to a language model for down-612

stream generation tasks. Although we believe our613

retrieval improvements would benefit RAG-based614

methods, in line with findings from Kim et al.615

(2024) showing that stronger retrievers enhance616

downstream generation, fully validating our ap-617

proach in a RAG pipeline is left for future work.618

Finally, our current data construction method fo-619

cuses on retrieval from large yet homogeneous cor-620

pora; adapting the framework to more diverse or621

dynamically changing knowledge sources may re-622

quire additional techniques to handle domain shifts623

or continuously updated information.624
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A Appendix 892

For further information, we provide our code uti- 893

lized in this project at the following GitHub repos- 894

itory: https://anonymous.4open.science/r/ 895

MIRe3B8C 896

A.1 Training and Inference Details 897

In all experiments, we train models using the 898

AdamW optimizer (Loshchilov and Hutter, 2019) 899

with warm-up steps on a machine with 4 RTX 900

A6000 GPUs. We chose model checkpoints based 901

on the validation loss. We set hyperparameters for 902

each dataset as shown in Tab. 5. 903

Pre-training. We used EQ = [Eg;Em] without 904

Et to align visual embeddings with the linguistic 905

space during the pre-training stage. In this stage, 906

we only tuned the mapping network, such as a MLP 907

layer for Eg and the query-guided attentive pooling 908

module. PreFLMR and MIRe were set with the 909

same hyperparameters. 910

Fine-tuning. For fine-tuning our model on down- 911

stream tasks, we tuned all parameters of our model 912

except for the vision model in all experiments. 913

Since the parameters of the vision model are not 914

updated during training, we cached the outputs of 915

the vision model before training. In our setting, 916

training one epoch for our dataset took about 20 917

minutes on 4 RTX A6000 GPUs, where one epoch 918

encompasses 3625 steps. We detail statistics of 919

benchmark datasets in Tab. 6. 920

Inference. Passages within the knowledge base 921

were pre-indexed, following the method established 922

by the previous work (Santhanam et al., 2022b). 923

The indexing process consists of three critical steps: 924

centroid selection, passage encoding, and index in- 925

version. To enhance storage efficiency, embeddings 926
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Dataset
Hyperparameter

LR # Epochs # Batch per GPU # Global Batch # Warm-up τ

Pre-training (R2P) 1e-4 5 128 512 300 0.3
OKVQA-GS 5e-5 15 128 512 10 0.8
ReMuQ 5e-5 5 128 512 10 0.8

Table 5: Summary of hyperparameters utilized for training. The LR denotes the learning rate.

Dataset
Size

#Train #Test KB U

OKVQA-GS 8,958 5,046 166,390
OKVQA-WK11M - 2,523 11,000,000
ReMuQ 8,418 3,609 195,387
E-VQA - 3,750 51,462

Table 6: Summary of dataset statistics for evalua-
tion. This table presents the distribution of training and
testing instances alongside the size of the knowledge
bases for each dataset employed in our study. GS and
KB denote the corpus collected from the Google Search
API and used knowledge base, respectively.

Figure 7: UMAP visualization of embeddings ex-
tracted using the Contriever model (Izacard et al., 2022),
comparing Wikipedia documents (purple) and LLaVA
responses (red). The separation between clusters high-
lights the structural and semantic differences.

were compressed to 2 bits per dimension. In the927

OK-VQA dataset using a corpus collected from928

Google search API, the retrieval time of MIRe and929

ColBERTv2 is approximately 0.085 seconds and930

0.081 seconds per query on one RTX A6000 GPU,931

respectively. Thus, MIRe spends slightly more932

time retrieving relevant passages with multimodal933

queries, compared to the base text retriever.934

A.2 Details for Our Dataset935

To construct our dataset, we employ three visual936

instruction datasets (Zhang et al., 2023; Wang937

Statistic Counts

# Total data 1,356,536

# Images 264,262
# Max. queries per image 12
# Avg. queries per image 8.32
# Queries requiring description 230,877 (17.02%)
# Other types of queries 1,125,659 (82.98%)

Table 7: Statistics of our constructed dataset.

et al., 2023; Liu et al., 2024) and two VQA 938

datasets (Singh et al., 2019; Biten et al., 2019). Ini- 939

tially, samples were split into individual turns. We 940

removed turns with responses shorter than 30 char- 941

acters only for detailed responses. Subsequently, 942

we edited responses containing simple affirmations 943

(“yes", “no") and excluded samples for tasks irrel- 944

evant to retrieval tasks (e.g., location and count), 945

where we automatically filtered out based on spe- 946

cific phrases. 947

Fig. 7 illustrates there exists a clear distinction 948

between the concise responses and more expan- 949

sive passages, supporting our perspective. After 950

the pre-processing, we refined the data through a 951

response-to-passage conversion using ColBERTv2, 952

a text retriever trained on the MS MARCO Passage 953

Ranking task (Nguyen et al., 2016). Responses 954

were converted into passages using a pool of 6 mil- 955

lion Wikipedia documents (Chen et al., 2023), with 956

textual queries limited to 128 tokens. As shown 957

in Fig. 8, our constructed dataset is featured by 958

pairs of multimodal queries and passages includ- 959

ing responses to different queries about the same 960

image, advancing the capability to retrieve relevant 961

information from multimodal queries. This process 962

yielded a total of 1.36 million QA pairs; further 963

data statistics are provided in Tab. 7 and Tab. 8. 964

Table 9 summarizes the zero-shot retrieval per- 965

formance for each source dataset. The results 966

demonstrate that our conversion process effectively 967

leverages complementary strengths from various 968

datasets, underscoring the robustness of our ap- 969

proach. Additionally, when unifying WiT data, 970
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Source Dataset # Data # Images # Avg. S per I # Max. S per I

ST-VQA (Biten et al., 2019) 25,154 18,518 1.36 7
TextVQA (Singh et al., 2019) 26,406 18,913 1.40 2
LLaVAR (Zhang et al., 2023) 42,690 19,787 2.16 7
Instruct4V (Wang et al., 2023) 222,711 26,663 8.35 12
LLaVA-1.5 (Liu et al., 2024) 1,017,622 158,429 6.42 12
Subset of WiT (Srinivasan et al., 2021) 500,000 500,000 1 1

Table 8: Statistics of each source dataset within our dataset. S per I denotes the number of queries per image.

Source Dataset
OKVQA-GS OKVQA-WK11M ReMuQ E-VQA

PR@5 PR@10 R@5 R@10 R@5 R@10 PR@5 PR@10

ST-VQA (Biten et al., 2019) 72.29 81.45 57.35 67.97 85.79 87.81 51.01 58.37
TextVQA (Singh et al., 2019) 72.18 81.75 57.83 69.20 86.03 87.97 51.41 58.80
LLaVAR (Zhang et al., 2023) 73.11 82.62 60.88 71.90 86.34 88.39 51.89 58.75
Instruct4V (Wang et al., 2023) 78.72 86.88 65.83 75.90 86.01 87.81 52.0 59.25
LLaVA-1.5 (Liu et al., 2024) 79.41 87.77 68.05 78.32 86.56 88.31 52.56 59.92

Total 81.11 88.84 70.55 82.20 87.45 88.45 51.95 59.12

Table 9: Zero-shot performance by each source dataset. We apply our response-to-passage conversion process to
each source dataset. Note that we did not add WiT data in this experiment.

we assigned textual queries by randomly sampling971

from the following prompts: “What is the main ob-972

ject?”, “Identify the subject of this image.”, “Who973

or what is the subject in this picture?”, “Identify974

the main entity.”, and “What is the core object or975

subject shown here?”.976
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What feature can be seen 

on the back of the bus?
In bus advertising, buses and their related infrastructure is a medium 

commonly used by advertisers to reach the public with their message. 

Usually, this takes the form of promoting commercial brands, but can also 

be used for public campaign messages. The back of the bus features an 

advertisement. School bus advertising is a form of advertising in the United 

States in which advertising space is sold on the sides of school buses. …

What are the colors of the 

bus in the image?
Red & White Services was a bus company operating in south east Wales 

and Gloucestershire, England between 1929 and 1978. Red & White 

evolved into Red & White United Transport Ltd, formed in 1937, which 

owned bus and road freight companies in the United Kingdom and 

Southern Africa. The bus is white and red. Red Jammers are the vintage 

White Motor Company/Bender Body Company Model 706 buses used at 

Glacier National Park in the United States …

Image 𝐼 Question 𝑇 Passage 𝐷

What type of surface are 

the birds standing on?

Are there any specific 

objects near the birds in 

the image?

The Sandy Island and Low Rock Important Bird Area comprises two small 

islands with a collective area of 9 lying at the western end of the Gulf of 

Carpentaria in the Northern Territory of Australia. They lie south-west of 

Groote Eylandt off the coast of Arnhem Land, with the nearest settlement 

there the Numbulwar community. The birds are standing on a sandy beach. 

Sandy Island is a 20 (ha) island lying about 5 (km) off the coast of Windy 

Harbour in south-west Western Australia, and near Point D’ …

In agriculture, poultry litter or broiler litter is a mixture of poultry excreta, 

spilled feed, feathers, and material used as bedding in poultry operations. 

This term is also used to refer to unused bedding materials. There are 

straws lying on the sand near the birds. Bat-fowling is an archaic method of 

catching birds at night, while they are at roost. The process involves 

lighting straw or torches near their roost. After awakening them from their 

roost, the birds fly toward the flames, …

Image 𝐼

What is the man doing in 

the image?

Is there any official or 

umpire present in the 

image?

A passing shot is a forceful shot, as in tennis or team handball, that travels 

to one side out of the reach of one\'s opponent. In tennis, this shot is 

generally a groundstroke and is used when one\'s opponent is running to 

the net or if they are at the net already. … The man is playing tennis near 

the net and getting ready to hit a ball. he might have just made a play, and 

he is attempting to return the ball to continue the tennis match. 

Gamesmanship is the use of dubious (although not technically illegal) 

methods to win or gain a serious advantage in a game or sport. …

A challenge is a request made to the holder of a competitive title for a 

match between champion and challenger, the winner of which will acquire 

or retain the title. … There is an official looking on  indicating that the 

tennis match is likely a formal or competitive one. The tennis scoring 

system is a standard widespread method for scoring tennis matches, 

including pick-up games. Some tennis matches are played as part of a 

tournament, which may have various categories, such as singles and 

doubles. The great majority are organised as a single-elimination 

tournament, with competitors being eliminated after a single loss, and the 

overall winner being the last competitor without a loss. A tournament is a 

competition involving at least three competitors, all participating in a sport 

or game. More specifically, the term may be used in …

Image 𝐼

Figure 8: Examples for our dataset. The figure illustrates samples in the dataset, where the red-colored text
denotes inserted responses.
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